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Abstract
The resurgence of self-supervised learning, whereby a deep learning model generates its own
supervisory signal from the data, promises a scalable way to tackle the dramatically increasing size
of real-world data sets without human annotation. However, the staggering computational
complexity of these methods is such that for state-of-the-art performance, classical hardware
requirements represent a significant bottleneck to further progress. Here we take the first steps to
understanding whether quantum neural networks (QNNs) could meet the demand for more
powerful architectures and test its effectiveness in proof-of-principle hybrid experiments.
Interestingly, we observe a numerical advantage for the learning of visual representations using
small-scale QNN over equivalently structured classical networks, even when the quantum circuits
are sampled with only 100 shots. Furthermore, we apply our best quantum model to classify
unseen images on the ibmq_paris quantum computer and find that current noisy devices can
already achieve equal accuracy to the equivalent classical model on downstream tasks.

1. Introduction

In the past decade, machine learning has revolutionised scientific analysis, yielding breakthrough results in
protein folding [1], black hole imaging [2] and heart disease treatment [3]. At the forefront of this progress
is deep learning [4], characterised by the successive application of artificial neural network layers [5, 6].
Notably, its use in computer vision has seen the top-1 accuracy on benchmark datasets such as ImageNet
soar from 52% [7] to over 90% [8], fuelled by shifts in the underlying techniques used [9, 10]. However,
what has remained consistent in these top performing models is the use of labelled data to supervise the
representation learning process. Whilst effective, the reliance on large quantities of human-provided
annotations presents a significant challenge as to whether such approaches will scale into the future.
Crucially, modern datasets such as the billions of images uploaded to social media are both vast and
unbounded in their subject, quickly making the task of labelling unfeasible.

This has reignited interest in an alternative approach, termed self-supervised learning [11], which seeks
instead to exploit structure in the data itself as a learning signal. Rather than predict human annotations, a
model is trained to perform a proxy task, that makes use of attributes of the data that can be inferred
without labelling. Furthermore, the proxy task should encourage the model to learn representations that
capture useful factors of variation in the visual input, such that solving it ultimately correlates with solving
tasks of interest after training. Recent progress in the self-supervised learning of visual data has been driven
by the success of contrastive learning [12–16], in which the proxy task is differentiating augmented
instances of the same image from all other images. Provided the correct choice of augmentations, this
produces a model which is invariant to transformations that do not change the semantic meaning of the
image, allowing the learning of recognisable features and patterns in unlabelled datasets.
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With these techniques, contrastive learning is able to learn visual representations with comparable
quality to supervised learning [16, 17], without the bottleneck of labelling. However, it is a fundamentally
more difficult task than its supervised counterpart [18], and capturing complex correlations between
augmented views requires more training data, more training time and larger network capacity [14, 15].
Therefore, it is important to consider whether emerging technologies can contribute to the growing
requirement for more powerful neural networks [19].

Variational quantum algorithms (VQAs) [20], a near term application of quantum computing, are one
such new paradigm. While VQAs have been used to solve many types of optimisation problems [21–25], it
is their application to supervised learning [26–28], unsupervised learning [29], generative models [30, 31]
and reinforcement learning [32–34] which has led to them being referred to as quantum neural networks
(QNNs) [35–37]. In theory, the power of these models comes from their access to an exponentially large
feature space [27] and ability to represent complex high-dimensional distributions, as formalised by the
effective dimension [38]. Importantly, early evidence suggests that quantum models can achieve an
advantage over their classical counterparts, yet these works focus only on the supervised learning of either
artificial data [36, 39] or simple historical datasets [38]. For example, whilst widely used to study QNNs
[40, 41], classical supervised learning of MNIST can already achieve 99.3% top-1 accuracy with a two-layer
784–800 width multi-layer perceptron (MLP) [42]. Thus, it is highly unlikely that this problem would
practically benefit from a quantum model with access to a >250 dimensional feature space and careful
consideration should be made about whether supervised learning is the best setting to try to achieve
quantum advantage. By comparison, self-supervised learning of ImageNet with the widely-used ResNet 50
architecture [43] (with maximum channel width 2048) achieves only 76.5% top-1 accuracy [17]. The
necessity for large capacity models means that self-supervised learning may be a better setting in which to
seek useful quantum advantage through QNNs [38].

In this work, we construct a contrastive learning architecture in which classical and QNNs are trained
together. By randomly augmenting each image in the dataset, our hybrid network learns visual
representations which groups different views of the same image together in both classical and Hilbert space.
Afterwards, we test the quality of the representations by using them to train a linear classifier, which then
makes predictions on an unseen test set. We find that our hybrid encoder, constrained in both size and
training time by quantum simulation overheads, achieves an average test accuracy of (46.51 ± 1.37)%. In
contrast, replacing the QNN with a classical neural network of equivalent width and depth results in a
model which obtains (43.49 ± 1.31)% accuracy. Thus, our results provide the first indication that a
quantum model may better capture the complex correlations required for self-supervised learning.

We then apply the best performing quantum model to classify test images on a real quantum computer.
Notably, the accuracy achieved using the ibmq_paris [44] device equals the best performing classical model,
despite significant device noise. This illustrates the capability of our algorithm for real-world applications
using current devices, with flexibility to assign more of the encoding to QNNs as quantum hardware
improves. While further research is required to demonstrate scalability, our scheme provides a strong
foundation for quantum self-supervised learning. Excitingly, given that contrastive learning has also been
successfully applied to non-visual data [15, 45–48], our work opens the possibility of using QNNs to learn
large, unlabelled datasets across a range of disciplines.

2. Method

2.1. Contrastive learning architecture
Given an unlabelled dataset, the objective of self-supervised learning is to find low dimensional encodings
of the images which retain important higher level features. In this work, we train a model to do this by
adapting the widely used SimCLR algorithm [17], the steps of which can be seen in figure 1. Firstly for a
given image, the data of which is contained within �xi, we generate two augmentation functions. Each one
randomly crops, rotates, blurs and colour distorts the picture, such that two augmented views �x1

i , �x2
i of the

same base image are produced. Importantly, these augmentations still allow for the underlying object to
remain visually distinguishable. This enables us to assert that these two views contain a recognisable
description of the same class, which we call a positive pair.

Once this positive pair is generated, each view is passed through a set of neural networks. First, an
encoder network is applied, which maps the high dimensional input data �x1

i , �x2
i to low dimensional

representations�y1
i ,�y2

i . Then the output of the encoder network is passed to the projection head, a small
multi-layer-perceptron (MLP) [49] consisting of two fully connected layers. This produces the final
representations�z1

i ,�z2
i .
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Figure 1. Schematic of the overall neural network architecture and contrastive training method. For each input image�xi, a pair
of random augmentations are generated and applied to form a positive pair�x1

i ,�x2
i . These are transformed by the encoder

network, consisting of classical convolutional layers and a quantum or classical representation network, into representation
vectors�y1

i ,�y2
i . The projection head subsequently maps the representations to the vectors�z1

i ,�z2
i , such that contrastive loss can be

applied without inducing loss of information on the encoder.

Given a batch of N images, the above process is repeated such that we are left with 2N representations
corresponding to 2N augmented views. Looking at all possible pairings of these representations, we have
not only positive pairs (e.g.,�z1

i ,�z2
i ) but also negative pairs (e.g.,�z1

i ,�z1
j where i �= j), which we cannot

definitely say contain the same class. For each training step, all of these possible pairs are used to calculate
the normalised temperature-scaled cross entropy loss (NT-Xent) [50] (see appendix A), which is minimised
via stochastic gradient descent [51]. Intuitively, minimising this loss function can be understood as training
the network to produce representations in which positive pairs are mapped close together and negative pairs
far apart, as measured by their cosine similarity. This idea is a core concept in contrastive learning and
many machine learning techniques [52]. Note that whilst it is possible to train the network by applying
NT-Xent directly to the output of the encoder, the contrastive loss function is known to induce loss of
information on the layer it is applied to [17]. Therefore, the addition of the projection head ensures that the
encoder remains sensitive to image characteristics (e.g., colour, orientation) that improves performance on
downstream tasks.

In order to incorporate QNNs, we modify the encoder to contain both classical and quantum layers
working together. The first part of the encoder consists of a convolutional neural network, which in this
work is the widely used ResNet-18. This produces a 512 length feature vector, which is already an initial
encoding of the augmented image. However, we then extend the encoder with a second network, which we
call the representation network as it acts directly on the representation space. This consists of either a
multi-layer QNN of width W, or a classical fully connected MLP with equivalent width and depth. Ideally
the representation network would have width W = 512, so as to minimise loss of information. However, we
instead look to work in a regime which is realisable on current quantum computers, and as such in this
work we use W = 8. This is achieved by following the convolutional network with a single classical layer
that compresses the vector, a common technique used to link classical and quantum networks
together [53, 54].

After the representation network is applied, the resultant encoding is passed onto the previously
described projection head. To maintain the structure of the original SimCLR architecture, we limit the
projection head to be no wider than the width of the QNN.

2.2. Quantum representation network
The quantum representation network follows the structure shown in figure 2, beginning with a data loading
unitary D̂(�v). Whilst schemes exist to encode data into quantum circuits with exponential compression
[55, 56], these require a prohibitively large number of logic gates compared to current hardware capabilities.
By compressing the output of the ConvNet as described in section 2.1, we need only to solve the simpler
issue of loading a vector �v of length W into equally as many qubits. This is achieved by applying a single
qubit rotation R̂x to each qubit in the register; D̂(�v) = ⊗W

i=1 R̂x(vk). Here, vk is the kth element of input
vector �v and is mapped to the range [0,π] to prevent large values wrapping back around the Bloch sphere.

Once the input data is loaded, we apply the learning component of our QNN, a parameterised quantum
circuit ansatz. In applications where the ansatz is used to solve optimisation problems relating to a physical
system (e.g., the simulation of molecules), the circuit structure and choice of logic gates can be inspired by
the underlying Hamiltonian [57]. However, without such symmetries to guide our choice, we use a
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Figure 2. General structure of a QNN. An input vector �v is encoded into the qubits by a data loading unitary D̂(�v). The
variational ansatz consists of layers {Û1(�θ1), Û2(�θ2), . . . } and is parameterised by trainable parameters {�θ1, �θ2, . . . }. The output
of the QNN is taken as the average of repeated measurements in the σ̂z basis.

Figure 3. Variational ansatz used in this work. Each layer consists of a single qubit R̂y rotation on each qubit, followed by
controlled R̂x rotations, connecting the qubits in a ring topology. Every rotation gate is parameterised by a different variational
parameter.

variational ansatz based on recent theoretical findings in expressibility and entangling capability [58]. The
ansatz is shown in figure 3, the structure of which is derived from circuit 14 of reference [58] and was
chosen due to its performance in both these metrics.

After the application of several ansatz layers, the network is finished by measuring each qubit to obtain
an expectation value in the σ̂z basis. When evaluated on a real quantum computer or sampling-based
simulator, the expectation value is constructed by averaging the sampled eigenvalues over a finite number of
shots. If evaluated on a statevector simulator, the expectation value is calculated exactly.

The gradients of the QNN output with respect to the trainable parameters and the input parameters are
calculated using the parameter shift rule [35, 59], which we describe here. Consider an observable Ô
measured on the state

|ψ(�θ)〉 =
∏

i

Û i(θi)V̂ i|0〉, (1)

resulting from the application of M parameterised gates Û1, Û2, . . . , ÛM and M fixed gates V̂1, V̂2, . . . , V̂M ,
where gates Ûi = eiθiP̂i/2 are generated by operators P̂i ∈ {𝟙, σ̂x, σ̂y, σ̂z}⊗n that are tensor products of the
Pauli operators. According to the parameter shift rule, the gradient of the expectation value
f = 〈ψ(�θ)|Ô|ψ(�θ)〉 with respect to parameter θi is given by

∂f (�θ)

∂θi
=

1

2

[
f
(
θi +

π

2

)
− f

(
θi −

π

2

)]
. (2)

For each parameterised gate within the circuit, including both the variational ansatz and data loading
unitary, an unbiased estimator for the gradient is calculated by measuring the QNN with the two shifted
parameter values given in equation (2).

Once the QNN gradients have been calculated, we combine them with gradients of the classical
components to obtain gradients of the loss function with respect to all trainable quantum and classical
parameters via backpropagation [60]. In this way, the QNN is trained simultaneously with the classical
networks, and the quality of the gradients produced on quantum hardware play a crucial role in the training
ability of the whole network.
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Figure 4. Contrastive learning with a quantum representation network. After each batch of 256 images the loss function (main
graph) is recorded, alongside the average Hilbert Schmidt distance between positive and negative pairs D̄HS, the average positive
pair clustering tr(ρ2), the average clustering of all negative pairs tr(σ2) and the ensemble inter-cluster overlap tr(ρσ) (insets).

3. Results

3.1. Training
To examine whether the proposed architecture can successfully train, we apply it to the CIFAR-10 dataset
[61]. In this preliminary experiment we restrict the dataset to the first two classes, leaving 10 000 32 × 32
colour images containing either an aeroplane or automobile. We also train this initial model without a
projection head, since it is not being used for classification later. The quantum representation network here
is a simulated two-layer QNN and is trained together with the classical components from scratch by
integrating [62] the Qiskit [63] and PyTorch [64] frameworks. The full list of training hyperparameters can
be found in appendix B.

Figure 4 shows the results of several key metrics after training for 100 batches. Firstly, we record the loss
after each batch, the minimisation of which represents the ability to produce representations in the classical
W dimensional space whereby positive pairs have high similarity. Our results show that the loss decreases
from 9.13 to 5.16 over the course of training, indicating that our model is able to learn. Importantly, since
the quantum and classical parameters are trained together, this shows that information is successfully
passed both forwards and backwards between these different network paradigms.

Secondly, we log the Hilbert–Schmidt distance (DHS), a metric that has been applied in quantum
machine learning previously to study data embedding in Hilbert space [54]. Here, we use it to track the
separation between our pseudo classes in the 2W dimensional quantum state space while optimising the
classical loss function. For a given positive pair �x1

i ,�x2
i , we calculate the statistical ensembles

ρi =
1

2

(
|ψ1

i 〉〈ψ1
i |+ |ψ2

i 〉〈ψ2
i |

)
, (3a)

σi =
1

2N − 2

∑
j�=i

(
|ψ1

j 〉〈ψ1
j |+ |ψ2

j 〉〈ψ2
j |

)
, (3b)

where |ψα
i 〉 is the statevector produced by the hybrid encoder given augmented view �xαi . The

Hilbert–Schmidt distance is then given by

DHS,i = sect; ((ρi − σi)
2). (4)

We repeat this for each positive pair in the batch and record the mean, D̄HS =
1
N

∑
i DHS,i. Focusing on

the inset of figure 4, we see in the upper-left panel that D̄HS increases consistently across the range of
training, indicating that the QNN successfully learns to separate positive and negative pairs in Hilbert space.
Expanding out the quadratic in equation (4), we can break down the metric into the so-called purity terms
tr(ρ2) and tr(σ2), which are measures of the intra-cluster overlaps, and the term tr(ρσ), which is the
inter-cluster overlap. Looking at the upper-right panel, we see that the average positive pair clustering tr(ρ2)
increases rapidly at the start of training, before steadying at a value around 0.85. This demonstrates one
mechanism by which D̄HS increases, through the QNN producing representations which group positive
pairs close together in Hilbert space. The bottom panels of figure 4 show the average negative pair clustering
tr(σ2) and average negative–positive pair overlaps tr(ρσ), which decrease consistently throughout training.

5



Quantum Sci. Technol. 7 (2022) 035005 B Jaderberg et al

This demonstrates a second behaviour, whereby the QNN produces representations in which negative pairs
are well separated. We note that these two values are very similar, which occurs in our self-supervised
learning algorithm because of both the need to average over all positive pairs and because of the fixed size of
ρi. Thus, in the limit N →∞ the ensemble σi contains the entire batch and both metrics are effectively
measuring the clustering of all data points.

Overall, figure 4 shows that the quantum component of the encoder contributes to the overall learning
process, despite the network’s parameters being optimised explicitly in a classical space. It is notable that the
training time presented here is significantly less than classical benchmarks, which would typically be 100s of
epochs. Due to its technological infancy, executing quantum circuits on real or simulated hardware is
computationally expensive. Thus, the 1–2 epochs of training used in this work represents the limit of our
current experiment, although we expect this to improve dramatically in the coming years with the release of
GPU-enhanced simulators [65]. This also justifies our choice of dataset, since CIFAR-10 is both a modern
relevant dataset [66–68] yet contains few enough images that we can complete at least one epoch.

3.2. Linear probing
Once training is complete, we require a way to test the quality of the image representations learnt by the
encoder. Specifically, a good encoding will produce representations whereby different classes are linearly
separable in the representation space [69]. Therefore, we numerically test the encoder using the established
linear evaluation protocol [69], in which a linear classifier is trained on the output of the encoder network,
whilst the encoder is frozen to stop it training any further. Once this linear probe experiment has trained for
100 epochs, we apply the whole network to unseen test data and record the classification accuracy.

3.3. Quantum and classical results on the simulator
We repeat training, this time with the first five classes of CIFAR-10 and a projection head. We train models
with three different types of representation networks; classical MLP with bias and Leaky ReLU activation
functions after each layer, quantum trained on a statevector simulator and quantum trained on a
sampling-based simulator. We choose the representation networks to be width W = 8 in order to minimise
the simulation overhead, whilst still being in a compression regime where training is stable (see appendix
C). Quantitatively, this means our two-layer classical and quantum representation networks have 144 and
32 learnable parameters respectively.

Figure 5 shows the result of linear probe experiments at checkpoints across 176 batches of contrastive
training. We find that when the quantum circuits are evaluated using a statevector simulator, the quantum
representation network produces higher average accuracy on the test set than the equivalent classical
network at all points probed throughout training, and is separated by more than one standard deviation for
over half of these. The highest accuracy is obtained at the end of training, where the quantum model
achieves an accuracy of (46.51 ± 1.37)% compared to (43.49 ± 1.31)% for the classical model. In these
results, the confidence interval corresponds to one standard deviation on the mean of six independently
trained models. Furthermore, we also find that this numerical advantage holds for a range of smaller width
models and is highly dependent on the correct choice of ansatz, more details of which are given in
appendices D and E.

Subsequently, we explore whether using a finite number of shots limits this advantage. We train another
quantum model on a simulator where the expectation values of measured qubits are sampled from 100
shots, both in the forward pass (generating the representations) as well as the backwards pass (calculating
gradients). We find that beyond the first batch, the average accuracy of this model is still above what is
achieved by the classical representation network, reaching (46.34 ± 2.07)% by the end of training.
Significantly, this matches the performance of the statevector simulator, which represents the limit of
infinite shots, demonstrating resilience of our scheme to shot noise. However, we note that the additional
uncertainty introduced by the sampling does manifest as a larger standard deviation between repeated runs,
compromising the consistency of the advantage.
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Figure 5. Classification accuracy achieved in linear probing experiments using the encoder at checkpoints across self-supervised
training. Comparison between models trained with a classical representation network (blue), quantum representation network
evaluated on a statevector simulator (orange) and quantum representation network evaluated on a sampling-based simulator
with 100 shots (purple). The markers show the average of six independently trained models, whilst the error bars show one
standard deviation.

Figure 6. Confusion matrix from classifying 900 images using the best performing (a) classical model evaluated on a classical
computer (b) quantum model evaluated on a real quantum computer with 100 shots per circuit. For a given true label (rows) and
predicted label (columns), the number in each box shows the total number of times that prediction was made.

3.4. Real device experiments
In section 3.3, we showed that a numerical advantage can be achieved for self-supervised learning with a
quantum representation network, even when sampling the quantum circuits with only 100 shots. However,
it does not follow that such an improvement can necessarily be realised on current quantum devices. The
biggest barrier to this is the complex noise present on quantum hardware, a product of both the finite
lifetime that qubits can be held in coherent states for and imperfections in the application of logic gates. To
this end, we test the ability of real devices to accurately prepare representations produced by a pretrained
quantum model and how this changes downstream accuracy on the test set.

We construct a linear probe experiment with a quantum representation network and load in weights
from the best performing pretrained model in which circuits were evaluated with 100 shots. Freezing all of
the layers so that the entire network no longer trains, we repeat classification of images from the test set,
however this time the circuits are executed on IBM’s 27-qubit ibmq_paris quantum computer. To reduce the
number of gates, particularly SWAP operations caused by a mismatch between the ansatz and physical qubit
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connectivities, the circuits are recompiled using incremental structural learning [70] before execution, the
details of which can be found in appendix F.

Figure 6(a) shows the result of classifying 900 images randomly sampled from the test set, using the best
performing classical model and evaluated on a classical computer. Figure 6(b) shows the result when
classifying the same images using the best performing 100-shot quantum model, evaluated on ibmq_paris.
Overall, the classical and quantum models achieve an accuracy of 47.27% and 47.00% respectively.
Excitingly, this demonstrates that in this experiment, error induced by noise on the quantum computer is
able to be offset by the enhanced theoretical performance of QNNs, provided the circuit depth is reduced
with recompilation techniques. Furthermore, in both setups the most correctly predicted class was
aeroplanes (71.1% and 71.7%) whilst the most incorrectly predicted class was birds (15.9% and 20.5%),
both of which the quantum model performed better on. We propose that birds and deer were most likely to
be mistaken with one another due to the images sharing a common background of the outdoor natural
environment.

4. Conclusion

In this work, we propose a hybrid quantum–classical architecture for self-supervised learning and
demonstrate a numerical advantage in the learning of visual representations using small-scale QNNs. We
train quantum and classical neural networks together, such that encodings are learnt that maximise the
similarity of augmented views of the same image in the representation space, as well as implicitly in Hilbert
space. After training is complete, we determine the quality of the embedding by tasking a linear probe to
classify images from different classes. We find that an encoder with a QNN acting in the representation
space achieves higher average test set accuracy than one in which the QNN is replaced by a classical neural
network with equivalent width and depth, even when evaluating quantum circuits with only 100 shots. We
note that although making such a comparison has been established in previous works [38], how to fairly
compare quantum and classical neural networks still remains a significant open question.

We then apply our best performing pretrained classical and quantum models to downstream
classification, whereby the quantum circuits were evaluated on a real quantum computer. The observation
of a quantum predictive signal with equivalent accuracy to that of the classical model, despite the complex
noise present on current quantum devices, is representative of the potential practical benefit of our setup. If
recent progress in superconducting qubit hardware continues [71–73], it is possible that QNNs running on
real devices will outperform equally sized classical neural networks in the near future in this experiment.

One advantage of the hybrid approach taken in this paper is the resulting flexibility in how much of the
encoder is quantum or classical. In fact, there now exist numerous software solutions for producing and
testing such hybrid architectures [63, 74, 75]. As the quality and size of quantum hardware improves, our
scheme allows classical capacity to be substituted for quantum, eventually replacing ResNet entirely. By
optimising directly for the Hilbert–Schmidt distance, it is also possible with a fully quantum encoder to
apply our setup to problems in which the data is itself quantum [76–80]. Promisingly, in this regime it may
prove that the advantage observed in this work is further extended, given the ability of a quantum model to
inherently exploit the dimensionality of the input [81]. Recently developed data sets consisting of entangled
quantum states [82, 83] serve as an obvious target for such work. In this case contrastive augmentations
could be quantum operations that change the state but conserve the properties of interest, for example
LOCC operations that do not affect the amount of entanglement in the system. With classical contrastive
learning having been applied to non-visual problems in biology [47] and chemistry [48], our work provides
a strong foundation for applying quantum self-supervised learning to fundamentally quantum problems in
the natural sciences [84].

An open question remains as to whether a general quantum advantage for self-supervised learning may
prove possible [71, 85], in which no classical computer of any size can produce accuracies equal to that of a
quantum model. In [38, 86], the authors define effective-dimension, a metric measuring the expressive
power of classical and QNNs. In general, quantum models are able to achieve a higher effective dimension,
and therefore capture a larger space of functions, than classical models with comparable width and number
of parameters. Although it does not necessarily increase monotonically, the effective dimension of quantum
models can remain larger than classical as the model and data set size are increased. Such behaviour
indicates that the expressive power available to QNNs may allow for an advantage over classical neural
networks, particularly for a problem such as self-supervised learning where highly expressive, large capacity
models are believed to be particularly important for achieving highly accurate predictions [17].

Achieving experimental quantum advantage would require, as a minimum, a QNN with width greater
than 60 qubits, such that the dimensionality of the accessible feature space becomes classically intractable.
Furthermore, the QNNs would need to be trained on real devices, which remains a challenge due short
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qubit lifetimes and low gate fidelity. Therefore, considerable research still remains into the scalability of our
scheme, which was only demonstrated at the small sizes feasible on current quantum hardware. Promisingly
however, our method can be adapted to use different QNN structures that avoid the scaling issue of barren
plateaus [87–89], which could be tested already using more efficient simulators [90]. Looking forward, the
rate at which quantum hardware continues to progress provides the possibility of representing intractable
distributions using QNNs. In this way, quantum computers may yet push self-supervised learning beyond
the performance afforded by classical hardware.

Code availability

The code used to train the models described in this work can be found at https://github.com/bjader/QSSL.
The code used to incorporate and train Qiskit quantum neural networks into PyTorch can be found at
https://github.com/bjader/quantum-neural-network and is required to build quantum representation
networks.
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Appendix A. Contrastive loss function

Here we formally define the process of contrastive learning. Let us have an augmentation function ξ(·; a).
This augmentation combines cropping, rotation, Gaussian blurring and colour distortion of the image, and
the amount by which each of these operations is performed is governed by a list of continuous random
variables a. Each time we apply an augmentation, we randomly sample a from a distribution A such that
applications of the augmentation function are independent from one another.

For a particular image �xi, we now have a pair of views Pi = {ξ(�xi; a1), ξ(�xi; a2)|a1, a2 ∼ A} which came
from the same base image. We call this a positive pair. We define the negative pairs as the set of all
augmented versions of different images.

During contrastive training, all augmented views within the batch are passed through our architecture.
The encoder network f (·) :�x →�y and projection head g(·) :�y →�z, are applied to give outputs
�zαi = g( f (ξ(�xi; aα))); aα ∼ A for each of the two arms (labelled by α = 1, 2).

For simplicity, we define the NT-Xent loss for each input data separately labelled by index i as follows.
The overall loss function corresponds to the sum of these terms over all input images (and correspondingly
defined positive and negative pairs). A single term in the loss term is given by

Li = log
− exp

(
�z1

i ·�z2
i /τ

)
∑

j,k∈{1,...,N}
α,β∈{1,2}

exp
(
�zαj ·�zαk /τ

) , (A1)

where i = 1, 2, . . . , N labels the input image and α,β = 1, 2 labels the (arbitrary) distinction between the
first and second augmentation making up the positive pair. The overall loss L is given by the sum over each
of i.
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Figure 7. Classification accuracy achieved in linear probing experiments by classical representation networks with varying
network widths at checkpoints across self-supervised training. The markers show the average of three independently trained
self-supervised models and linear probe experiments, whilst the error bars show one standard deviation.

Appendix B. Training hyperparameters

Throughout this work, the training parameters used are; batch size: 256, optimiser: ADAM [91] with
β1 = 0.9,β2 = 0.999, learning rate: 10−3, weight decay: 10−6 and softmax temperature: 0.07.

Appendix C. Classical width ablation

In order to incorporate QNNs that can be run on current quantum devices into contrastive learning, a
compression of the feature vector is required after ConvNet. Since this would not be necessary in a purely
classical setting, its impact on final performance is not well understood. To this end, we perform a study of
the accuracy achieved by models with different representation network widths. We do this with classical
representation networks to remove the quantum specific considerations of statistical noise and optimal
circuit architecture, focusing purely on width. The classical representation network is a two-layer, width W
MLP, with Leaky ReLu activation functions after each layer and with bias.

Each model is trained on the first five classes of the CIFAR-10 dataset and a linear probe experiment
evaluates the performance at regular checkpoints during training. Figure 7 shows the result comparing
models with different representation network widths, including the W = 512 case which corresponds to no
compression. Starting from W = 2, we see that increasing the width of the representation network improves
the test accuracy. Furthermore, we find that W = 8 is the lowest width network in which test accuracy
retains the same qualitative behaviour as the uncompressed network. Therefore, in our proof-of-principle
quantum experiments, we use an eight width representation network corresponding to eight qubits.

Appendix D. Quantum and classical results at different widths

In section 3.3 we demonstrate that for an architecture with a W = 8 representation network, using a QNN
to form a hybrid model leads to higher performance in linear probing experiments than the purely classical
case. Here we supplement this with additional experiments for the W = 2, 4 and 6 cases alongside an
equally sized classical comparison for each one. The same problem setup and training parameters are used
as in figure 5.

Figure 8 shows the accuracy achieved by these additional models in linear probing experiments at
intervals across training, as well as the W = 8 results from the main text. Focusing on the circle markers
representing the quantum models, we see that the accuracy improves consistently when increasing the QNN
width. This matches the behaviour of the classical models, represented in this figure by the crossed markers,
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Figure 8. Classification accuracy achieved in linear probing experiments for quantum and classical models with representation
network widths 2 (upper left), 4 (upper right), 6 (lower left) and 8 (lower right). Within each graph, the circle (crossed) markers
represent models trained with quantum (classical) representation networks. The markers show the average accuracy of three
independently trained models, with error bars of one standard deviation, except for the W = 8 case which displays the same data
as figure 5.

illustrating that our intuition for how compression of the network affects performance can be applied to
both the quantum and classical regimes. Secondly, we compare between quantum and classical models of
the same width, as shown by the lines of the same colour. Here we see that for the new cases of W = 2, 4, 6,
there is a numerical improvement in the average accuracy achieved across all training checkpoints sampled,
consistent with the W = 8 case. Whilst these are still small models, they provide further impetus to consider
whether this improvement would remain for models with width W > 8, eventually competing directly with
the uncompressed SimCLR algorithm at W = 512. Looking forward, testing this hypothesis towards the
W = 60 qubit range may be possible with more efficient simulators [92, 93] as well as by employing
training shortcuts such as calculating gradients directly with the quantum state rather than using the
parameter shift rule [40].

Appendix E. Performance of alternative ansatz

In section 3 all QNNs are constructed using the variational ansatz seen in figure 3, which connects the
qubits in a ring of parameterised controlled rotation gates. Here we introduce a second ansatz, as seen in
figure 9, which is different in that it connects all of the qubits together and only has single qubit
parameterised gates. Notably, this ansatz was recently shown to exhibit a larger effective dimension when
applied to supervised learning than equivalent classical networks [38]. Therefore, we test whether this
circuit structure is also a good candidate for improved performance in a self-supervised setting.

We train a model with a quantum representation network structured as the new all-to-all ansatz,
simulated on a statevector simulator. The dataset consists of the first five classes of CIFAR-10 and the model
is trained with a projection head. Importantly, for a fair comparison, we apply three layers of the all-to-all
ansatz, so that it has the same number of learnable parameters as two layers of the ring ansatz. The result of
the linear probe experiments can be seen in figure 10, along with the previous models for comparison. We
see that for the all-to-all ansatz, test accuracy is no higher than the classical model beyond the statistical
variance of repeating training with different initial parameters, and below the ring ansatz. Indeed, by the
end of training, the all-to-all ansatz achieves a final accuracy of (43.46 ± 1.68)%, which is similar to the
classical model. Thus, we show that achieving an advantage using QNNs in contrastive learning is highly
dependent on the correct choice of quantum circuit structure.
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Figure 9. Alternative variational ansatz. Each layer consists of a single qubit R̂y rotation on each qubit, followed by CNOT gates
connecting all qubits to each other. After all layers have been applied, a final set of R̂y rotations are applied. Every rotation gate is
parameterised by a different variational parameter.

Figure 10. Classification accuracy achieved in linear probing experiments using the encoder at checkpoints across
self-supervised training. Comparison between models trained with a classical representation network (blue), quantum
representation network with the ring ansatz (orange) and quantum representation network with the all-to-all ansatz (green). All
quantum circuits were evaluated on a statevector simulator. The markers show the average of six independently trained models,
whilst the error bars show one standard deviation.

Appendix F. Recompilation of quantum neural networks

When executing QNNs on the ibmq_paris device, translating the ring topology of our variational ansatz to
the honeycomb structure that the qubits are physically connected by requires a significant number of SWAP
operations. Quantitatively this increases the number of two-qubit gates in the circuit from 16 to 143, which
poses a significant challenge to obtaining a predictive signal beyond random noise since the total circuit
error scales exponentially with the number of gates. To mitigate this, for each image evaluated we
approximately recompile the QNN using incremental structural learning (ISL) [70], adapted so that only
two-qubit connections available on the real device can be applied. Using this method, for over half of the
executed circuits, an equivalent circuit is found which produces the same statevector with at least 99%
overlap using on average 14 CNOT gates. For the remaining images, we apply ISL once again, but this time
without any constraints on the connectivity of the circuit. This produces a shallower equivalent circuit with
at least 99% overlap using on average 8 CNOT gates. Although some of these two qubit gates require
SWAPs when implemented on the real device, they still represent a significant reduction in the depth of the
circuit and total error incurred.
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