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Summary

Molecular simulation is applied to understanding the behaviour of alkane li-

quids with the eventual goal of being able to predict the viscosity of an arbitrary

alkane mixture from first principles. Such prediction would have numerous sci-

entific and industrial applications, as alkanes are the largest component of fuels,

lubricants, and waxes; furthermore, they form the backbones of a myriad of or-

ganic compounds. This dissertation details the creation of a potential, amodel for

how the atoms and molecules in the simulation interact, based on a systematic

approximation of the quantum mechanical potential energy surface using ma-

chine learning. This approximation has the advantage of producing forces and

energies of nearly quantum mechanical accuracy at a tiny fraction of the usual

cost. It enables accurate simulation of the large systems and long timescales

required for accurate prediction of properties such as the density and viscos-

ity. The approach is developed and tested on methane, the simplest alkane, and

investigations are made into potentials for longer, more complex alkanes. The

results show that the approach is promising and should be pursued further to

create an accurate machine learning potential for the alkanes. It could even be

extended to more complex molecular liquids in the future.
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Chapter 1

Introduction

Molecular simulation is a valuable tool for understanding the world we live in.

We can use it to make successful predictions about the behaviour of many types

of materials and apply it in concert with experimental investigations to complete

our theoretical understanding of the underlying processes that govern their be-

haviour. In addition, predictions from simulation can be made much faster and

on amuchwider range of candidatematerials than from experiments, in part be-

cause for experiments, each candiate material must be individually synthesized.

Therefore, simulations can advance research into newmaterials by directing ex-

perimental investigation toward the most theoretically promising candidates.

The subject of this research is the application of molecular simulation to pre-

dict the properties of a large class of materials with enormous scientific and

industrial importance: Alkanes, molecules consisting of carbon and hydrogen

linked only by single bonds and having the chemical formula CnH2n+2[1], are

the principal components of fuels, lubricants, andwaxes. As such, they have been

the subject of numerous attempts to determine their mechanical and rheological

properties, as well as the mechanisms of their formation, from simulations [2–

4]. The ability to accurately predict, for example, the viscosity of an arbitrary
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mixture of hydrocarbons as a function of temperature would enable the com-

putational design of new and more efficient lubricant formulations. Besides the

obvious industrial applications, alkanes have also been the subject of widespread

scientific interest as model systems for lipids and cell membranes [5–7], for the

initial development of new potential energy surfaces [8, 9], for studying inter-

molecular dispersion forces [10, 11], and for the understanding of the flexibility

of large molecules [12, 13].

Recent advances in molecular simulation technology are enabling the sim-

ulation of materials with a level of accuracy and capability that was never be-

fore possible. Most important to this work is the emergence of the application of

machine learning to create exceptionally accurate and efficient potential energy

surfaces that require few or no empirically tuned parameters [14–18]. The aim of

this research is to use this technology to create a new potential for the molecular

simulation of liquid-phase linear alkanes. In the short to medium term, we hope

this potential will enable accurate, efficient, predictions of the viscosity of new

formulations across a wide range of environmental conditions in order to better

select theoretical candidate formulations for detailed experimental study. And

in the long term, we hope the the new methodology established as part of this

research will serve as a guide for future development of interatomic potentials,

enabling researchers to easily create such accurate and efficient potentials for

other, more complex molecular liquids.

1.1 Molecular simulation

Molecular simulation is a family of methods to compute the macroscopic observ-

able properties of a system through statistical averages of microscopic config-

urations. For example, for an equilibrium system allowed to exchange energy

2
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and volume with its environment, a static observable such as the density can be

expressed as the thermodynamic average [19, 20]

〈A〉 =
∫
R2n A(q,p)exp(−β(H(q,p)+PV )) dnq dn p∫

R2n exp(−β(H(q,p)+PV )) dnq dn p
(1.1)

over all possible microscopic states of the system denoted by the n generalized

position coordinates q and momenta p, where n is the number of degrees of

freedom of the microscopic system, and β= 1
kBT is the inverse temperature, V the

volume, and P the external pressure. The function H(q,p) is the Hamiltonian,

which gives the total energy of the system in some state.

For any truly macroscopic system this average would be utterly impossible to

compute directly, as the integrals would be over a space of dimension on the or-

der of 1024 (for example; this is roughly the number of molecules in a small glass

of water). The best we can hope to do is to, when examining properties that are

truly determined at the molecular scale, is to simulate a much smaller piece of

the system where the dimensionality of the space to be sampled is much more

manageable. We then use some computational device to make it appear as if it

is embedded in an infinite quantity of the same material (since, at the molecu-

lar scale, any macroscopic system is effectively infinite). The most common such

device is that of periodic boundary conditions, where one side of the simulation

box is effectively glued to the other side in a three-dimensional torus topology:

The system being simulated is a collection of replicas of the same small peri-

odic box, tiled infinitely in all directions. The properties of this periodic system

will be close to that of the true macroscopic bulk, converging (at various rates)

as the system size increases [20]. There do exist intensive properties that ex-

hibit so-called “finite-size effects,” that is, the simulated value of the property

is sensitive to the size of the simulation box (instead of stabilizing above some
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relatively small box size). The most important property to show this effect is

the diffusivity [21, 22], though no such effect is known for the viscosity [23, 24].

Static properties (the type expressed by Equation 1.1) are likewise expected to

be unaffected.

The configuration space of the periodic system is still very large, however,

and it must be sampled efficiently to obtain acceptable estimates of the de-

sired property. Two main classes of sampling methods are available: The first,

Monte Carlo (MC), uses random numbers and various biasing, rejection, or prob-

ability inversion methods to sample the Boltzmann distribution as in Equa-

tion (1.1) [20]. Molecular dynamics (or MD), on the other hand, evolves the sys-

tem using Newton’s equations of motion, which naturally samples the microca-

nonical ensemble, or some modification thereof, in order to sample other ther-

modynamic ensembles. SinceMD generates a continuous trajectory within some

thermodynamic ensemble, it is often more difficult than in MC methods to en-

sure an adequate sampling of the entire relevant configuration space, especially

where “rare events” are involved (i.e., the system exhibits processes with widely

separated timescales). However, MD is also in some sense the more capable of

the two methods, as it allows the calculation of dynamic properties (see Section

2.3) such as the diffusivity and the viscosity. For this reason, this research only

uses MD simulations, although the machine learning potentials developed in

this work could equally be applied to MC simulations.

1.1.1 Components of a simulation

The most important ingredient in an MD simulation is the potential that spe-

cifies the interactions in the system. A potential is a function U(q) that gives

the potential energy of the system at some coordinates q. In MD, the system

4
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obeys Newton’s equations of motion,

dpi

dt
= mi

d2qi

dt2 =−∂U(q)
∂qi

, (1.2)

which require the negative gradient of the potential (i.e. the forces) to be com-

puted.

Molecular simulations almost always assume the Born-Oppenheimer ap-

proximation [25], which decouples the electronic and nuclear degrees of free-

dom. The Schrödinger equation for the electrons is solved with the nuclear co-

ordinates fixed, generating an effective potential energy surface as a function of

the nuclear coordinates. The nuclei are then evolved on this effective adiabatic

Born-Oppenheimer PES (potential energy surface). In practice, it is never

possible to obtain this surface exactly, so approximations at various levels of

accuracy, theoretical rigour, and computational expense are employed (see Sec-

tion 1.2). These approximations are themselves called potential energy surfaces,

or simply potentials or models. Finally, the vast majority of MD simulations

treat the nuclei as classical particles moving on this surface, although this is

not strictly part of the Born-Oppenheimer approximation. Nevertheless, nuclei

are quantum particles; the classical limit is only an approximation that becomes

increasingly worse for lighter nuclei. Section 2.2 discusses techniques to go bey-

ond this approximation and model quantum nuclear effects, most of which still

involve particles moving on the Born-Oppenheimer potential energy surface.

Once the interactions are specified, the equations of motion must be discret-

ized in time so that they can be solved numerically. Most commonly, they are

solved using the velocity Verlet method, which approximately conserves the total

energy of the system over a long period of time [26]. The timestepmust be chosen

small enough to capture the fastest motions of the system, typically the vibra-
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tions of hydrogen atoms, so that the solution does not become unstable.

The standard equations of motion evolve the system under the microcanon-

ical (NVE) ensemble, which conserves the system’s total energy. Often, how-

ever, we wish to study systems that interact with their environment, exchan-

ging energy and volume. The equations of motion can be modified to simulate

constant-temperature or constant-pressure conditions; these modifications are

called thermostats and barostats and are discussed in more detail in Chapter 2.

1.1.2 Challenges for prediction

The main challenge in using MD simulations to predict material properties is

that current simulations either cannot reach the speed necessary to generate a

good enough sample of the configuration space, or they cannot reach the accuracy

in the potential necessary to reproduce the properties correctly. Current accur-

ate, quantummechanical methods for evaluating the potential aremuch too slow

to sample motion at long timescales, such as passage through local minima or

metastable states, or to obtain a small enough statistical uncertainty in dynam-

ical properties. Classical analytical potentials, on the other hand, are often fast

enough to sample the dynamics of very large, complex systems; however, they

are inaccurate representations of the potential energy surface and these inac-

curacies are reflected in the properties predicted with such simulations [3, 27].

These potentials are usually fitted to reproduce certain experimental observ-

ables at one temperature and pressure, only to have their predictions fail when

they are tested at other state points. Even potentials that achieve good accuracy

for some property across wide ranges of temperature and pressure often do this

by simplifying or smoothing the functional form [9], which may affect other prop-

erties that were not considered at the time the potential was designed. It is still
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not clear what the full impact of these approximations are, or in which regions

a potential needs to be most accurate to reliably predict a given property. Some

preliminary investigations into this question are done in Section 3.1, though it

appears we are still far from a definitive answer.

1.2 Potentials

The potential that determines the time evolution of an MD system is generally

intended to be some approximation to the Born-Oppenheimer potential energy

surface, or a thermal average of it. Beyond this common foundation, however, the

methods for computing a potential vary from themost simplistic analytical forms

to themost accurate, expensive algorithms for solving themolecular Schrödinger

equation. No one potential can suit all the different problems and individual

systems that molecular simulation is used to study. By looking at the way a

potential is developed and how it is optimized for a specific application, we can

see how to choose – or, if necessary, develop – a potential for a specific simulation.

1.2.1 Physical energy components

In a system ofmolecules, the Born-Oppenheimer PES is composed of several con-

tributions that can be understood as distinct physical effects. These effects take

place at different ranges of separation between the constituent atoms. Broadly,

the contributions can be classified as local (or intramolecular), those between

atoms connected by bonds or chains of only a few bonds, and nonlocal (or inter-

molecular), those taking place between different atoms in different molecules or

parts of a molecule.

The most local effect is the covalent chemical bond, which is due to a lower-
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ing in the total energy of a quantum system when partially filled atomic orbitals

overlap. Different atoms display clear preferences in the number and orienta-

tion of the bonds they participate in; often, several configurations are possible.

These configurations are local minima of the Born-Oppenheimer potential en-

ergy surface of the atom’s local environment, so small deformations tend to a

raise the energy of the molecule. The resulting effective forces can be expressed

as functions of the bond lengths, angles, and four-body torsional profiles.

The intermolecular interactions can broadly be classified into the follow-

ing effects: Electrostatic, induction, and dispersion interactions dominate at

long range (large intermolecular separation), while exchange repulsion (along

with the exchange-induction and exchange-dispersion terms) dominate at short

range [28].

The exchange interactions dominate when molecules are close enough that

their wavefunctions overlap significantly. The largest, repulsive component of

the short-range exchange interaction is due to the Pauli exclusion principle,

which forbids any two electrons from occupying the same quantum state. Its

effect is to raise the energy of overlapping orbitals containing electrons of the

same spin. It is also relevant between atoms in the same molecule, in which case

it is often known as steric repulsion; this contribution is often treated together

with the other (covalent) intramolecular forces. Exchange repulsion betweenmo-

lecules typically decays with an exponential tail as a function of intermolecular

separation [28, 29] and is no longer relevant when the closest parts of a molecule

become more widely separated than a few ångströms.

Whenmolecules are far enough apart that their wavefunctions no longer have

significant overlap, the only remaining interactions are electrostatics, induction,

and dispersion∗. The interaction of the static charge distributions of the two mo-
∗Neither resonance nor magnetic interactions are relevant for the interaction of ordinary,
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lecules is simply called the electrostatic energy. At long range, the distributions

can be expanded in terms of charges, dipoles, and higher multipoles assigned to

the whole molecule, leading to a classical and intuitive picture of electrostatic

interactions. But this expansion is poorly convergent, even divergent, at medium

to short range [28]. More importantly, it neglects a significant short-range com-

ponent of the classical electrostatic energy, which is the error incurred by rep-

resenting the spatially extended charge distributions by point properties. When

the charge distributions of two molecules overlap, the actual electrostatic energy

is smaller than that predicted by point-multipole expansions. This term, called

the electrostatic penetration energy, is approximately proportional to the over-

lap integral of the two charge distributions. Therefore, in practice it might be

grouped with the short-range components described above.

The molecular charge distributions can also deform in the electric field of

another molecule or undergo quantum fluctuations. The former effect is called

induction, while the latter is a purely quantum effect called dispersion, first de-

scribed by van der Waals and later theoretically characterized by London [30]

(hence the alternative names, “van der Waals forces” or “London dispersion

forces”). Both effects are attractive. Among the true long-range interactions,

dispersion is dominant (and hence most easily measurable) in systems, such

as saturated hydrocarbons and noble gases, that are intrinsically nonpolar but

highly polarizable [10]. Therefore, the bulk of this work will focus on characteriz-

ing the dispersion interaction in addition to short-range repulsion and covalent

bonding.

In summary, the potential energy separates into several components with an
closed-shell alkane molecules in their ground states

9
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overall energy expression:

Etotal = E1b+Erepulsion+Edispersion+Eelectrostatic+Einduction (1.3)

with the intramolecular energy defined – for now – as the total energy of each

molecule in the system considered in isolation, hence the “one-body” (1b) energy;

the rest of the short-range terms are defined as components of the interaction

between molecules, i.e. the “beyond-one-body” (b1b) components.

1.2.2 Classical potentials

Analytical potential energy surfaces for the interaction of atoms or molecules

have been in use well before the invention of computers. They are typically based

on simple functional forms derived from fundamental physical arguments, to-

getherwith empirical parameters thatmust be optimized for eachmaterial. Such

models are often called forcefields, with “potential” or “model” referring either

to the whole model to a single term or component of the energy expression. The

different physical interactions mentioned above are typically tackled separately,

mirroring the real-world structure of the Born-Oppenheimer potential energy

surface. For the local interactions, they contain terms that express the energy of

an atom’s neighbourhood in terms of bond lengths, angles between bonds, and

four-bodymeasures such as dihedral angles. The intermolecular interactions are

typically modelled separately from the intramolecular ones, with terms for the

electrostatic, exchange-repulsion, dispersion, and sometimes induction energies.

Intermolecular potential

One of the earliest examples of an intermolecular potential is the Lennard-Jones

potential, which got its start when Lennard-Jones – at the time, just named
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Jones – used the experimental equation of state of argon gas to fit an interatomic

potential energy function formed as the sum of two inverse power terms, one for

the attraction and one for the repulsion [31]. Concretely, the potential energy

between two atoms was taken to be u(r)= Ar−n−Br−m, with four free parameters,

A, B, m, and n, all greater than zero. The best fit to the available experimental

data was found with the attractive power m = 4 and various larger values of

the repulsive power n. Years later, however, London used the newly available

quantum mechanics to study the interaction of rare-gas atoms and concluded

that the first term of the attraction must go as Br−6 (plus eighth- and higher-

power terms) [30]. Lennard-Jones then revised his model, setting m = 6 and pro-

posing various values for n between 9 and 12, as an acceptable approximation

to the sum of various exponential terms that more accurately model the Pauli

repulsion. Eventually, the n = 12 form stuck (presumably for computational ef-

ficiency, as r−12 can obtained by simply squaring r−6) and became the potential

now commonly known simply as the Lennard-Jones potential, and more pre-

cisely as the 12-6 L-J form [26, 28]:

uLJ(r)= 4ε
(
−

( r
σ

)−6 +
( r
σ

)−12
)

(1.4)

with just two adjustable parameters for the well depth ε and length scale σ.

Many models take this form as the basis for their intermolecular energy func-

tion, adding an electrostatic model based on fixed charges for each atom type:

The forcefields AMBER [32], OPLS [33, 34], TraPPE [9, 35], and AIREBO [36]

are all based on the 12-6 repulsion-dispersion potential.

Note that this form of the potential couples the length and energy scales of the

dispersion and repulsion components; most classical potentials do not treat these

terms separately. But although the inverse sixth-power term remains justified
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by fundamental physics, the inverse twelfth-power repulsive wall is not as good

an approximation to the complex interactions that give rise to intermolecular

repulsion. The twelfth-power repulsive wall is sufficient to keep molecules from

getting too close to each other, but as expected, it starts giving wrong results

under high-pressure conditions [37–39]. One proposal is to soften the repulsion

by replacing it with a ninth-power term, the so-called 9-6 L-J potential. This

form is used by forcefields such as Class II [40] and COMPASS [41], under the

justification that the ninth-power repulsion is necessary to fit the interaction

between closely spaced parts of the same molecule in the transition between the

intramolecular and intermolecular regimes.

Other potentials choose an exponential form for the repulsion, going back to

Born and Mayer’s study [29] that appeared just after Lennard-Jones proposed

his potential. Two more recent, fitted potential energy surfaces for the methane

dimer use this form while incorporating higher-order terms in the dispersion

model, up to r−8 in the model of Hellmann et. al. [42] and up to r−10 in the model

of Gay et. al. [43]. The Slater-ISA model [39] was developed as a modern imple-

mentation of Born andMayer’s original reasoning, that of modelling the electron

density as an exponentially decaying function and computing the repulsion as

an overlap integral. Finally, the exponential repulsion form is also present in the

Morse potential, on which several other potentials have been based [10, 37, 38]

– although, possibly due to the potential’s origin in molecular spectroscopy for

describing intramolecular bonding, its long-range tail is incorrect.

The electrostatic potential is usually a Coulomb potential between fixed par-

tial charges on atoms. It can be modified to approximately account for induction

interactions, most commonly by scaling the interactions with an effective dielec-

tric constant that models the electrostatic screening effects in the molecule and
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solvent [32, 44]. More accurate models represent induction more explicitly by

assigning individual polarizabilities to atoms, which requires a system of equa-

tions to be solved self-consistently to obtain the final partial charges (and pos-

sibly higher multipole moments) [26, 28, 45]. Such “polarizable” models can ac-

curately model the many-body interactions that are crucial to determining many

properties of polar liquids. The assignment of partial charges or multipoles to

atoms or sites in a molecule, as well as the development of more accurate and

efficient polarizable models, is an active area of research; a partial overview was

given in Veit [46]. The long-range electrostatic and induction energy terms are

typically very small in systems containing only saturated hydrocarbons; espe-

cially beyond about 5Å of dimer separation, they become much smaller than the

dispersion component [47]. The anisotropy of monomers such as benzene, the

subject of the study just cited, can complicate matters by providing for orient-

ations where the electrostatic energy dies out much more slowly than on aver-

age. But for the case of methane, the subject of the in-depth study of Chapter 4,

this is not a problem as the molecule is highly symmetric, having an octupole

as its highest permanent moment (see Section 4.1.3). It remains to check the

magnitude and decay of the electrostatic terms on longer hydrocarbon chains in

order to justify or, if necessary, rethink the continued neglect of these terms.

Some forcefields (e.g. AMBER) also include a special term to model hydro-

gen bonding; this interaction is likewise not present to a significant extent in

hydrocarbons.

Intramolecular potential

Finally, a forcefield must model the intramolecular interactions, within the con-

text of forcefields typically taken to mean interactions between atoms separated
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by atmost three bonds. This leaves four types of effective interaction coordinates:

Bond lengths, angles, torsions (dihedral angles), and improper torsions (or out-

of-plane motion), the latter two both involving groups of four atoms. Early force-

fields, such as OPLS and AMBER, treated bonds and angles in the harmonic ap-

proximation, while fitting the dihedrals with a truncated Fourier series [44]. The

constants of these expansions were fitted to reproduce experimental data such

as heats of formation, structural parameters, and vibrational frequencies - often

qualitatively, as the simple functional forms of these early potentials did not al-

low quantitative accuracy in all these properties [44, 48]. Other forcefields, such

as the MMn series, took the approach of going beyond the harmonic, diagonal

approximation: They used cubic and quartic terms to model the bond stretch-

ing and angle bending more accurately as well as introducing coupling terms

between bonds, angles, and the torsional parameters. This additional complex-

ity allowed the different degrees of freedom to interact and the forcefield to fit

the experimental data more accurately [48, 49].

More recently, it has become practical to fit forcefields directly to a quantum

mechanical potential energy surface – that is, a potential energy surface com-

puted by approximately solving the equations of quantum mechanics (see Sec-

tion 1.2.3). The creators of perhaps the first potential to use this approach, the

Class II forcefield [40], argued that fitting the quantum mechanically derived

Born-Oppenheimer PES is a more systematic approach capable of higher accur-

acy. The Class II energy equation follows a fairly standard intermolecular form

(9-6 L-J plus Coulomb), but the intramolecular terms have been made more

general and flexible to allow a close fit to quantum mechanical data. Like the

MMn series, they include anharmonic bond and angle terms via a polynomial

expansion (up to the fourth power of the bond and angle distorsions), as well as
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off-diagonal coupling terms that model the coupling between two adjacent bond

stretches, between bond and angle distorsions, between two adjacent angles, and

finally between a torsional angle and all of the involved bonds and angles, mostly

as an energy term proportional to the product of each of the involved distorsions.

Note that this forcefield still only models the molecule close to equilibrium; very

large distortions (dissociations or chemical changes) are not included.

Other forcefields have since followed in the same vein, fitting some or all of

their intramolecular parameters using quantummechanical calculations: COM-

PASS [41], which uses the Class II energy expression, and a refit of OPLS for

long hydrocarbons [7] are more recent developments, as is the method of Hes-

sianmatrix projection [50] for systematic derivation of parameters for forcefields

limited to the harmonic, diagonal form.

This approach is finding use in determining the intermolecular component

of forcefields as well: The methane dimer potential of Li and Chao [51, 52] uses

a standard 12-6 L-J form between each of the carbon and hydrogen atoms of the

rigid methane molecule, with the parameters adjusted to fit accurate quantum

mechanical data. Here again the constraint of simple functional forms prevents

a more accurate fit. A more complex, physically motivated expression was used

in the methane dimer potentials of Hellmann et. al. [42] and Gay et. al. [43] (as

mentioned above). The earlier work of fitting intermolecular potentials to spec-

troscopic measurements [53] can even be seen as a forerunner to this approach,

since the goal was to fit the correct quantummechanical potential energy surface

(only through experiments rather than explicit calculation).

This gradual change in forcefield fitting paradigm brings with it an import-

ant distinction that is not often mentioned: The quantum mechanical potential

energy surface does not include quantum nuclear effects by itself, while the ex-
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perimental data naturally does. This means that forcefields fit to experimental

data incude these effects in an average way, while forcefields fit to the quantum

PES must include it on top of the fit - either by explicitly including quantum

nuclear effects in the simulations, by adding an approximate correction (as in

the Hellmann methane dimer potential [42]), or even with something as simple

as a constant scaling factor [41].

Summary

The set of classical potentials is large, diverse, and still expanding; it contains

models as simple as the early, diagonal-harmonic forcefields and as complex as

the explicit many-body local energy potentials (REBO [54] and AIREBO [36]).

Their use of parameterized, analytical functional forms generally conveys them

the advantage of computational efficiency, since these functions are typically

very fast and easy to evaluate – with the efficiency decreasing as the complex-

ity and need for special computational procedures increases. The use of simple,

physics-based functional forms also usuallymakes a potentialmore transferable,

that is, more easily applicable to new systems. This may be because the simpler

forms are better at approximately capturing the generally applicable, underlying

physical principles rather than tailoring their application to a specific material

or class of materials.

In return for this efficiency and transferability, they have to constrain them-

selves to a small subspace of energy landscapes, a space that can only par-

tially approximate the true Born-Oppenheimer PES. The fitting process is typ-

ically long and difficult, requiring considerable human input, as the goal is not

uniquely defined – far from optimizing a simple objective function (e.g. an energy
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error), care must instead be taken to balance accuracy in the desired properties

with transferability across chemical compounds [41]. Even simple potentials still

must deal with a moderate degree of coupling between the various energy com-

ponents [40], so a small change in one parameter may affect properties across a

wide range of systems.

Analytical potentials have been the tool of choice for decades in biomolecular

and liquid simulation, perhaps because until recently no other approach could

reach the length and time scales required. But the potentials described here

must always make a compromise between accuracy and generality – both in

terms of the variety of systems they can treat and the range of environmental

conditions (temperature and pressure) for which they remain accurate.

1.2.3 Quantum-mechanical methods

In parallel with the development of analytical forcefields to understand liquids

and large, biological molecules, there have been great advances in solving the

equations of quantum mechanics on smaller systems to derive the Born-Oppen-

heimer potential energy surface from first principles. These methods are much

more granular than analytical potentials – they treat electrons explicitly – and

are much more expensive as well, meaning the development of these methods

has generally advanced in the study of small molecules and crystalline mater-

ials. These methods all essentially attempt to solve the Schrödinger equation,

which governs the behaviour of all common materials∗. They range from the

most accurate level of quantum chemistry, which is so computationally expens-

ive that it is only feasible for small clusters of molecules, to the many variants of
∗The Schrödinger equation does neglect relativistic effects; several methods exist to incor-

porate relativistic contributions in materials where these are important, but these corrections
are almost negligibly small in atoms as light as carbon [55].
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density functional theory, where the energy is obtained through various approx-

imate functionals of the electron density, an approximation that allows much

larger systems to be treated.

Quantum chemistry is a hierarchy ofmethods, also known as thewavefunction-

based methods, starting with the Hartree-Fock self-consistent solution of the

many-electron interaction problem. This method uses a fully antisymmetrical

Slater determinant as its solution wavefunction, so it treats exchange exactly.

However, the true ground state of amany-electron system includes contributions

from many more Slater determinants that together lower the total energy. This

difference from these contributions is termed the correlation energy. Quantum

chemistry treats correlation in various ways, from perturbation theory (MP2) to

explicit inclusion of higher Slater determinants (CI and coupled-cluster), or both

(such as CCSD(T)) [56]. While quantum chemistry can only treat very small sys-

tems at an acceptable accuracy (The cost of CCSD(T), for example, scales with

the seventh power of the number of atoms [56]; a single CCSD(T) calculation on

the methane dimer may already require, as a representative figure, 10 minutes

on 16 cores with the aug-cc-pVTZ basis set and the F12 correction), the hier-

archy of methods converges systematically to the exact solution of the molecular

Schrödinger equation and thus provides a standard class of reference methods

for molecular energies.

Density functional theory (DFT), on the other hand, attempts a more efficient

solution of the molecular Hamiltonian by recasting the Schrödinger equation in

terms of the electron density. In principle, the electron density contains all the

information necessary to reconstruct the Hamiltoninan and the total energy, so

these methods only need to minimize the total energy with respect to the elec-

tron density. The main problem is that the functional that maps the electron
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density to the total energy is not known exactly. An immense array of differ-

ent approximations exists; the most successful ones include a fraction of exact

exchange from the Hartree-Fock method and are fitted either to databases of

molecules or to simple physical models [57]. While DFT is generally much more

efficient than quantum chemistry models of comparable accuracy, and can treat

much larger systems than quantum chemistry can, it has serious shortcomings

in the treatment of dispersion, since the local formulation of the most common

types of functionals neglects the long-range electron correlations that give rise

to this interaction between well-separated molecules [28, 58].

Several methods are available to compute a dispersion correction on top of the

DFT energy. One of the simplest is a pairwise additive model with fixed disper-

sion coefficients (called C6 coefficients, where the dispersion correction between

two atoms i and j goes as ui j(r i j)=−C6
i jr

−6
i j ), combined with a damping function

to avoid the singularity at short range; the Grimme D2model [59] is of this form.

The dispersion model of Tkatchenko and Scheffler [60] (also known as T-S) com-

putes its pairwise coefficients from the DFT-derived electron density, giving it

the ability to correctly model changes in the dispersion coefficients due to dis-

torsions in the molecular geometry and changes in the molecular environment.

It has been shown to give accurate pairwise coefficients when compared against

reference values computed using both high-level theory and experimental val-

ues. The newer D3 model of Grimme and co-workers [61] also adds geometry de-

pendence, albeit with a relatively simple analytical function, though it also adds

many-body effects that are known to be important in dispersion-bound systems.

Finally, the MBDmodel of Tkatchenko et. al. [62] extends the original T-S model

to also include these many-body effects. It is also possible to compute dispersion

interactions by modifying the DFT functional itself [63–65]. A recent review [58]
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covers the diverse array of methods that have been developed to augment DFT

with dispersion interactions.

1.2.4 Machine learning potentials

Many applications require the accuracy of a quantum-mechanical method but

cannot actually afford to use one, either because many evaluations of the poten-

tial are required, or because the system size is so large, or both. For example,

the long-term goal of this research is the calculation of the viscosity of a li-

quid composed of large hydrocarbon molecules. Such a calculation requires very

large system sizes andmultiple independent, long simulations to achieve accept-

able statistical and sampling errors: an example simulation from [3] used 100

n-hexadecane molecules and several independent simulations on nanosecond

timescales (millions of timesteps). Such size and time scales are typical of simu-

lation of liquids in general, in order to control the statistical fluctuations inher-

ent to their relatively unstructured nature. Furthermore, the viscosity, as with

other transport properties, is extremely sensitive to the accuracy of the inter-

and intramolecular forcemodels used in the simulation especially at higher pres-

sures [3, 27, 66]. Ideally we would like a potential whose accuracy on each type

of interaction can be systematically measured and controlled as in the quantum-

mechanical methods described above. However, the limited dimensionality of the

space in which traditional forcefields are fit makes this kind of fine-grained

control difficult, as parameters must be carefully tuned to balance the error

across various target properties while maintaining transferability to different

compounds.

Clearly there is a wide gap between the two worlds of quantum methods,

with their systematic convergence and accuracy, and of analytical potentials,
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with their unrivalled computational efficiency. But in the past decade, there

has been significant progress towards bridging this gap with the help of ma-

chine learning. The idea of using quantum data to fit an analytical potential is

not new, as mentioned above, and neither is machine learning, which has been

used to automatically classify and fit data – including chemical data [67] – al-

most as long as there have been computers to use for automation [68]. But the

same forces that have brought machine learning into widespread use in recent

times – the availability of massive amounts of data, along with the computing

power necessary to fit larger, more complex models – have likewise made it pos-

sible to fit accurate potential energy surfaces directly to a sample of quantum

mechanical calculations without needing to assume an underlying functional

form. This works because the Born-Oppenheimer potential energy surface is

smooth, i.e. similar molecular configurations have similar energies∗. Therefore,

a quantum-mechanical calculation at one geometry gives us information about

similar geometries. Machine learning methods exploit this similarity by inter-

polating between the precomputed samples to construct a direct approximation

of the PES. Unlike the traditional sense of an “interpolation”, this approxima-

tion need not go exactly through the (possibly noisy) data points. The process of

constructing the best possible interpolation for given data is known as fitting

(or sometimes “training”, more formally regression). Evaluating the interpol-

ated model for some new point on the PES is orders of magnitude more efficient

than using the quantum method directly; a speedup of thousands or millions is

common. When these models are used in long, demanding simulations, the com-

puter time saved in this way quickly justifies the initial computational cost of

computing the training data and constructing the interpolant.
∗Certain “exotic” quantum phenomena, such as level crossings, can occasionally disrupt this

smoothness. But closed-shell molecules in their ground states typically do not encounter such
phenomena in the regions of the potential energy surface where they are stable.
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Manymachine learningmethods have been applied to fit the potential energy

surfaces of atoms or molecules. The oldest is artificial neural networks (ANNs),

which were used in an early application to fit the energies of various hydrocar-

bon and carbon-nitrogen compounds [67], and in a more recent incarnation to

model liquid water [16, 18], ionic solids [69, 70], and properties of molecules [71].

Another method, the one that will be used for this work, is based on Gaussian

processes [72, 73]. These can be interpreted either as a Bayesian estimate of

the PES from available data or as a least-squares linear fit in the transformed

space of similarity functions, or kernels, that relate two molecular geometries.

This latter view relates this method to kernel ridge regression (KRR) with a

radial basis, a third type of machine learning method that gives equivalent pre-

dictions to Gaussian processes under certain conditions [74]. KRR has likewise

been applied to predicting the properties of small molecules [75, 76], materials,

or both [77, 78]. Both methods are also related to neural networks: A neural

network with one hidden layer and certain forms of the switching function con-

verges to a Gaussian process as the number of hidden nodes is increased towards

infinity [79].

The method of Gaussian processes applied to PESs is called Gaussian ap-

proximation potentials (GAP) [15]. It uses a Gaussian process formulated in

such a way that total energies, energy gradients (forces and stresses), and most

recently second derivatives (Hessians; see Section 5.2.1) can all be used in the

fitting, with various weighting factors that control the relative importance of

each type of input data. It has been used to fit potential energy surfaces for

crystalline solids such as silicon and carbon [15], tungsten [80], iron [81], and

boron [82]. It has also found success in less structured systems, such as wa-

ter [17, 83] and amorphous systems [84–87], and even in fitting coarse-grained
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models [88] and potentials of mean force [89] for higher-level representations

of biomolecular systems. There is also considerable interest from other groups

in general, transferable molecular potentials [75] and highly accurate modeling

of liquid water [18]. Finally, recent progress has also been made in modeling

multicomponent systems [87, 90], across different chemical compounds [71, 77]

and even across different classes of materials [78], thus approaching the level of

flexibility currently offered by full quantum methods.

The GAP method excels in describing condensed systems where complex,

many-body interactions are dominant. Its flexibility allows it to absorb errors

that would otherwise be made by insufficient description of the physics or trun-

cation of analytical expansions. This flexibility can also be a weakness, however;

interpolation with many-body descriptors tends to fail more spectacularly than

smooth analytical forms in regions of configurational space where insufficient

data is present (see e.g. Section 5.3). Furthermore, the computational expense

of a many-body GAP model is still much higher than that of simple, analytical

forcefields or even ab initio polarizable models, especially when the cost of gener-

ating the training database is considered (see Section 4.1.4). This cost generally

limits it to simulating systems of at most a few thousands of atoms [87].

One of the most challenging tasks in fitting a potential energy surface for

a new material is to find good descriptors or representations of the molecular

geometry. For kernel-based learning methods (KRR and GAP), this task is more

specifically one of finding a good kernel function that adequately measures the

similarity of any two geometries. In order to be useful for fitting, this function

must satisfy certain properties: In addition to having the same symmetries as

the energy function itself (invariance to translation, rotation, and permutation

of like atoms), it must also be able to adequately distinguish dissimilar geomet-
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ries [91]. Amore detailed discussion of available descriptors and kernel functions

is given in Section 3.2.1.

Another significant challenge is to choose the sample of the potential energy

surface so that it adequately covers the space of geometries that could be en-

countered during a simulation. A typical approach is to perform an MD simula-

tion with a simpler potential and extract snapshots at regular intervals. How-

ever, caremust still be taken to cover the relevant range of simulation conditions,

as evidenced by the sampling procedure and evaluation covered in Section 4.1.3.

In summary, the goal of this work is to create a model, based on the GAP

framework, that describes the potential energy surface of interacting alkane

models with a high, adjustable degree of accuracy. Such a model would bridge

the gap between expensive quantum-mechanical simulations and insufficiently

accurate classical potentials, enabling simulations that can accurately predict,

from first principles, the viscosity of an arbitrary mixture of alkanes under a

wide variety of ambient conditions. This work presents important steps towards

such a model, with the theoretical background to systematic potential develop-

ment discussed in Chapter 3 and developed into a general, extensible framework,

demonstrated with an application to build an accurate potential for liquid meth-

ane, presented in Chapter 4. Finally, Chapter 5 shows preliminary work toward

an intramolecular potential for arbitrary-length alkanes, thus completing the

potential and making it useful for realistic simulations of the viscosity of longer

alkanes or even complex mixtures.

24



Chapter 2

Molecular simulation methods

Once the potential is specified, it remains to choose a method that optimally

samples the thermodynamic ensemble (to compute static properties defined by

means of Equation (1.1)) or allows computation of dynamic observables, such as

the diffusivity or viscosity. This chapter explores these methods with the view of

validating a new potential, that is, computing its predictions of the properties of

a known material and comparing these predictions to experimental values. In

contrast with the traditional paradigm of fitting an empirical potential directly

to experimental data, the aim here is to create a potential from fundamental

physical principles, then measure its success by how well it describes the real

material.

The optimal strategy generally tends to be different for computing static

versus dynamic observables, so these are often treated in separate simulations.

Since static properties are arguably simpler to compute, they will be the primary

focus of this research with the aim of later attempting the more complex and ex-

pensive dynamical properties.
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2.1 Static properties

One of the most basic properties that a potential for liquids should reproduce

accurately is the density as a function of pressure and temperature (the liquid’s

equation of state). This relationship can be measured directly, reliably, and ac-

curately even for compressed liquids [92].

In principle, the density should also be simple to predict from simulation.

If the system can be made to sample a constant-pressure, constant-temperature

ensemble (called N pT after the thermodynamic variables that are held constant;

N refers to the number of particles) for some given pressure and temperature,

then the density at that state point can be straightforwardly determined from

the simulation cell. It is the sampling of the proper thermodynamic ensemble

that presents difficulties: Ordinary molecular dynamics, or the straightforward

evolution of Newton’s equations of motion, does not allow the exchange of energy

and volume with the environment and therefore samples the NV E ensemble. In

order to sample the N pT ensemble instead, the equations of motion must be

modified to allow the system to exchange energy and volume with a simulated

external bath so as to achieve the desired temperature and pressure.

2.1.1 Thermostats

Modifications that regulate a system’s temperature and hence make it sample

the NV T ensemble are known as thermostats. Many different thermostats have

been developed, but they all commonly have parameters to control independ-

ently the temperature of the enviroment and the time the system will take to

relax to this target temperature. These parameters affect the speed and reliab-

ility of equlibration, but not (within a reasonable range) the final equilibrium
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properties.

Perhaps the most popular thermostat is the Nosé-Hoover thermostat, which

adds an extra degree of freedom to the Hamiltonian that couples all the particles

to a virtual thermal reservoir [93, 94]. This thermostat is effective at regulating

the system’s temperature without significantly perturbing its dynamics and the

resulting transport properties. It is also deterministic, which can be a downside

– the thermostat is non-ergodic for many systems [19, 95]. This means Nosé-

Hoover simulations may get stuck in a small subset of state points and fail to

explore the majority of relevant configurations, leading to wrong predictions of

equilibrium properties. One possible solution to this problem, at the cost of ad-

ditional complexity, is to add thermostats to the thermostat, creating a chain of

dynamical variables [96].

The Langevin thermostat, on the other hand, does not have this problem. It

simulates the effect of a heat bath by adding random perturbative as well as

drag forces to each of the particles. For static observables such as the density,

the Langevin thermostat delivers reliable results because it also converges a sys-

tem to the canonical distribution [26]. But the random perturbations, which are

key to this thermostat’s ergodicity, can also interfere with the dynamical prop-

erties of the system. For this reason, a hybrid of the two thermostats has been

proposed: the Nosé-Hoover-Langevin (NHL) thermostat uses the Nosé-Hoover

extra dynamical variable, itself regulated by a Langevin thermostat [19], in

order to preserve the system’s dynamics while maintaining ergodic sampling.

A more recent modification has emerged as an appealing alternative to Nosé-

Hoover chains [97]; this is the thermostat used by default in the group’s QUIP

software [98].

The Langevin thermostat is, in fact, only one of a larger class of stochastic
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thermostats. The standard Langevin thermostat essentially adds white noise to

each of the system’s momentum variables. It is possible, however, to use noise

with a different frequency profile in order to better target the equilibration of the

system’s vibrational modes [99]; such a thermostat is called a coloured-noise or

a generalized Langevin equation (GLE) thermostat [100]. While coloured noise

formally makes the equations of motion non-Markovian (dependent on the sys-

tem’s history), the equations can be recast in a Markovian form with the help of

additional, auxiliary dynamical variables.

2.1.2 Barostats

A system’s pressure may be regulated in a similar manner as its temperature.

The Nosé-Hoover approach may be adapted to create a barostat, where the ex-

ternal degree of freedom is now a pressure reservoir coupled to the box’s volume.

Some barostats can vary each of the box’s cell parameters independently in or-

der to allow for anisotropic stress tensors but for homogeneous liquids and gases

the simple isotropic version suffices [20, 101]. As with thermostats, the barostat’s

target pressure and relaxation time can be independently adjusted.

Thermostats and barostats can be combined to generate the isothermal-

isobaric (N pT) statistical ensemble. In particular, this is shown to work with a

Langevin thermostat and Nosé-Hoover–style barostat [102], although the baro-

stat could just as well be controlled with the Langevin or generalized Langevin

equations. With a suitable thermostat and barostat in place, the density of a sys-

tem can be predicted by running a simulation for a long enough time. Neither

the thermostat nor the barostat can bring the system exactly to its target tem-

perature or pressure, though, since temperature and pressure are macroscopic

averages and a small system will always randomly oscillate around those val-
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ues. The prediction is best obtained by taking some length of simulation time

after the initial equilibration and taking the average of the density over that

time. The necessary averaging time can be rigorously determined based on the

desired precision [103]; in practice, however, it is just as often determined by

experience and intuition.

2.2 Quantum nuclear effects

As previously mentioned, a complete treatment of molecular materials must also

treat the nuclei as quantum particles. The Born-Oppenheimer approximation

itself only separates the electronic and nuclear wavefunctions; the reduction of

the nuclear wavefunction to its classical limit is an additional approximation,

made in the vast majority of molecular simulation studies, but justified only in

the limit of large (heavy) nuclei and high temperatures (large ratio of thermal to

zero-point energy) [104]. Compressed liquid methane is generally regarded to be

neither; especially the presence of hydrogen in thematerials of interest generally

indicates that the extent of quantum nuclear effects must be evaluated [105].

Oneway to estimate the influence of quantumnuclear effects is to use approx-

imate or semiempirical corrections, especially those accounting for zero-point vi-

brational energy (ZPVE). This effect is analogous to the non-zero ground-state

energy of a quantum harmonic oscillator, which is used to approximate a chem-

ical bond near equilibrium. An example of this approach was used in Hellmann

et al. [42]: The increase in C-H bond length, as well as the increase in the polar-

izability of the molecule as a whole [106, 107], were both explicitly accounted for

in the forcefield parameterization; an additional dynamical quantum correction

was applied to accurately compute the second virial coefficient. Such semiem-

pirical corrections, while founded in rigorous physical arguments, are much less
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suitable for condensed-phase systems and high pressures where the simplifying

physical assumptions (rare-gas approximation) begin to break down and addi-

tional quantum effects beyond the ZPVE become important [108].

A more explicit and flexible approach to including quantum nuclear effects

in MD simulations makes use of an isomorphism between a path-integral ap-

proximation to the quantum partition function and an extended classical sys-

tem [104, 109]; this approach is known as path-integral molecular dynamics or

PIMD. It can account for ZPVE and tunnelling effects, though the nuclear ex-

change is still neglected [104, 108]. The extended classical system takes the form

of several replicas of the original system, corresponding atoms joined cyclically

between the replicas in a ring-polymer structure, hence the more specific name

of ring-polymermolecular dynamics (RPMD) [110]. Coupled with an appropriate

stochastic thermostat [111], the dynamics converges to the quantum Boltzmann

distribution as the number of replicas is increased, as well as enabling the ac-

curate calculation of other properties such as vibrational spectra [112].

More recent techniques have drastically reduced the additional cost asso-

ciated with PIMD, including ring polymer contraction [113] to deal with the

slower-varying force components in a less expensive way, coloured-noise ther-

mostats [105, 114] that mimic the effect of quantum fluctuations and reduce the

number of replicas needed to converge to the quantum distribution, and tech-

niques that make use of a higher-order expansion of the partition function [115]

to improve the convergence with respect to the number of replicas. This work

makes use of the coloured-noise thermostats in particular, as they offer the

largest improvement in efficiency with minimal additional complexity.
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2.3 Dynamical properties

The static properties of a system are straightforward to compute in compari-

sion to dynamical properties such as diffusivity and viscosity. This type of prop-

erty measures the macroscopically averaged rate of microscopically stochastic

transport through the bulk: In the case of diffusivity, it is the rate of individual

particle movement; in the case of viscosity, it is the rate of momentum transport.

The measurement of these properties from a molecular dynamics simulation

is grounded in the linear response theory of non-equilibrium thermodynamics:

The fluctuation-dissipation theorem connects the small fluctuations that can be

measured in a simulation to the macroscopic linear response of a system to a

perturbation (in the case of diffusivity, a concentration gradient; in the case of

viscosity, a velocity gradient) [26].

Although the potentials developed in this work have not yet been tested

against dynamical properties, such tests will be part of the necessary course

of validation of the potential for all the intended practical applications. Further-

more, the intended practical application of this potential is in predicting the

viscosity, so it is useful to understand the physical basis and the methods of

computation of these properties. Diffusivity simulations in methane have been

conducted in the gas phase [116, 117] and in the liquid phase at a limited number

of state points [51, 52], using a variety of simulation methodologies; the diffus-

ivity of larger hydrocarbons has also been tested with a united-atom model [2].

Viscosity data for methane, on the other hand, is much more limited, probably

due to the difficulty of measuring – experimentally or computationally – its ex-

tremely small viscosity.
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2.3.1 Green-Kubo relations

The mathematical relations that allow the computation of transport properties

from fluctuations are known as the Green-Kubo relations. They relate transport

coefficients to integrals of time autocorrelation functions. For the viscosity, the

coefficient to be measured is the stress (force per unit area) response to a velocity

gradient; for flow in the x-direction with velocity varying in the y-direction, the

linear relation is
F
A

= η∂vx

∂y
(2.1)

and the corresponding Green-Kubo relation is [26]

η= V
kBT

∫ ∞

0
dτ〈σxy(0)σxy(τ)〉. (2.2)

The off-diagonal elements of the stress tensor σαβ can be measured by the virial

tensor, Pαβ, which contains the volume averages of the corresponding elements

of the stress tensor. The angle brackets strictly denote an ensemble average,

though in a simulation they can be replaced by a time average by assuming

ergodicity.

A similar relation exists for diffusivity:

D =
∫ ∞

0
dτ〈v(0)v(τ)〉 (2.3)

although in this case it is easier to transform the equation to use the time in-

tegrals of the velocities (i.e. the positions) instead of their time correlation func-

tions [20, 26]. For each individual dimension:

lim
t→∞

1
t
〈(x(t)− x(0))2〉 = 2D (2.4)
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Summing the vector displacements instead changes the right-hand side to 6D,

giving the canonical Einstein relation for the diffusion coefficient.

2.3.2 Practical simulation considerations

Since transport properties are sensitive tomodifications of the dynamics through

thermostats and barostats, the ideal approach would be to run a simulation

without thermostats, i.e. run a microcanonical simulation, using the exact en-

ergy and volume that give the system the desired temperature and pressure [20,

116]. In practice, however, pressure is often extremely sensitive to both the

volume and the internal energy, so a small statistical error in either variable

can cause a large error in the actual simulation pressure.

For this reason, a common practice is to use a Nosé-Hoover thermostat with

a large time constant to minimize interference in the dynamics while still main-

taining the target temperature [3, 26]. Another option that maintains ergodic

dynamics is to use a “gentle” thermostat, such as the above-mentioned NHL [19]

or its subsequent “adaptive” modification [97]. Finally, a recent development has

made it possible to extract dynamical information even from a simulation run

using a strong stochastic coloured-noise thermostat; the effect of the GLE on

the dynamics can be computed and inverted in order to obtain the dynamical

properties of the unperturbed system [118].

An additional difficulty lies in computing the autocorrelation functions of

Equation 2.2 from a simulation time series: The tail of the computed function

is subject to increasing noise at longer (correlation) times, where the number of

samples available to compute the estimate becomes smaller [3, 103]. In practice,

this means accurate estimates of the autocorrelation integral require either dis-

carding the autocorrelation beyond some point [103] or fitting the tail with a
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decaying function based on some known functional form [119].

Finally, the statistical sampling error in the results is commonly reduced by

averaging properties over multiple independent simulations [3, 19]. This pro-

cedure not only provides an error estimate for the computed property; it also

minimizes the risk of the simulation being biased by spending too much time

trapped in a small number of metastable states.

2.3.3 Alternative methods

Transport coefficients can also be calculated through non-equilibrium methods,

which involve directly perturbing the simulation, driving it out of equilibrium

into some other steady state, and observing the response [26]. Such simula-

tionsmay be useful for systems, such as very long entangled hydrocarbon chains,

where the transport processes are too slow to be obtained reliably from an equi-

librium simulation. The perturbations force the transport processes to occur on

a faster, more easily measurable timescale. This approach is used in e.g. [27]

to model the viscosity of a variety of sizes of alkanes. While this approach has

the downside that the measured viscosity is dependent on shear rate and must

be extrapolated, it may be more reliable than equilibrium methods, which are

especially affected by inaccuracies in the forces from a potential [66].

Another approach that works best in the limit of dilute gases is to use kin-

etic theory and generalized cross-sections from integrals of classical trajectories

[117, 120]. For liquid-phase simulations, however, the more pragmatic approach

of calculating the properties from equilibrium or non-equilibrium MD simula-

tions is generally easier and more accurate [116].
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Chapter 3

Intermolecular potential

development

In order to create a potential for accurate viscosity simulations, we follow the

philosophy that the most accurate potential is a systematic approximation of the

entire Born-Oppenheimer potential energy surface, faithfully representing all

the physical effects that contribute to the liquid’s behaviour. Such a potential will

give robust predictions of properties across a wide range of temperatures and

pressures, since by following the detail of the surface we obtain the properties

the same way as they are obtained in nature at any temperature and pressure.

Note that such a potential must not include features that are not part of the

Born-Oppenheimer potential energy surface, such as quantum nuclear effects.

Our goal is first to approximate the true PES and only after to obtain additional

effects arising from the dynamics in a systematic and consistent way (with path-

integral MD).

In addition to delivering reliable predictions across different temperatures

and pressures, the potential should also work without modification across a wide

range of chemical space: In this case, across different alkane lengths and, even-
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tually, branching configurations. Our approach begins with the common and suc-

cessful strategy of decomposing the potential energy surface into the contribu-

tions from different physical effects. We then find out which of these effects can

be represented in a way that is independent of the size and type of the molecule,

and for the remaining effects, find a consistent and automatic way of capturing

the variation.

This chapter begins by applying this strategy to the simplest liquid hydro-

carbon system, liquid methane. We are interested in the condensed phase be-

cause we want to explore the same regions of the potential and qualitative types

of molecular behaviour as the eventual full-scale viscosity simulations will en-

counter. The relevant physical interactions are first identified, parametrized,

and, where necessary, fit with a fully flexible machine learning potential. The

machine learning method is then discussed, along with ways of measuring the

accuracy of the resulting potential.

3.1 Measuring accuracy

The first question when designing a systematic potential should be what level of

accuracy is required. That is a difficult question, since usually we only knowwhat

accuracy we require in the predicted properties. The corresponcence between in-

accuracies in the potental energy surface and inaccuracies in the properties pre-

dicted by simulations is still poorly understood. This gap in our understanding

has gradually becomemore pressing with the technology to systematically fit po-

tential energy surfaces. Early studies in this direction include the fitting of PESs

of van der Waals complexes from spectroscopic data [53, 121, 122], since differ-

ent types of spectra (microwave, infrared, and far-infrared) give information on

different regions of the PES. Now that it is possible to fit the true physical in-
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teractions (e.g. intramolecular, short-range repulsion, or long-range dispersion)

with any accuracy we desire, we should ask how much accuracy we truly re-

quire for the intended application and where we require it most. We start with

a preliminary investigation on a prototype problem, the united-atom model of

methane where each molecule is represented by a single spherical bead, before

moving on to amore detailed error measure that can be used with systematically

fitted potentials for the full, all-atom system.

3.1.1 Perturbation study

The united-atom model used in this study is TraPPE-UA [9]. An explicit-hydro-

gen version does exist [35], albeit with scaled coordinates and rigid methane

molecules. We will see later that both are relatively poor approximations of the

potential energy surface itself. But the predictions these models give for the

density, especially the UA version, are exceptionally accurate: Figure 3.1 shows

the density predicted for compressed liquid methane at temperatures of 110 K

and 188 K and pressures ranging from 0 bar to 400 bar, compared with the exper-

imental values from [123]. The simulations were done using the LAMMPS [124]

molecular dynamics package; simulation details are given in Section 4.2.

The TraPPE-UA potential was perturbed with cosine step functions:

δ(r)=



A r ≤ rin

A cos
(
π
2

(r−rin)
w

)
rin < r ≤ rin+w

0 r > rin+w

(3.1)

of amplitude A and width w, starting at inner radius rin. These perturbations

only have effect (i.e. generate a force) over the region of width w with continuous
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Figure 3.1: Density of liquid methane predicted by perturbed versions of TraPPE-UA at
110 K and at 188 K; OPLS/AMBER is shown for comparison. Uncertainties in the density
are smaller than the symbol sizes.
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Figure 3.2: The TraPPE-UA potential for the methane dimer with the three perturbations
used in this study

first derivatives at the endpoints. In this case, the perturbations were confined

to either the attractive or the repulsive region of the potential. All of the perturb-

ations used w = 1.5Å, although for a more realistic interpretation of the results

these length scales should have been chosen to correspond with the length scales

of the interactions being modified. One of the perturbations was confined to the

attractive region (rin corresponded to the minimum of the TraPPE potential)

and used A = −0.005eV, thus strengthening the attraction; the other two were

confined to the repulsive region (rin+w corresponded to the TraPPE minimum)

and used A = 0.005eV (extra repulsion) and A = 0.1eV (much stronger repulsion).

These modified (perturbed) versions of the potential are pictured in Figure 3.2.

Simulation parameters for the perturbed potentials were similar, but used only

100 ps of simulation time instead of 500 ps.

First, the consistent accuracy in the density predictions of plain TraPPE-

UA illustrates that a model need not be a detailed, systematic approximation to
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the Born-Oppenheimer potential energy surface in order to make robust predic-

tions of thermodynamic properties, even across a wide range of temperatures

and pressures. TraPPE was fit to reproduce phase equilibria as accurately as

possible [9]; evidently, fitting just two parameters is enough to reproduce the ex-

perimental equation of state of methane in this range of thermodynamic para-

meters. However, as the potential is put throughmore stringent tests, eventually

the shortcomings of the approximation show through. Structural properties of

alkane films, for example, cannot be accurately modelled with a united-atom

potential [125, 126]. The discrepancies in dynamic properties are even more

troubling: It was shown in Payal et al. [3] that united-atom models consistently

underpredict the viscosity of linear alkanes. This effect can be intuitively un-

derstood, since united-atom models of molecules are much smoother than the

real systems with atomistic detail and thus cannot adequately model the fric-

tion between adjacent layers of a fluid. A similar result was found in Allen and

Rowley [27] where united-atommodels were found to underpredict experimental

viscosities, especially at high pressures and densities. An explicit-hydrogen ver-

sion of TraPPE [35] was developed in part in response to a related shortcom-

ing (united-atom models predict too large diffusivities for the same reason as

just mentioned). Another approach is to use so-called asymmetric or anisotropic

united-atommodels where the “beads” are not spherical [2]. Such approaches in-

troduce additional complexity, though they still fall far behind all-atom models

in approximating the true potential energy surface of the methane dimer (see

Section 3.1.2).

The perturbed versions gave density isotherms, shown in Figure 3.1, that

were shifted from the original TraPPE isotherms, with extra attraction produ-

cing higher densities and extra repulsion producing lower densities. As expec-
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ted, increasing the attraction by 0.005 eV also increased the predicted density,

in this case by about 12 %, about the same as the OPLS density overprediction

at 110 K. Increasing the repulsion by the same absolute amount of 0.005 eV had

much less of an effect; only with a perturbation 20 times that magnitude does

the change in density become comparable to the change due to the increase in

attraction. Note that this difference can equally be attributed to the difference

in length scales of the repulsion and dispersion energy components, though the

interpretation of this difference is far from straightforward: For the same energy

change (measured from the minimum) that the potential experiences over 1.5Å

of the dispersive region (outwards from the minimum), only about a third of that

distance over the repulsive region (inwards from the minimum) is required; the

repulsion energy 1.5Å inwards from the minumum is about 250 times the well

depth. In fact, the inverse-power form of the repulsion has no intrinsic length or

energy scale in the same way that the attraction does. It may be illuminating

to repeat this study, varying the perturbation length scale as well as the en-

ergy scale, in order to better assess the effects of both parameters on the density

prediction.

Furthermore, as Figure 3.3 shows, the perturbation of 0.1 eV is of the same

scale as the absolute errors OPLS-AA makes in the short repulsive range, up to

the approximate minimum dimer separation of 3.25Å. It is therefore tempting

to assign the density error made by OPLS-AA entirely to the repulsive range.

The main problem with such a conclusion – besides the different predictions at

188 K – is that the actual OPLS/AMBER density error is in the wrong direction:

OPLS-AA appears to bemore repulsive than the CCSD(T) reference in the short

range, and yet it gives higher densities than experiment. It therefore seems that

already the error in the density, even of such a simple model, cannot be under-
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Figure 3.3: Differences of the OPLS-AA energies from CCSD(T)-F12 on a set of equally-
spaced methane dimers in various orientations, compared to the “very strong” (0.1 eV)
repulsive perturbation. The dashed vertical line indicates the position of the minimum of
TraPPE; the solid line showswhere TraPPE crosses zero. A radial distribution function is
shown for reference; the distribution was taken from anOPLS/AMBER simulation at the
highest temperature and pressure in the experimental density dataset, 188 K and 278 bar.
Dimer orientations are the same as those in Figure 4.3; see Section 4.2 for computational
details.

stood with this simple, one-dimensional analysis. Note also that the simulation

results in Figure 3.1 do not include quantum nuclear effects. The TraPPE-UA

model includes these implicitly thanks to their parameterization to experiment.

The OPLS-AA model was also parameterized against experimental data so, in

principle, it should also include these effects. On the other hand, as we will soon

see, it is one of the most accurate traditional analytical potentials when com-

pared against a quantum chemical reference.

These results do not yet help us systematically explain or attribute the errors

in the density made by models more complex than the one-dimensional united-

atom representation. They do provide a rough guide for what order of magnitude

of accuracy to target, namely, less than 0.005 eV in the attractive region. How-
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ever, the interpretation of the repulsive region is muddled by the problem of the

length scale, so for now we should simply aim to keep the same relative error

throughout the potential.

3.1.2 Dimer error measure

Measuring the accuracy of a model in approximating the underlying Born-Op-

penheimer PES is likewise difficult. The question is ill-defined, in part because

of the question addressed in the previous section: It is difficult to say what part

of the surface matters most. Furthermore, the PES formally has an intractable

number of dimensions: d = 3N−6, where N is the number of atoms in the system.

This makes visualizing the differences (errors) between the true and approxim-

ate PES difficult, if not impossible, to do directly. Here we explore one way of

approaching this problem, first by studying only the simplest possible system

of interacting methane molecules, the dimer (d = 24 dimensions, or d = 6 if the

molecules are taken to be rigid). It is much more tractable to generate samples

in this space and compute average errors (root-mean-squared error, or RMSE)

or do fits against a quantum chemical reference. In fact, this system has seen

several potentials fitted to ab initio data before [42, 43, 51, 52, 120], but these

mostly use either simple traditional or specialized analytical functional forms.

Eventually we will use a fully flexible fitting method without constraint to any

one functional form in order to obtain the best possible accuracy; this model is

called the “6-D dimer GAP” and its development is discussed in Section 4.2.1.

We can visualize the errors of each of these models along the one-dimensional

coordinate of dimer separation, treating all further coordinates (describing the

orientation and, if considered, flexibility of the molecules) as secondary.

Several samples of methane dimer geometries were created for this purpose,
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Figure 3.4: Distributions of methane dimer distances in the two dimer samples, base
on top, short-augmented and unweighted (Boltzmann) below. The three samples con-
tained 901, 2420, and 565 dimers, including geometries where quantum calculations
did not converge. The bottom plot is the C-C radial pair distribution function from an
OPLS/AMBER simulation at 188 K and 278 bar, the highest temperature and pressure
in the experimental methane density dataset.
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all taken from bulk simulations. The first two were taken from an OPLS-AA

simulation at 188 K and 400 bar with the monomer geometries kept rigid, con-

strained to the geometry optimized with CCSD(T) (using the composite proced-

ure described in the next section). The base sample contained 901 dimers with

separations ranging from 3.0Å to 10.0Å. Additional samples were taken at close

range to improve the accuracy in describing the repulsion, first in the range

3.0Å to 5.5Å and then in the range 3.0Å to 3.5Å; together with the base sample,

this resulted in 2420 geometries heavily biased towards the short range (hence

“short-augmented”).

Finally, one more sample was taken from a simulation using the 6-D dimer

GAP at 110 K and 316 bar, described in Section 4.2.1, this time with no weight-

ing applied other than rejecting dimers outside the cutoff of 10Å. This way, the

sample is naturally taken from the Boltzmann distribution generated by the

methane dimer potential at that temperature and pressure, hence its designa-

tion as the “Boltzmann sample”. The distributions of dimer separations in these

three samples – base, short-augmented, and Boltzmann – are shown in Fig-

ure 3.4.

3.1.3 Reference methods

In order to quantify the accuracy of any given approximate method, a good ref-

erence method is needed that gives as accurate a solution as practically possible

to the Schrödinger equation of the dimer. Since the methane dimer is such a

small system, it is possible to use a high level of quantum chemistry as a ref-

erence; here, we used coupled cluster CCSD(T) with explicitly correlated basis

functions (the F12 correction [127]). The detailed procedure used a composite

method, designed to control a notorious source of error in high-level quantum
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chemistry calculations: the basis set incompleteness error. Since it would not

have been feasible to do coupled-cluster calculations at a sufficiently large basis

set, the energy is instead built up by first performing a Hartree-Fock (HF) cal-

culation at the largest basis set possible (in this case Dunning’s aug-cc-pV5Z,

hereafter called AV5Z [128, 129]; the names AVQZ and AVTZ likewise refer to

the aug-cc-pVQZ and aug-cc-pVTZ basis sets), then computing the MP2 correla-

tion energy at the next smallest basis set, and finally computing the remaining

coupled-cluster correlation energy at the next smallest set; this is similar to the

procedure used in Gillan et al. [83]. The resulting energy expression is:

Etot = EHF/AV5Z+

(EMP2/AVQZ−EHF/AVQZ)+

(ECCSD(T)-F12/AVTZ−EMP2/AVTZ) (3.2)

The highest level of theory in the calculations is explicity correlated coupled

cluster (singles, doubles, and perturbative triples), or CCSD(T)-F12 [127, 130,

131] (hereafter referenced as just coupled cluster or CCSD(T), with the under-

standing that all CCSD(T) calculations done on these dimer sets were done with

the F12 explicit correlation included). The dimer interaction energies were com-

puted using the counterpoise method [132] to correct for basis set superposi-

tion error (BSSE). Using this method, the highest level of basis-set correction

(EHF/AV5Z−EHF/AVQZ) was found to give a negligible improvement in the dimer in-

teraction energy, although it was usually included anyway. All calculations were

done using the program suite MOLPRO [133–136]. The program could compute

analytical energy gradients (forces) up to the MP2 level, but not for CCSD(T) or

higher.

Themagnitudes of the different contributions to the energy across the sample
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Figure 3.5: Components of the full coupled-cluster energies of the methane dimer sample
shown as a function of dimer separation; the absolute values of all energies and energy
differences are plotted on a log scale.

are shown in Figure 3.5. The components in the plot can be interpreted as the

total energy, the MP2 correlation energy (measured from HF), and the CCSD(T)

correction on top of MP2. Just from this plot we can see that the energies have

signifiant anisotropy, especially in the close repulsive region of the potential.

We also see that most of that anisotropy is coming from the Hartree-Fock level,

where electron exchange is described exactly owing to the antisymmetry of the

HF wavefunction [56]. This result suggests that most of the effort should be

focused on describing the repulsion energy in the short to medium-short range

(closer than about 6ÅC-C distance) as this is themost complicated and irregular

part of the potential. Finally, the plot would also seem to suggest that the largest

correction from HF is the MP2 correlation energy, which closely describes the

long-range tail of the energy; the coupled-cluster correction has a comparatively

small effect and can be treated separately.
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Analytical model comparision

We can now use this reference to assess how well several popular or relevant

analytical potentials for methane reproduce the quantum mechanical potential

energy surface. The potentials chosen here are: OPLS-AA [34], TraPPE-UA [9],

and TraPPE-EH [35], which were all fit to reproduce experimental properties of

methane; the Li-Chao L-J fit [52], a simple pairwise Lennard-Jones fit to calcu-

lated quantum chemical energies of the methane dimer in a fixed set of orienta-

tions and shown to be successful in predicting the radial distribution functions

and the self-diffusion coefficient of liquid methane; a new L-J fit to quantum

chemical energies (CCSD(T)-F12) on a different set of orientations and used as

the baseline for the dimer GAP (see Section 4.2.1); and the 6-D dimer GAP it-

self. The energies that each of these models predicts on the short-augmented

set, along with the log errors against the CCSD(T)-F12 reference, are shown in

Figure 3.6.

Evidently, most potentials greatly overpredict the dimer energies in the very

short range (3Å to 3.5Å), especially TraPPE-EH, which generally follows the

TraPPE-UA curve but with more scatter. The Li-Chao L-J, on the other hand,

has low energies but very large scatter at medium range, much more than the

reference energies. The L-J baseline also overpredicts, but with much less scat-

ter (partly due to the use of purely repulsive C-H and H-H potentials). Finally,

OPLS-AA seems to be the most accurate of the potentials tested here, with con-

sistent accuracy across the range plotted here.

We can compute a single error number for each model by taking the root-

mean-square error (RMSE) across the dimer geometries in the dataset. However,

this measure still weights the error according to the distribution of dimer geo-

metries present in the dataset; the short-augmented dimer set will weight errors
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Figure 3.6: Dimer interaction energies predicted by various analytical (L-J) potentials,
with CCSD(T)-F12 as a reference. Top: energies. Bottom: energy errors; the CCSD(T) en-
ergy is given for scale, everything else on the bottom plot is the error against CCSD(T).
Even though TraPPE-UA is an isotropic model, its error still depends on the dimer ori-
entation because the error reference is the real, anisotropic CCSD(T) energy. Due to the
large number of dimer geometries in the short-augmented sample, only a subset of repres-
entative points is shown with sizes proportional to the number of points they represent.
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Figure 3.7: RMS errors of the dimer interaction energies predicted by the analytical (L-J)
models in Figure 3.6, with the 6-D dimer GAP for comparison. Left: errors computed on
the short-augmented dimer set; right: errors computed on the Boltzmann dimer set.

in the short range muchmore severely than the Boltzmann dimer set. Figure 3.7

shows the RMS error measures for these potentials across both dimer sets.

These error numbers confirm and quantify our conclusions from the previ-

ous figure: In the short-augmented dimer set, which heavily emphasises errors

in the short range of the potential, the errors are ordered roughly as expected:

The TraPPE-UAmodel, which ignores all anisotropy and overpredicts the repul-

sion energies, fares worst, with TraPPE-EH close behind; the Li-Chao and the

L-J baseline fit are comparable in error, both having been fit to coupled-cluster

energies on a small selection of dimer orientations; and OPLS-AA is the most

accurate of the L-J potentials here – perhaps surprisingly, since it was never

fit with the quantum potential energy surface of the dimer in mind. The er-

rors on the Boltzmann sample follow approximately the same trend, though on
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a smaller scale; removing the emphasis on the short range (where most poten-

tials make large absolute errors) results in smaller error numbers. The unex-

pectedly large error bar of the Li-Chao L-J is likely due to its significant scat-

ter in the medium range. Finally, the 6-D dimer GAP fit (see Section 4.2.1) is

able to achieve the highest accuracy by fitting in the full six-dimensional space

of dimer orientations. Its error number is comparatively consistent across the

two dimer sets; on the short-augmented set (which it was fit on) it achieves

0.381 meV per methane molecule, while on the Boltzmann set that error drops to

0.204 meV/CH4. For reference, the standard deviation of the CCSD(T) energies

in the short-augmented set is 7.7 meV/CH4 and the standard deviation on the

Boltzmann set is 2.5 meV/CH4; the depth of the dimer potential well is approx-

imately 10 meV/CH4.

DFT methods

While quantum chemistry is a good reference method for small systems such

as the dimer, it quickly becomes intractable due to the typical N7 scaling with

the number of atoms [56] (though the less commonly used localized methods can

reduce this scaling [137]). For larger systems, such as the bulk simulation cells

that will later be used to train most of the GAP models, density functional the-

ory (DFT) [138, 139] is the method of choice [57]. Two popular functionals were

tested for use on this system, the generalised gradient approximation (GGA)

functional PBE [140] and the hybrid GGA functional PBE0 [141]. Hybrid func-

tionals mix in a proportion (25 % for this functional) of exact (Hartree-Fock) ex-

change, which may improve the description of energies in the short repulsive

range.
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Dispersion models

Plain density functional theory is not enough to arrive at a good approximation

of the dimer interaction since, as discussed in Section 1.2.3, it neglects long-

range dispersion. Here we will consider two models to correct for dispersion,

both founded in physical arguments with parameters derived directly from a

corresponding DFT parameters and employing a minimum of empirical para-

meters. The models are the pairwise correction of Tkatchenko and Scheffler [60]

and its more accurate, but more complex and computationally demanding suc-

cessor, MBD [62]. Both rely on some measure of atomic polarizability relative to

the free atom.

In the pairwise T-S method, the pairwise dispersion coefficients are calcu-

lated starting from free-atom coefficients, which are calculated from first prin-

ciples using dynamic polarizabilities [142]. The theoretical basis of these calcu-

lations is the Casimir-Polder integral, which expresses the coupling of fluctu-

ations of dipoles centred on each atom; this is the lowest order of the multipole

expansion commonly used to approximate the full dispersion energy [58]. The

dispersion coefficients of the atoms in the molecules are then obtained through

scaling by the ratios of atomic volumes between the atom in themolecule and the

free atom, an idea introduced in practice by Becke and Johnson in 2006 [143] –

though the underlying linear relationship (correlation) between the static polar-

izability of an atom in a molecule and its effective volume was known as much as

15 years earlier [144]. The effective atomic volume is computed by one of various

partitioning schemes that assigns some portion of the total electron density, at

any point in space, to each atom. Most of these schemes were first developed to

assign partial atomic charges (along with higher multipole moments) to atoms

in molecules. In this respect they are part of a large family of methods, many
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of them aimed at modelling the electrostatic energy present in charged systems

or systems with large charge separation. Some of these methods are reviewed

in Veit [46], though for alkanes – and for methane in particular – we are neg-

lecting the electrostatic contribution, as explained in Sections 1.2.2 and 4.1.3,

and will not explore these methods further.

The pairwise T-S method, as originally proposed, uses the Hirshfeld parti-

tioning [145] to compute relative atomic volumes. The Hirshfeld method assigns

the density at each point according to the proportion of density that would come

from each atom in an imaginary, non-interacting version of the molecule. This

partitioning has further been re-derived using an argument from information

theory: The Hirshfeld partitioning is the one that minimizes the information

loss (Kullback-Leibler divergence) between themolecular and free-atom electron

densities [146, 147]. A more recent, iterative extension of the Hirshfeld parti-

tioning was proposed [148] in order to give a better description of systems with

large charge separations and to strengthen the connection to the information-

theoretic definition. This “iterative Hirshfeld” (HI) extension replaces the non-

interacting reference system of neutral atoms with a system of partially charged

atoms. In the first step, the charges are taken to be neutral, giving the regular

Hirshfeld partitioning of the system. The Hirshfeld charges obtained in this step

are then assigned back to the corresponding atoms of the reference system, the

partitioning is recomputed with the new reference system, and the procedure is

iterated to self-consistency. The density of partially charged atoms is computed

by interpolation between the densities of the two closest states of integer charge.

The many-body dispersion method of Tkatchenko et al. [62] is based on the

same ideas as pairwise T-S, with two key modifications that allow it to de-

scribe many-body effects in the dispersion interaction. The first modification
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is to the polarizabilities of the fluctuating dipoles used to model the pairwise

dispersion energy: Each dipole’s polarizability is modified by the long-range

electrostatic screening of its environment. This screening is solved via a clas-

sical self-consistent equation, giving rise to the TS-vdW+SCS (pairwise disper-

sion with self-consistent screening) model. The second modification replaces the

sum of pairwise interactions between the (screened) dipoles with a true many-

body model, the coupled fluctuating dipole model (CFDM) Hamiltonian. The

Schrödinger equation for this Hamiltonian can be solved exactly, giving the full

many-body interaction energy of the dipoles, which is the final MBD energy. Al-

though this treatment includes dipolar interactions to arbitrary body order, it

neglects the interaction of higher multipolar fluctuations, most notably the C8

dipole-quadrupole term that D3 [61] does include. Nevertheless, MBD remains

perhaps the most accurate spatially discretized (atom-centred) dispersion cor-

rection available; it predicts the binding energies of the molecules in the S22

database [149] with a mean absolute relative error of less than 5 %.

The performance on the methane dimer of the selected dispersion-corrected

DFTmethods is shown in Figure 3.8; both the T-S and theMBD corrections were

computed∗ with regular (non-iterative) Hirshfeld volumes at first. A comparison

of the dispersion-corrected methods using Hirshfeld vs. iterative Hirshfeld par-

titionings is shown in Figure 3.9. The DFT energies were computed using the

Psi4 package [150], both using the AVQZ basis set. The Hirshfeld (regular and

iterative) partitionings were done with the Horton software [151], itself using

methods derived by Becke and Dickson for polyatomic systems [152–154]. While

the iterative Hirshfeld partitioning did result in a 41 % larger average volume

ratio for carbon and 19.5 % smaller average volume ratio for hydrogen than with
∗The MBD code available from http://www.fhi-berlin.mpg.de/~tkatchen/MBD/ was used

here; the T-S correction was computed with my own implementation
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Figure 3.8: Dimer interaction energies predicted by the three dispersion-corrected DFT
methods, with CCSD(T)-F12 as a reference. Energies on top, log errors against CCSD(T)
(with the CCSD(T) energies themselves for scale) on the bottom. Due to the large number
of dimer geometries in the short-augmented sample, only a subset of representative points
is shown with sizes proportional to the number of points they represent.
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Figure 3.9: Dimer interaction energies predicted by the three dispersion-corrected DFT
methods, errors against CCSD(T)-F12. Comparison of dispersion models obtained with
regular Hirshfeld analysis (left) and iterative-Hirshfeld (HI) analysis (right). Top: short
range, bottom: long range.
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the regular Hirshfeld partitioning (both with PBE, on the short-augmented set),

the average of the total volume ratios for eachmonomer (a measure of the disper-

sion coefficient of the entire molecule) hardly changed, being only 5.69 % smaller

with the iterative Hirshfeld partitioning.

The first trend we notice from Figure 3.8 is the accuracy of the methods in-

creasing both as the dispersion model is improved from T-S (pairwise) to MBD

(many-body), and as the PBE functional is switched for PBE0. The increase in

acuracy is most apparent in the medium-short range of 3Å to 7Å; beyond there,

all three methods display errors in the same low range. Switching to iterative-

Hirshfeld volumes did improve the results slightly, as expected; it was shown

in Bučko et al. [155] that the T-S correction improves in accuracy for systems

with large charge separation when iterative Hirshfeld is used in place of regu-

lar Hirshfeld. But the improvement seen in methane is much less pronounced:

Figure 3.9 shows a modest improvement for all methods in the short range (3Å

to 5Å), but in the long range they are even less accurate than the methods using

regular Hirshfeld. Indeed, methane does not have very large charge separations:

the OPLS-AA forcefield uses a charge of 0.06 e on each hydrogen atom, while the

iterative Hirshfeld partitioning predicts a value∗ about twice as large (0.136 e).

These findings are also in accordance with Bučko et al. [155], who found only

small differences in the T-S correction between the iterative and non-iterative

Hirshfeld versions for dispersion-dominated systems. It thus appears to be safe

to simply use the regular Hirshfeld partitioning, the only type currently offered

by the CASTEP code [156] that will be used for the full bulk methane cells.

The accuracy of all the methods considered here – analytical potentials as

well as dispersion-corrected DFT – is summarized in Figure 3.10 on both the
∗computed on the PBE0 electron density of the methane dimer, with charges averaged over

the Boltzmann sample
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short-augmented and Boltzmann-weighted samples. Again, note how the short-

augmented set emphasises errors in the short range: if we consider only the

errors on the Boltzmann sample, then the errors of the analytical potentials ap-

pear comparable to those made by dispersion-corrected DFT! This is, of course,

a valid conclusion if we are only interested in the total energy in the canon-

ical ensemble. But if we are interested in any other property, then the contribu-

tions will be weighted differently (cf. Equation (1.1)), so it is well worth consider-

ing both the short-range errors (as emphasized in the short-augmented sample)

and the Boltzmann-weighted errors when assessing the accuracy of these meth-

ods. Of course, the empirical potentials make much larger errors on the short-

augmented set, so only OPLS-AA remains comparable in error to dispersion-

corrected DFT.

We can make several other comparisons using Figure 3.10 – for one, on the

accuracy of dispersion corrections computed using regular Hirshfeld versus it-

erative Hirshfeld partitionings. Using iterative Hirshfeld generally results in

a decreased error on the short-augmented set, though this effect is not as pro-

nounced for the most accurate DFT-based model, PBE0 + MBD. The same trend

is visible on the Boltzmann set, with the exception of PBE + T-S. It is hard to be

certain why the error of this model is much larger on the Boltzmann set with

iterative-Hirshfeld volumes than anywhere else, including with regular Hirsh-

feld volumes or on the short-augmented set. It is likewise puzzling why its error

is so small with regular Hirshfeld volumes on the Boltzmann set, enough to up-

set the ordering seen in the other three cases. Perhaps this anomaly just reflects

a limitation of the dimer RMSE measure, or of an insufficiently large sample

size in the Boltzmann set. Otherwise, the dispersion-corrected DFT methods

have fairly consistent accuracy between the Boltzmann and short-augmented
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Figure 3.10: (best viewed in landscape orientation) Summary of RMS errors against
CCSD(T)-F12 of various models for the methane dimer. Top (left) three plots were com-
puted on the short-augmented dimer set, bottom (right) three were computed on the
Boltzmann set. Analytical potentials on the outside, same as shown in Figure 3.7. The
middle four plots are RMS errors of the DFT models, with dispersion models computed
either with Hirshfeld analysis (second and fourth plots) or iterative-Hirshfeld (HI) ana-
lysis (third and fifth plots).
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dimer sets and the order of accuracy of the quantum-mechanically foundedmeth-

ods remains clear: PBE + T-S is the least accurate, followed by PBE + MBD;

PBE0 + MBD is the most accurate of the DFT-based models, and finally, the 6-D

dimer GAP is the most accurate dimer model by virtue of its fitting directly to

quantum chemistry in the full-dimensional space of (rigid) dimer conformations.

3.2 GAP method

The 6-D dimer GAP was the most accurate of the models considered above

mainly because it relies on a robust, systematic method of fitting functions in

high dimensions. The method is called Gaussian process regression and its ap-

plication to potential energy surfaces (where we typically only have linear com-

binations and derivatives of local atomic energies) is called GAP [15, 74]. The

underlying idea and previous applications were discussed in Section 1.2.4; here

we go into more detail on its theoretical background, implementation, and con-

nection to other machine learning methods.

The idea of fitting a function using a Gaussian process (GP) comes from

Bayesian statistics. In a sense, the result of the fit is a distribution of potential

energy surfaces that is updated every time we add a new quantum data point;

the usual potential energy surface that we predict is the mean of this distribu-

tion [72]. This view also makes it possible to use the variance of the Gaussian

process as an uncertainty on the prediction, though this variance is much less

robust than the mean value that we use for prediction.

Concretely, the fitted model takes the form of a linear combination of basis

functions centred on the target points, as seen here for the local energy of an
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atom i as a function of some descriptor di of its local environment:

εi = f (di)=
∑

j
α jk(d j,di). (3.3)

The d j are descriptors of the local environments in the training set and k(·, ·)
is the kernel or covariance function. The weights α are determined by a least-

squares linear fit:

α=C−1t (3.4)

with t the vector of previous (“target”) observations and C the covariance mat-

rix of the process. In a full Gaussian process, the sum over j would need to run

over all the environments in the training set; however, this would mean that

determining the weights using Equation (3.4) would scale as N3 with the num-

ber N of training environments due to the matrix inversion. The scaling can be

greatly improved by selecting a smaller representative set of environments d j

and performing sparse GP regression, where the remaining environments are

expressed as linear combinations of the representatives; thismethod is described

in Bartók and Csányi [74] and is a form of the “subset of regressors” algorithm

described in Quiñonero-Candela and Rasmussen [157].

The GAP fit is robust to noise in the data – small uncertainties due to a

number of possible factors, for instance, insufficiently converged quantum cal-

culations, finite distance cutoffs, or perhaps some other inability of the chosen

descriptor to represent changes in the energy [74] – because of a step called reg-

ularization. This procedure smoothes and simplifies the interpolating function,

removing the constraint that it pass through all of the target data points. Indeed,

a model that passes exactly through all target points is said to be overfitted;

since the extra complexity needed to represent the noise is specific to the training
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dataset, overfitting limits a fit’s applicability to new data.

In GP regression, the regularization is built into the covariance matrix C:

Ci j = k(di,d j)+σ2
wδi j (3.5)

with a regularization parameter σw; δi j is the Kronecker delta symbol. The

covariance matrix for GAP is more complicated because it needs to account for

linear combinations and derivatives of energies as well as sparse regression but

the basic form is the same (see Section 5.2.1). Notice how the covariance func-

tion k(·, ·) captures essentially all the nonlinearity of the potential, with the fit

itself reducing to a simple regularized linear fit. The interpretation of the kernel

and the fitting parameters is the essential difference between Gaussian process

regression and kernel ridge regression (KRR) with radial basis functions. In the

Bayesian interpretation, the regularization parameter represents the intrinsic

noise of the data, as if the data points were drawn from a normal distribution

with standard deviation σw. In practice, it functions as a weight parameter that

tells the interpolant how strictly to fit the data. KRR has a similar approach

to regularization; the energy expression is identical to Equation 3.3 and the

weights are determined by minmizing the loss function

L =∑
i

(ti − f (di))2 +λ||α||2C (3.6)

where || · ||2C signifies the norm αTCα (requiring C to be positive definite, which

is guaranteed by the conditions for the function k to be a valid kernel). If we

identify λ with the regularization parameter σ2
w, then the predictions of this

KRR method become equivalent to that of Gaussian process regression [74].
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3.2.1 Descriptors

There aremanyways of specifying a covariance function, but most of them trans-

form a molecular geometry into a series of geometrical parameters known as

descriptors, then compute some similarity measure between the descriptors of

the two molecular geometries. In order to be useful, a descriptor must obey the

same symmetries as the energy itself: It should have the same values whether

a system is translated, rotated, or atoms of the same type are permuted [74, 91,

158]. Many commonly-used descriptors are analogous to the internal coordin-

ates used in classical force fields, which must also obey these symmetries. For

example, a two-body descriptor of a local environment consists of all the dis-

tances between all pairs of atoms within a specified cutoff distance; a potential

using such descriptors is analogous to the bond energy terms in local forcefields

and pairwise models of the long-range energy (Lennard-Jones and fixed-charge

Coulomb). By training a GAP using two-body descriptors, we can obtain a gen-

eral pairwise potential that captures the physics of pairwise interactionswithout

being constrained to any one functional form.

A GAP trained on simple descriptors, such as the two-body type, will gener-

ally use the squared exponential covariance function. This function captures

the intuition that descriptors very close in value should correspond to very sim-

ilar energies, with the correlation dropping off steeply as they become farther

apart. The covariance kernel has the form [17, 72]

k(di,d j)= δ2 exp

(
− (d j −di)2

2θ2

)
(3.7)

where in this case, atom pairs take the place of local environments, characterized

by distances di and d j as descriptors. The parameter θ determines the character-
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istic scale over which the distances are expected to vary, while the parameter δ

is an estimate for the scale of energy variation that this descriptor (e.g. the pair-

wise energy term) is responsible for. If multiple atom types are present, each pair

type (e.g. C-C, C-H, and H-H) is represented by a separate Gaussian process; the

pair potentials are added together to give the total potential.

This idea can be extended to triplets, which are characterized by three sym-

metric distances, and even entire dimers. In the latter case, the kernel function

compares two dimer geometries [17]:

k(R,R′)= δ2 exp

[
−∑

i

(Ri −R′
i)

2

(2σ2
i )

]
,

where R is the set of distances between all atoms in the dimer, δ is the charac-

teristic energy scale of variation of the function, and the σi are the charateristic

scales of variation for each distance type. This kernel must be symmetrized over

the permutation group S of the dimer so that the resulting potential does not

depend on the order of the atoms:

k̃(R,R′)= 1
|S|

∑
π∈S

k(π(R),R′).

This is the kernel used for the 6-D dimer GAP (see Section 4.2.1), where the

kernel function is used to measure the similarity of two methane dimers. The

obvious disadvantage of this kernel is that it cannot compute the covariance

between a methane dimer and any other system. The fit cannot be extended to

include other molecules or even beyond-dimer effects.

A more flexible approach is to decompose the energy of a molecule, dimer,

or entire system into atomic contributions and fit a potential using descriptors

of each atom’s local environment as implied in Equation 3.3. The SOAP kernel

64



Max Veit
Machine learning potentials for alkanes

3.2. GAP method

directly compares local environments by smearing out the atoms in the environ-

ment with Gaussians, resulting in the atom-centred neighbour density

ρ i(r)= ∑
j∈N (i)

exp

(
−|r−ri j|2

2s2
i j

)
(3.8)

with the sum running over all atoms in the neighbourhood N (i) of atom i, and

si j controlling the width of the atomic Gaussians (which could be permitted to

vary based on the interatomic distance and atom type, though in practice it is

kept constant). The similarity between two environments is computed by integ-

rating the overlap between the two neighbour densities over all possible mu-

tual rotations [74, 91]. The integration, which ensures the descriptor’s rotational

symmetry (translational and permutational symmetry are included by construc-

tion), can be done analytically by expanding each neighbour density in spherical

harmonics and radial basis functions

ρ i(r)= ∑
nlm

c(i)
nlm gn(r)Ylm(r̂), (3.9)

and summing the power spectrum elements:

p(i)
nn′l =

1p
2l+1

∑
m

c(i)
nlm(c(i)

n′lm)† (3.10)

k(ρ i,ρ j)=
∑
nn′l

p(i)
nn′l p( j)

nn′l (3.11)

which is then normalized to obtain a proper kernel and optionally raised to some

power ζ > 1 to increase the sensitivity to changes in the local environment [74,

91]:

k̃(ρ i,ρ j)= δ2

(
k(ρ i,ρ j)√

k(ρ i,ρ i),k(ρ j,ρ j)

)ζ
. (3.12)

The kernel is an efficient and accurate way of representing solid-state systems
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of one or two species where many-body interactions of high order are import-

ant [80]. For the new hydrocarbon potential, this kernel is ideally suited to fitting

complex, many-body interactions such as the short-range repulsion (the second

term of Equation (1.3)). The descriptor has recently been extended with an “al-

chemical” formulation that considers the neighbours’ chemical species in the

similarity function [77] as well as a symmetry-adapted formulation for tensorial

properties [159], though neither of these modifications is needed here: GAP can

already differentiate between atomic centres by fitting separate Gaussian pro-

cesses for each chemical species, and fitting the potential energy surface only

requires the scalar (not the tensorial) SOAP.

3.2.2 Baseline models

In practice, Gaussian process regression is best at fitting relatively smooth func-

tions with a single length and energy scale. But real potential energy surfaces

can have large, relatively steep changes (e.g. the molecular repulsive wall). Sev-

eral methods are available to compensate for this difference in scales; one is to

transform the descriptors with some “transfer function” in order to stretch out

the regions where the potential varies fastest. But if we already have a simple

model that roughly describes the energy, then an easier and conceptually sim-

pler approach is possible: We take this model as a baseline and fit our GAP to

the difference from this baseline to the true potential energy surface, effectively

fitting a correction on top of the baseline. For the 6-D dimer GAP discussed in

Section 4.2.1, the L-J baseline fit served the role of the baseline model (though

any other simple L-J fit, e.g. OPLS-AA, might have worked just as well).

For more complex interactions (such as the molecular repulsion, or the in-

teractions within metals and other crystalline solids) it is not always possible
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to find a sensible baseline. One possible approach in this case is to first fit a

GAP with simpler descriptors, e.g. a two-body GAP. The more complex contri-

butions can then be fit using the two-body GAP as a baseline, creating a model

that effectively splits the total energy into a sum of two-body contributions and

higher-order effects. This approach, called hierarchical learning, may result in a

more transferable potential than one using just one type of descriptor since the

lower-order energy contributions could be seen as more universal and applicable

to different types of systems than the complicated, higher-order contributions.

The hierarchical learning approach was not used for fitting the DFT repul-

sion, as it was found that a GAP fit with no baseline was accurate enough (see

Chapter 4); perhaps the separation of energy components (Equation (1.3)) en-

sured that this component was mainly characterised by a single length and en-

ergy scale. But for the dispersion component, it was found that the MBD also

needed to be represented with a GAP (the available implementation did not im-

plement gradients and was too slow for the MD simulations planned for meth-

ane) and in this case, a ready-made baseline was already available: The pairwise

T-S correction, while much simpler than the MBD method, was nevertheless

based off of the same idea of polarizabilities computed from atomic volumes; the

long-range tails of the two methods were also similar (see Figures 3.8 and 3.9).

The MBD SOAP-GAP with the T-S correction as its baseline therefore became

an integral component of the bulk methane potential from Chapter 4.

3.3 Intramolecular energy

The only remaining component of the energy from Equation (1.3) is the one-

body, or intramolecular, energy. This component was not the primary focus of

the potential development effort for methane, as the intramolecular potential
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was thought to have a greater influence on the target properties. However, while

simulations with a modified version of the AMBER potential did not find any ef-

fect of the strength of the intermolecular potential on the density, there was a

change when the potential was substituted with COMPASS, suggesting at least

a dependence on the form of the intramolecular potential. Furthermore, the ac-

curacy of the intramolecular potential is especially important when quantum

nuclear effects are taken into account [113, 160], so we still need a reasonably

accurate intramolecular model for methane.

A systematically fitted intramolecular potential for alkanes was in fact the

subject of [46], and this topic will be revisited in Chapter 5, but for now the focus

is on testing the new intermolecular GAP models in simulations. Most classical,

analytical potentials (see Section 1.2.2) have an intramolecular component that

could be incorporated with minimal effort and computational expense; the two

that were chosen were the harmonic model AMBER [32], because of its sim-

plicity, and COMPASS [41], because of its strategy of systematically fitting to

quantum data using more flexible functional forms. The comparison of these

two models as part of the overall methane potential will help gauge the effect

of the intramolecular component. Finally, because the intra- and intermolecu-

lar components are generally taken to be only weakly coupled [49], the option

of inserting a GAP fit of the intramolecular energy of methane remains for the

future.
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Intermolecular potential

application

The following chapter details the application of the above ideas to build a series of

potentials for methane in the compressed liquid to supercritical fluid state, with

temperatures between 110 K and 188 K and pressures between 5 bar and 316 bar

(the critical point of methane is 190.58 K and 46.04 bar [161]). It shows that a

successful prediction of the density of this fluid requires taking into account the

many-body dispersion effect (MBD, the highest level of dispersion correction con-

sidered here) as well as quantum nuclear effects. The majority is adapted from

an article∗ co-authored with my supervisor and colleagues at my funding or-

ganisation, Shell; the accompanying supplementary information in Section 4.2

provides technical details, parameters, and themethodology for fitting the dimer

GAP. Section 4.3 discusses some additional technical points with a view towards

applying and extending the potentials to larger alkanes. The article’s title page

and author list is reproduced below; the rest (including page and reference num-

bers) has been reformatted to fit the dissertation.

∗Adapted with permission from [162], in press. Copyright 2019 American Chemical Society.
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Figure 4.1: Separation of interactions in condensed-phase methane: Covalent, short-
range repulsion, and dispersion.

4.0.1 Author contribution details

The bulk of the text was written, all the machine learning models were de-

signed, and all the figures were made by me with input and comments provided

by the co-authors, principally Gábor Csányi (my supervisor) and Detlef Hohl.

The overall plan for the research conducted here was decided in discussions

with Gábor Csányi, Detlef Hohl, and Indranil Rudra. Sandeep Kumar Jain and

Satyanarayana Bonakala contributed by running some of the simulations, us-

ing the computing resources at Shell, with the (PBE0 SOAP) /COMPASS + T-S

+ MBD(PBE0) SOAP model detailed below. They ran both the classical (GLE)

simulations as well as parts of the PIMD simulations with this model.

4.1 Introduction

This chapter is concerned with the development of a family of GAPs specifically

for liquid methane, the simplest alkane, which is inherently difficult to model

because its behaviour is dominated by weak dispersion interactions. It is also

useful as a stepping stone towards potentials that canmodel larger hydrocarbons

under more extreme conditions [37, 163]; such a potential would enable new

research in numerous scientific and engineering applications [3–5].
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There is a long history of modelling liquids at the atomistic scale with Monte

Carlo (MC) ormolecular dynamics (MD)methods. Section 1.2.2 outlined this his-

tory and the analytical potentials it produced, such as the venerable Lennard-

Jones potential [164] and the many subsequent variations or extensions of this

basic form [20, 33, 36, 41, 44, 165]. These potentials contain empirical paramet-

ers which are usually optimized until the simulations reproduce specific sections

of the experimental equation of state.

Recent potentials show a trend of more closely representing the underlying

quantum mechanical potential energy surface, for example by adding anhar-

monic and cross terms to the covalent forces to arrive at a more faithful rep-

resentation [41, 48, 49] or even directly fitting the intramolecular [50] or in-

termolecular [10, 37, 42, 43, 52] terms to ab initio calculations. Such poten-

tials, which are the type most commonly employed in simulations of liquids,

have achieved high accuracy in reproducing the intramolecular potential energy.

However, the restricted functional forms that they employ to describe the inter-

molecular interactions – typically L-J 12-6 [34, 44], 9-6 [41], or Morse [10, 37]

potentials – remain too simple to represent the underlying potential energy sur-

face faithfully. Instead, they represent thermal averages of the true potential

energy surface that are useful for making predictions within a certain range

of temperature and pressure. These predictions typically break down once the

simulations are either taken far outside of this range, or if they are used to pre-

dict properties that were not considered in the initial fit [27, 35]. But within

the “safe” temperature and pressure ranges, the traditional potentials still de-

liver the best predictions precisely because they have been fitted to reproduce

the experimental values.

No family of potentials better exemplifies this philosophy of accurate predic-
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Figure 4.2: Comparison of various models for methane; the density predictions at 110 K
and 316 bar are compared against the error of the model’s dimer potential energy surface
against the CCSD(T)-F12 reference. The suffixes “/AMBER” and “/COMPASS” indicate
which model was used for the intramolecular (one-body) energy (the many-body SOAP
and 6-D dimer GAP models were only fitted to the beyond-one-body energy). The RMS
error is computed over the sample of dimers used to train the 6-D dimer GAP. In the right-
hand bar plot, solid bars represent the systematic errors due to the underlying quantum
model and the pastel bars on top represent the statistical errors introduced by the GAP fit.
In the left-hand bar plot, the bars represent the (systematic) error of the traditional ana-
lytical model against the same coupled-cluster reference. Density error is given relative
to experiment; the uncertainties on the density are smaller than the sizes of the symbols.
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tions through thermal averaging than the TraPPE family of coarse-grained po-

tentials. Both versions of TraPPE forcefield considered here (the coarse-grained

united atom version TraPPE-UA [9] and the reduced dimensional version TraPPE-

EH [35]) eliminate degrees of freedom in order to obtain a simpler description of

the system. They have been fit to accurately reproduce phase equilibria, and they

deliver an accurate prediction of the equation of state of liquid methane. Fig-

ure 4.2 shows the density predictions of a selection of models at one state point

of liquid methane, compared with their accuracy in reproducing the interaction

energy of a sample of methane dimers calculated at the explicitly correlated

CCSD(T) level. We immediately see that TraPPE-UA delivers an exceptionally

accurate density prediction while having the worst accuracy on the potential en-

ergy surface of the dimer (it neglects – by design – the considerable anisotropy

of the dimer’s potential energy surface). The TraPPE-EH version is similarly

accurate in the density, though not much better than TraPPE-UA on the dimer.

In contrast, OPLS-AA [34] is the most accurate empirical model of those tested

here as far as the dimer potential energy surface is concerned (a tenth of the

error of TraPPE-UA), but its density prediction is one of the worst of all of the

models shown in the figure (about a hundred times worse than TraPPE-UA).

Other empirical models are in between these extremes: e.g. Li and Chao’s all-

atom parametrization[52] is five times worse on the dimer than OPLS-AA, but

ten times better in its prediction of the density.

It is surprising and somewhat sobering that the most accurate prediction

of the density of liquid methane is achieved by the simplest potentials (esp.

TraPPE), which do not really attempt to reproduce the actual Born-Oppenheimer

potential energy surface; in fact, every effort up to now to better capture the po-

tential energy surface by a traditional analytical potential has lead to worse
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predictions of the liquid density.

One might conclude that simply the OPLS-AA is still not accurate enough –

and it is, of course, possible to build even more accurate models. Traditional

pairwise potentials have two key limitations: First, the restricted functional

form of the pairwise interaction limits its accuracy, especially when the poten-

tial must reliably model large parts of chemical space. More complex pairwise

functional forms have long been used to make more accurate, physics-based po-

tentials [39, 42, 43], though they have not been as widely applied – especially

for liquid simulation and equations of state – as the simpler, traditional mod-

els. More importantly, any pairwise model neglects many-body effects. These are

significant even within the dimer, giving rise to the complex, anisotropic form of

the short-range potential energy surface shown in Figure 4.3. While the electro-

static and induction components are often treated within a formally many-body

framework [39], other components such as the repulsion and the dispersion also

exhibit significant many-body character [166] that is less commonly taken into

accoun, especially in liquid simulations.

The high dimensional fitting approach ofmachine learning allows us tomodel

all of this many-body character without the presumption of any particular func-

tional form. We can explicitly fit the CCSD(T) energies with a Gaussian approx-

imation potential (GAP) [15, 74] (more details in the supporting information)

in the full six-dimensional space of mutual dimer orientations (with monomers

kept rigid). The reference potential for the methane dimer that we fit with this

method, which we will call the “6-D dimer GAP”, is shown along with OPLS-AA

in Figure 4.3. This model achieves a consistent level of accuracy across a wide

range of dimer separations and orientations. And yet, when we use it to predict

the density of bulkmethane (Figure 4.2), it is even farther from the experimental
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value than OPLS-AA.

The goal of the present work is to resolve this apparent contradiction and

develop a methodology for modelling molecular liquids that delivers more accur-

ate predictions as we systematically increase its accuracy against the underly-

ing quantum potential energy surface, thereby ensuring that we get accurate

answers for the right reasons.

4.1.1 Quantum-mechanical energies

Several methods are available that approximate the true quantum potential en-

ergy surface; the expensive but accurate quantummethodswere reviewed in Sec-

tion 1.2.3 and the new generation of machine learning potentials was reviewed

in Section 1.2.4 and in the recent editorial [14]. Most relevant for this chapter is

the many-body dispersion correction [62]. The many-body effect has been shown

to be crucial for an accurate description of many dispersion-bound systems such

as supramolecular complexes [167] and organic crystals [168], though the ef-

fects on molecular liquids have not yet been extensively studied – a many-body

vdW model (D3 [61]) was included in the water potential of [18], but it was not

mentioned whether a simple pairwise model would have given different results.

4.1.2 Quantum nuclear effects

Empirical potentials have been fit to reproduce experimental equations of state,

so they include quantumnuclear effects implicitly. In contrast, when simulations

are done with a systematic approximation of the Born-Oppenheimer potential

energy surface, it becomes necessary to account for quantum nuclear effects in

an equally systematic manner [104, 115]. These effects are especially important

at low temperatures and with light nuclei; their importance in liquid alkanes in
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particular has long been established [160] and was recently highlighted [169]

using quantum mechanically fitted forcefields. In empirical potentials these ef-

fects are typically included in an average way because they are naturally present

in the experimental data used to fit the potentials; some potentials [42] also use

a semiempirical or approximate method to include these effects. But in order

for a potential to systematically fit the true potential energy surface it cannot

include quantum nuclear effects at the level of the fitting, because the true Born-

Oppenheimer potential energy surface does not itself include these effects. Thus,

fitting methods that include such an average contribution are not fitting the

true potential energy surface and are therefore incompatible with the current

strategy.

The recent developments summarized in Section 2.2 are making explicit

quantum nuclear effects via PIMD practical even for large systems and expens-

ive potentials, such as the ones employed in this work. But despite new develop-

ments in both machine learning potentials and PIMD methods, ab initio liquid

simulation remains a challenge. The process of designing a machine learning

potential for a new material, especially for amorphous or liquid simulation, is

still a laborious manual process. In this work we develop a methodology that will

eventually serve as a foundation for more systematic, perhaps even automated,

development of potentials for more complex molecular liquids.

4.1.3 Model development methodology

Fundamental to this methodology is a strategy common to most successful po-

tentials for molecular systems: The energy of the system is decomposed into

several terms that each represent a different physical interaction, as described

in Section 1.2.1. From the point of view of a physics-based analytical potential,
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this decomposition is useful because the different physical interactions will typ-

ically have different functional forms, and it makes sense to parameterize them

separately. From the point of view of a machine learning potential, the main ad-

vantage of an energy decomposition scheme is that it separates physical effects

that take place at different length and energy scales and prevents the larger ef-

fects from overwhelming the smaller ones; while the smaller components might

not be important in reproducing the total energy, other important observables

(such as the density or the diffusivity) might well weight these contributions

much higher. By controlling the accuracy of the several components separately

it is possible to achieve good accuracy on any property of interest.

In a molecular liquid such as methane, the primary separation in energy

scales is between the strong intramolecular (covalent) interactions and the weak

intermolecular (noncovalent) interactions. These two types of interactions are

easy to separate and have characteristic energy scales that are orders of mag-

nitude apart. The second separation we will employ here is motivated by the

length scales of the interactions, as machine learning potentials tend to work

best for fitting functions that vary on a single length scale. In methane, the dis-

persion (van der Waals) interaction is very long-ranged, being still relevant at

C-C distances as large as 15Å, but the various repulsive interactions generated

by electron cloud overlap die out by C-C distances of 5Å. We can therefore rep-

resent the energy with Equation 1.3:

Etotal = E1b+Erepulsion+Edispersion+Eelectrostatic+Einduction

where the “1b” (one-body) energy is the covalent part, though it also subsumes

the intramolecular contributions of exchange-repulsion, dispersion, electrostat-

ics, and induction. The other four terms in the equation are therefore understood
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to be the intermolecular (more formally, beyond one-body or “b1b”) component of

the corresponding energy term. The intermolecular repulsion, electrostatic, and

induction terms are computed fromDFT beyond-one-body interactions – electro-

statics and induction, in contrast to dispersion, are handled comparatively well

by DFT. The dispersion term is computed separately, as discussed above.

The electrostatic energymay be significant at short range but it decays quickly

in comparison to the dispersion interaction in systems, particularly hydrocar-

bons, without significant charge separation (see Section 1.2.2). To illustrate for

the case of methane, the electrostatic energy predicted by OPLS-AA is consist-

ently about two orders of magnitude smaller than the other non-bonded terms;

see Figure 4.7. In pure methane the molecule’s symmetry additionally bounds

the decay rate of the long-range electrostatic interaction: All its permanent elec-

trostatic moments below the octupole cancel. Since the interaction energy of two

octupoles decays [28] as r−7, the electrostatic energy can be rigorously expected

to decay more quickly than the lowest-order dispersion term, making dispersion

the most important contribution for the long range – especially for the tail cor-

rections beyond the potential’s cutoff. Together, these considerations allow us to

fold the electrostatic and induction energy into the short-range “repulsion” term

– hereafter called Esr,b1b (for “short-range beyond-one-body”). Future potentials

could easily treat electrostatics explicitly, however, either to achieve higher ac-

curacy or (more importantly) to be able to treat systems with significant charge

separation.

Apart from separation of interaction length scales, another advantage of this

energy decomposition approach is that it allows us to capture the different phys-

ical contributions and study their effects separately. Much research on ab initio

analytical potentials follows the approach of more directly representing the un-
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derlying physics by extracting forcefield parameters from fundamental physical

quantities, such as the electron density, of the monomers.

Models using this approach include the ab initio atom-atom potential of Mis-

quitta and Stone [170], the transferable Slater-ISA model of Van Vleet et al.

[39] (including the more recent anisotropic version [166]), theMonomer Electron

Density Force Field of Vandenbrande et al. [171], and the biomolecular force field

of Cole et al. [172]. The IPML model of Bereau et al. [76] goes one step further

by using machine learning to efficiently predict these properties across chem-

ical compound space. The physical interpretability and systematic derivation of

these models is appealing; however, they are typically applied and tested on di-

mers and gas-phase systems, with relatively little emphasis on condensed-phase

and especially liquid systems. In one application of the ab initio pyridine dimer

potential to the crystalline phase in Aina et al. [173], the underlying approach

was transferred to condensed systems with predictive power even at high pres-

sure; however, the authors also noted that the ab initio physics-based approach

does not have the advantage of absorbing errors from the many-body terms (for

example, from the many-body dispersion terms that the model neglects) in the

same way that an empirical potential can.

Our eventual goal is to capture the best elements of both approaches: The

physical rigour and interpretability of the ab inito approach with the full many-

body character, flexibility, and ability to correct errors of many-body machine

learning. The present potential represents an important step in that direction;

by capturing the simple, physically motivated parts of the energy expression by

simple analytical forms and fitting the complex, nonanalytical parts as correc-

tions on top of these, we do use physics to guide our description of the interaction

while maintaining complete flexibility of the functional form.
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Figure 4.4: Histograms over mass density of the cells in the training and two test sets,
interpolation and extrapolation. The distributions of densities encountered in the sub-
sequent PIMD simulations with the (PBE0 SOAP)/COMPASS + T-S + MBD(PBE0)
SOAP model are shown below for comparison.

4.1.4 Many-body machine learning model

The 6-D dimer GAPmodel introduced earlier in this section, shown in Figure 4.3,

and described later in Section 4.2.1, is a good representation of the potential of

the methane dimer. However, it has one key shortcoming for the representation

of the condensed phase, namely, that it neglects all beyond-dimer many-body

effects. Potentials following the body-expansion approach may treat such effects

by including explicit trimers or by fitting to a baseline that already includes

many-body effects [174]. For our condensed-phase potential, on the other hand,
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we opt for a treatment that includes many-body (beyond-dimer) effects from the

outset: We fit the Esr,b1b term using the GAP method [15, 74] with the SOAP

kernel [91], both developed and used by our group to fit complex, many-body

potentials.

The SOAP-GAP potentials were fitted to DFT [138, 139] b1b energies and

forces (beyond-one-body interactions; the monomers were computed separately

and subtracted from the total cell), computed on a sample of 280 periodic unit

cells of bulk methane, each containing 27 molecules, taken fromMD trajectories

under liquid conditions run using a classical potential (OPLS/AMBER [32, 175])

at a temperature of 188 K and five pressures ranging from 0 bar to 400 bar, thus

covering the entire range of pressures encountered in the subsequent GAP MD

simulations. The resulting training set consisted of a wide range of densities;

see Figure 4.4. However, the typical densities encountered during a simulation

at 110 K in the same pressure range fall partly outside this range, exercising

both the model’s interpolation and extrapolation capabilities. To validate these

capabilities, independent samples were drawn from OPLS/AMBER simulations

at both temperatures, with several samples taken from each of the state points

where classical results are shown in Figure 4.6 below. The histogram of the dens-

ities of these test sets is also shown in Figure 4.4. Based on the position of these

distributions relative to the test set, the 12 test samples taken at 188 K were

labeled the “interpolation” test set and the 14 samples from 110 K were labeled

the “extrapolation” test set.

The DFT calculations on all cells were done using CASTEP [156]. Two func-

tionals were used, the pure GGA functional PBE [140] and the hybrid GGA

functional PBE0 [141]. The GAP fits were done using the SOAP descriptor [91],

resulting in two models called “PBE SOAP-GAP” and “PBE0 SOAP-GAP”. The
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Figure 4.5: The PBE0 and MBD(PBE0) SOAP-GAP fits on 258 cell interaction (beyond
one-body, “b1b”) energies and (only for PBE0) corresponding forces. Top: Correlation plots
with the line y= x of perfect correlation. Bottom: Errors on a logarithmic scale. The blue
dots represent the training set. The orange dots represent the interpolation test set and the
red triangles represent the extrapolation test set, neither of which was used in training
the model.

performance of the PBE0 SOAP-GAP is assessed in Figure 4.5, which indicates

good reproduction of both energies and forces on the training set. With a stat-

istical learning method such as GAP, this is usually a good measure of how the

methodwill perform on similar geometries. The interpolation performance indic-

ates some degree of overfitting, while the extrapolation performance is notably

poorer – but the model still achieves an error of less than 1 meV per molecule un-

der conditions that were never represented in the training set. The variability of

this error measure was assessed with a cross-validation (CV) procedure: Ten dis-

joint sets of twelve points each were selected from the training data, and each in

turn substituted with the interpolation test set to train ten additional GAPmod-
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els. The numbers reported in Figure 4.5 are obtained as the mean and standard

deviation of the errors across this set of eleven GAPs, with the withheld points

standing in for the interpolation test set in each validation GAP. The errors on

the forces show the same pattern: The training set error is (6.56±0.03) meV/Å,

the interpolation test set error is (6.8±0.6) meV/Å, and the extrapolation test set

error is (8.71±0.05) meV/Å. Plots of the forces for the similar PBE SOAP-GAP,

along with its energy and force errors, can be found in Section 4.2.2.

The computational effort required to generate the training database was con-

siderable; a typical PBE calculation took 10 minutes on 24 processor cores, with

the additional monomer calculations approximately doubling the total required

time. The PBE0 calculations were even more expensive, taking anywhere from

50 minutes to several hours; the PBE0 database required overall about four

weeks to generate using 27 nodes of 24 cores each. The fitting of the SOAP-

GAPs, on the other hand, completed in less an hour on a 16-coremachine, and the

evaluation of the SOAP-GAP energies and forces requires less than 3 processor-

seconds on a cell of 100 methanes. This illustrates a further advantage of the

GAP approach, as the computational cost of evaluating the model is independ-

ent of the cost of the reference energy chosen:We can run our simulation at PBE0

accuracy without incurring additional computational cost over PBE – minus the

initial cost to generate the training database, of course.

Dispersion model

The dispersion component, the third term in Equation (1.3), was accounted for

using two levels of theory: The pairwise method of Tkatchenko and Scheffler [60]

and the many-body extension MBD [62], both explained in Section 3.1.3.

The first level of theory is the pairwise T-S correction. Onemajormodification
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was made to this method to allow it to be used in efficient MD simulations: Re-

call that T-S uses the relative Hirshfeld volumes of the atoms in their molecular

environments to scale the free-atom reference data appropriately. Recomputing

the Hirshfeld volumes for each step of an MD simulation would be impractically

expensive, however, as that would require a new DFT calculation at each step.

Instead, the first level of theory only uses the per-element average of the relat-

ive Hirshfeld volumes across the sample of DFT cells. The dispersion correction

can then be applied as an analytical pair potential whose form and parameters

are fixed throughout the simulation, a scheme hereafter termed simply “T-S”.

The free-atom reference data used in this scheme was computed by Chu and

Dalgarno [142] (the same used in Tkatchenko and Scheffler [60]).

The second level of theory is the MBD, or many-body dispersion, method [62,

176]. Despite the greater complexity of the MBD approach, it can still be viewed

as a correction on top of the pairwise Tkatchenko-Scheffler interaction. Thus,

another SOAP-GAP was fit to the difference between the MBD energies only

and the (fixed) T-S term as the baseline, once each for PBE and PBE0 Hirshfeld

volumes. This model, termed “MBD(PBE) SOAP-GAP” (and the corresponding

“MBD(PBE0) SOAP-GAP”), accounts for relatively short-ranged many-body ef-

fects. The dispersion energy term from Equation (1.3) therefore becomes:

Edispersion = ET-S(fix)+EMBD SOAP-GAP. (4.1)

The MBD SOAP-GAP also implicitly accounts for the variability of the Hirshfeld

volumes that was neglected in the fixed T-S model (ET-S(fix)−ET-S(variable)): The

SOAP descriptor is sensitive to the intramolecular and short-range geometrical

factors that (presumably) also account for the variability of these volumes. The

MBD(PBE0) fit is likewise assessed in Figure 4.5, showing that both its interpol-
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ation and extrapolation performance is similar to that of the PBE0 SOAP-GAP.

Note that the 6-D dimer GAP uses neither T-S nor the MBD SOAP-GAP to

model long-range dispersion; instead, it relies on the long-range r−6 tail of the

L-J baseline described in Section 4.2.1, which was fitted to coupled-cluster en-

ergies on various dimer spacings and orientations.

Finally, a completemodel for liquidmethanemust also include an intramolecu-

lar component (the first term in Equation (1.3)). Two empirical potentials are

considered for this purpose: AMBER [32] includes only harmonic bond and angle

terms, while COMPASS [41] includes higher-order anharmonic and cross-coupling

terms. Both models were tested in order to help measure the influence of such

effects (anharmonic and cross-coupling) on the predicted properties, especially

with the inclusion of quantum nuclear effects.

4.1.5 Results

The first test of the accuracy and applicability of any potential for liquids is

how well it reproduces the experimental equation of state. While most empirical

potentials (for example OPLS [175]) are fit to reproduce experimental thermody-

namic data, the fitting conditions are often only a single state point per material,

usually standard temperature and pressure. Some potentials, like TraPPE [9],

are fit to reproduce thermodynamic data across a wide range of state points,

in this case by fitting coexistence curves. Therefore, a wide range of temperat-

ure and pressure conditions were chosen to test the accuracy of the potentials

considered. Two isotherms were chosen where experimental data was available

(from Goodwin and Prydz [123]): At 110 K, density measurements were avail-

able at 5.93 bar, 64.5 bar, 116 bar, 179 bar, 238 bar and 316 bar∗. At 188 K, density
∗truncated to three significant digits; see reference for full precision
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measurements were available at 86.9 bar, 163 bar and 278 bar∗.

The three models chosen for testing were the “PBE SOAP-GAP” model with

both fixed T-S (“+ T-S”) and MBD (“+ T-S + MBD(PBE) SOAP”) dispersion, and

the “PBE0 SOAP-GAP + T-S + MBD(PBE0) SOAP-GAP”. The 6-D dimer GAP

and all of the SOAP-GAP models were first tested at the state point 110 K and

316 bar using a “smart sampling” coloured-noise thermostat for efficient equilib-

ration [100]. The convergence of the results towards the experimental density

is illustrated in Figure 4.2; for brevity, all the “SOAP-GAP” models are labeled

simply with “SOAP”.

The density predictions are shown against the error of the underlying quantum

model computed on a sample of dimers (the short-augmented sample from Sec-

tion 3.1.2), with CCSD(T)-F12 taken as the reference. The statistical uncertainty

introduced by the fits is shown and added to the systematic uncertainty already

given by the quantum model.

Evidently, the predictions for the density at both state points improve as the

dispersion model is made more sophisticated, and therefore more accurate as

measured on the methane dimer. Adding the MBD SOAP-GAP lowers the dens-

ity by 15 kg/m3, improving the prediction by 3.4 % with respect to experiment and

further underscoring the importance of many-body, i.e. beyond-dimer, effects,

discussed earlier in relation to the 6-D dimer GAP. The short-range improve-

ment offered by switching to PBE0 gives a further 7.2 kg/m3 (1.6 %) improvement.

While the figure indicates that there are still effects not included by the dimer

measure of accuracy – especially the intramolecular potential and many-body

(beyond dimer) effects – it still shows a general trend of improvement of the po-

tential’s predictions as it more accurately represents the underlying potential

energy surface. Crucially, this is a trait not shared by empirical potentials –
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TraPPE, OPLS/AMBER and the Li-Chao L-J – which show the opposite beha-

viour.

The quantum nuclear effect was assessed in an explicit way, using a PIMD

simulation using the PIGLET thermostat [105, 114]. With this effect included,

the best model (“PBE0 SOAP + T-S + MBD(PBE0) SOAP”) delivers a prediction

within 0.3 % (nearly within simulation uncertainty) of the experimental dens-

ity. This decrease in density is of the same order of magnitude as that reported

in Pereyaslavets et al. [169], though with this potential the effect is smaller –

4.2 % instead of 9 %. Figure 4.6 shows that the size of the effect is roughly the

same across the 110 K isotherm, so even at the 112 K, 1 bar state point used in

that study we would expect to see a somewhat smaller effect. The decrease is

evidence of the competition between two distinct effects of the zero-point vibra-

tional motion: In the gas phase of methane, zero-point vibrational contributions

increase the molecular C6 (first pairwise dispersion) coefficient and hence the

strength of the intermolecular attraction [42, 106, 107]. But these same effects

also increase the molecular volume [160], ultimately leading to a decrease in

the density of the condensed phase. The ab initio quality potentials presented

here provide the necessary accuracy, especially in the short repulsive regime, for

further study of this effect.

The performance of the models across both of the experimental isotherms

is shown in Figure 4.6. For comparison, a selection of analytical potentials was

tested at all the state points at 110 K and 188 K with experimental data, plus an

additional point at 400 bar for each isotherm to show the high-pressure trend.

In addition to the potentials shown in Figure 4.2, the figure also shows COM-

PASS [41]. Note in particular that the empirical all-atom potentials all shift with

respect to experiment between the two isotherms. Most models, the SOAP-GAPs
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Figure 4.6: Equation of state at two temperatures, 110 K and 188 K, as predicted by vari-
ous atomistic models. The bulk SOAP-GAPs with different dispersion models are shown,
as is the 6-D dimer GAP. All-atom empirical models are shown in grey. Experimental
data from Goodwin and Prydz [123]. The small black lines are error bars on the PIMD
simulations computed using the blocking method described in the supporting informa-
tion. Refer to the legend of Figure 4.2 for symbols previously defined.

included, have more trouble reproducing the density at the 188 K isotherm, per-

haps because of the proximity of the lowest-pressure point to the critical point

(190.58 K and 46.04 bar [161]). Only the united-atom model TraPPE-UA main-

tains accuracy across the whole space of conditions covered, with the explicit-

hydrogen description TraPPE-EH closely following in consistency. The series of

SOAP-GAP potentials delivers predictions of increasing accuracy, in correlation

with the accuracy on the dimer. Despite the relatively large statistical fluctu-

ations in the PIMD SOAP-GAP density predictions, the model is still more con-

sistently accurate (comparing across both isotherms) than any other model fit
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to the quantum PES, especially with the explicit inclusion of quantum nuclear

effects. It thus appears essential to include quantum nuclear effects in order

to make accurate predictions with a potential fitted to the Born-Oppenheimer

quantum potential energy surface. Other potentials that achieve agreement

with experiment without explicit treatment of these effects must be incorpor-

ating them into the potential energy surface itself, which is at odds with our

stated goal of achieving the agreement with experiment in an ab initio manner

by best fitting the potential energy surface.

In summary, while TraPPE potentials obtain their accuracy by fitting to ex-

perimental data across wide ranges of temperature and pressure, the SOAP-

GAP potentials obtain their accuracy by fitting to the underlying quantummech-

anical description of matter and systematically converge to within 0.5 % of the

experimental value as their description is improved. Additionally, even the cur-

rent best SOAP-GAP model still has several routes of potential improvement

that would not be open to a fixed-form analytical potential, such as changing

the intramolecular model for a more accurate, fitted one or improving the dimer

description to the coupled-cluster dimer GAP level (which can be done using ex-

isting techniques, e.g. by adding a further two-body correction to the SOAP-GAP

model [17, 83]).

While the computational cost of the SOAP-GAP potentials presented here is

significant, especially including the generation of the training set, it is a tiny

fraction of what the cost would be to do PIMD with the explicit PBE0+MBD

method. Each PIMD datapoint required about a week on 16 nodes of 24 cores

each, so the PIMD data points in Figure 4.6 required about twice as much time

to generate as the PBE0 training set itself. But considering that these poten-

tials offer a speedup of between 5000 (PBE) to 30000 (typical PBE0) over single-
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point DFT calculations, the SOAP-GAPs do more than just make simulations

more efficient: They make PIMD and other expensive simulations, at the level

of PBE0+MBD, possible.

4.1.6 Discussion

The fitting and testing of the SOAP-GAP and dimer potentials for liquid meth-

ane reveal three key findings for the description of molecular liquids: First,

many-body effects – not only within the dimer, but also beyond-dimer effects

– are essential, especially in the short range, for obtaining an accurate de-

scription of the bulk density. Second, an explicit description of quantum nuc-

lear effects is equally important, especially at the temperatures and pressures

considered here. Third, systematic measures of the accuracy of the potential

(such as the dimer error measure presented here) are a good guide to improv-

ing systematically fitted potentials toward convergence with the experimental

results, a goal which the best many-body GAP model (PBE0 SOAP-GAP + T-S

+ MBD(PBE0) SOAP-GAP) presented here comes close to achieving.

The methodology presented here represents a new, physics-based, systematic

path toward creating exceptionally accurate potentials formolecular liquids. The

methodology is applicable to longer hydrocarbons directly; it remains to be seen

what the data requirements will be that guarantee sufficient accuracy. Further-

more, the ideas presented here could be extended to other types of long-range

interactions, such as electrostatics and induction, in order to extend accurate

machine learning potentials to a wider variety of molecular liquids. There is

already some evidence that moderately long but finite cutoffs might be suffi-

cient, at least for describing the liquid state [18]; if long-range contributions

are required, they can be computed using machine learning of local electrostatic
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properties [69, 76, 177].

Acknowledgement

M.V. acknowledges Shell Global Solutions International B.V. for funding, as

well as support from the EPSRC Centre for Doctoral Training in Computational

Methods for Materials Science (under grant number EP/L015552/1). This work

used the ARCHER UK National Supercomputing Service (http://www.archer.

ac.uk) under the UCKP Consortium, EPSRC grant number EP/P022596/1. We

gratefully acknowledge the assistance of Venkat Kapil in preparing the GLE and

PIMD simulations; and additionally thank Volker Deringer for additional useful

feedback on the manuscript.

The GAP definition files and parameter files required to reproduce the MD

simulations in this chapter are available at https://doi.org/10.17863/CAM.

26364.

Finally, all the plots in this paper were made using Matplotlib [178]; the ana-

lysis was done within the Jupyter interactive computing enviroment with the

IPython kernel [179], and molecular views were with VMD [180].

93

http://www.archer.ac.uk
http://www.archer.ac.uk
https://doi.org/10.17863/CAM.26364
https://doi.org/10.17863/CAM.26364


Max Veit
Machine learning potentials for alkanes

4.2. Dimer GAP and technical details

4.2 Dimer GAP and technical details

This section is adapted from the supporting information of the above paper; it

primarily contains supporting technical information, such asDFT,MD, andGAP

fitting parameters andMD trajectories. However, it also contains amore detailed

account and evaluation of the 6-D dimer GAP fit mentioned before, both in the

previous section and in Chapter 3. Finally, it contains a derivation of the form of

tail corrections – small energy and pressure corrections due to the finite cutoff

of the potential, which can be significant in constant-pressure simulations – for

potentials that have a smooth, rather than sharp, cutoff. Although this type of

potential and its corresponding tail correction is only used for one of the sim-

ulations in the previous section (the 6-D dimer GAP simulation), no previous

derivation or mention of this type of tail correction was found in the literature.

4.2.1 Dimer energies

The binding curves of themethane dimer shown in Figure 4.3were computed in a

similar way as described in Gillan et. al. [83]: the Hartree-Fock (HF) energy was

computed at the largest basis, the Dunning correlation-consistent basis set [128,

129] aug-cc-pV5Z (hereafter called AV5Z). The energy difference between MP2

and HF was computed using the smaller AVQZ basis. Finally the difference

between CCSD(T) (with explicitly correlated basis functions, called CCSD(T)-

F12a [127, 130, 131]) and MP2 was computed using the AVTZ basis. The correc-

tions were successively added to the base HF energy to obtain energies at each

of the HF, MP2, and CCSD(T)-F12 levels, and additionally forces at the HF and

MP2 levels. Finally, all of the energies were corrected for basis-set superposi-

tion error (BSSE) using the Boys-Bernardi counterpoise procedure [132]. Calcu-
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Figure 4.7: Coupled-cluster energies of the methane dimer, compared with the energy
components as predicted by OPLS-AA [34] using two different sets of electrostatic para-
meters. Left: Original partial charges used in OPLS-AA; right: partial charges computed
by iterative-Hirshfeld partitioning [148] of the electron density of the dimer predicted
by PBE (carbon: 0.528 e, about twice the value of 0.24 e used by OPLS-AA). The vdW
(Lennard-Jones) component is the same for both models.

lations were done using the MOLPRO suite of programs [133–136]. Figure 4.7

shows the energies compared against the predictions of the OPLS-AAmodel, the

most accurate traditional forcefield tested against methane dimer energetics in

this work.

The geometries for the symmetric orientations were generated using the

Atomic Simulation Environment (ASE) [181] starting with monomers that had

been optimized at theMP2/AVQZ level, resulting in a C-H bond length of 1.085Å.

The first two configurations correspond exactly with configurations used in Chao

et al. [51] and Hellmann et al. [42]; the figure gives the labels each author as-

signed to these configurations. The other three are similar, though not exactly

the same, as the corresponding labeled configurations.

A first dimer model was obtained in a similar way as in Li and Chao [52]
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by fitting a pairwise L-J to the energies of the symmetric orientations shown in

the main paper. The model was a standard 12-6 L-J between all atom pairs; the

six coefficients for the different pair types were all optimized by a least-squares

fit. The optimization produced C-H and H-H potentials that were nearly purely

repulsive, so the form φ(r) = Ar−12 was adopted for these instead. The C-C po-

tential has the standard L-J form: φ(r) = −4ε((r/σ)−6 − (r/σ)−12). The parameters

of this model are given in Table 4.1.

Parameter Pair type Value
σ C-C 3.52608Å
ε C-C 0.00135 eV
A C-H 517.030 eV
A H-H 23.4878 eV

Table 4.1: Parameters for the optimized pairwise L-J model

The fitting dataset used dimer distances from 3.5Å to 9.5Å in steps of 0.5Å,

with additional points at 3.25Å and 3.75Å. Energies larger than 0.02 eV were not

used in the fit.

This model was then taken as the baseline, and further fits were done on the

difference between this L-J baseline and the full energies in order to improve

upon this model. For the new fits, a more thorough sample of the dimer config-

uration space was needed, so a random sample of dimers was taken from a liquid

MD simulation using 200 rigid methane molecules with the monomer geometry

optimized at the composite CCSD(T)/AVTZ level described below (but without

the F12 correction), giving a C-H bond length of 1.088Å, and the intermolecular

interactions computed using the OPLS-AA force field [34]; the simulation was

run using the LAMMPSmolecular dynamics package [124]∗ at 188 K and 400 bar

using a Langevin thermostat [182] and aNosé-Hoover barostat[93, 94, 183–185].
∗using LAMMPS stable release from 5 Oct 2015
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Figure 4.8: Errors of successive GAP models fit to MP2 data, shown as a function of C-C
dimer separation. The baseline is a pairwise L-J model fitted to the coupled-cluster data
from the symmetric orientations. The first fit uses two-body and three-body descriptors,
the second uses the 6-D dimer descriptor, and the final correction to the coupled-cluster
level is a simple two-body (pairwise) fit.

(The MD simulations used to generate the random orientations for the binding

curves in Figure 4.3 were done the same way, except the monomers were fixed

with the OPLS-AA C-H bond length of 1.09Å.) The dimers were sampled with a

C-C distance distribution from 3Å to 10Å, strongly favouring the short range of

3Å to 5.5Å and further enriched between 3Å to 3.5Å. A section of this distribu-

tion is pictured with the dimer binding curves in the main text; the full sample

contains 2418 dimers. The interaction energies of the dimers in this dataset

were computed using the same procedure as described for the fixed-orientation

samples.

We first fit to MP2, since both energies and forces are available to achieve a
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high-quality fit. The simplest descriptor used was the distance between pairs of

atoms; each type of pair (e.g. C-C, C-H, and H-H for methane) is given a separ-

ate Gaussian process corresponding to a separate pair potential. This descriptor

is called ‘2b’ (for “atomwise two-body”). This idea can be extended to triplets of

atoms, where the set of three distances is symmetrized so as to make it permuta-

tionally invariant. This descriptor is likewise called ‘3b’. A first fit was done using

both of the above descriptors, with one Gaussian process for each pair or triplet

type; the resulting potential is essentially a sum of atomwise pair and triplet

potentials with fully flexible functional forms. This potential is called the ‘2b+3b

GAP’. As Figure 4.8 shows, though, this fit offers only a modest improvement

over the baseline.

We therefore attempt a fit in the full six-dimensional space of rigid dimer

configurations using the dimer descriptor introduced in Section 3.2.1 . This

descriptor is composed of the set of distances between all atom pairs in the di-

mer, symmetrized over permutations of like atoms. Concretely, the kernel or

covariance function between two dimers is, as described in [17]:

k(R,R′)= δ2 exp

[
−∑

i

(Ri −R′
i)

2

(2σ2
i )

]
,

where R is the set of distances between all atoms in the dimer, δ is the char-

acteristic energy scale of variation of the function, and the σi are the charater-

istic length scales for each distance type. This kernel must be permuationally

symmetrized so that the resulting potential does not depend on the order of the

atoms:

k̃(R,R′)= 1
|S|

∑
π∈S

k(π(R),R′)

where S is the permutation group of the methane dimer, which – allowing both
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swaps of hydrogen atoms within the monomers and swaps of whole monomers in

the dimer – has order 4!×4!×2= 1152. The kernel is finally multiplied by a cutoff

function fcut(rab) fcut(r′ab), one for each dimer, which depends on the centre-of-

mass separation of the monomers in the dimer. The cutoff function is designed

to take the function smoothly to zero as either of the dimers approaches some

cutoff distance. In our implementation, it takes the form of a half-cosine between

an inner and an outer cutoff; the functional form is given in [74].

The descriptor is an overcomplete representation of the full space of mutual

dimer orientations, which in the case of rigid methanes is six-dimensional. The

resulting fit offers improvements of at least an order of magnitude across the

entire close range (3Å to 6Å). The final correction is the difference from MP2 to

coupled cluster CCSD(T)-F12, which is easily captured to high accuracy using

an atomwise two-body (pairwise) GAP fit to the original sample of 896 dimers

(a subset of the full sample, without the subsequent short-range augmentation

needed for the MP2 dimer GAP). The composite model created by adding the

L-J baseline, the MP2 dimer GAP, and the final coupled-cluster two-body GAP,

will hereafter be referred to as the ‘6-D dimer GAP’. The resulting potential

is a pairwise-additive two-body model and will thus miss all beyond-two-body

(beyond-dimer) effects. It will still serve as a useful reference for further models,

though, as it can be taken as the benchmark standard for the fictitious system

of methane with only two-body interactions present. Note also that the GAP fit

itself has no long-range component, leaving the long-range (tail) corrections to

be handled entirely by the L-J baseline.

The new potential was evaluated on its own training set and on the dimer

binding curves from the main text. It consistently achieves the level of accuracy

specified in the fit, 2 meV, in the regions of the potential probed under liquid

99



Max Veit
Machine learning potentials for alkanes

4.2. Dimer GAP and technical details

conditions (as evidenced by the pair correlation function) and can therefore be

used as a reference standard for liquid methane dimer interactions.

4.2.2 SOAP-GAP fits and evaluation

GAP is a statistical learning method and hence the quality of the SOAP fits can

be evaluated by how well they reproduce the energies and forces of the training

set. RMS energy and force errors are given in Table 4.2, with the 6-D dimer GAP

errors given for comparison.

The fits are additionally evaluated on two test sets that were not included in

the training set, as described earlier (see Figure 4.5). Additionally, the perform-

ance of the MBD SOAP-GAP fits was assessed by the finite-difference method,

as gradients were not available. For this purpose, a sample of five small cells

containing eight methane molecules each was taken from OPLS/AMBER NVT

simulations, one each at five densities ranging from 150 kg/m3 to 400 kg/m3 (see

Figure 4.9). Each geometry was displaced in each of five randomly selected dir-

ections for a total of 25 finite-difference forces. The results are shown in the

right-hand panels of Figure 4.11.

GAP name RMS energy error RMS force error
/ (µeV/CH4) / (meV/Å)

PBE SOAP-GAP 200 7.36
PBE0 SOAP-GAP 207 6.58
MBD(PBE) SOAP-GAP 76.1 1.3 (FD)
MBD(PBE0) SOAP-GAP 76.9 —
MP2 dimer GAP 367 5.10
CCSD(T)-F12 2b GAP 80.6 —
6-D dimer GAP 381 —

Table 4.2: RMS energy and force training errors of the GAP fits
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Figure 4.9: Histogram of densities in the training set and the three test sets: Interpolation,
extrapolation, and the five finite-difference geometries.

The parameters for the above fits are given as command lines that can be used

with the ‘teach_sparse’ command in the libAtoms/QUIP package [98]. The GAP

code can be downloaded at http://www.libatoms.org/gap/gap_download.html,

with a prepackaged version available through Docker at https://hub.docker.

com/r/libatomsquip/quip/.

The parameters for the PBE SOAP-GAP are (all on one line):

teach_sparse at_file=mebox-minimal-nots-b1b-train.xyz gap={

soap atom_sigma=0.5 l_max=8 n_max=8 cutoff=6.0

cutoff_transition_width=1.0 delta=0.01

add_species n_species=2 species_z={{1 6}}

n_sparse=2000 covariance_type=dot_product sparse_method=cur_points

zeta=4.0

} default_sigma={0.0001 0.002 1.0 1.0} sparse_jitter=1e-10

virial_parameter_name=none gp_file=gp-mebox-pbe-b1b.xml

(The parameters for the PBE0 SOAP-GAP are exactly the same; only the source

data was computed with PBE0 instead of PBE.)
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Figure 4.10: The PBE SOAP-GAP fit on 277 cell interaction (beyond one-body, ‘b1b’) en-
ergies and corresponding forces. Left: energies; right: Cartesian force components. In the
force plots, due to the large number of points, only a subset of representative points are
shown with their sizes scaled according to the 0.8 power of the number of points they rep-
resent. Top: Correlation plots with the line y= x of perfect correlation. Bottom: Errors on a
logarithmic scale. The blue points represent the training set. The orange points represent
the interpolation test set and the red points represent the extrapolation test set, neither of
which was used in training the model.
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Figure 4.11: The MBD(PBE) SOAP-GAP fit to the differences between the MBD interac-
tion energy and the T-S interaction energy, both computed using PBE-derived Hirshfeld
volumes (fixed averages for T-S). Left: Energies; blue points for the training set, orange
points for the interpolation test set and red points for the extrapolation test set (color on-
line). Right: Forces estimated by finite differences on five cells of eight methanes each in
five randomly chosen directions each (green points). As before, correlation plots against
y= x above, log errors below.
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The parameters for the MBD SOAP-GAP are (again, same for both PBE and

PBE0 energies):

teach_sparse at_file=mebox-minimal-mbdint.xyz

core_param_file=../python/dispts_quip_params.xml core_ip_args={

Potential xml_label=ts

calc_args={hirshfeld_vol_name=hirshfeld_avg_volume}

} e0=0.0 gap={

soap atom_sigma=0.5 l_max=8 n_max=8 cutoff=5.0

cutoff_transition_width=1.0 delta=0.001

add_species n_species=2 species_z={{1 6}} n_sparse=2000

covariance_type=dot_product sparse_method=cur_points zeta=4.0

} default_sigma={0.0001 1.0 1.0 1.0}

sparse_jitter=1e-10 gp_file=gp-mbd-soap.xml

The parameters for the 6-D dimer fit to MP2 are:

teach_sparse at_file=me-rigid-shortaug3-mp2-avqz-intnonan.xyz

core_param_file={../empirical-pots/ljrep_quip_params.xml}

core_ip_args={IP LJ} gap={

general_dimer cutoff=6.0 cutoff_transition_width=1.0

signature_one={{6 1 1 1 1}} signature_two={{6 1 1 1 1}}

monomer_one_cutoff=1.5 monomer_two_cutoff=1.5 atom_ordercheck=F

strict=F mpifind=T theta_uniform=1.0 covariance_type=ARD_SE

n_sparse=2000 delta=0.02 sparse_method=CUR_COVARIANCE

} default_sigma={0.0002 0.002 0.0 0.0} sparse_jitter=1e-10

energy_parameter_name=energy force_parameter_name=force e0=0.0

gp_file=gp-merig-mp2-gendim-shortaug3.xml do_copy_at_file=F
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And for the much simpler two-body (atomwise) fit to the CCSD(T)-MP2 dif-

ference:

teach_sparse at_file=me-rigid-train-ljrep.xyz gap={

distance_2b cutoff=10.0 covariance_type=ARD_SE

n_sparse=50 sparse_method=UNIFORM Z1=6 Z2=6

theta_fac=0.2 delta=0.0005 resid_name=resid only_inter=T

: distance_2b cutoff=6.0 covariance_type=ARD_SE

n_sparseX=50 sparse_method=uniform Z1=1 Z2=6

theta_fac=0.2 delta=0.0005 resid_name=resid only_inter=T

: distance_2b cutoff=6.0 covariance_type=ARD_SE

n_sparseX=50 sparse_method=uniform Z1=1 Z2=1

theta_fac=0.2 delta=0.0005 resid_name=resid only_inter=T

} default_sigma={0.00001 0.0 0.0} sparse_jitter=1e-10

energy_parameter_name=ediff_cc force_parameter_name=none e0=0.0

gp_file=gp-merig-cc-ljrep-2b.xml do_copy_at_file=F sparse_separate_file=F

The final 6-D dimer GAP is simply the sum of the above two potentials.

These potentials, once fitted, are stored in the form of an XML file that can

be read by QUIP to evaluate energies and forces on any new configuration. The

XML files for the above GAPs are avalable online in the Apollo repository∗ as

well as on our group’s webpage†.

4.2.3 DFT and MBD parameters

As mentioned in Section 4.1.3, the sample for the DFT calculations was taken

from MD trajectories under liquid conditions run using a classical potential
∗https://doi.org/10.17863/CAM.26364
†http://www.libatoms.org/Home/DataRepository
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(OPLS/AMBER [32, 175]) at a temperature of 188 K and five pressures ranging

from 0 bar to 400 bar (the same ones at which OPLS/AMBER was tested in the

main text, with the addition of 0 bar). There were 60 samples taken from each

pressure, with the exception of the shorter 0 bar simulation, which only contrib-

uted 40 samples. Each of the 280 cells in the sample contained 27 (flexible) meth-

ane molecules; otherwise, the simulation parameters were the same as those

described later for the OPLS/AMBER density simulations.

The DFT calculations were all done with the CASTEP code [156], version 8.0.

The PBE calculations were done with a plane-wave cutoff of 650 eV and the de-

fault finite-basis correction. Due to the large, amorphous nature of the system,

no k-point sampling was employed; calculations were only done at the Γ point.

Convergence tolerances were set to 1 µeV/atom for the energies and 10 µeV/Å for

the forces. The PBE0 calculations were done with a cutoff of 700 eV and no finite-

basis correction, again only at the Γ point, and convergence tolerances one order

of magnitude smaller (0.1 µeV/atom for the energies and 1 µeV/Å for the forces).

Since computing the interaction energy requires subtracting the one-body con-

tribution (the energy and force of each individual methane molecule in the cell)

and the samples had flexible monomer geometries, an additional calculation was

run on each of the 27 individual molecules in each cell, using the same periodic

boundary conditions as the full cell. The energy that resulted from subtracting

the sum of the monomer energies from the total cell energy is the interaction or

beyond-one-body (‘b1b’) energy (and likewise with the interaction force). Finally,

two cells were discarded because their interaction energies (both PBE and PBE0)

were much higher than the rest; those cells came from the initial MD equilib-

ration from a high-energy geometry, so they were removed to achieve a better

fit for normal, equilibrium conditions. Additionally, the largest cell for PBE and
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the largest 20 cells for PBE0 did not complete because the computational re-

quirements exceeded available resources. The training set therefore comprised

277 PBE interaction energies (and 277×135×3= 112185 PBE force components),

and 258 PBE0 interaction energies (and 258×135×3 = 104490 PBE0 force com-

ponents). These sets of interaction energies and forces were finally fit with the

SOAP GAPs above, ranged at 6Å.

The MBD energies were computed on the same sets of 277 (or 258 for PBE0)

methane cells using the implementation available at http://www.fhi-berlin.

mpg.de/~tkatchen/MBD/ and interfaced with QUIP. This was done both with the

PBE and PBE0Hirshfeld volumes calculated from each geometry, as reported by

CASTEP. The supercell cutoff parameter was adjusted so that a 1×1×1 supercell

(that is, only the unit cell) was used, in correspondence with the omission of k-

point sampling in the DFT calculations. All other MBD paramters were left at

their defaults. The corresponding T-S model, with fixed, per-element averaged

PBE or PBE0 volumes, was then subtracted and the difference was fit with a

SOAP-GAP ranged at 5Å. The magnitude of the correction beyond this range

was small enough that neglecting it was seen as safe. The given implementation

did not compute gradients, so the accuracy of the GAP forces was assessed using

a finite-difference scheme as described above.

The Hirshfeld volumes used to compute T-S and MBD energies on the dimer

test set (computed to assess PBE+MBD and PBE0+MBD dimer model errors)

were instead computed from the wavefunctions produced by the Psi4 code [150]

with the HORTON post-processing functionality [151], which itself uses meth-

ods derived by Becke and Dickson for polyatomic molecules [152–154].
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4.2.4 MD parameters

GAP fits

Most of the GAP MD simulations were run with i-PI [186], interfaced through

LAMMPS [124]∗ to QUIP [98]. Only the 6-D dimer GAP simulation was run with

QUIP’s built-in MD functionality. It used the adaptive Langevin thermostat of

Jones and Leimkuhler [97] (with a time constant of 10 fs) and a Hoover-Langevin

barostat [102] (with a time constant of 100 fs and a mass factor of 100). For the

SOAP simulations, the T-S correction was cut off at 15Å, smoothed with a half-

cosine curve over 1Å. Likewise, the L-J baseline (as a component of the general

dimer GAP) was cut off at 15Å and smoothed over 1Å (C-C potential only; the

other two were simply cut off at 10Å). Analytical tail corrections were calculated

by computing the integral of the missing energy and virial outside the inner

cutoff of 14Å; see Section 4.2.5 for details. The initial configuration for these

simulations was a 100-methane cell generated using Packmol [187].

The i-PI simulations used a thermostat based on the generalized Langevin

equation (GLE, otherwise known as coloured-noise thermostats), namely the

“smart sampling” method of Ceriotti, Bussi, and Parrinello [100]. The para-

meters were generated at http://gle4md.org/ using the parameters topt = 10 ps,

Ns = 6, and ωmax/ωmin = 104 for the thermostat and topt = 2 ps, Ns = 6, and ωmax/ωmin = 103,

and a piston time constant of τ= 100 fs for the barostat.

The PIMD simulations used the PIGLET [105, 114] thermostat to acceler-

ate convergence to the quantum partition function. The thermostat paramet-

ers were generated at the same website, this time using the PIGLET para-

mters of OPT(H), Ns = 8, ωmax = 3000 cm−1, ωmax/ωmin = 104, ~ω/kBT = 50, with the ap-
∗using LAMMPS stable version from 11 August 2017
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Figure 4.12: Trace of the density of the GAP NPT simulations over time. Averaging was
done starting from the vertical solid line. The autocorrelation of the density timeseries
(discarding the initial transient) is shown in the bottom plots. The integral τint of the
normalized autocorrelation is a good estimate for the series’s correlation time, which in
turn can be used to estimate the number of effective independent samples Neff = T

2τint
(T is

the length of the series being averaged) and the standard error on the mean σcorr =
√

σ2
0

2Neff

(where σ2
0 is the variance of the sample being averaged). The grey region is the integration

region and the red shows the correlation time.

109



Max Veit
Machine learning potentials for alkanes

4.2. Dimer GAP and technical details

0 50 100 150 200
Time t / ps

250

300

350

400

450

D
en

sit
y 

/ (
kg

/m
3)

(PBE0 SOAP)/COMPASS + T-S + MBD(PBE0) SOAP:
PIMD 188 K, 163 bar

10 0 10
Time  / ps

0

50

100

150

200

A
ut

oc
or

re
la

tio
n 

/ (
kg

/m
3)2

int = 0.903 ps

 Neff 105

Density estimate:
340.3 ± 1.4 kg/m3
(block: ± 4.7 kg/m3)

0 50 100 150 200
Time t / ps

250

300

350

400

450

D
en

sit
y 

/ (
kg

/m
3)

(PBE0 SOAP)/COMPASS + T-S + MBD(PBE0) SOAP:
PIMD 188 K, 86.9 bar

40 20 0 20 40
Time  / ps

100

0

100

200

300

A
ut

oc
or

re
la

tio
n 

/ (
kg

/m
3)2

int = 3.94 ps

 Neff 24

Density estimate:
315.6 ± 3.8 kg/m3
(block: ± 9.2 kg/m3)

Figure 4.13: Trace of the density of the GAP NPT simulations over time: (PBE0
SOAP)/COMPASS + T-S + MBD(PBE0) SOAP at 188 K. As in Figure 4.12, timeseries
at the top, autocorrelation plots at the bottom. Most of the PIMD simulations are not yet
completely equilibrated (as can be seen both in the time trace and the autocorrelation
function), so an interim estimate was also computed by splitting the utilized simulation
time into 10 blocks and taking the standard deviation of the individual means of the
blocks.
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Figure 4.14: Trace of the density of the GAP NPT simulations over time: (PBE0
SOAP)/COMPASS + T-S + MBD(PBE0) SOAP at 110 K. As in Figure 4.12, timeseries
at the top, autocorrelation plots at the bottom.
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Figure 4.15: Trace of the density of the GAP NPT simulations over time: (PBE0
SOAP)/COMPASS + T-S + MBD(PBE0) SOAP at 110 K. As in Figure 4.12, timeseries
at the top, autocorrelation plots at the bottom.
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Figure 4.16: Trace of the density of the GAP NPT simulations over time: (PBE0
SOAP)/COMPASS + T-S + MBD(PBE0) SOAP at 110 K. As in Figure 4.12, timeseries
at the top, autocorrelation plots at the bottom.
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propriate temperature T (110 K or 188 K), and with both 12 and 16 beads to

verify convergence to the quantum limit; the larger number was used in produc-

tion simulations. The centroid barostat used the analogous “optimal sampling”

method [99, 100] with the same parameters: Potential energy optimized, Ns = 8,

ω0 = 30 cm−1, and ωmax/ωmin = 104 (resulting in ωmax = 3000 cm−1).

The parameter files for the above thermostats, including the matrices used

to propagate the generalized Langevin equation, are available in the Apollo re-

pository∗ as well as on our group’s webpage†.

No smooth cutoffs were done in the i-PI simulations due to the necessity of

interfacing with QUIP through LAMMPS; analytical tail corrections were ap-

plied, though. The initial configuration was prepared with an initial 10 ps NVT

equilibration using the ‘(PBE0 SOAP)/COMPASS + T-S + MBDGAP’ potential;

this configuration was used for both the classical and PIMD simulations at that

temperature. All GAP MD simulations were done with a timestep of 0.5 fs.

Each run had a certain amount of initial equilibration time discarded from its

trajectory, depending chiefly on the potential, the thermostat, and the temper-

ature. The ten pairs of plots in Figures 4.12 through 4.16 show how the average

density and standard error were obtained from the time evolution of the density

for the 6-D dimer GAP simulation and for the ‘(PBE0 SOAP)/COMPASS + T-S

+ MBD(PBE0) SOAP’ PIMD simulations. The standard error was obtained by

integrating the autocorrelation of the density timeseries as described in Sokal [103].

However, many simulations showed extremely long correlation times and were

not fully equilibrated within the available simulation time, rendering the auto-

correlation method inapplicable. Therefore, to estimate the error incurred due

to the large-scale fluctuations still observed, the simulation time utilized for
∗https://doi.org/10.17863/CAM.26364
†http://www.libatoms.org/Home/DataRepository
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averaging was split into ten equal blocks (corresponding approximately to the

timescale of fluctuations still observed), the mean value was computed within

each of those blocks, and the final error estimate computed as the standard de-

viation of those means. These error estimates are displayed as error bars on the

‘(PBE0 SOAP)/COMPASS + T-S + MBD(PBE0) SOAP’ PIMD simulation results

in Figure 4.6.

Analytical potentials

The analytical potentials were run in LAMMPS [124]∗ with a Langevin ther-

mostat [182] and a Nosé-Hoover barostat [93, 94, 183–185] with the MTK cor-

rection [101], both using a time constant of 0.1 ps, and an initial configuration

of 200 methane molecules generated using Packmol [187] and relaxed with the

OPLS-AA [34] forcefield. All simulations used analytical tail corrections to ac-

count for the otherwise-neglected dispersion energy beyond their cutoffs [20, 41]

(for the L-J baseline this was only done for the C-C potential). For potentials with

a Coulomb component (OPLS/AMBER and COMPASS), the contributions bey-

ond the cutoff were calculated with the particle-particle particle-mesh (PPPM)

method [188]. The MD timesteps were 1 fs for TraPPE, 0.5 fs for the Li-Chao L-J

and OPLS/AMBER at 110 K, and 0.1 fs for the others (OPLS/AMBER at 188 K,

the L-J baseline, and COMPASS).

The potentials themselves used L-J cutoffs (andCoulomb cutoffs for OPLS/AM-

BER and COMPASS) of 10Å, except for TraPPE, where the cutoff of 14Å recom-

mended on the website was used instead. The two pairwise L-J fits (the L-J

baseline and Li-Chao) both were added to the AMBER intramolecular terms to

give complete liquid methane potentials.

Equilibration and run times again varied between the potentials based on the
∗using LAMMPS stable version from 5 Oct 2015
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rate of convergence of the density, although the same times were used through-

out an isotherm. The times are summarized in Table 4.3.

Potential Temperature / K Equilib. time / ps Run time / ps

TraPPE 110 100 400
188 100 400

OPLS/AMBER 110 25 75
188 100 400

L-J baseline 110 50 50
188 300 200

Li-Chao L-J 110 100 400
188 400 100

Table 4.3: Equilibration and run times for the analytical potentials

4.2.5 Tail corrections with a smooth cutoff

For all the NPT simulations done for this work it was found important to incor-

porate tail corrections to account for the missing pressure neglected by cutting

off the long-range dispersion potentials (the sixth-power part of L-J and T-S).

These corrections can also be applied in the case where the potential is smoothed

to zero before the cutoff, though the resulting integrals become more difficult to

evaluate.

The expression for the missing pressure in a potential that is cut off with

a smoothing function that starts at rin and ends at rout is, by straightforward

extension of the formulae in [20, 41]:
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pexact− pcut = 1
6

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ j

∫ ∞

rin
r

d
dr

(φi j(r)−φi j,cut(r))4πr2 g i j(r) dr

= 1
6

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ j

[∫ rout

rin
r

d
dr

(
φi j(r)(1−S(r))

)
4πr2 g i j(r) dr

+
∫ ∞

rout
r

dφi j(r)
dr

4πr2 g i j(r) dr
] (4.2)

where i and j run over the atom types, g i j(r) is the corresponding pair correl-

ation function, ρ i and ρ j are the number densities of each type, and S(r) is the

switching function that takes the potential to zero. This function must be con-

tinuous and take values S(r in) = 1 and S(rout) = 0; its derivative must also be

continuous and take values S′(r in)= S′(rout)= 0.

If we assume the pair correlation function g i j(r) ≈ 1 beyond r = rin (which

is usually a good approximation for liquids at relatively large distances), the

improper integral in the second term of Equation (4.2) can be evaluated ana-

lytically for simple (e.g. inverse-power) forms of the pair potential φi j(r). Using

a sixth-power dispersion form φi j(r) = −C6
i jr

−6, the improper integral becomes∫ ∞
rout 24πC6

i jr
−4 dr = 8πr−3

out and we have:

pexact− pcut ≈ pcorr = 1
6

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i j

[∫ rout

rin
−r

d
dr

(
1−S(r)

r6

)
4πr2 dr+8πr−3

out

]
.

(4.3)

Applying integration by parts to the remaining integral gives

pcorr = 1
6

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i j

[
−4πr−3

out+
∫ rout

rin

(
1−S(r)

r6

)
12πr2 dr+8πr−3

out

]
(4.4)

and simplifying and rearranging leaves us with
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pcorr = 1
6

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i j

[
4πr−3

in −
∫ rout

rin
12πr−4S(r) dr

]

= 2π
3

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i j

(
(1−λ)r−3

in +λr−3
out

)
(4.5)

with

λ=
3

∫ rout
rin r−4S(r) dr

r−3
in − r−3

out

This form isolates the problematic integral
∫ rout

rin r−4S(r) dr which, depending

on the form of the switching function S(r), may be complicated or impossible to

do analytically. For practical simulations, however, λ can simply be precomputed

using any suitable numerical method for a given value of rin, rout, and S(r); this

value can be used throughout the simulation.

We can also see that Equation (4.5) takes the form of a linear interpolation

between the tail correction with a cutoff at rin and the correction with a cutoff of

rout; if we choose an S(r) whose values are bounded between 0 and 1 then λ will

likewise be bounded between 0 and 1.

On closer inspection, however, we can see that the interpolation endpoints

are not the values the tail correction would take with a sharp cutoff: If we start

with Equation (4.3) and take S(r)= 1 for r < rout, we get instead:

pexact− pcut,sharp ≈
4π
3

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i jr

−3
out, (4.6)

which is the correction Tildesley and Allen [20] give for the sixth-power part

of an L-J potential, and twice the value we would get from Equation (4.5) by

letting λ= 1. This discrepancy is due to the extra−4πr−3
out term that emerged from

the integration by parts in Equation (4.4), and it can be physically interpreted
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Figure 4.17: Illustration of the integrals for the energy and virial tail corrections for a po-
tential of the form φcut(r i j)= C6

i jr
−6
i j S(r). The dashed line corresponds to the potential with

no cutoff ( fE(r)=−1
2 r−6 ·4πr2 for the energy and fW (r)= 1

6 r d
dr r−6 ·4πr2 for the virial), while

the solid line corresponds to the potential multiplied by the switching function S(r). The
shaded areas between the dashed and solid lines depict the integrals of Equations (4.3)
(times −V ) and (4.7); the area below the dotted line is negative. The energy and virial
integrals (areas) are equal.

as follows: With a sharp cutoff, an atom feels no force as it crosses the cutoff;

the force just changes discontinuously from −φ′(r → r−out) to zero. With a smooth

cutoff, however, the switching function provides an extra gentle inward force as

the atom exits the transition region. The extra virial due to this force provides

an effective tail correction to the system’s overall pressure, albeit only about half

of the difference of the pressure with the sharp cutoff to the pressure of the ideal

system with an infinite cutoff; Figure 4.17 provides an illustration of this idea.

Tail corrections may also be computed, using the same method as above, for

the energy. Although they do not affect the simulation dynamics in any way,

they may be used for accurate bookkeeping and later analysis. The expression
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is [20, 41]

Eexact−Ecut = V
2

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ j

∫ ∞

rin
(φi j(r)−φi j,cut(r))4πr2 g i j(r) dr

≈ V
2

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i j

[∫ rout

rin
−(1−S(r))4πr−4 dr+

∫ ∞

rout
−4πr−4 dr

]

= V
2

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i j

[
−4π

3
r−3
in +

∫ rout

rin
4πr−4S(r) dr

]

=−2πV
3

ntyp∑
i=1

ρ i

ntyp∑
j=1

ρ jC6
i j

(
(1−λ)r−3

in +λr−3
out

)
(4.7)

with λ defined as before. This is – coincidentally, with the r−6 potential – identical

to the virial correction, i.e. the pressure correction in Equation (4.5) multiplied

by −V .
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4.3 Discussion

The results presented in this chapter essentially show us the level of detail we

need to capture in order to obtain an acceptable prediction of the density from

first principles, that is, from quantum mechanics rather than empirical fitting.

The dimer errormeasure introduced in Section 3.1.2 here establishes the connec-

tion from rigorous quantum chemical theory to accurate property predictions,

even when using more approximate dispersion-corrected DFT methods – but

the correlation between dimer error and density error only holds when the po-

tential energy surface is fitted in a systematic way, with GAP. Future work on

systematic potentials for liquids will likely use this eror measure in combination

with a few others to capture what the dimer measure misses, mainly, many-body

and intramolecular effects.

The main questions determining how well this methodology will extend to

other molecules are, first, how well dispersion-corrected DFT describes their

properties, and second, how well these energy contributions (especially the dis-

persion correction) can be represented in terms of local parameters. As to the

first question, the MBD method used in this work has been tested [176] on the

S66 database [189] (an extension of the standard S22 database [149]), which

includes various types of dispersion-bound alkane dimers. These databases of

CCSD(T) interaction energies may serve as useful references, in combination

with additional calculations on longer molecules and different orientations, for

testing the applicability of the MBD method specifically to the interaction of

longer alkanes.

As to the second question, the locality of the parameters underlying the

MBD correction (relative Hirshfeld volumes) has not been extensively studied.
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It is usually accepted, however, that properties computed directly from the elec-

tron density decay strongly with distance, a property known as “nearsighted-

ness” [190–192]. For saturated alkanes in particular, the electron density mat-

rix decays exponentially with distance [193]. This locality is the justification

for methods that fit the electron density (or some proxy, such as partial atomic

charges) based only on a local chemical environment [69, 70]. One would expect

the same approach to work for the Hirshfeld volumes, being based on the atomic

contribution to the electron density which itself is made of exponentially decay-

ing components, but further study is needed to confirm and quantify this local-

ity. It will also be necessary to test whether the locality of the MBD correction

(MBD minus T-S energy) observed for condensed-phase methane also holds for

longer molecules; if it does not hold, that would require a change in our current

approach to incorporating the MBD dispersion model in our simulations.

Finally, this potential must be put through more stringent tests – namely,

it must be able to predict the transport properties (diffusivity and viscosity) as

described in Section 2.3. Such tests may expose weaknesses in the potential or

the methodology that were not detected with this first round of tests.

4.3.1 Dimer GAP with flexible monomers

A further technical point related to the 6-D dimer GAP from Section 4.2.1 was

not elaborated in the paper: This GAP was fit using a database of dimers with

rigid monomer geometries; each methane molecule in the set was fixed to its

CCSD(T)-optimized geometry. This means the training points only covered a

space of dimension d = 6 (one for the C-C distance, five to describe the mutual di-

mer orientation), rather than the full d = 24. This makes for a more tractable fit

if we can assume that monomer flexibility has a negligible impact on the dimer
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PES; that is, if we can separate out the monomer potential from the dimer inter-

action. In simulations where monomer flexibility is required (as in the density

simulations above, where the intramolecular PES was found to have a signific-

ant influence), an intramolecular model is added to the dimer GAP. The dimer

GAP can still predict energies and forces of geometries in the extended, flexible-

monomer space: Since the training samples are confined to a 6-dimensional hy-

perplane within the larger 24-dimensional space, the predicted value for a given

flexible geometry is approximately what the GAP would pick for the closest ri-

gid geometry to the given flexible one. It is not exactly the same as the GAP

prediction for the closest rigid geometry, since the Gaussian basis functions also

decay in the direction perpendicular to the “training hyperplane,” but the typical

variation in interatomic distances due to intramolecular distortion is so much

smaller than the typical variation in these distances due to the relative move-

ment of the monomers as they explore the dimer PES that this decay can be

taken to be negligible∗.

The error that the dimer GAP makes by ignoring intramolecular distortions

can be quantified by taking a sample of distorted (flexible) geometries and meas-

uring its error against the same quantum reference. Two samples of distorted

geometries were taken for this purpose, both sampled from bulk methane MD

simulations at 110 K and 316 bar (see above for QUIP simulation details) using

the 6-D dimer GAP for intermolecular interactions. Two intramolecular poten-

tials were used; the “flexible” one was the AMBER [32] harmonic forcefield, and

the other was a stiffer version of AMBER created by multiplying both force con-

stants (bond stretching and angle bending) by 25, hence “AMBERx25”. This gives
∗The rate of this decay is controlled by the typical length scale, denoted σi in the descriptor

definition above and theta in the GAP parameter command lines. If the potential had been
designed to include intramolecular effects in the fit, different length scales would have been used
for intramolecular vs. intermolecular distances. In this case, though, the length scales were set
the same for all distances.
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Figure 4.18: Distribution of dimer C-C distances in the two verification sets: One gener-
ated with a stiff intramolecular forcefield, one with a more flexible one.

us two degrees of distorsion of the molecule, with the flexible (AMBER) forcefield

hopefully giving us distortions of the scale that will be encountered in later, more

realistic simulations. The distributions of C-C distances within these samples,

shown in Figure 4.18, were chosen to be similar to the distribution of the original

training set.

The 6-D dimer GAP predictions (without the CCSD(T) correction) are com-

pared in Figure 4.19 with MP2/AVQZ energies computed on each set. Compare

the RMS errors of 433 µeV per molecule on the stiff set and 469 µeV per molecule

on the flexible set with the original 367 µeV per molecule on the rigid training

set. It therefore appears that although the GAP does slightly suffer in accuracy

when going from rigid to flexible monomers, the increase in error is less than

30 %, still leaving the flexible error below 0.5 meV per molecule and consistently

more than an order of magnitude below the target energies themselves. The 2b

GAP for coupled-cluster correction sees a similar increase, going up to 136 meV
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Figure 4.19: Errors made by the 6-D dimer GAP (MP2 only, without the CCSD(T) correc-
tion) on the stiff (top) and flexible (bottom) dimer test sets. RMS errors are 433 µeV per
molecule on the stiff set and 469 µeV per molecule on the flexible set.

per molecule on the flexible (AMBER) test set from 80.6 meV per molecule on the

rigid set, but its error remains smaller than that of the dimer GAP on either the

rigid or flexible test sets.

We can therefore conclude that the current strategy of training a GAP on

rigid monomers and adding the intramolecular potential as a later correction

results in an acceptable level of error, although it could be worth revisiting this

approximation if the dimer GAP is to be used for future applications.
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Chapter 5

Intramolecular potential

In order to extend the potential to larger, more flexible molecules, we will first

need to turn our focus back to the one-body, or intramolecular, term of Equa-

tion 1.3. We have already seen that the intramolecular potential has consider-

able influence on the bulk properties, even for a system as simple as methane

(cf. the change in the predicted density of the SOAP-GAP models when COM-

PASS was substituted for AMBER). The accuracy of the intramolecular model

becomes even more important in light of quantum nuclear effects, since import-

ant quantum effects such as the zero-point vibrational energy (ZPVE) depend

almost entirely on the intramolecular potential [107, 110]. Finally, with exten-

ded alkanes, the model of intramolecular motions (especially the torsional re-

arrangements) has a large influence on the prediction of transport properties

such as the diffusivity and viscosity [2, 27].

We will therefore extend our strategy of obtaining a systematic, accurate,

best-possible fit of the quantum potential energy surface to the intramolecular

component of the energy. As mentioned before in Section 1.2.2, several modern

forcefields have already made progress in this direction with more flexible func-

tional forms and the use of quantummechanical fitting data; it is for this reason
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that COMPASS [41] was used as the intramolecular component of the GAP in

most of the later density simulations. However, the accuracy of forcefields like

COMPASS is still limited by two major factors: First, they still use fixed func-

tional forms (even if those forms are more flexible than their predecessors), and

second, they attempt to fit a large and diverse set of chemical compounds – and,

in combination with fixed functional forms, this goal necessarily limits their ac-

curacy on any one type of molecule. Therefore, we can expect to get a much more

accurate fit with a GAP fit only to alkane energies.

5.1 Random sampling GAP

The first steps toward an intramolecular hydrocarbon GAP were taken in my

master’s thesis [46]. First, the locality of the energy was systematically studied

in long linear alkane, alkene, and ketone chains to find the maximum accur-

acy a model could have using only local information. Subsequently, various GAP

models were fitted to DFT energies of a thermal sample of a single long alkane

(and later some derived alkenes) using three different desciptors: Two-body (2b),

two-body plus three-body (2b+3b), and SOAP∗. The geometries for the training

set were generated in much the same way as for the intermolecular SOAPs of

Chapter 4, from samples of MD simulations using a simpler potential (in this

case, DFTB [194], a fast approximation of DFT) at two temperatures, one slightly

above room temperature (350 K) and onemuch higher (1500 K) to explore a larger

proportion of conformational space. The GAPs trained on colder, saturated al-

kanes were assessed using the total-energy correlation plots in Figure 5.1: COM-

PASS scores somewhere in between the 2b+3b GAP and the SOAP-NN GAP. At

the higher-temperature sample (Figure 5.2), COMPASS is about equal in accur-
∗with a cutoff set to approximately include nearest neighbours only, hence “SOAP-NN”
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Figure 5.1: Comparison of the predictions of three random-sampling GAPs, trained on
linear alkanes (saturated) with different descriptors, and the empirical model COM-
PASS [41]. As in Figure 3.6, only a representative sample of points is shown with sizes
scaled according to the number of points they represent.
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Figure 5.2: Comparison of the predictions of three random-sampling GAPs, trained on
linear alkanes (saturated) sampled at a much higher temperature than in Figure 5.1,
and the empirical model COMPASS. The red dots in the COMPASS plot represent points
outside the plotting frame.
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Figure 5.3: Comparison of the predictions of random-sampling GAPs trained on linear
unsaturated hydrocarbon chains at the original (lower) temperature, and the empirical
many-bodymodel AIREBO [36]. The red dots in the AIREBOplot represent points outside
the plotting frame. This is a corrected version of Figure 4.2 from my master’s thesis [46]
(the original version was affected by an error in LAMMPS that was fixed on 5 October
2015).
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Figure 5.4: Predictions of the random-sampling GAPs (colder training set) on the tor-
sional curve of ethane, compared with COMPASS. Note that the 2b+3b GAP has no sens-
itivity to four-body motions and so cannot account for any torsional energy difference.

acy with the 2b+3b GAP but with significantly more outliers.

Finally, another set of models was trained on a set that included unsatur-

ated linear hydrocarbons (alkenes). The spread of energies (shown in Figure 5.3)

was slightly larger than on the colder unsaturated set; the SOAP’s accuracy was

again reduced, even though it should have been able to pick up on the difference

between a single-bonded and double-bonded carbon local environment.

More serious shortcomingswere revealed laterwhen thesemodels were tested

on the torsional energy curves more familiar to chemists and developers of em-

pirical forcefields. As Figures 5.4 and 5.5 show, both the saturated and unsat-

urated SOAP-NN GAPs make large errors in the torsional profile, significantly

under- and overpredicting the barriers with no systematic trend. One of the

possible reasons these shortcomings were not found earlier is that the torsional

energy makes up a relatively small component of the total energy, so the total

energy errors shown in Figures 5.1 should be dominated by those from the the

other energy components. But comparing the Boltzmann-averaged (350 K) en-

ergy error of the SOAP-NN GAP (cold saturated training set) on the butane
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Figure 5.5: Predictions of the random-sampling GAPs (colder training set) on the CC-CC
torsional curve of butane.

curve, which equates to 12 meV per atom for the 24-carbon chain in the training

set, with the actual energy error of the fit, 0.6 meV per atom, starkly contra-

dicts this explanation. It is hard to imagine that the SOAP-NN GAPs could have

reached this level of accuracy without error cancellation, overfitting, or a signi-

ficant devation from the expected Boltzmann distribution of torsional angles in

the training set. Further study will be needed to clarify this discrepancy.

Another limitation in the random-sampling GAP is that the descriptors were

not designed to capture torsional motions in the first place; the 2b+3b GAP is

entirely insensitive to torsions and the SOAP-NNwas onlymeant to capture each

atom’s (approximate) set of first-nearest neighbours, whereas torsions formally

require knowledge of at least second-nearest neighbours. The remainder of this

chapter is dedicated to efforts to fit GAPs with improved torsional energy curves,

thus giving chemically more realistic properties.
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5.2 Hessian GAP

Among the reasons that the random-sampling approach was so much less suc-

cessful for the local GAP than for the intermolecular SOAP-GAPs of Chapter 4

was that the intramolecular potential energy surface has additional structure

that should be exploited: The minima and barriers of the torsional (or, more

generally, conformational) potential energy surfaces are well known, well stud-

ied [12, 13, 195], and generally occur at or near high-symmetry points. In fact,

most analytical forcefields do exploit this structure, fitting directly to torsional

energy curves [6, 7, 33, 48]; their use of this structure along with the locality

of the energy allows them to model the enormous combinatorial array of pos-

sible alkane chain conformations with a minimal number of samples and res-

ulting parameters. In a way, nearly all empirical forcefields are already using

second-derivative information to fit harmonic bond and angle parameters; a re-

cent study [50] has made this connection more explicit by fitting directly to the

quantum-mechanically derived Hessian matrix.

We can incorporate this structure into an improved GAP by simply adding

these known minima (and some maxima or transition states) into the training

set. But the energies and forces at these points alone are not enough to determine

the potential energy surface at intermediate points. Instead of expanding our

set of training geometries in this high-dimensional space (perhaps with more

random sampling), we can incorporate additional information in the form of the

curvature of the potential energy surface at each training point. The curvature is

computed as the second derivative (the Hessianmatrix) of the PES, so the family

of GAPs developed using this information will be called the “Hessian GAPs.”
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5.2.1 Theory

The standard GAP theory already provides for training on properties obtained

from linear operators on the set of local energies in the system, as long as they

can be expressed as linear operators on the corresponding descriptors: Total en-

ergies and forces are both examples, with the total energy being the sum of local

atomic contributions and each force component being the derivative of this sum

with respect to some atomic coordinate qα. The covariance between a total en-

ergy observation EM and a force observation ∂EN
∂qα

is then [74]:

Cov
(
∂EN

∂qα
,EM

)
=Cov

(
∂

∂qα

∑
j
εN j,

∑
k
εMk

)
= δ2 ∑

j∈N

∑
k∈M

∇d j k(d j,dk) · ∂d j

∂qα
(5.1)

(symbols used as defined in Equation (3.3), except here the function scale δ is

taken outside of the covariance kernel). Note that differentiation with respect to

the coordinate qα in configuration N does not apply to the descriptor dk in con-

figuration M. The covariance between two force observations is analogous, but

uses the matrix of derivatives of k(d j,dk) with respect to the components of both

d j and dk; see [74] for the full formula. The covariance matrix C now contains

the covariances between all total energy and force observations. The vector of

covariances for a new environment di (which are multiplied by the weights α

to obtain the predicted local energy, see Equation (3.3)) becomes the vector of

covariances of the new local environment with the observed total energies and

forces.

The Hessian fitting method is a natural extension to this theory that has

recently been developed in our group: In principle, to obtain the covariance of

e.g. a total energy with a second derivative of another total energy, we could
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differentiate Equation (5.1) again under application of the chain rule:

Cov
(
∂2EN

∂qαqβ
,EM

)
= δ2 ∑

j∈N

∑
k∈M

((
∂d j

∂qα

)T (
∇d j k(d j,dk)∇T

d j

) ∂d j

∂qβ

+∇d j k(d j,dk) · ∂2d j

∂qα∂qβ

)
. (5.2)

where the Hessian matrix of the kernel, with components

(
∇d j k(d j,dk)∇T

d j

)
lm

= ∂2k(d j,dk)
∂(d j)l∂(dk)m

,

appears. Covariance functions between first- and second-derivative values, or

between two second-derivative values, can be derived in the same way.

In practice, analytical-Hessian expressions such as Equation (5.2) are not

used for two reasons: First, analytical second derivatives of the descriptors and

kernel functions are generally not available∗. Second, it is much more expens-

ive than the equivalent first-derivative expression: Using a descriptor with L

components, the kernel Hessian matrix has L2+L
2 unique entries for each pair of

descriptors (local environments); compare this with the L entries of the kernel

gradient that need to be computed in Equation (5.1). Since L scales with the

number of atoms in an environment (at least 3Ni −6 for a complete descriptor),

this scaling can quickly become intractable for all but the smallest molecules or

local environments.

Instead, the second differentiation with respect to qβ can be done numeric-

ally with finite differences. The natural basis for these derivatives would seem

to be the eigenvectors of the Hessian matrix – similar to the normal-mode basis,

only the eigenvectors are computedwithoutmass-weighting the Hessian matrix.
∗that is, they have not yet been derived or implemented – the situation may change if second-

derivative fitting is more widely adopted
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We can then take qα and qβ to be the coordinates along these eigenvectors and

compute each energy-Hessian covariance in time 2L rather than L2

2 . An imple-

mentation of this method has recently been added to the GAP code [98] and will

be used for all the Hessian fits in this chapter.

5.2.2 Model systems

We begin with the simplest alkane systems that show torsional motion: Both

ethane and propane (two and three carbons, respectively) have C-C bonds about

which rotation can occur – in both cases, the motion just involves hydrogen

atoms, specifically the rotation of a terminal methyl group (–CH3). The potential

energy surface along these rotations has two stationary points, called “eclipsed”

and “staggered”, that occur when opposing hydrogens are closest and furthest

away, respectively [1]. Butane (four carbons) has a different type of torsion in-

volving all four carbons about the central C-C bond; in this case, the special

states are called cis (maximum, carbons same side), trans (global minimum,

carbons opposite side), and gauche (an intermediate local minimum) [1, 196].

In contrast with the methyl rotations, these states are generally considered to

form different isomers of the molecule; similar states are found in CC-CC tor-

sions in all longer linear alkanes [12].

Quantum reference calculations were done at the MP2/AVQZ level using the

MOLPRO package [133–136]. A study of relative energies of alkane conform-

ations (minima) [13] found errors of about 10 % from MP2/pVQZ to their best

CCSD(T) estimate of 25.8 meV for the relative energies of the two butane min-

ima. The basis set incompleteness error at this level is much smaller, with a

difference of 0.74 meV (3.0 %) between MP2/pVQZ and MP2/pVTZ energies. For

barrier heights and overall torsional curves, another study [7] suggests MP2 is
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an adequate level of theory, while my own calculations give comparable estim-

ates for the basis set incompleteness error: The difference between the energies

of the ethane barrier predicted by MP2/AVTZ and MP2/AVQZ was 3.4 meV, or

2.7 % of the barrier height.

Energies are always taken relative to the conformational global minimum;

Hessian matrices were computed by finite differences of the gradients at geo-

metries obtained by displacing each atom by 0.01Å in each Cartesian direction.

All torsional curves shown here are unrelaxed; that is, only the torsional angle

was varied without changing any of the other degrees of freedom of the molecule.

For that reason, it might be better to call these profiles “cut lines” of the potential

energy surface, as they do not necessarily go through the true rotational barriers

(saddle points). The effect of relaxation on the locations and energies of minima

and barriers seems to be small, though more thorough study might eventually

be called for. In any case, the GAP does not need calculations at the exact loca-

tions of the minima or saddle points; the Hessian and force together are enough

to determine the exact location as long as they are computed close enough to

the stationary point for the quadratic approximation to remain valid. It is also

useful to compare the predictions of candidate models on cut lines other than

the exact transition path, as molecules in a real simulation subject to thermal

motion will deviate from this path.

Ethane

The simplest system to fit was ethane, with only one torsional degree of freedom.

As Figure 5.6 shows, a GAP fitted only to information at the minimum is capable

of accurately reproducing the entire torsional curve. This initial GAP was fitted

to the smallest 9 non-degenerate eigenvalues and associated eigenvectors of the
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Hessian matrix at the MP2/AVQZ minimum.

The fitting parameters for this GAP, in the form of a command line for use

with the teach_sparse program distributed as part of the GAP code [98]∗, are as

follows:

teach_sparse atoms_filename=ethane-mp2opt-torsions-hesstrain-onlymin.xyz \
gap={soap atom_sigma=0.5 cutoff=3.0 n_max=10 l_max=8 Z=6 n_species=2 \

species_Z={{1 6}} n_sparse=84 covariance_type=DOT_PRODUCT zeta=4.0 \
sparse_method=UNIQ delta=1.0:\

soap atom_sigma=0.5 cutoff=4.0 n_max=10 l_max=8 Z=1 n_species=2 \
species_Z={{1 6}} n_sparse=252 covariance_type=DOT_PRODUCT zeta=4.0 \
sparse_method=UNIQ delta=1.0} \

default_sigma={0.003 0.3 1.0 0.01} energy_parameter_name=Energy \
hessian_parameter_name=hessian sigma_parameter_name=sigma \
hessian_delta=0.01 sparse_jitter=1e-10 \
gp_file=gp-ethane-mp2opt-hessians-onlymin.xml \
do_copy_at_file=T sparse_separate_file=T

In brief, the most important parameters are the cutoff specifying the range

of the individual SOAP descriptors (one for C environments, one for H) and the

default_sigma giving the regularization parameters for the energies, forces, viri-

als (unused), and Hessian eigenvalues, in that order. The rest of the parameters

are explained in Bartók and Csányi [74] or in the QUIP documentation and will

not be elaborated on here. This is also the command line that will be used for

all other GAPs discussed in this chapter, with modifications made only to the

parameters mentioned here.

The fit also included a set of 20 geometries randomly displaced from the

minimum by a per-coordinate normal distribution with a standard deviation

of 0.05Å. No energies, forces, or Hessians were computed at these points; they

only act as basis functions to allow a better reconstruction of the whole energy

profile. This is the reverse of the typical usage of sparse GAP theory: Whereas
∗available at http://www.libatoms.org/gap/gap_download.html, or as a precompiled binary

at https://hub.docker.com/r/libatomsquip/quip/.
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Figure 5.6: Torsional energy curve of ethane with three GAP fits, two truncated to the
lowest 9 eigenvectors and one with all 19 modes (21 at the maximum) retained. Quadratic
expansions of the potential along the cut line, based on the Hessian matrix at the two
stationary points, are also shown. Note that all three GAP predictions are essentially
identical to the MP2 reference; it is even possible to get a good fit to the whole torsional
curve using only local information at the minimum.

usually it is used to fit a large amount of data with only a subset of points, here

it is used to fit a large amount of data supplied at one point with several sup-

plementary points. In both cases the theory is the same, using a pseudoinverse

of the rectangular covariance matrix in place of C−1 in the prediction equation

ε(r∗)=kT∗C−1t [74].

Another fit was done with the Hessian computed at the maximum of the

curve in Figure 5.6 (not exactly at the transition state; see above). Note that

the Hessian matrix in Cartesian coordinates loses the degeneracy on three of

its eigenvalues when moving away from a local minimum [197]. These eigen-

values correspond to rotation of the entire molecule; because of the way this ro-

tation is expressed in Cartesian coordinates, they vanish only at local minima.

These (small) eigenvalues and their corresponding eigenvectors are included in

the fit. As Figure 5.6 shows, the new information at the maximum adds essen-
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Figure 5.7: Continuous torsional profile of propane, rotating first one end methyl group
through 180°, then the other end methyl group through the same angles. The GAP was
trained using three stationary points of this curve: The global minimum (“staggered”),
the inflection point in the centre (“single eclipsed”), and the global maximum (“double
eclipsed”); energies are relative to the staggered conformer (G2 geometry). The second
rotational barrier is larger than the first, an effect that COMPASS also shows but under-
estimates by about 0.02 eV, or about half of the actual difference.

tially nothing to the rotational profile; evidently, the minimum includes enough

information to reproduce the entire cut line accurately. Sadly, this finding does

not extend to more complicated systems; they need to be fitted using information

both from minima and other important stationary points.

Propane

A similar fit was done for propane using three approximate stationary points.

Propane has two end methyl groups that can rotate independently; the interac-

tion between these two rotations is apparently not very well described by COM-

PASS. The exact stationary points are the global minimum with both bonds

staggered, the geometry with one of the methyl groups rotated to the eclipsed

conformation (“single eclipsed”) and the geometry with both methyl groups in
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the eclipsed conformation (“double eclipsed”). These geometries were approxim-

ated by three points taken from the cut line shown in Figure 5.7, which was

generated from the G2 geometry [198] obtained from ASE [181]. The optimized

propane geometry features slightly asymmetric methyl groups, so the three 60°

segments in each half of the figure are not precisely symmetry-equivalent. Since

none of the training points are minima of the MP2/AVQZ surface, the Hessian

has the three non-degenerate rotational eigenvalues at each point. As with the

ethane fit, this fit used a subset of modes (10 at each point, in this case) and in-

cluded 20 sparse points scattered about each training point, this time displaced

from a normal distribution of standard deviation 0.1Å per coordinate. The only

change in GAP parameters from the ethane fit was to tighten the force regu-

larization parameter from 0.3 eV/Å to 0.03 eV/Å. As with ethane, the fit almost

perfectly captures the entire rotational profile; it also correctly accounts for the

coupling between the two methyl group torsions, while COMPASS accounts for

only about half the energy difference. This is a good example of the compromises

models such as COMPASS must make while fitting in a restricted subspace of

the possible potential energy surfaces; the flexibility of the GAP, on the other

hand, allows it to correctly account for this coupling without compromising its

accuracy on any other part of the potential energy surface.

Butane

The CC-CC torsion of butane wasmuchmore difficult to fit than either of the two

previous methyl rotations. This torsion is more complicated, involving the relat-

ive motion of entire methyl groups and their associated (mobile) hydrogens. The

training geometries were prepared by first taking the two local minima (trans

and gauche) from MP2/AVQZ geometry optimizations, then computing the tor-
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Figure 5.8: Butane torsional profile about the central C-C bond, alongwith severalmodels
fit to stationary points of both this curve and the two torsional curves above. As in Fig-
ure 5.6, the grey parabolas are quadratic expansions of the potential along the cut line at
the two minima. The red dot shows the dihedral angle corresponding to the MP2/AVQZ
local minimum.

sional curve (shown in Figure 5.8) from the global minimum and taking the two

local maxima. Hessians were computed at each of the four new points as with

propane, with the first 10 eigenmodes and 20 randomly-scattered sparse points

used for fitting. These points were assigned the same energy and force regular-

ization parameters as for the propane fit; the Hessian parameter was tightened

from 0.01 eV2/Å to 0.003 eV2/Å. They were then combined with the ethane and

propane training data (Hessian points and sparse points), retaining the regu-

larization parameters assigned to each configuration type (ethane, propane, or

butane), to produce the first fit in Figure 5.8 (labelled “Smooth GAP”). This fit

is good at the global minimum and cis maximum, but it misplaces the gauche-

trans maximum as well as the gauche minimum; both exhibit artefacts causing

them to deviate from the proper shape (which COMPASS reproduces smoothly,

despite making relatively large errors in the gauche and cis energies).
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Another problem was later encountered with this GAP: Since the mode trun-

cation discarded most of the bond-length and angle vibrations, it effectively ig-

nored those degrees of freedom. This meant it could not produce stable geometry

optimizations or MD runs. To address this problem, a second version of the com-

bined GAP was fit with all eigenmodes included∗. Figure 5.6 provides proof of

this concept; the third GAP in the figure, fit to the ethane maximum and min-

imum with a slightly larger Hessian regularization parameter, barely loses ac-

curacy with respect to the other two, mode-truncated, GAPs.

In order to obtain an acceptable fit on the combined training set, the para-

meters had to be adjusted: First the cutoff of the hydrogen SOAPwas taken down

from 4Å to 2Å, in the hope that making the hydrogens more shortsighted would

effectively smooth the potential. Second, the regularization parameters were

tightened to better fit the available data: The energy parameter was taken down

to 0.3 meV and the force parameter to 0.03 eV/Å for all configurations. The Hes-

sian parameters were all tightened by half an order of magnitude to 0.003 eV2/Å

for ethane and propane, 0.001 eV2/Å for butane. This fit is labelled “All-modes

GAP” in Figure 5.8; while it gets better around the trans-gauche maximum, it

introduces problematic irregularities almost everywhere else. A third fit was

therefore attempted by applying the refined parameters from this GAP to the

original set of truncated eigenmodes (9 for each of the ethane points, 10 each

for propane and butane). The result is labelled “Truncated GAP” and achieves

possibly the best fit so far to the butane dihedral: Unlike COMPASS, it gets the

correct heights for both the trans-gauche maximum and the cis maximum, as

well as reproducing the correct position and value of the gauche minimum.

The combined fitswere finally tested on ethane and propane to assesswhether
∗except for the largest three on the butane maxima, due to a technical constraint on the

number of eigenmodes
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Figure 5.9: Torsional profile of ethane and propane, evaluated using two of the GAPs from
Figure 5.8. The “opposite eclipsed” profile correspond to the right-hand half of Figure 5.7,
with its minimum (the single eclipsed conformer) shifted to zero. Only 60° of each of the
propane curves are shown for clarity; the rest is approximately equivalent. Both GAPs
can reproduce, with reasonable accuracy, all the torsional curves in their training set.
The “Truncated GAP” from Figure 5.8 had essentially identical predictions to the other
two GAPs, so it is not shown here.

they lost any accuracy from incorporating the more complicated butane poten-

tial. Figure 5.9 shows that they did not; all three GAPsmaintained meV accuracy

across the methyl rotations in the training set.

5.3 Validation

While benchmarking on the training set is a useful and essential method for

designing a new potential, the true test is how it performs on systems that were

not originally in the training set. Since the goal of this project is to design a

potential that is transferable across alkanes of varying chain lengths without

explicitly including all their conformations in the training, the next step is to

test on torsional profiles andmolecules different from the ones considered above.
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Figure 5.10: Torsional profile of the end methyl rotations of butane and decane; neither
of these profiles was in the training set of the GAPs. The large size of the decane molecule
required a smaller basis set (AVTZ) to be used.

One of the first validation tests is to see how well each GAP reproduces the

torsional energy of the butane end methyl rotation – since the training set in-

cludes both butane Hessians and end methyl rotations, this seems like a fairly

easy task. But Figure 5.10 already reveals problems indicating a possible over-

fitting and limited transferability of the second two GAPs (the ones fitted with

tightened parameters): While the original “smooth” GAP slightly overestimates

the butane maximum (by nearly the same amount as COMPASS), the other two

underestimate by a relatively large amount.

5.3.1 Longer chains

The same test, done on decane, emphasizes that even the end methyl rotations

are not as simple to reproduce as they originally seemed. The GAP fits all seem to

be affected too strongly by changes in the geometry outside the true range of in-

fluence of the potential. The slight increase in the MP2 energy at the maximum
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Figure 5.11: Torsional profiles about the interior C-C bonds in decane (not in training
set), analogous to the butane torsion in Figure 5.8. The torsional profiles are grouped
into two plots because of their similarity; the torsions about the C3-C4 bond are shown in
both plots in a thinner line.
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from butane to decane is probably attributable to the use of an unoptimized

geometry rather than any finite-size effects, since the propane (also unoptim-

ized) MP2 maximum is closer to that of decane than of butane. (The geometries

for the larger hydrocarbons (pentane and decane) were taken from the stand-

ard fragment library of the Avogadro program [199].) COMPASS, on the other

hand, undercompensates for the change – while it reproduces the decane curve

perfectly, it overestimates on butane.

The decane analogues of the butane torsion from Figure 5.8 are the internal

CC-CC torsions. Once again, the smooth GAP is the most regular and least af-

fected by the change, even estimating the trans-gauche maximum accurately,

while the other two exhibit strong overfitting irregularities. All of the models

shown here have some sensitivity to end effects; that is, the energy at the CC-CC

torsion at the end of the chain (the C2-C3 torsion) has a slightly higher cis en-

ergy and a very slightly lower gauche-trans maximum than the other torsions

in the middle of the chain. As with the other transferability tests, the later two

GAPs both greatly overestimate this effect, while the smooth GAP finds it in the

wrong direction. COMPASS accounts for this effect well, despite consistently

overestimating the gauche-trans maximum. But even though GAP makes poor

predictions relative to COMPASS on these cut lines, it is encouraging that they

show the same pattern of errors across the different bonds of decane, which could

point to a systematic error in the training data or fitting parameters that could

be corrected in the future without resorting to explicitly including decane con-

formers in the fit.

148



Max Veit
Machine learning potentials for alkanes

5.3. Validation

0 30 60 90 120 150 180 210 240 270 300 330 360
ϕ1

0

30

60

90

120

150

180

210

240

270

300

330

360
ϕ 2

0.0

0.1

0.2

0.3

0.4

0.5

M
P2

/A
VQ

Z 
en

er
gy

 / 
eV

Figure 5.12: MP2/AVQZ conformational map of pentane with fixed internal degrees of
freedom. Minima of this surface are shown as black dots. The map is symmetric about
both diagonals. Energies larger than 0.5 eV were removed from the plot and conformations
with those large energies are shown blank.

5.3.2 Pentane conformers

The next logical step is to consider the interaction between two neighbouring

CC-CC torsions. This type of interaction has been studied for decades using

pentane as a prototypical system [12, 13, 200]. For many of the same reasons,

pentane is well suited to the present potential development and validation ef-

fort: It is the simplest system in which CC-CC torsions interact, and since only

two torsional coordinates interact, it is easy to visualize and interpret maps of

the conformational potential energy surface. Finally, the structure [12, 200] and

energetics [13] of its PES have been well characterized in theoretical studies.
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Figure 5.12 shows a conformational map calculated at the MP2/AVQZ level

as a function of the two CC-CC dihedral angles, labelled φ1 and φ2. The map

was generated by scanning through the torsional coordinates of the (unrelaxed)

starting structure, without relaxing any of the other degrees of freedom. It is

similar to Figure 1 in ref. [12], only their map used a different quantum chem-

ical reference method and (presumably) relaxed the other degrees of freedom.

It is interesting to note that their map shows a transition state between the

“g-x+” and “x-g+” conformers (φ1 ≈ −60°, φ2 ≈ 95° and its mirror image) that

is lower in energy than the transition state connecting this conformer to the

nearby “gt” conformers – that is, the two neighbouring “double-gauche”∗ con-

formers are more closely connected than to their neighbouring “gauche-trans”

states. The unrelaxed MP2 map in Figure 5.12 shows the opposite situation,

where each “double-gauche” conformer is more closely connected to its “gauche-

trans” neighbour than to its mirror image. This effect is likely an artefact due to

the unrelaxed torsional scan procedure; the “gauche-trans” conformers involve

close hydrogen contacts and their interconversion involves the rotation of both

end methyl groups to lower the barrier.

Unrelaxed maps for two of the GAP models, as well as for COMPASS, are

shown in Figure 5.13; an alternate version with one model in each quadrant is

shown in Figure 5.14 to facilitate direct comparison. We can alreadymake useful

qualitative observations about the behaviour of each GAP from Figure 5.13: The

smoothest and most regular model, also the one most similar to the MP2/AVQZ

map, is COMPASS, followed by the smooth GAP, which starts to display some ir-

regularities – most notably, the splitting of the “gg” local minima on the diagonal

and the shift of the “gt” minima to smaller trans and gauche angles. Finally, the

all-modes GAP displays some of the same irregularities (although its minima
∗not the two “gg” conformers on the diagonal
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Figure 5.13: Pentane torsional maps (unrelaxed) computed with two of the combined
GAPs; COMPASS is for comparison. Energies are relative to the (unrelaxed) global min-
imum of each model. The torsional coordinates of the fully-relaxed local minima of each
model are plotted, where available, as coloured dots in white circles (colour indicates the
model, not the energy of the minimum).
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Figure 5.14: Same as Figure 5.13, but in quadrants to facilitate comparison (each quad-
rant contains all the unique conformations of the molecule). The MP2/AVQZminima are
also shown faintly in the other quadrants for comparison.

are in about the right place; see Figure 5.14), and in addition is much “sharper”

– the energy increases more rapidly when leaving the basins of the local min-

ima. This finding is similar to what we might have extrapolated from the decane

single-torsion plots in Figure 5.11. But the most troubling finding from the all-

modes GAP map is the raising of the “tt” conformer energy, which should be the

most stable one. The lowering of the gauche minimum seen in Figure 5.11 here

manifests itself as an incorrect stabilisation of the “gt” conformer with respect

to the “tt” one that all other models predict as a global minimum.

The next step is to find the energies of the true, fully-relaxed local minima

of each potential energy surface, as the pentane maps just shown do not in-

clude any relaxation of internal degrees of freedom that allow the molecule to

adopt its most stable structure at any of the conformations. This minimization
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Model Energy/meV
tt gt gg gx-

MP2/AVQZ 0.0 24.1 33.7 120.6
W1h-val [13] 0.0 26.6 41.7 122.0
COMPASS [41] 0.0 30.5 55.3 128.4
All-modes GAP 121.9 0.0 44.2 117.4

Table 5.1: Energies of the fully-relaxed minima of the pentane potential energy surface as
predicted by the all-modes GAP and COMPASS, with two quantum chemical references,
one MP2 and one extrapolated coupled-cluster CCSD(T) estimate. Energies are relative
to the fully-relaxed global minimum of each model.

was carried for the MP2/AVQZ, COMPASS, and all-modes GAP. Table 5.1 shows

the relative values of these local minima for each model, compared to the best

quantum chemical estimate (“W1h-val”) from the detailed study of alkane con-

formational energies [13]. The table shows that the MP2 estimate is generally

in good agreement with their values, while COMPASS significantly overpredicts

especially the levels of the “gg” and “gt” minima. The all-modes GAP, as previ-

ously seen, grossly overpredicts the level of the “tt” conformer, the true global

minimum – or rather, it overstabilizes gauche torsional angles with respect to

trans. The ordering of the minima is otherwise correct, with a good prediction of

the “gg”-“gx” energy difference.

The locations of all the minima are shown in Figure 5.14, overlaid on the

MP2/AVQZminima for comparison of conformer location (in (φ1,φ2) space). Even

though the energy values of the all-modes GAP minima are problematic, the

locations of the minima are very close to the MP2/AVQZ conformations (while

those of COMPASS deviate slightly more).

No minima were found for the smooth GAP because the optimizations were

unstable to bond lengthening, angle bending, and most of the other motions

accounted for in the larger Hessian eigenvalues discarded from the training

sample. The same problem was found for the “truncated GAP”, not shown here
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Figure 5.15: Comparison of torsional maps of pentane computed with the all-modes GAP,
with fixed internal coordinates (top left) and relaxed internal coordinates (bottom right).
All-modes GAP local minima are shown in each quadrant. Energies are relative to the
corresponding global minimum – fixed or relaxed – of the all-modes GAP. Blank areas of
the relaxed plot correspond to conformers where either the optimization was unsuccessful
or the optimized energy was still larger than 0.5 eV.

because its pentane map is otherwise very similar to that of all-modes GAP.

The only stable GAP, with respect to optimization of internal coordinates, is

therefore the all-modes GAP. This made it possible to produce a relaxed version

of the pentane conformational map, where the torsional angles φ1 and φ2 are

held constant but with the other degrees of freedom optimized at every (φ1,φ2)

point on the surface. The result is shown in Figure 5.15. In fact, the surface

changes drastically with relaxation: The “gx” conformers appear as local min-

ima, along with a low-energy path connecting them. (Local minima will always

appear asminima of the relaxed potential energy surface, while this is not gener-
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ally the case with the unrelaxed maps – see e.g. the “gx” minima in Figure 5.15,

which only correspond to minima on the relaxed surface.) The effect of relaxa-

tion on the GAP surface seems larger than would be expected of the real PES,

especially from comparing Figure 5.12 (unrelaxed) with Figure 1 from [12] (re-

laxed), where the only qualitative difference is the presence of a lower-energy

transition pathway between the neighbouring “gx” conformers. Nevertheless,

the relaxed GAP PES shows some of the expected features of the real relaxed

PES: The correct local minima (locations, at least) and lower barriers between

states compared to the unrelaxed PES.

For further development of the intramolecular alkane GAP, the pentane tor-

sional map and torsional curves presented in this section will serve a similar

role as the dimer error did for the intermolecular methane GAP: It provides a

systematic means of measuring the error of a fitted potential and comparing it

with analytical alternatives. There are many other interesting cases that could

be used for benchmarking in the future, such as the stability of long folded al-

kanes [11], but the pentane map offers a good balance between simplicity (ease

of interpretation) and complexity (extent of model capabilities tested). In this

case, COMPASS showed a level of systematic accuracy on the intramolecular

potential that seemed to be impossible to reach on the intermolecular potential,

for COMPASS or any other analytical potential. Its use of a relatively flexible

functional form along with a quantum-mechanical fitting reference is likely re-

sponsible for this accuracy. Nevertheless, its accuracy is still limited by its fixed

functional form – the overestimated pentane minimum energies and devations

from the quantum torsional curves, especially in Figures 5.7 and 5.8, are subtle

evidence of this.

In principle, it should be possible to achieve an better accuracy than COM-
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PASS across a variety of alkane systems, but the fitting technique needs to be

developed further to achieve this goal. The behaviour of the three Hessian GAPs

considered in this section provide clues to what improvements are necessary:

While the smooth GAP is certainly more regular and transferable than the other

two, it fails in optimizations and MD because it does not account for the higher

vibrational modes (a behaviour it shares with the truncated GAP). But the tight-

ening of parameters necessary to fit all modes also make the GAP less regular

and transferable, as comparison of the smooth and truncatedGAPs shows (which

differ only in fitting parameters, namely the regularization and cutoffs). And

even the all-modes GAP suffers from failures presumably due to overfitting of

certain modes: a trial MD run at room temperature using the all-modes GAP

resulted in unstable C-C bond lengths, indicating that even the all-modes GAP

is not properly fitting all themodes in its training set (overfitting due to too-strict

regularization parameters is a likely culprit).

The ideal would be a middle ground combining the best features of the three:

Smoothness and regularity due to well-chosen parameters, but a good fit due

to incorporation of all the vibrational degrees of freedom. At the moment, this

does not seem possible without a more advanced regularization technique, such

as having one parameter for each eigenvalue (to capture the lower modes while

avoiding overfitting the higher ones) or a Cartesian-basis Hessian fitting pro-

cedure (still under development) that would assign different regularizations to

each atom. Together with the observations about COMPASS above, this natur-

ally points to a combined approach where most of the energy is accounted for by

COMPASS (or a similar model), while the errors and couplings COMPASS can-

not account for are modelled with a Hessian GAP fit as a correction on top of a

COMPASS baseline; this general approach of using baseline models to improve
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transferability was described in Section 3.2.2 and used for theMBD SOAP-GAPs

in Chapter 4.

Another issue to explore is the distribution of extra sparse basis points (the

extra 20 geometries randomly distributed about each stationary point in the

fit, with no energies or forces, to act as basis functions to support the fit away

from the stationary point). It would be interesting to see how the fits depend on

the number and spread of these points, and perhaps whether the fits could be

improved by incorporating extra quantum energies and forces at some of them –

in this sense, such a potential would be a hybrid between the random-sampling

GAP discussed in the previous section and the “pure” Hessian GAPs explored in

this section.

While the GAPs presented here are not yet ready for production simulations,

the results in this section show significant promise for the strategy of Hessian

fitting in future applications. Several avenues of improvement have been presen-

ted; it is likely that any one (or a combination) of these strategies could bring an

intramolecular GAP-based model to the same level of smoothness and transfer-

ability, and an even higher level of accuracy, than that achievable with purely

analytical models.
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Chapter 6

Discussion and further

development

This dissertation has presented progress towards an exceptionally accurate po-

tential for alkanes obtained by a systematic fit to the entire potential energy sur-

face. The potential development efforts have been concentrated in two domains,

motivated by the separation between the intermolecular and intramolecular en-

ergies. The intermolecular efforts showed, for the first time, a machine learning

potential for liquid methane with a systematic convergence towards the true

Born-Oppenheimer potential energy surface. It showed that the prediction of

even the density, a property previously regarded as relatively simple to repro-

duce (perhaps because it is easy to fit empirically), in fact requires the modelling

of several different effects – including many-body dispersion and quantum nuc-

lear effects – to reproduce accurately with the correct potential energy surface.

The results so far indicate that this approach is robust and extensible. It will

pave the way for accurate intermolecular potentials for larger and more complex

systems: Longer alkanes, branched alkanes, mixtures, and conceivably even the

inclusion of polar species with an appropriate polarizable electrostatic model.
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It also provides tools for understanding how the different physically identifiable

effects included in the potential affect other properties, especially the diffusivity

and viscosity.

The intramolecular potential is further behind in development, partially be-

cause it is an application of a relatively new and unproven method, the fitting to

second-derivative values. While this branch of development efforts did not yield

any potentials that could be tested in an MD simulation, it did show some cases

where theHessian fitting was very successful. The results so far are encouraging

for a future robust, systematic intramolecular counterpart to the intermolecular

GAP with the use of second-derivative information.

6.1 Road to an integrated alkane potential

Another question that has not yet been addressed in this dissertation is how the

two components of the potential – intermolecular and intramolecular – should

be combined. In small, simple molecules such as methane, the split between in-

tramolecular and intermolecular potentials is easily determined: intramolecular

components involve a single connected molecule and intermolecular components

are strictly the interaction between two or more different connected molecules.

The case that has not yet been explored here is that of long, flexible molecules,

where the interaction of atoms separated by many bonds behaves more as if they

were governed by intramolecular than by intermolecular forces. Almost all ana-

lytical potentials switch from the intramolecular, bond-angle-torsion form to the

intermolecular, pairwise form beyond 1-4 (torsion) interactions with some sort

of scaling applied to the intermolecular (electrostatics and L-J) terms on the 1-4

pairs. This means that their torsional potentials (including all the COMPASS

curves in Section 5.2) are in fact a combination of a true torsional potential and
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some effective scaled pairwise terms.Wewould obviously need amore systematic

way of combining the potentials, starting with a rigorous physical separation of

which energy components are handled by which potential. The intramolecular

potential is usually taken to be strongly local [46], so a good start would be to

find some systematic separation between the local and nonlocal components of

the single-molecule energy. One possibility would be to apply the intramolecular

GAP to a single, large molecule and subtract the predicted energies and forces

from the quantummechanical ones, ideally leaving behind only the local compon-

ent. This is only one of many possible approaches. The coupling between the in-

tramolecular and intermolecular potentials would be described the same way as

in the current model: through the intermolecular SOAP-GAP, which can equally

detect changes in the intramolecular environment. For effects beyond the range

of the SOAP-GAP, different approaches might be needed. Fortunately, there are

several existing approaches [76, 201] to predicting locally-dependent paramet-

ers for long-range interactions; any of these could be adapted into the current

framework.

In any case, the potentials that are developed will be continuously tested

against experimental densities, diffusivities, and viscosities. While the best ref-

erence for constructing a potential is the quantum mechanical potential energy

surface, the ultimate test of the usefulness of a model is how well and how re-

liably it reproduces experimental observables. This work is driven by the belief

that accuracy at the microscopic, atomistic scale implies accuracy at the mac-

roscopic scale, as long as we take care to fit the potential systematically and

account for all relevant physical effects. The results for the intramolecular po-

tential support this belief and encourage us to continue pursuing the goal of a

systematically fitted potential for the entire chemical class of alkanes.
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Appendix A

Technical Notes

The algorithms, scripts, and data analysis used in this dissertation were done

primarily in Python version 2.7.9∗ using components from the SciPy ecosys-

tem†, including the libraries NumPy 1.14.3, SciPy 1.1.0, the Matplotlib [178]

plotting package (version 2.2.2), and especially the Jupyter interactive comput-

ing environment (version 1.0.0) with the IPython [179] interface (version 5.7.0).

The colour schemes for many of the graphs were chosen from the ColorBrewer

colourblind-friendly and print-friendly palettes‡ and distributed with Matplot-

lib. The random initial molecular configurations for the MD simulations were

created using Packmol [187]. This project made extensive use QUIP via the

quippy Python interface, as well as the GAP code distributed for use with QUIP§.

The code, scripts, and data necessary to reproduce the results in this work will

be made available at the University of Cambridge repository¶, under the same

name as this dissertation.

∗http://python.org
†http://scipy.org/
‡http://colorbrewer2.org
§currently available at http://www.libatoms.org/gap/gap_download.html or as a precom-

piled binary at https://hub.docker.com/r/libatomsquip/quip/
¶https://www.repository.cam.ac.uk/
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