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Abstract

Title: Piled foundation dynamics: Considering inertial and underground railway excitation

Author: Tisal Lakshitha Edirisinghe

Understanding the fundamental dynamics of piled foundations is important for practitioners, as

ground-borne vibration can result in adverse disturbances, particularly in urban areas. Through

the development of computationally efficient models, this dissertation examines the vibration

of piles due to (1) inertial excitation at the pile heads and (2) incident waves from underground

railways. The latter excitation mechanism also considers the building superstructure above the

foundation. The numerical models account for the dynamic motion in three-dimensional space

and are formulated in the frequency domain.

A new iterative model is developed using the boundary-element method (BEM) to study the

effects due to wave scattering in inertially excited pile-groups. When different inertial loads are

applied, the converged solutions of the iterative BEM model strongly agree with the interaction

factors predicted using a conventional BEM model. A comprehensive parametric study on the

inertial response of piles provides new insight into the wave-scattering effect and how various

material and geometric parameters influence it, particularly at high excitation frequencies.

The iterative approach is then used to combine the BEM model of a piled foundation and

the semi-analytical model of an underground railway tunnel. The result is an efficient coupled

tunnel-foundation model, which fully accounts for the source-receiver interaction that has been

neglected in existing models. It is discovered that this interaction is most significant when the

separation distance between the tunnel and foundation is less than the shear wavelengths in the

soil. For the first time, two counteracting mechanisms that govern the added-foundation effect,

which is the modification of the ground (greenfield) response when a foundation is constructed

near an underground railway, are also highlighted in a thorough parametric study.
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It is demonstrated that a simple dashpot model is representative of the essential dynamics of

a modern tall building, with respect to its base impedance, over the frequencies associated with

the perception of vibration. When the simplified building model is combined with the coupled

tunnel-foundation model, the differences between the train-induced vibration of a building that

is supported on deep piles and shallow footings are likely to be imperceptible by the occupants.

Furthermore, the mean vibrational energy entering through the foundations of a tall building is

found to be dominated by the added-foundation effect. The effectiveness of full and partial base

isolation to mitigate the vibration disturbances in a building is also explored using power-flow

techniques. Finally, a virtual case study concerning the construction of a building next to a pre-

existing underground railway tunnel shows how the developed models can be used in practice

to evaluate the performance of different designs. The conclusions are expected to establish new

guidelines for designing foundations and buildings near underground railways.
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Chapter 1

Introduction

Ever since the first underground railway line was opened in London in 1863, the use of the

subsurface for transportation purposes has increased worldwide. Densely populated areas have

benefited from underground transportation because it helps to mitigate urbanisation problems,

such as road traffic congestion, land shortage, and air pollution. Recent improvements in safety

and passenger capacity have also made subway systems a sustainable mode of public transport;

for example, over one million passengers use the London Underground every single day. This

means that the construction of new underground tunnels, and the expansion of existing lines,

will continue well into the future. As of 2017, there were metro networks in 182 cities across

56 countries, carrying on average a total of 168 million passengers per day [232].

Fig. 1.1 An illustration of the problem of ground-borne vibration and re-radiated noise for a foundation-
building system near surface and underground railways (based on Talbot’s [221] original illustration).
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The passage of trains through underground tunnels does, however, lead to the generation of

ground-borne vibration and noise. The ground-borne vibration propagates through the ground

as wave-fields and can produce environmental disturbances at the surface. When the wave-fields

approach soil-embedded structures, such as the foundations shown in Fig. 1.1, the soil-structure

interaction (SSI) can induce perceptible vibration and audible noise within buildings. This can

lead to adverse mental and physical effects on people, so the problem of ground-borne vibration

is an issue for urban planners. The day-to-day running of vibration-sensitive premises, such as

operating theatres, recording studios, and concert halls, can also be adversely affected by low-

levels of ground-borne vibration. However, the vibration induced by trains rarely results in the

structural and cosmetic damage of buildings [202, 225].

1.1 Motivation for the Research

A recent study by Connolly et al. [40] analysed a database of 56 technical reports concerning the

ground-borne vibration and noise due to surface, underground and elevated railway lines from

nine different countries, with the US and UK representing a majority of the reports. It was found

that directly perceived vibration limits and indirect re-radiated noise limits were exceeded in

44% and 31% of all cases, respectively. More importantly, it was noted that even though much

of the current research is focused on computational modelling and the development of passive

vibration reduction solutions, these approaches have not yet been fully embraced by practising

engineers.

In general, the theoretical models that are used to solve ground-borne vibration problems

can be classified into two groups. The first group consists of highly detailed numerical models

that can predict the absolute vibration at specific locations of the building or ground. Rigorous

numerical models, such as FemRail [203], MEFISSTO [120, 121] and FINDWAVE [47, 227],

have been used to predict the ground-borne vibration near the underground railway tunnels of

the London Crossrail and the Grand Paris Express. Whilst these rigorous models may be useful

in practice to inform the decisions of engineers, they come with the drawbacks of significantly

high model development time, computation time and cost.

In contrast, the second group consists of more computationally efficient models that capture

the fundamental physics of the problem and can predict relative changes in the overall building

vibration as the system’s parameters are varied. Therefore, these efficient models are generally
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used as scoping tools to guide the design of foundations and buildings during early construction.

The numerical models developed in this dissertation will adhere to the fundamental approach

because it can be difficult to verify the accuracy of rigorous models against real measurements

due to modelling uncertainties and data collection errors.

Current practices suggest that the building response to ground-borne vibration is affected

by the type of foundation, underlying ground conditions, building construction, and the state

of repair of the building. Nevertheless, many unanswered questions remain as to how a nearby

underground railway tunnel might influence the overall building vibration. For example, which

foundation arrangements best mitigate the building’s train-induced response, and how does the

distance between the railway tunnel and foundation affect the response? The answers to these

questions will have a significant impact on the design of buildings near underground railways.

Hence, there is a clear need to develop our physical understanding of how the wave-fields

emanating from an underground railway can affect the vibration of foundations and the building

superstructure above. It is also important to understand the structure-soil-structure interaction

(3SI) between multiple neighbouring soil-embedded structures and how it can affect the wave-

field distribution in the soil [33, 161]. In this case, 3SI accounts for the through-soil coupling

between the tunnel and foundation, while SSI only regards the coupling between the soil and

each structure in isolation.

1.2 Objectives of the Research

The primary aim of this dissertation is to develop theoretical techniques that can numerically

predict the train-induced response of a piled foundation due to the ground-borne vibration from

a nearby underground railway tunnel. Piled foundations typically consist of concrete piles that

are embedded in the ground to transfer the weight of buildings from week strata to stiffer soil

or rock at greater depth. To achieve the primary aim, the following objectives must be satisfied:

• to develop a comprehensive model of a piled foundation, which accounts for the pile-pile

interaction between neighbouring piles;

• to combine the piled foundation model with an underground railway tunnel model so that

the tunnel-foundation interaction is fully captured;

• to identify the factors governing the dynamic 3SI between a piled foundation and a nearby

underground railway tunnel;
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• to understand how constructing a building above the foundation may modify the overall

vibration of the combined foundation-building system.

The programs for running all the numerical models presented in this dissertation are written

using the technical computing software MATLAB [170]. The models will be generalised so that

the parameters of the problem can be modified to simulate the fundamental dynamic behaviour

of various test cases rather than focusing on a specific example. It will also be beneficial if the

models are computationally efficient so that, in principle, consultants, engineers and designers

can readily run simulations to predict the performance of various designs against ground-borne

vibration. The developed models have four main uses:

• to determine the significance of different problem parameters on the vibration levels;

• to observe the general trends in the results over the frequencies associated with ground-

borne vibration, and explain the observations through physics-based reasoning;

• to assess the performance of various foundation and building designs due to the vibration

of underground trains;

• to help guide better design practices for foundations and buildings.

1.3 Outline of the Dissertation

This dissertation presents the following research work: (1) a review of the relevant literature; (2)

the development of a piled foundation model to study the dynamic interaction between piles; (3)

the development of a comprehensive tunnel-foundation model to investigate the train-induced

vibration of piles; and (4) the combining of the tunnel-foundation model with simplified models

of tall buildings to analyse the dynamic behaviour of the tunnel-foundation-building system.

Chapter 2 presents a review of the available literature that is relevant to this dissertation. The

initial sections provide an overview of the ground-borne vibration problem and explores various

countermeasures that mitigate its effects. Later sections discuss existing modelling techniques

for underground railway tunnels and piled foundations while also highlighting limitations that

need to be addressed.

In Chapter 3, a three-dimensional model of a piled foundation is developed, which captures

the interaction between all piles in a group to predict the coupled response. Chapter 4 considers

an alternative piled foundation model, whereby an iterative approach is used to approximate the
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coupled response by considering the scattered wave-fields between a source and receiver sub-

system in the pile-group. The effects of various parameters on the pile-group response are also

investigated.

Chapter 5 considers the train-induced vibration of a piled foundation due to an underground

railway tunnel, assuming that the foundation is multiple soil wavelengths away from the tunnel.

Chapter 6 presents the development of a comprehensive tunnel-foundation model, which is able

to capture the effects due to both tunnel-foundation and pile-pile coupling. This is achieved by

applying an iterative approach to capture the waves that propagate back and forth between the

tunnel and foundation sub-systems. The model is used to study the influence of various material

and geometric parameters on the train-induced response of piles.

Chapter 7 couples simplified building models to the tunnel-foundation model to investigate

how constructing a building, and installing base isolation, can affect the directional and overall

vibration levels. Also, a virtual case study on the construction of a tall residential building near

a pre-existing railway tunnel demonstrates how the models developed in the dissertation can be

used in practice as scoping tools and for guiding design.

The main conclusions in this dissertation and recommendations for further work are given

in Chapter 8. In its present form, the coupled tunnel-foundation-building model offers a flexible

and efficient means of studying the train-induced vibration of modern buildings. It also shows

significant potential for further development.
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Chapter 2

Literature Review

Multiple researchers have considered the effects of ground-borne vibration. Studies on different

vibration sources include the works of Hunt [108] and Ng [183] on surface roads, and that of

Forrest [68], Hussein [112], Jones [125], Kuo [145] and Coulier [42] on underground railways.

Studies on the vibration transmission path include the work of Lo [157] on the vibration of piled

foundations, Sanitate [206] on the vibration of slab foundations, whilst the work of Cryer [48]

and Talbot [221] consider the noise and vibration in buildings.

However, only a handful of studies investigate how the ground (greenfield) disturbance from

an underground railway tunnel can be modified by piled foundations (added-foundation effect)

and buildings (added-building effect). This chapter gives an overview of previous research on

the response of piled foundations due to ground-borne vibration, with particular emphasis on

work related to train-induced vibration. Sections 2.1 and 2.2 outline the nature of the problem

and various countermeasures that can be applied to mitigate it. A critical review of a variety of

techniques for modelling the soil, underground railway tunnel and piled foundation is presented

in Sections 2.3–2.5. Finally, the main conclusions are summarised in Section 2.6.

2.1 The Problem of Ground-Borne Vibration

Over the past century, there has been an increase in the number of reported problems related

to ground-borne disturbances as residential buildings and offices are constructed ever closer to

vibration sources. This is particularly true in urban regions where rapid infrastructure projects,

increased road traffic and over-demand peak railway timetables are prevalent [40]. Practising

engineers are therefore concerned with minimising these disturbances.
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2.1.1 Sources of Ground-Borne Vibration

There are many external sources of ground-borne vibration, which include those from above

ground (e.g., construction activities and road traffic) and below ground (e.g., earthquakes and

underground railways). Internal vibration sources that originate from within a building (e.g.,

human activity, air-conditioning equipment, and conveyance systems) will not be considered in

this dissertation, as they do not significantly contribute to the source-soil-foundation-building

vibration transmission path. A brief discussion on the four principal sources of ground-borne

vibration is presented below; particular attention is given to the level of vibration intensity and

the excitation frequencies associated with each source.

Earthquakes

Most earthquakes occur when a geological fault-plane becomes stuck, and the relative motion

at the fault-plane causes an increase in the shear stresses, such that it exceeds the frictional

resistance. This causes the two sides of the fault to suddenly slip past each other, releasing large

amounts of stored strain energy, and generate elastodynamic waves in the process. These waves

propagate through intermediate bedrock and soil layers to get to the surface, often causing

structural damage to foundations and buildings. Extensive research has been done in this field

[19, 49, 94] to minimise the potential of structural damage and human casualties.

Since earthquake deformation leads to large shear strains in the soil, generally above 10−4,

the predictive tools need to consider non-linearities [74]. When 3SI is also considered using a

non-linear model, Vicencio & Alexander [233] observed that two adjacent buildings can exhibit

more dynamic coupling over a broad range of frequencies.

In general, earthquakes excite low frequencies from 0 to 5 Hz, so it is adequate to consider

the rigid-body modes and the first few flexural modes of a building to find its seismic response

[200]. This low-frequency seismic excitation is outside the scope of this dissertation because it

does not influence the high-frequency content of ground-borne vibration.

Construction Activities

There are six principal sources of ground-borne vibration from construction activities: pile

driving, dynamic compaction, vibratory compaction, excavation, tunnelling, and blasting. The

dominant source is from blasting, with 50 to 1000 times the energy transferred to the ground
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compared to pile driving [217]. The peak particle velocity due to blasting can also range from

0.1 to 100 mm/s. Therefore, this has pushed researchers to develop robust prediction methods

to assess blasting vibration levels [103,104]. High vibration levels are likely to disturb building

occupants and can potentially lead to structural damage (see Table 2.1). The frequency content

of the surface waves generated from quarry and construction blasting can vary between 10 and

60 Hz [53]. In contrast, the vibration from mechanised construction activities usually produce

low-frequency surface waves between 3 and 30 Hz [217].

Construction activities generally result in transient disturbances that excite the ground for

short time durations, so this form of excitation will not be considered further in this dissertation.

On the other hand, roads and railways result in more continuous disturbances. Even though the

amplitude of these disturbances may not be significant to cause structural damage, they expose

a higher proportion of people to perceptible disturbances at a much higher rate of occurrence.

Road Traffic

Road surface irregularities can be assumed to be a random, stationary roughness that interacts

with vehicle tyres to produce dynamic forces at the contact patches. These forces are typically

15% higher than the corresponding static forces [4], and they predominantly generate ground-

borne vibration in the form of surface waves.

The frequencies associated with road traffic vibration typically lie between 5 and 25 Hz,

with amplitudes from 0.05 to 1.0 mm/s. However, this frequency range can vary significantly

depending on the vehicle speed, soil type, and soil stratification [107]. An experimental study

by Hunt [108] revealed that the type of road surface can also have a significant effect on the

measured surface vibration spectra. Typically, these spectra contain two peaks below 20 Hz,

corresponding to the natural frequencies of the vehicle’s body-bounce and wheel-hop modes,

as seen in measurements by Hong et al. [92].

The surface waves from roads are less likely to interact with deep foundations, such as those

used for tall buildings. Hence, the vibration from road traffic is deemed to be outside the scope

of this dissertation.

Railways

There are multiple excitation mechanisms by which railway trains can generate ground-borne

vibration over a wide range of frequencies, as illustrated in Fig. 2.1. These can be grouped into
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five fundamental mechanisms, which are detailed here in ascending order with respect to the

typical frequencies they excite.

The first mechanism is a quasi-static effect due to the motion of the train’s self-weight over

a fixed observation point on the track. The frequency response at the observation point contains

harmonics of the wheel-passing frequency, which depends on the spacing between consecutive

axles in a train bogie and the train speed. Hence, a peak is present when a wheel is above a point

on the track nearest the observer; a trough occurs when the same point on the track is nearer the

mid-span of two axles. Typically, this effect is modelled by superposing multiple point forces

along the track, which are equal to the static load applied at the wheel-rail interface [29, 124].

An experimental study by Auersch [6] found that the passage of axle loads is only significant

in the localised region around the track. Sheng et al. [213] compared theoretical models with

measurements to find that quasi-static loads dominate at low frequencies between 0 and 20 Hz.

A variant of the quasi-static effect is attributed to the sleepers, which are typically present

in ballasted tracks to support the rails along their length. This second mechanism, referred to

as parametric excitation, occurs when a wheel encounters variation in the track stiffness. The

most common example of this excitation occurs at the sleeper-passing frequency (25-150 Hz),

which depends on the train speed and sleeper distance [225]. When the railway track contains

regularly spaced sleepers, the stiffness of the track varies periodically along its span, with a high

stiffness directly above a sleeper and a low stiffness between adjacent sleepers, which results in

a time-harmonic force when a moving train deflects the track. Heckl et al. [97] investigated the

velocity spectra measurements that were taken in the vicinity of a suburban train and observed

resonance at characteristic frequencies, which included the sleeper-passing and wheel-passing

frequencies. Furthermore, a maximum resonance occurred when the wheel-passing frequency

coincided with one of the harmonics of the sleeper-passing frequency. According to a study by

Hawari & Murray [93], the continuous passage of trains over the sleepers can also permanently

deteriorate the track ballast, which contributes to the roughness profile of the rails. However,

as the average speed of underground trains is generally below 100 km/hr, which is lower than

the train speed required to induce parametric excitation, this mechanism is outside the scope of

this dissertation [139].

The third mechanism occurs as a result of roughness at the wheel-rail interface, and this

can generate truly dynamic forces with an excitation frequency that is equal to the train speed

divided by the roughness wavelength at the contact point. Numerical predictions by Nielsen
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[184] showed that imperfections at the wheel-rail interface can grow from a localised region

due to the continuous passage of trains. Nielsen also concluded that the growth occurs due to

wear at the contact patch when non-linearities are neglected; these findings are also supported

by Hawari & Murray [93]. In general, wheel-rail roughness can generate ground vibration over

a wide range of frequencies, with longer wavelengths having higher amplitudes. An exception

to this rule is corrugation: a spatially harmonic roughness profile that usually consists of short

wavelengths between 25 and 50 mm. Short-wavelength corrugations can result in noise above

250 Hz at the typical speeds of metro trains [90]. These high-frequency disturbances are usually

attenuated by the ground, so they rarely reach nearby infrastructure. A recent study by Ntotsios

et al. [193] found that the wheel-rail roughness across two parallel rails must be treated as being

uncorrelated if the roughness wavelengths are short. If both rails have the same in-phase rail

correlation, the ground response would be around 3 dB higher [193].

Dynamic excitation can also occur due to height differences at the rail joints and crossings

when short sections of track are welded together. Modern railway tracks contain rail joints that

divide and insulate the electrical circuits, which are used to power and locate the trains [127]. In

this case, non-linear track models should be used to account for the discontinuities in the track

profile [226]. The track discontinuities can result in large impulse loads and transient vibration

at the wheel-rail interface, thus generating rolling noise that could annoy the train passengers.

Compared to linear models, non-linear models require different techniques to transform the

equations of motion from the time domain to the frequency domain [136]. However, non-linear

track models will not be considered further in this dissertation because it is assumed that the

train travels over a well-maintained track with negligible discontinuities.

The final excitation mechanism is caused by high-speed trains, which produce a Mach cone

when the train speed exceeds the ground’s critical speed. Rayleigh waves, which exist near the

surface, have the slowest phase speed of the elastodynamic waves that propagate through the

ground (see Section 2.3.2). When the train exceeds the Rayleigh-wave speed, a high-amplitude

ground vibration ‘boom’ occurs [142], which is similar to how a shock wave is formed when a

supersonic aircraft exceeds the speed of sound. Multiple investigations into this phenomenon

have been conducted by Takemiya [220] and Karlström [128] on the X-2000 train in Ledsgard,

Sweden, when it approaches soft soil deposits. However, this mode of excitation rarely occurs

in underground railways, and then only in highly localised areas with specific soil properties.

Therefore, it can be disregarded over the remainder of this dissertation.
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Fig. 2.1 The frequency distribution of different dynamic train-track interactions (based on the original
illustration by Kouroussis et al. [139]).

2.1.2 The Impact of Ground-Borne Vibration on Buildings

The response of buildings to ground vibration can modified by the dynamic characteristics of

the building, the foundation and the soil, which all affect the mode shapes, natural frequencies

and damping [22]. This suggests that the best way of simulating the ground-borne vibration is

by considering all the structures together in one model, especially given the intimate complexity

between them. The dynamic characteristics can be altered by the design and construction of the

buildings; depth, arrangement and type of foundation; and the geology of the ground, which

can include soil-layers, bed-rock and the water-table [91].

The inertial forces on a structure pose the greatest threat towards structural damage. The

potential for crack formation increases when the inertial forces give rise to large cyclic strains.

However, ground vibration does not generally result in crack formation. The evidence gathered

by Mead [172] suggests that the damage due to vibration is proportional to the inverse-square

of the frequency, which is equivalent to having a dependence solely on the root-mean-square

(r.m.s.) speed. This has some physical basis, as the particle speed of a propagating wave gives

an indication of its vibrational energy and thus its ability to cause structural damage. Table 2.1

summarises some provisional building damage criteria, where the r.m.s. speed corresponds to

the maximum of the three orthogonal velocities at various points in the structure.
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Band R.m.s. speed [mm/s] Effect

I < 1.75 No damage
II 2.5-5.0 Damage very improbable
III 5.0-10.0 Damage not probable
IV > 10.0 Damage possible; check the stresses!

Table 2.1 Root-mean-square (r.m.s.) speed bands for building damage criteria (reproduced from Mead
[172]).

Re-radiated noise describes vibration that first radiates through the ground and building

surfaces, such as the walls and floors, and is then transmitted to the surrounding air in the form

of audible sound. Although it may not be a precise term, it is in common use and is more widely

accepted than the alternatives of ground-borne or structure-borne noise. Re-radiated noise can

usually be heard as a low-frequency ‘rumble’ above 25 Hz, even after the vibration has fallen to

imperceptible levels. The high-frequency energy content in propagating waves often dissipates

due to damping in soft ground, which results in inaudible building vibration. In contrast, hard

ground retains more of the high-frequency energy content, which can manifest as re-radiated

noise within the rooms of buildings.

2.1.3 The Impact of Ground-Borne Vibration on Humans

Based on their lifestyle and environment, people can be exposed to various sources of vibration

and noise. The frequencies that are typically associated with the human perception of ground-

borne vibration and re-radiated noise are 1-80 Hz and 30-250 Hz, respectively [39]. The factors

affecting vibration perception can be divided into two groups [21]:

1. intrinsic variables, which include the type of population (age, gender, size, fitness, etc.),

experience, motivation, body posture, physical activities, financial situation, expectation,

and arousal;

2. extrinsic variables, which include the vibration axis, magnitude, frequency, duration, and

other environmental influences (noise, temperature, light intensity, etc.).

There are numerous metrics for measuring the annoyance levels due to vibration and noise

stimuli. The main metrics suggested by the British Standards Institution (BSI) are the vibration

dose value (VDV) [24] and sound exposure level LAE [23]. The VDV is defined as
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VDV =

(∫ T

0
a4

w(t)dt
) 1

4

, (2.1)

where aw(t) is the frequency-weighted r.m.s. acceleration over the time period T . Therefore,

for a given magnitude, frequency and direction of vibration, the VDV measures the excitation

levels in SI units of m/s1.75. The VDV is often used in practice to quantify the perception of

continuous and intermittent vibration stimuli by taking cumulative measurements. In contrast,

the LAE is used to quantify the perception re-radiated noise stimuli and is defined as

LAE = 10log10

(
1
T

∫ T

0

p2
A

p2
0

dt

)
, (2.2)

where p0 is the reference sound pressure of 20 µPa, and pA is the instantaneous sound pressure

measured using an A-weighted filter. The A-weighted filter accounts for the relative loudness

perceived by the human ear, which varies with frequency.

Table 2.2 gives a range of VDVs, suggested by Mead [172], at which building occupants

may experience some adverse reactions. However, these exposure criteria levels do not consider

how the time of day could alter the perception of vibration. Peris et al. [195] conducted face-to-

face interviews and railway vibration measurements in the United Kingdom to study whether

human annoyance can be affected by the time of day. For similar vibration exposure levels, the

overall annoyance response over a 24-hour period was found to be more closely related to the

evening and night-time annoyance rather than the daytime annoyance. Therefore, it is advised

that policy makers and practitioners need to consider different weighting factors, depending on

the time of day, when assessing the annoyance due to railway vibration.

A survey of 565 households by Obermeyer, a German engineering firm, was reviewed by

Knall [137] to investigate the perception threshold for ground-borne vibration and re-radiated

noise near long-distance rail networks and suburban metro lines. Seventy-eight percent of the

residents reported that they were ‘considerably’ affected by the noise, whereas only 57% were

‘considerably’ affected by the vibration. Knall suggests that the proportion of trains exceeding

the human perception threshold for vibration has a more significant effect on the annoyance

level than the absolute number of train passes. The study also provides evidence to suggest that

once the perception threshold is exceeded, the annoyance level and the measured disturbance

become independent of the stimulus.

A recent study by Smith et al. [215] looked to minimise the subjective perception of various

stimuli by taking electrophysiological measurements from sleeping volunteers, while they were
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Location
Vibration dose value (VDV) [mm/s1.75]

Low probability of
adverse comment

Adverse comment
possible

Adverse comment
probable

Critical working areas 0.1 0.2 0.4
Residential 0.2-0.4 0.4-0.8 0.8-1.6
Office 0.4 0.8 1.6
Workshops 0.8 1.6 3.2

Table 2.2 Vibration dose values (VDVs) that may cause adverse human reactions in different locations
(reproduced from Mead [172]).

exposed to railway disturbances. A majority of the sleep parameters, including the heart rate,

the cardiac activation and the likelihood of arousal, were negatively impacted when the noise

exposure level increased from 35 to 45 dB LAE. Most of these sleep parameters also correlated

positively with the self-reported annoyance levels. Therefore, to minimise the level of skewness

in the results due to subjective opinions, Smith et al. recommend that nocturnal physiological

readings should be recorded in future investigations instead of directly asking the participants

about their annoyance levels.

All of these studies highlight the difficulties in setting human perception guidelines for

acceptable vibration and noise levels due to railway induced disturbances. In summary, humans

have a difficulty in differentiating between vibration and noise stimuli, and the perception of

vibration can be highly subjective.

2.2 Ground-Borne Vibration Countermeasures

There are numerous approaches that can be adopted to mitigate the ground-borne vibration in

buildings. The majority can be grouped into three categories: countermeasures at the vibration

source, disrupting the vibration transmission path, and isolation of the building. The following

sections introduce some countermeasures that are widely used in practice and also outlines

techniques for measuring their effectiveness.

2.2.1 Countermeasures at the Source

Targeting the railway tracks is the most effective method of reducing ground-borne vibration

because it attenuates the wave-fields that emanate directly from the source. Rail welding and
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rail grinding can be used to reduce irregularities at the wheel-rail interface [202]; however, these

are regarded as general maintenance rather than countermeasures. The response at frequencies

near the bounce and wheel-hop modes of an individual train bogie wheel can be decreased by

softening the suspension or by modifying the unsprung axle mass [102]. Soft rubber pads [202],

mounted sleepers [123], and track foundation enhancements [135] have all been effective at

attenuating the vibration leaking into the ground. Unfortunately, side-effects, such as increased

noise radiation, may also manifest at the same time [234].

The floating slab track (FST) is another countermeasure that can isolate the train-induced

vibration from the ground [109]. It is constructed by mounting the whole slab assembly on top

of rubber bearings or steel springs. This prevents waves that have a higher oscillation frequency

than the slab isolation (natural) frequency from propagating away from the track. Grootenhuis

[83] conducted one of the first practical studies on the effectiveness of different FST designs.

More recent theoretical studies, using both two-dimensional (2D) and three-dimensional (3D)

models [246, 248], have also demonstrated the benefits of FSTs under various conditions.

2.2.2 Interrupting the Vibration Transmission Path

Common methods of passively interrupting the transmission path from the source to the receive

include open trenches, in-filled trenches, elastic foundations, and tubular or solid pile rows.

Yang & Hung [247] performed a parametric study to evaluate the effectiveness of open trenches,

in-filled trenches and elastic foundations against surface train vibrations. All three approaches

provided similar levels of attenuation at high frequencies, which was when the wavelengths in

the soil were shorter than the corresponding structural dimensions. The attenuation level of the

open and in-filled trenches was found to be governed by the trench depth, which must be of the

same order of magnitude as the surface wavelength to have the greatest effect [247]. However,

there are practical limitations on the excavation depth of trenches, such as the soil load-bearing

capacity and the water-table depth.

In contrast, pile rows, which consist of piles arranged in a line, are not restricted by their

depth or excavation location. Different methods of modelling the dynamic response of a single

pile and multiple piles are detailed in Section 2.5. Nevertheless, in practice, the installation of

pile rows is not a standard solution to decrease the vibration induced by railway tunnels. The

main reason for this is the scale of installation required for urban railways, which raises the

cost compared to cheaper isolation methods at the railway track or building. The study of piled
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foundation designs, for the purpose of minimising the transmission of ground-borne vibration

into buildings, is also limited.

2.2.3 Countermeasures at the Building

Vibration levels at the building can be reduced by installing countermeasures either during or

after construction. Retrofitting techniques that are used to mitigate seismic vibration include

material based dissipation systems, such as fluid viscous dampers in high-rise buildings [49],

and tuned-mass dampers that counteract inertial forces [205]. The resonant frequencies of the

building can also be shifted through localised stiffening and mass adjustments. However, post-

construction procedures result in higher installation costs and are likely to provide only local

protection against vibration.

Base isolation, consisting of steel springs or elastomeric bearings to de-couple the building

from the ground, offers a more viable solution against ground-borne vibration. Examples exist

across a broad selection of buildings, from residential to commercial, and comprises specialist

buildings, such as cinemas [100], hospitals [84] and broadcasting studios [99]. A

comprehensive review of base-isolated buildings by Talbot & Hunt [224] found that single

degree of freedom (SDOF) models only give sensible results at low excitation frequencies –

that is, near the rigid-body modes of the building. To investigate the high-frequency vibration,

more complex models are required that account for flexural modes and wave propagation in

the building.

Cryer [48] adopted the dynamic-stiffness method (DSM) [30] to simulate an infinite, 2D

portal-framed building to study the effectiveness of different base isolation techniques. Cryer

concludes that the effectiveness of the base isolation is governed by its natural frequency, with

lower frequencies generally indicating better isolation. However, the damping of the isolation

material does not significantly influence its effectiveness. Later, Talbot [221] connected Cryer’s

model to a piled foundation model via isolation bearings. Talbot agreed with Cryer’s findings

and notes that a comprehensive foundation model is required to predict isolation performance.

2.2.4 Measuring Vibration Performance

It is essential to have vibration performance measures to compare the effectiveness of various

foundation designs. Reliable performance measures, based on robust engineering models, are

also important in moving towards an evidence-based design approach [222]. This will help to
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introduce better design guidelines for practising engineers, similar to how the seismic industry

has made great strides in developing new procedures that produce structures with predictable

seismic performances [81]. Two metrics for evaluating the vibration performance of a building

are presented in this section.

Insertion Gain

The insertion gain (IG) is often adopted as a measure of variation in the vibration performance

of a building when countermeasures, such as isolation bearings, are installed. When a building

experiences steady-state, time-harmonic disturbances with angular excitation frequency ω , the

IG at some location x is defined in units of decibels (dB) as the following ratio:

IG(iso) = 20log10

(
|u(iso)(x,ω)|
|u(uniso)(x,ω)|

)
, (2.3)

where u(iso) and u(uniso) are the building responses in a particular direction for the isolated and

unisolated configurations, respectively. The building responses in Eq. (2.3) can be a measure

of the displacement, velocity or acceleration.

While the IG is very effective at measuring the isolation performance of SDOF systems, its

dependence on position and direction makes it less suitable for complex 3D buildings, which

may include a combination of axial, flexural and torsional behaviour. These problems can be

alleviated by adopting power-flow techniques.

Power-Flow Insertion Gain

Power-flow based approaches use the mean vibrational power, a scalar quantity, to evaluate the

overall vibration performance of a multiple DOF structure. Recent studies have demonstrated

that when the source-soil-structure system is modified, the power-flow insertion gain (PFIG)

can be a useful metric for assessing the variation in the mean vibrational power entering across

the base of the building [44, 115, 207]. PFIG is based on the principle that, assuming there are

no internal sources, the mean power flow entering a building drives all the structural vibration

and re-radiated noise. Compared to IG, PFIG is a better metric for characterising the changes in

the overall vibration because it accounts for multi-directional inputs and is insensitive to spatial

variation in the vibration levels.

By considering the mean power flow, a practising engineer can also analyse variations in

the transmission of vibrational energy at different locations and excitation frequencies. A study
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by Talbot & Hunt [224] found that the mean power flow into a base-isolated building can be

negative over certain frequency bands due to the re-radiation of vibrational energy back into

the soil. More recently, Heaton & Talbot [95] use PFIG to show that partial isolation can be as

effective as full base isolation if the vibration field generated by the source is localised both in

space, over the building’s footprint, and in frequency. These studies highlight the value of using

power-flow approaches when investigating vibration transmission paths across the soil-building

interface.

When an SDOF system is excited by a steady-state, time-harmonic disturbance with angular

frequency ω , the mean vibrational power P̄ flowing into the element is

P̄ =
1
2

Re
(
iωuS∗

)
, (2.4)

where u and S∗ are the displacement and the complex (i =
√
−1) conjugate of the force S at the

element, respectively. Note, as derived by Talbot [221], the real part of the complex expression

within the brackets is considered in Eq. (2.4). If the element has multiple DOFs, the total mean

power flow is the sum of the mean powers for each DOF. For example, the mean power entering

an element with horizontal u, vertical w and rotational θ generalised displacements is

P̄ =
1
2

Re
(

iω
(
uS∗+wF∗+θQ∗

))
, (2.5)

where S∗, F∗ and Q∗ are the complex conjugate generalised forces corresponding to u, w and

θ , respectively. Hence, the PFIG in decibels for a base-isolated building can be expressed as

PFIG(iso) = 10log10

(
|P̄(iso)(x,ω)|
|P̄(uniso)(x,ω)|

)
, (2.6)

where P̄(iso) and P̄(uniso) are the total mean power flows entering across multiple points x along

the base of the building in the isolated and unisolated configurations, respectively.

2.3 Modes of Wave Propagation Through the Soil

A propagating wave transfers energy from a source to a receiver due to the oscillatory motion

of particles in a medium. In a simple one-dimensional space domain, this can be represented

using the homogeneous, hyperbolic wave equation:
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∂ 2u
∂x2 =

1
c2

0

∂ 2u
∂ t2 , (2.7)

where u(x, t) is the particle displacement as a function of the space x-domain and time t, and c0

is the wave phase speed. The classical D’Alembert solution to the wave equation is

u(x, t) = f (x− c0t)+g(x+ c0t) , (2.8)

where the arbitrary functions f (x− c0t) and g(x+ c0t) represent propagating waves travelling

at the same speed c0 in the positive and negative x-directions, respectively. It is important

to note that Eq. (2.8) describes non-dispersive waves: the waves propagate without distortion

because c0 is independent of the excitation frequency ω . The functions f (x, t) and g(x, t) can be

determined by applying appropriate boundary conditions. If the differential equations contain

higher order partial derivatives or external forces, such as q(x, t) in Eq. (2.7), it can lead to

dispersive relationships and the existence of leaky or evanescent waves. These are waves that

do not propagate; their energy is instead spatially concentrated near the vicinity of the vibration

source.

The following sections review the relevant literature on the propagation of elastodynamic

waves in a full-space and a half-space.

2.3.1 Wave Propagation in a Full-Space

The governing laws satisfied by all points within a homogeneous, isotropic, linear-elastic full-

space are given by Navier’s coordinate-free equations [82]:

(λ +µ)∇∇ ·u+µ∇
2u+ρb = ρü , (2.9)

where u and b are the displacements and internal body forces per unit mass, respectively, and ρ

is the density. The first and second elastic Lamé constants are λ and µ , respectively. Since the

material properties of an isotropic, homogeneous medium are uniquely defined by two elastic

moduli, the Lamé constants can be redefined in terms of the shear modulus G and Poisson’s

ratio ν : λ = 2Gν

1−2ν
and µ = G. Helmholtz’s theorem states that u can be decomposed into a

scalar φ and vector H potential [82]:

u = ∇φ +∇×H and ∇ ·H = 0 . (2.10)
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By considering only free waves (b = 0) and substituting Eq. (2.10) into Eq. (2.9), Navier’s

equation will be satisfied if

∇
2
φ =

(
ρ

λ +2µ

)
φ̈ =

1
c2

P
φ̈ , (2.11)

and

∇
2H =

(
ρ

µ

)
Ḧ =

1
c2

S
Ḧ . (2.12)

Equations (2.11) and (2.12) show that freely propagating waves in a full-space can take the form

of two non-dispersive body waves. The first body wave, governed by Eq. (2.11), is a dilatational

or irrotational field, commonly referred to as a pressure wave (P-wave), which propagates at a

phase speed of cP =
(

λ+2µ

ρ

)1/2
in the direction parallel to the plane of oscillation. The other

body wave, governed by Eq. (2.12), is an equivoluminal or solenoidal field, also known as a

shear wave (S-wave). Compared to P-waves, S-waves propagate at a slower phase speed of

cS =
(

µ

ρ

)1/2
in the direction perpendicular to the plane of oscillation. Shear waves also have

an additional polarisation property, where they can either oscillate parallel to the horizontal

(SH-wave) or vertical (SV-wave) plane.

As both P- and S-waves propagate away from a source through the bulk of the medium, the

oscillations are attenuated due to two mechanisms: radiation damping and material damping.

Radiation damping is dependent on the geometry of the soil domain when hemispherical body

wave-fields spread out as the distance R from the source increases, which causes the magnitude

to decrease by a factor of R−1. On the other hand, material damping causes the kinetic and strain

(potential) energy to be dissipated as thermal energy when a wave passes through a medium.

Multiple studies on piled foundation dynamics [76,186,187,191] use a frequency-independent

hysteretic damping model [45] for the soil. Through experimental work, Hunt [108] observed

that the soil exhibits hysteretic damping behaviour under low strains. Hunt also proposed that

all the energy dissipation in the soil occurs through shear deformation, described by the shear

modulus G, with no losses due to volumetric expansion, described by the bulk modulus K.

Hysteretic damping in the soil can be modelled using the viscoelastic correspondence principle

[18]:

G∗ = G(1+ iηG) , (2.13)

K∗ = K , (2.14)
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where G∗ is the complex shear modulus with hysteretic loss factor ηG. This form of damping

model has been used for the soil in numerous railway tunnel models [42,68,112,145], so it will

be used again in this dissertation. It is important to note that assigning a non-zero value to ηG

also converts the other elastic parameters of the material into complex variables.

2.3.2 Wave Propagation in a Half-Space

Since the majority of ground-borne vibration sources induce low shear strains in the soil, as

detailed in Section 2.1.1, and if no slip occurs at the soil-structure interfaces, it is reasonable to

model the soil as a homogenous, isotropic, linear-viscoelastic half-space. The presence of the

ground at the top of the half-space imposes a boundary constraint, which allows a third type of

wave to exist, known as a surface or Rayleigh wave (R-wave). These non-dispersive waves are

slower than body waves and are confined to a depth usually one wavelength below the surface.

The particles in the medium follow an elliptical path as the R-wave propagates. Since they are

found near the surface, R-waves are the least affected by radiation damping, with an attenuation

factor of R−1/2 [82]. The velocity components of the R-waves also decay exponentially with

depth, which is also a characteristic of evanescent waves.

The analytical solutions for the steady-state transfer functions of a homogeneous, isotropic

half-space subjected to point and distributed forces at the surface were first derived by Lamb

[151]. These solutions are expressed implicitly in the form of integral equations, which require
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Fig. 2.2 The pressure, shear and Rayleigh waves produced when a time-harmonic point force is applied
normal to the surface of a homogeneous, isotropic half-space (based on the original illustration by Woods
[245]).
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special convolution techniques to be solved, as detailed in a comprehensive review by Graff

[82]. Miller & Pursey [175] are often cited for publishing the energy distribution when a time-

harmonic, point force is applied normal to a circular region on the surface of a half-space. Of

the total input energy, the radiated energy is distributed as 67% R-waves, 26% S-waves and 7%

P-waves, as illustrated in Fig. 2.2.

In a layered half-space, where layers with different properties lie on top of one another,

dispersive waves can propagate along the interface between each layer. These waves travel at

phase speeds between the R-wave speed of the upper layer and the S-wave speed of the half-

space. The behaviour of waves at the interface depends on the layer properties and boundary

conditions; Stoneley waves appear at solid-solid interfaces that have different properties, while

Love waves are horizontally polarised waves that propagate parallel to the interface [82].

2.4 Modelling the Dynamics of an Underground Railway

Over the past 50 years, researchers have developed models to capture the dynamic train-track

and soil-tunnel interaction when an underground railway tunnel is excited. The first models of

surface railways considered discrete parts of the system; for example, Winkler [240] modelled

the track as an infinite beam on an elastic foundation. Simple SDOF models like this provide

useful insight on the propagation or stagnation of waves at different frequencies when analysing

their dispersion curves. One well-known characteristic is the cut-on frequency ωc [225]: waves

can only propagate along the track when the excitation frequency ω is greater than ωc. When

ω < ωc, then localised evanescent waves only exist along the track near the wheel-rail contact

points.

In recent years, computer-based models have become increasingly popular. However, even

with technological advances, assumptions based on reliable engineering principles need to be

made to achieve computational efficiency while, at the same time, maintaining good numerical

accuracy. The following sections examine the widely cited underground railway models in the

available literature. Models that use statistical energy analysis (SEA) [167] are not considered

in this dissertation because they are more suitable for systems that exhibit a high modal density

when excited, which does not occur at the excitation frequencies associated with underground

railways.
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2.4.1 Analytical Methods

Analytical approaches often provide the most insight because the governing relationships are

expressed in the equations of motion. Metrikine & Vrouwenvelder [173] provide an example

of a 2D analytical method, where the railway tunnel is modelled as an infinite Euler-Bernoulli

beam embedded in a viscoelastic soil layer. The steady-state response of the beam is derived

by moving a point force along the beam to simulate the motion of the train along the track.

However, the problem with 2D analytical models is two-fold: they cannot accurately simulate

the radiation damping in the soil, nor account for wave propagation perpendicular to the tunnel

[121,248]. These problems mean that the displacement wave-fields propagating from the tunnel

are overestimated.

Kausel [131] published a comprehensive collection of analytical transfer functions when

different dynamic loads – including point forces, line-loads, torques, and pressure pulses – are

applied in a full-space and a half-space. Tadeu & Kausel [219] made a significant contribution

when they derived the full-space Green’s functions or fundamental solutions for a line-load in

a 2D plane. The wavenumber domain is exploited to allow the amplitude of the line-load to

vary sinusoidally with respect to the space domain perpendicular to the 2D plane. This type of

formulation is known as a two-and-a-half-dimensional (2.5D) problem because the additional

wavenumber domain enables 3D wave propagation to be captured using two space domains.

Following on from this, Tadeu et al. [218] derived the 2.5D Green’s functions for a half-space.

These Green’s functions have been used in numerical [85] and semi-analytical [113] methods

to predict the ground-borne vibration from underground railway tunnels.

2.4.2 Numerical Methods

Physical vibration problems may involve soil layers, foundations or irregular railway tunnel

geometries, which make it difficult to solve the wave equations analytically. Thus, numerical

methods, such as the finite-difference time-domain (FDTD) method, the finite-element method

(FEM), and the boundary-element method (BEM), are widely used to solve these problems.

The Finite-Difference Time Domain (FDTD) Method

The FDTD method [236] is based on a strong formulation of the dynamic problem, where the

governing partial differential equations (PDEs) and boundary conditions are used to obtain
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closed-form solutions. Furthermore, the finite-difference (FD) form of the wave equations are

only solved between neighbouring nodes in a meshed structure. The advantage of this method,

over conventional FEM and BEM, is that less effort is needed to write the computational code.

However, if transient wave propagations are present in the time domain, the solution may

exhibit spurious oscillations, related to the Gibbs phenomenon [28], as well as dissipation and

dispersion errors in the wave propagation speed [11, 168].

Restrictions in the FD mesh can also make it challenging to satisfy the FD formulation

for the governing PDEs and the boundary conditions [10]. On account of this issue, complex

geometries are often difficult to model accurately, which has led to the gradual decline of the

FDTD method. Nevertheless, this method has been used to simulate the ground-borne vibration

near underground trains [227] and high-speed surface trains [129].

The Finite-Element Method (FEM)

The finite-element method [3] uses a weak formulation of the problem by restating the PDEs

as definite integrals. FEM is widely used in railway vibration problems due to its versatility to

model complex tunnel geometries. However, the traditional FEM cannot satisfy the radiation

damping condition in the ground, similar to the FTDT method, and it can also generate spurious

reflections at artificial edges in the discretised mesh.

Special handling is required, for instance through the application of infinite elements [15],

artificial boundaries [154], or perfectly matched layers (PML) [13], to suppress the undesirable

reflections in discretised infinite media. Yang et al. [248] applied the former approach to predict

the response of a longitudinally invariant tunnel. In this case, the near field close to the tunnel

was discretised using standard finite elements, while the far field was discretised using infinite

elements with a propagation function to capture the radiation damping. Bian et al. [16] applied

artificial boundary conditions in the far field by using gradually damped elements that absorbed

the waves propagating from the tunnel. The damping ratios of the far-field elements increased

in relation to a power law as the boundary was approached. Finally, PML is based on stretching

the far-field space by means of position-dependent, complex-valued scaling functions, which

cause the waves entering the PML region to attenuate exponentially. A 2.5D PML formulation

was adopted by Lopes et al. [159] to prevent the waves reflected at the edges of the PML domain

from entering the FEM domain of interest around an underground railway tunnel.
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The Boundary-Element Method (BEM)

The boundary-element method [12,52] is well-suited for the analysis of both infinite and semi-

infinite domains. A review paper about recent BEM advances by Liu et al. [156] covers a wide

range of engineering problems where it has been useful, including elastodynamics. Following

extensive research over the 1970s, BEM became the most widely used numerical method for

solving the strong formulation, written as a system of boundary integral equations (BIEs). BEM

works by only discretising the boundaries of the domain and then uses Green’s functions to find

the response at given points within the domain. In contrast to FEM meshes, spurious reflections

do not occur in BEM meshes, as no artificial boundaries have to be imposed. Therefore, it takes

less effort to discretise a BEM mesh when modelling the soil as a half-space.

BEM models formulated in the frequency domain have been regularly used to predict the

vibration of both single-tunnel [86] and twin-tunnel [87] underground railways. However, the

inclusion of train-track-tunnel interaction can sometimes lead to numerical difficulties. This is

because the tunnel walls can contain complex geometries, such as arched roofs, which need to

be discretised in the mesh [140]. Numerical errors can also arise when thin-walled tunnels are

discretised because the boundary elements, representing the inner and outer tunnel walls, are

close together [214].

The MATLAB Elastodynamics Toolbox (EDT) [211], developed at KU Leuven, has been a

valuable asset for researchers to model layered half-spaces. The Green’s functions for layered

half-spaces often contain transcendental functions, which have no closed-form solutions, so

the integrals are solved using sophisticated numerical techniques, such as the dynamic-stiffness

method (DSM) and the thin-layer method (TLM). A recent paper by Brookes et al. [26] used

the EDT to solve the 2.5D layered Green’s functions in a BEM model of the soil. The soil BEM

model is coupled to a railway tunnel model to predict the disturbances from a newly constructed

twin-tunnel section of the Elizabeth line beneath the Grand Central Recording Studios, London.

Even though qualitative similarities are observed, the numerical model generally overpredicts

the vibration levels compared to measurements taken over a year. This is most likely because

the numerical model neglects the presence of other soil-embedded structures close to the tunnel,

which may modify the response.
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The Coupled FEM-BEM Approach

Soon after the development of FEM and BEM, researchers proposed that coupling structures,

modelled using the two methods, could combine the advantages of both schemes. For example,

Andersen & Jones [2] used a coupled FEM-BEM approach to compare the dynamic responses

predicted from 2D and 3D models of a tunnel embedded in a half-space. Time-harmonic point

forces were used to excite the FEM model of a thick-walled tunnel, while the dynamics of the

soil were characterised using a BEM model. Their work re-emphasises that 2D models can, at

best, only provide generalised trends at low computational cost, while a 3D model is required

to make more accurate predictions.

FEM-BEM models have also been used to study 2.5D problems by assuming the tunnel is

invariant along its length [70,72,214]. However, most railway tunnels are lined with concrete or

cast iron segments, with circumferential stiffeners, once the tunnel is excavated using a tunnel

boring machine [98]. This introduces periodicity along the length of the tunnel, which can be

modelled by applying the Floquet transform in the longitudinal direction. Rigorous numerical

models, based on the Floquet transform, were developed by Clouteau et al. [31, 34]. Degrande

et al. [50] also adopt the Floquet transform to simulate a tunnel embedded in inhomogeneous

soil, with the use of periodic, layered Green’s functions. The periodic formulation offers more

flexibility to model a tunnel because the approach overcomes some of the problems associated

with 3D and 2.5D models [50]. Jin et al. [122] present an alternative periodic model that uses

the mode shapes of an equivalent isotropic cylinder for the tunnel, and the predicted responses

show reasonably good agreement with the measured train-induced vibration.

2.4.3 Semi-Analytical Methods

Even though the numerical methods in the previous section have become more efficient with

advances in computer processing power and storage capacity, it is common for a coupled FEM-

BEM model to take tens of hours to run. If engineers need to run multiple iterations of models

during the design stage of a project, these methods make the process economically unfeasible.

Semi-analytical methods improve computational efficiency while sacrificing some accuracy, as

they use simple tunnel geometries and numerical algorithms.

The pipe-in-pipe (PiP) model, which was initially developed by Forrest [68], is an efficient

semi-analytical tool for predicting the steady-state response of a railway tunnel embedded in a
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homogenous full-space. The PiP model represents the tunnel and the soil as concentric, hollow,

cylindrical shells, or ‘pipes’, which are coupled together at the soil-tunnel interface. A detailed

description of the PiP model, including the equations of motion, is presented in Appendix C.

Hussein et al. [113] extended the full-space PiP model so that it can simulate a tunnel embedded

in a homogeneous half-space by using the half-space Green’s functions [218] and the fictitious-

force method. When the half-space PiP model is compared against a rigorous, 2.5D FEM-BEM

model developed by François et al. [70], the predicted results show good agreement between 1

and 80 Hz [113].

A recent paper by Yuan et al. [250] presented a semi-analytical solution for the vibration

induced by a moving, time-harmonic point force in a tunnel. It implemented the superposition

principle by treating the wave-field as a summation of analytical expressions that correspond to

downward-travelling and upward-travelling waves. The displacement responses at the ground

surface showed good agreement with the predictions from a 2.5D FEM-BEM model [70] for

a shallow tunnel (5 m depth) and a deep tunnel (20 m depth). Since the half-space PiP model

uses the fictitious-force method, which assumes that the traction-free surface does not influence

the near field around the tunnel, it does not accurately predict the surface response for shallow

tunnels [250].

2.5 Modelling the Dynamics of a Piled Foundation

The foundation is the lower part of a building in direct contact with the ground. Foundations

fall into two main groups: shallow foundations (e.g., pad foundations, strip foundations, raft

foundations, and footings) and deep foundations (e.g., piled foundations, piers, and caissons).

Shallow foundations are often embedded less than 3 m in the ground and are used when the

surface soil is sufficiently stiff to support the static loads of the building. Deep foundations are

embedded at greater depths and help transmit static loads to stable soil strata, which are beyond

the reach of shallow foundations.

This dissertation will focus on piled foundations because piles are widely used during the

construction of tall buildings, and they are embedded at roughly the same depth as underground

railway tunnels. In practice, a foundation is described as being ‘piled’ when the depth is three

times greater than the breadth [5]. The top of a pile is called the pile head, while the bottom is

referred to as the pile toe. There are many types of piles, but the two main sub-groups are end-
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bearing piles and friction or floating piles. End-bearing piles are embedded through soft, upper

soil layers until they terminate on top of bedrock; the piles support the building predominantly

through the end-bearing resistance of the firmer bedrock at the pile toe [229]. Friction piles do

not reach down to bedrock and, hence, carry most of the load through skin-friction or adhesion

at the soil-pile interface [229].

Current building design codes for practitioners are given in the EN 1990 [61] and BS 8004

[25]. The two codes complement each other by following a limit-state design approach, where

potential problems are identified and subdivided into three limit-states to minimise the overall

risk. These include the ultimate, serviceability and durability limit-states. The ultimate limit-

state reduces the critical failure risk of the foundation and building, the serviceability limit-state

ensures the structure remains fit for purpose, and the durability limit-state ensures the structure

can resist attack from environmental conditions.

When piled foundations are located near a ground-borne vibration source, the two systems

will interact due to 3SI. One important aspect of 3SI is the study of how multiple soil-embedded

structures can cause waves to scatter or diffract around them. Therefore, the design of a piled

foundation could have a significant influence on the vibration transmission path from a railway

tunnel to a building. The current design practices for piled foundations provide no evidence that

the design is optimised to minimise this issue, which will affect the durability and serviceably

limit-states.

The following sections outline the scattered-field problem and review the relevant literature

on modelling the dynamics of a piled foundation.

2.5.1 The Scattered Wave-Field Problem

In general, the interaction of a propagating wave-field with discontinuities, or obstacles, in a

medium can result in two principal wave phenomena: diffraction and scattering. Diffraction is

defined as the bending or deflection of waves around the edge of an obstacle, while scattering

occurs when waves radiate outwards due to the interaction at an obstacle’s interface, primarily

through reflections. In the case of elastodynamic waves, the interaction of an incoming incident

wave-field with an embedded foundation or an underground tunnel is generally classified as a

scattered wave-field problem.

In most wave applications, finding the scattered wave-field at an obstacle is straightforward

because the wave-field remains either solenoidal (e.g., electromagnetic waves) or irrotational
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(e.g., acoustic waves) throughout the interaction process. However, an elastodynamic wave can

be decomposed into a scalar and vector potential by applying Helmholtz’s theorem, as detailed

in Section 2.3.1. This makes computing the scattered wave-field rather difficult, such as when

mode conversion occurs. A classic example of mode conversion in a homogeneous half-space

is when upward-travelling oblique P-waves are reflected as downward-travelling P-waves and

SV-waves by the traction-free surface [82].

A wave scattering problem with multiple obstacles in the soil can be divided into two types:

independent and multiple scattering [169]. The simplest approximation for the scattered wave-

field is independent scattering, which occurs when the distances between nearby obstacles are

large compared to the wavelengths in the soil. In this case, the obstacles can be assumed to be

dynamically uncoupled from each other. This simplification is often used in seismic analysis,

as the distance between the source and receiver is significantly large [17, 249]. However, if the

distances between obstacles is around the same order of magnitude as the soil wavelengths, the

waves can travel back and forth between the obstacles. This is regarded as a multiple scattering

problem because the obstacles interact with each other due to through-soil coupling.

Various techniques can be applied to solve problems involving multiple scatterers: integral

equation methods, iterative orders-of-scatter methods, transfer matrix (T-matrix) methods, and

the separation of variables. The latter two techniques are outside the scope of this dissertation

because the T-matrix method requires all the equations of the sub-systems to be formulated in

the same domain (e.g., the space-frequency domain), and the separation of variables can only be

applied to solve problems with closed-form solutions. For more details on all four approaches,

the reader can refer to Martin [169].

As reviewed in Section 2.4.2, the BEM is an integral equation method that can derive the

displacement frequency-response function (FRF), which is the matrix describing the dynamic

response of the system. The off-diagonal components of the FRF matrix relate to the coupling

between multiple structures. However, the computer memory required to store a large matrix

that accounts for the coupling between many structures can be unfeasible.

In comparison, the iterative wave-scattering approach is advantageous because the coupled

response between multiple structures can be approximated using a series of calculations. That

is to say, the scattered wave-field induced by an obstacle induces scattered wave-fields at other

obstacles, which in turn induce more scattered wave-fields, and so forth. During each iteration,

or order-of-scatter, the scattered wave-field induced at each obstacle is calculated in isolation.
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Convergence is achieved when the difference in the scattered wave-fields, between successive

iterations, falls below a threshold value. The iterative approach has been applied to approximate

the coupling between multiple obstacles in problems involving electromagnetic waves [65,89],

acoustic waves [64] and elastodynamic waves [54, 152]. However, the iterative approach has

not been applied to solve elastodynamic problems with 3D soil-embedded structures.

2.5.2 Modelling the Dynamics of a Single Pile

To understand the dynamic response of piled foundations, one must first consider the response

of a single pile. As the earliest models of piles are extensions of models for embedded footings,

this section begins with a brief description of some footing models.

The first studies on foundation dynamics considered simple footings resting on the soil, for

which analytical solutions exist. For example, Wong & Luco [243] present the expressions of

the dynamic impedances of a 3D rigid, rectangular footing due to force and moment excitation.

This was later extended to model embedded square footings and pad foundations by Mita &

Luco [176].

A landmark was achieved when Novak [188] derived the steady-state solution of a floating

pile subjected to a time-harmonic point load at the pile head. The motion of the pile is evaluated

in the vertical, horizontal and rotational directions. Unlike previous models, the Novak model

is able to account for both SSI and radiation damping in the soil. The model assumes plane-

strain conditions, so the soil is modelled as an infinite number of infinitesimally thin, horizontal

layers [9]. These layers extend to infinity from the soil-pile interface, where the pile is perfectly

bonded to the soil. Each soil layer along the soil-pile interface is represented as a spring with a

frequency-dependent stiffness and damping factor. The pile is modelled as an elastic bar and an

Euler-Bernoulli beam to account for axial and flexural vibration, respectively. Novak concludes

that while piles can be used to minimise permanent settlement in the soil, they cannot eliminate

vibration.

Togami & Novak [187] derived the analytical expressions for the response of an end-bearing

pile excited at the head by a vertical, point force. The dynamic stiffness and damping at the pile

head are compared to Novak’s plane-strain solution; the analytical model captured the dynamic

response reasonably well for slender piles and soft soils when the excitation frequency was less

than 80 Hz. Following on, the same researchers [191] derived the analytical expressions for the

response of an end-bearing pile when it is excited by a horizontal, point force. The comparison
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with Novak’s solution again showed reasonably good agreement over the same frequency range.

The experiments conducted by Novak & Grigg [189] and Cryer [48] also showed that Novak’s

solution predicted the response of single piles fairly well at very low frequencies below 10 Hz.

Kuhlemeyer is credited with developing the first rigorous, numerical solution for a single

pile subjected to static and dynamic forces in the lateral [143] and vertical [144] directions. It

uses a FEM model for the pile with the aid of non-reflecting boundaries. Good agreement is

observed between Kuhlemeyer’s and Novak’s [188] solutions for the vertical response when the

soil-pile stiffness ratio (or Young’s Modulus ratio) is Es/Ep = 10−2, but shows poor agreement

when Es/Ep is decreased. Hence, Kuhlemeyer [144] concludes that Novak’s model accurately

captures the vertical motion of floating piles made of wood or concrete.

2.5.3 Modelling the Dynamics of a Pile-Group

In general, the piles in a piled foundation are placed close together to form a pile-group, which

results in pile-soil-pile interaction (PSPI). The presence of neighbouring piles can cause two

prominent effects: the soil-stiffening effect occurs at low frequencies when the piles constrain

the motion of the surrounding soil; and the wave-scattering effect dominates at high frequencies

when the soil wavelengths are around the same order of magnitude as the pile diameter.

This section describes the techniques that are most widely used in pile-group modelling,

some of which are illustrated in Table 2.3. Two excitation mechanisms are considered: inertial

excitation is when a pile head is excited by a harmonic force; and kinematic excitation is when

each pile is excited by the incident wave-fields from a vibration source.

Inertial Excitation

Poulos was one of the first researchers to derive the static response of floating pile-groups that

are subjected to vertical [196] and lateral [197] forces at the pile heads. First, the response of

two piles within the group is computed when one of the piles is loaded. Then the response of the

whole pile-group is approximated by applying the linear superposition principle to superpose

the responses due to multiple sub-groups that consist of two piles. This approach is referred to

as the sub-system technique because each sub-system of two piles is regarded in isolation (i.e.,

the effect of PSPI on the soil displacement is not fully captured). In order to analyse the static

PSPI between two piles, Poulos [196] introduces the concept of an interaction factor, which

defines the displacement of an adjacent pile as a function of the displacement of a loaded pile.
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However, the static interaction factor is rarely used to study the steady-state behaviour of

pile-groups, as the dynamic response is highly dependent on the frequency of excitation. Wolf

& von Arx [242] and Nogami [185] discovered that pile-groups exhibit a frequency-dependent

response, which varies significantly from the static response. Hence, the frequency-dependent

interaction between two neighbouring piles, when one pile is excited by a time-harmonic load,

needs to be characterised by a dynamic interaction factor. Kaynia & Kausel [132,134] explored

the dynamic behaviour of pile-groups embedded in an isotropic, homogeneous medium using

the superposition principle. A semi-analytical, boundary-integral-type formulation, which uses

the layered Green’s functions for dynamic barrel loads and circular patch loads, is adopted to

calculate the soil’s dynamic stiffness matrix. In order to minimise computing power, the model

does not explicitly account for the presence of cavities around each embedded pile in the soil.

The dynamic interaction factors show good agreement with those obtained when the piles are

explicitly coupled together; both models exhibit frequency-dependent behaviour due to the

constructive and destructive interference between the individual piles. An extensive parametric

study by Mamoon et al. [166] on the response of single piles and pile-groups highlighted that,

even though Kaynia does not explicitly account for the cavities, only the responses of the single

piles show pronounced effects at high excitation frequencies due to the cavities.

Approximate and closed-form solutions for dynamic interaction factors continue to be of

interest to researchers because they are more computationally efficient than rigorous, numerical

solutions. Dobry & Gazetas [51] derived the approximate dynamic interaction factors for a pile-

group in a homogeneous half-space by considering the interference of cylindrical wave-fields

that originate from each pile. Mylonakis & Gazetas [177] idealised the soil-pile interface as a

dynamic Winkler foundation: a system of closely spaced linear-elastic springs and dashpots.

By considering how the incident wave-field from an oscillating ‘source’ pile is scattered by an

adjacent ‘receiver’ pile, closed-form solutions for the interaction factors are obtained. These

analytical solutions agree reasonably well with numerical solutions and also give further insight

into the nature of PSPI.

Talbot [221] adopted a 3D BEM model to simulate an infinitely long row of piles embedded

in a homogeneous half-space. Each pile was modelled as an elastic bar and an Euler-Bernoulli

beam to account for axial and flexural motion, respectively. The BEM model used smooth,

constant boundary elements, with four elements approximating the circumference of each pile

as a square. When compared against the static and dynamic compliances of a single pile [143,
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Type of model Pile-group schematic diagrams Author(s)

Analytical

Dobry & Gazetas [51] (L)
Makris & Gazetas [164]
Mylonakis & Gazetas [177] (R)

Semi-analytical
Hamad et al. [88] (L)
Kuo [145] (R)

BEM

Coulier [42] (L)
Kaynia [132] (R)
Talbot [221]

Coupled Àlamo et al. [1] (L)
BEM-FEM Millán & Domínguez [174] (R)

Table 2.3 Summary of different pile-group models that illustrate the increase in complexity from
analytical to coupled BEM-FEM solutions. The left (L) and right (R) diagrams for each type of model
illustrates a schematic representation of the pile-group for some of the authored examples.

144, 212], the BEM model shows very good agreement. At the time, limitations in computing

power prevented Talbot from producing multiple soil-pile interface meshes to model a pile-

group. Instead, he modified a single pile to represent a repeating unit. In order to account for

the PSPI, an infinite number of these repeating units are coupled to either side of a centrally

loaded pile using periodic structure theory. Thereby, the interaction factors between the central

pile and an adjacent pile can be computed. There is very good agreement between the dynamic

interaction factors predicted using Talbot’s model and Kaynia’s model [132,133]. Later, Talbot

coupled the piles to a 2D portal-framed structure via springs to represent a building resting on

isolation bearings. It is shown that if PSPI is neglected in a base-isolated building, it could lead

to an overprediction of 7 dB in the PFIG [221].

Recently, Millán & Domínguez [174] developed a coupled BEM-FEM model to analyse

the interaction of a pile-group in either viscoelastic or poroelastic soils. The cavities around the

embedded piles were represented using cylindrical boundary elements that were developed by

Coda et al. [36,37] to represent axisymmetric piles. Since the node of each cylindrical element

is located along the pile’s centroidal axis, no singularities are present when integrating over the
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cylindrical surface [174]. Good agreement is seen when the results are compared to dynamic

stiffness coefficients published by Kaynia & Kausel [134] for a single pile and a pile-group.

Other researchers have investigated the behaviour of pile-groups embedded in layered soil

media because it represents a more realistic situation. Hamad et al. [88] used a semi-analytical

approximation to capture the PSPI between two piles embedded in a multi-layered half-space

and compares the responses against a BEM model. The semi-analytical model adopted a hybrid

formulation, which combined the thin-layer method (TLM) with the dynamic-stiffness method

(DSM) through the use of the layered Green’s functions for circular patch loads [130]. At low

frequencies, under 35 Hz, there is reasonably good agreement between the two models when

predicting the driving-point displacement and the dynamic interaction factors. Nonetheless, the

semi-analytical model does not capture the far-field displacements at high frequencies, as the

patch loads do not account for cavities in the soil [88]. This means that the scattered wave-fields

at each pile do not fully account for the SSI around the pile’s circumferential boundary. It is

believed that this underpredicts the dynamic stiffness of the soil, resulting in notable differences

between the far-field displacements of the hybrid formulation and the BEM model [192].

Kinematic Excitation

Fan et al. [62] analysed the seismic response of a pile-group due to upward-travelling S-waves

by adopting the boundary-integral-type formulation developed by Kaynia & Kausel [134]. The

SSI within the pile-group is decomposed into two components: incident wave-field interaction

at a single pile and kinematic interaction between neighbouring piles. Their results show that

the response of the pile-group follows the low-frequency components of the incident wave-

field, while filtering out the high-frequency components. This shows that piled foundations can

be used to minimise the transmission of seismic vibration into buildings.

Mamoon & Ahmad [165] investigated the response of a single pile due to obliquely incident

SH-waves, SV-waves and P-waves using a hybrid BEM model. Their results also show the

presence of high-frequency filtering in the pile response, which reduces the pile displacement

amplitude as a function of frequency. More intermediate frequencies are filtered out when a

rigid pile is used compared to a flexible one. Pile length also influences the results, with longer

piles being more susceptible to vibration.

Makris & Gazetas [164] developed an analytical approach, based on a Winkler foundation,

to predict the dynamic response of various pile-groups that were excited by the same seismic
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incident wave-field used by Fan et al. [62]. The kinematic interaction between nearby piles was

insignificant, even when the piles were close together, so the PSPI can be neglected. Makris &

Badoni [163] reached a similar conclusion when they investigated the seismic response of pile-

groups due to R-waves and obliquely incident SH-waves.

Àlamo et al. [1] used a coupled FEM-BEM model to investigate how the presence of rigid

bedrock alters the performance of pile barriers when a time-harmonic point force is applied at

the surface of a layered elastic half-space. Appreciable differences between the responses with

and without the pile barrier were found when the piles touched the rigid bedrock. Increasing the

pile slenderness ratio also improved the barrier’s performance at low soil-pile stiffness ratios,

and decreasing the pile spacing had the greatest positive influence on the bedrock profile. These

conclusions indicate that end-bearing piles in contact with rigid bedrock provide a vibration

transmission path into the bedrock, which isolates the soil region behind the pile barrier against

vibration. An earlier parametric study by Gao et al. [73] also supports the conclusions made by

Àlamo et al. [1], as the study highlights that pile stiffness and separation can influence vibration

isolation performance.

2.5.4 The Train-Induced Response Due to a Railway Tunnel

The vibration generated by railway tunnels can also result in the kinematic excitation of a piled

foundation. A number of empirical techniques are available that can evaluate the train-induced

vibration of a building based on a statistical set of measurement data. Two empirical methods

are presented by Hood et al. [106] for predicting the response of buildings in the vicinity of

railway tunnels. Both approaches start with track measurement data, which is combined with a

series of factors or transfer functions obtained through statistical analysis. A similar approach

is also followed by Kuppelwieser & Ziegler [149], the difference being that some of the transfer

functions are obtained from theoretical models or database analysis.

While empirical techniques may be useful as scoping methods for predicting the vibration

and noise levels within a building, they should be used alongside rigorous, theoretical methods

that account for the physics of the dynamic problem. Empirical methods are restricted by the

following limitations: the difficulty for a compiled database of measurements to be statistically

significant for multiple sources, propagation paths and building typologies; and the transfer

functions for the source, propagation path and receiver are assumed to be independent, while

they are in fact interconnected.
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Kuo et al. [146] published one of the first papers that propose a semi-analytical method for

predicting the train-induced response of a pile-group. The piles, which are modelled as purely

elastic bars to capture the axial behaviour, are directly coupled to the soil along a series of nodal

points using the displacement FRF for an infinitesimal dipole in a viscoelastic full-space [204].

The use infinitesimal dipoles alleviates the problem of dealing with a stress singularity when a

point force is applied within an elastic solid. The incident wave-fields from the underground

railway are calculated using the PiP model for a half-space [114]. The paper concludes that the

foundation model should not neglect train-induced excitation, as it can cause the displacement

at the pile head to deviate by±10 dB [146]. However, PSPI and cavities in the soil are neglected

in the model, so the scattered wave-field is not accurately predicted.

Coulier [42] extended the BEM single-pile model developed by Talbot [221] to analyse the

motion of a pile-group, which takes PSPI and the cavities into account. The numerical model

captures the axial and flexural behaviour of the piles by using the governing equations for an

elastic bar and a Timoshenko beam [228], respectively. There is good agreement between the

dynamic interaction factors calculated using Coulier’s model and those published by Kaynia

[132] for two neighbouring piles. Coulier extends the pile-group model so that it can be excited

by the incident wave-fields from a railway tunnel using the half-space PiP formulation [114].

The PiP model is solved first, and then the incident wave-fields from the underground railway

are applied as input loads onto the boundary-element mesh using the sub-system technique.

The train-induced response of a row of four piles (a 1×4 pile-group) beside a railway tunnel is

compared against the greenfield response (i.e., the soil motion prior to adding the piles). The

difference in the responses is significant, with a variation between ±15 dB at high frequencies.

This shows that the added-foundation effect can markedly modify the ground vibration.

A semi-analytical approach developed by Kuo [145] takes inspiration from the PiP [68,112]

approach to model the pile as an infinite elastic cylinder within a viscoelastic full-space. The

axial and flexural waves in the infinite pile are approximated using specific circumferential ring

modes. The infinite pile is then transformed into a finite pile using the mirror-image theorem.

To find the train-induced response of a single pile, the finite pile is excited by the incident wave-

fields from a railway tunnel, which are calculated using the half-space PiP model [114]. When

modelling a pile-group, each pile is treated as an isolated sub-system and the superposition

principle is applied to couple neighbouring piles together. The train-induced response of a

1×4 pile-group, with and without PSPI, is compared between Coulier’s and Kuo’s models. The
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vertical pile-head displacement varies as much as 10 dB between the two models when PSPI is

included. In some cases, when PSPI is neglected in Kuo’s model, there is better agreement with

Coulier’s BEM model at certain frequencies. This shows that the superposition method does

not accurately capture the PSPI between piles [145]. Furthermore, the mirror-image theorem

causes residual tractions to appear at the surface [212], which can lead to errors.

In their models, Coulier [42] and Kuo [145,146] assumed that the wheel-rail roughness was

spatially harmonic. However, in reality, the excitation due to the wheel-rail roughness exhibits

random characteristics, as the wheel and rail profiles are irregular. Hussein et al. [117] account

for this by approximating the irregularities at the wheel-rail interface as a white-noise power-

spectral density (PSD). The sub-system technique is adopted to model the tunnel-foundation

system, whereby the incident wave-fields, predicted using the PiP model, excite a collection of

piles, which are modelled using the semi-analytical approach developed by Hamad et al. [88].

However, this semi-analytical approach is unable to accurately capture the scattered wave-fields

at the soil-pile interface because the soil cavities are neglected. Nevertheless, the results show

that coupling a 2D building to the piles causes significant attenuation, of around 15 dB, in the

vertical displacement PSD, which suggests that the added-building effect may be significant.

The semi-analytical [117, 145, 146] and numerical [42] methods presented in this section

model the tunnel and foundation as an uncoupled source-receiver system. In order words, the

waves propagating from the tunnel are able to excite the piles, but the waves that are scattered

by the piles are unable to re-excite the tunnel. Therefore, the through-soil coupling between the

two sub-systems is neglected, which is only applicable if the source-receiver distance is greater

than the wavelengths in the soil because, in this case, the scattered wave-fields from the piles do

not significantly influence the tunnel vibration. However, buildings and foundations are often

constructed close together in densely populated cities. Surveys conducted along sections of the

Channel Tunnel Rail Link (CTRL), London [119] and the Metropolitan Rapid Transit (MRT),

Singapore [194] found railway tunnels that are about 1 to 1.6 m clear of structural foundations.

In such cases, wave scattering must be considered at both the soil-tunnel and soil-foundation

interfaces in order to accurately account for through-soil coupling. Therefore, there is a need to

develop computationally efficient models that do not neglect the through-soil coupling between

soil-embedded structures.
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2.6 Conclusions

Section 2.1 highlighted that railways, roads, earthquakes and construction work are all sources

of ground-borne vibration that can cause structural problems and environmental disturbances

in buildings. In particular, the vibration from underground railways rarely results in structural

damage, but building occupants often complain about being adversely affected, both mentally

and physically. Section 2.2 showed that modifying the railway track (source), the transmission

path, or the foundation and building design (receiver) can mitigate the overall vibration induced

in a building.

Since transient disturbances do not generally cause prolonged vibration levels, the analysis

is restricted to steady-state excitation in three-dimensional space, so all the numerical models

in this dissertation will be formulated in the frequency domain. Unless specified otherwise, the

frequency range of interest will be between 1 and 80 Hz since these frequencies are associated

with the perception of ground-borne vibration. The ground will be modelled as a homogeneous,

isotropic half-space, as described in Section 2.3. Although this may not be fully realistic (soil

layers, voids, etc., are disregarded), the half-space accounts for the P-, S- and R-waves that are

widely found in the ground. It is recommended that the effects due to soil layering should be

considered in further work to account for inhomogeneity in the ground (see Chapter 8).

Based on the railway models discussed in Section 2.4, the tunnel in this dissertation will be

modelled as a longitudinally invariant, cylindrical shell, which is representative of the geometry

of a typical subway tunnel. It also means that computationally efficient techniques can be used

to calculate the tunnel vibration in the wavenumber-frequency domain. The train-track model

will consider the wheel-rail roughness as the primary excitation mechanism due to the passage

of an average-speed metro train along a well-maintained track. Random vibration due to track

irregularities are neglected in this dissertation because they tend to skew the results, making it

difficult to ascertain the physics governing the response.

Section 2.5 emphasised that the foundation model in this dissertation needs to account for

the presence of soil cavities, the PSPI between neighbouring piles, and the axial and flexural

vibration of the piles themselves. Even though existing piled foundation models have captured

the dynamics of piles under inertial loading and kinematic loading due to seismic waves, only

a limited number of models have attempted to partially study the added-foundation effect when

a piled foundation modifies the vibration field from a railway tunnel. No extensive parametric
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studies have been conducted to understand the parameters governing the train-induced vibration

of the piles. Furthermore, the through-soil coupling between a railway tunnel and nearby piles

is neglected in existing tunnel-foundation models. These gaps in the literature originate due to

complexities in the problem, particularly in modelling the 3SI, as the wave-fields interact with

multiple soil-embedded structures. Hence, a comprehensive generalised model is required that

captures the essential dynamic behaviour of the entire tunnel-foundation system while, at the

same time, remaining computationally efficient.
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Development of a Piled Foundation Model

The models discussed in Section 2.5 highlight the importance of capturing the dynamics of

a foundation when considering the interaction with other soil-embedded structures, such as

railway tunnels. Therefore, a comprehensive model of the piled foundation (or pile-group) is

required that accounts for the following dynamic behaviour:

1. axial and flexural motion of the pile as forces and moments are applied at the pile head;

2. pile-soil-pile interaction (PSPI), which captures the wave interaction between multiple

neighbouring piles in the surrounding soil.

This chapter describes the development of a piled foundation model that satisfies the above

requirements by using the BEM detailed in Appendix B.6. Sections 3.1 and 3.2 describe the

pile and soil models, while the coupling between the two models is detailed in Section 3.3. In

Section 3.4, the BEM pile-group model is compared against Kaynia’s model [132], and some

concluding remarks are given in Section 3.5.

The BEM pile-group model is based on the single-pile and pile-group models developed by

Talbot [221] and Coulier [42], respectively. The following changes are applied to Talbot’s and

Coulier’s models to improve the computational efficiency of the new pile-group model.

1. In this dissertation, the dynamic-stiffness method (DSM) [30] is adopted to calculate the

pile’s dynamic-stiffness matrix, which is then inverted to compute the displacement FRF

matrix (see Section 3.1). This makes the application of different boundary conditions at

the head and toe of the pile into a straightforward process: the rows and columns in the

dynamic-stiffness matrix, corresponding to the respective forces and displacements that

are constrained by the boundary conditions, can be simply deleted.
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2. The algebraic expressions in Coulier’s model are more involved; the equations need to be

extensively reformulated each time a new pile is added. Therefore, in this dissertation, a

different approach involving block-diagonal matrices is used instead (see Section 3.1.2).

This makes the addition of new piles a simple procedure, and the equations can also be

generalised for any pile-group configuration.

To solve the steady-state response of a pile-group due to inertial excitation, the loads applied

at a pile head are assumed to be time-harmonic. Thus, the governing equations of motion can be

solved in the space-frequency (x,ω)-domain, where x is a position vector and ω is the angular

excitation frequency. For example, the displacement vector ū in the space-time (x, t)-domain

can be written as

ū(x, t) = Re
(

u(x,ω) · eiωt
)
, (3.1)

where u is the complex
(

i =
√
−1
)

displacement vector in the (x,ω)-domain. For clarity, the

exponential term is omitted from the remainder of this chapter. Note that only the real part of a

complex displacement or force accounts for the physical behaviour of a system.

3.1 The Pile Model

The DSM is used to capture the response of each cylindrical pile along its centroidal axis. It

is assumed that the pile’s axial and flexural motion are uncoupled because the axial forces are

not significant enough to influence the pile’s flexural response. Analytical expressions for the

uncoupled axial-flexural motion can be derived by modelling the pile as an elastic bar and an

Euler-Bernoulli beam. Since the pile response is dominated by radiation damping in the soil, it

is unnecessary to account for material damping in the pile, which would normally be achieved

through a hysteretic loss factor [18].

Talbot [221] tests if Euler’s assumptions are valid for a typical pile in comparison to using

Timoshenko beam theory, where rotational inertia and shear deformation are considered [228].

At the frequencies associated with ground-borne vibration, Talbot concludes that the errors due

to Euler’s assumptions are negligible. Thus, it is unnecessary to model the pile as a Timoshenko

beam. The pile’s cross-section is represented using four elements, as detailed in Section 3.2.

The following sections derive the governing equations of motion for a single pile and a

pile-group with N piles.
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3.1.1 The Single-Pile Case

A single pile is discretised into nP−1 equally spaced nodes and a further two nodes are added

for the pile head and toe, giving a total of nP bar-beam elements. The pile is defined by the

following parameters: length L, mass density ρp, cross-sectional area Ap, Young’s modulus Ep

and second moment of inertia Ip. The pile head is free to rotate about the x- and y-axes, so the

pile is unconstrained. Bar-beam element j, as illustrated in Fig. 3.1, contains five degrees of

freedom (DOFs) at each node and is defined by the following parameters: L j, ρ j = ρp, A j = Ap,

E j = Ep, I j = Ip. The lengths of all elements in a pile must satisfy L =
nP
∑
j=1

L j.

For the axial motion ūz(l, t) of an elastic bar in the z-direction, the governing undamped,

free-vibration equation is given by Newland [181]:

∂ 2ūz

∂ t2 −
Ep

ρp

∂ 2ūz

∂ l2 = 0 . (3.2)

At a point l along the element, the general steady-state solution for the vertical displacement in

the z-direction is

uz (l,ω) = c1eiαl + c2e−iαl , (3.3)

where α = ω

(
ρp
Ep

)1/2
is the wavenumber of axial waves, ω is the excitation frequency, and c1

and c2 are the complex coefficients. The force due to axial motion in the z-direction is

qy
j+1
(

θy
j+1
)

qy
j
(

θy
j
)

fz
j(

uz
j
) fz

j+1(
uz

j+1
)
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j
(
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j
)
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j+1

(
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j+1
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Fig. 3.1 Representation of a pile as a bar-beam element of length L j in the (a) xz- and (b) yz-planes. The
superscripts ‘j’ and ‘j+1’ are used to denote the generalised forces

(
fx, fy, fz,qx,qy

)
and displacements(

ux,uy,uz,θx,θy
)

at the left- and right-hand nodes, respectively.
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fz (l,ω) = EpAp
∂uz

∂ l
. (3.4)

For the flexural motion ūx(l, t) of an Euler-Bernoulli beam in the x-direction, the governing

undamped, free-vibration equation is given by Newland [181]:

∂ 2ūx

∂ t2 +
EpIp

ρpAp

∂ 4ūx

∂ l4 = 0 . (3.5)

At a point l along the element, the general steady-state solution for the lateral displacement in

the x-direction is

ux (l,ω) = c3eβ l + c4e−β l + c5eiβ l + c6e−iβ l , (3.6)

where β =
√

ω

(
ρpAp
EpIp

)1/4
is the wavenumber of flexural waves, and c3, c4, c5 and c6 are the

complex coefficients. The rotation θy and moment qy about the y-axis, and the force fx in the

x-direction are

θy (l,ω) =
∂ux

∂ l
, qy (l,ω) = EpIp

∂ 2ux

∂ l2 and fx (l,ω) = EpIp
∂ 3ux

∂ l3 . (3.7)

The generalised forces and displacements expressed in Eqs. (3.3), (3.4), (3.6) and (3.7) are

related through the following boundary conditions:

ux = ux
j,uz = uz

j,θy = θy
j, fx = fx

j, fz =− fz
j,qy =−qy

j at l =−
L j

2
, (3.8a)

ux = ux
j+1,uz = uz

j+1,θy = θy
j+1, fx =− fx

j+1, fz = fz
j+1,qy = qy

j+1 at l =
L j

2
, (3.8b)

where the superscripts ‘j’ and ‘j+ 1’ denote the variables at the left- and right-hand nodes of

each bar-beam element j.

At the nodes of element j, the following two matrix equations can be assembled for the

generalised displacements and forces due to axial motion in the z-direction:

 uz
j

uz
j+1

=

e−iαL j/2 eiαL j/2

eiαL j/2 e−iαL j/2


 c1

c2

 , (3.9)

 fz
j

fz
j+1

= EpAp

−iαe−iαL j/2 iαeiαL j/2

iαeiαL j/2 −iαe−iαL j/2


 c1

c2

 . (3.10)
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Likewise, the following matrix equations denote the generalised displacements and forces due

to flexural motion in the x-direction:

ux
j

θy
j

ux
j+1

θy
j+1


=


e−βL j/2 eβL j/2 e−iβL j/2 eiβL j/2

βe−βL j/2 −βeβL j/2 iβe−iβL j/2 −iβeiβL j/2

eβL j/2 e−βL j/2 eiβL j/2 e−iβL j/2

βeβL j/2 −βe−βL j/2 iβeiβL j/2 −iβe−iβL j/2





c3

c4

c5

c6


, (3.11)



fx
j

qy
j

fx
j+1

qy
j+1


= EpIp


β 3e−βL j/2 −β

3e
βL j/2 −iβ 3e−iβL j/2 iβ 3eiβL j/2

−β 2e−βL j/2 −β 2eβL j/2 β 2e−iβL j/2 β 2eiβL j/2

−β 3eβL j/2
β 3e−βL j/2 iβ 3eiβL j/2 −iβ 3e−iβL j/2

β 2eβL j/2 β 2e−βL j/2 −β 2eiβL j/2 −β 2e−iβL j/2





c3

c4

c5

c6


. (3.12)

Similar matrix equations to Eqs. (3.11) and (3.12) also exist for the vectors of generalised

displacements
{

uy
j,θx

j,uy
j+1,θx

j+1
}T

and generalised forces
{

fy
j,qx

j, fy
j+1,qx

j+1
}T

due to

flexural motion in the y-direction, where the superscript ‘T’ denotes the vector transpose. In

this case, the complex coefficients are denoted as c7, c8, c9 and c10.

By combining all the equations of motion for element j, the following two matrix equations

can be obtained:

u j =



ux
j

uy
j

uz
j

θx
j

θy
j

ux
j+1

uy
j+1

uz
j+1

φx
j+1

φy
j+1



= M jc and f j =



fx
j

fy
j

fz
j

qx
j

qy
j

fx
j+1

fy
j+1

fz
j+1

qx
j+1

qy
j+1



= N jc , (3.13)

where the vectors u j and f j contain all ten generalised displacements and forces at the nodes,

c = {c1,c2,c3,c4,c5,c6,c7,c8,c9,c10}T is the complex coefficient vector, and both M j and N j
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are 10× 10 matrices. After rearranging Eq. (3.13), the dynamic-stiffness matrix K j [199] for

element j can be expressed as

f j = K ju j . (3.14)

The boundary conditions for the generalised displacements and forces in Eq. (3.8) are used to

attach consecutive bar-beam elements from end-to-end until the dynamic-stiffness matrix K for

the entire pile is assembled:

f = Ku , (3.15)

where the vectors u and f denote the displacements and forces along the pile’s centroidal axis.

Equation (3.15) can be rearranged as follows:

u = K−1f = Hf , (3.16)

where H is the displacement FRF matrix of a free-free pile. The dimensions of matrices H and

K are the same: 5(nP +1)×5(nP +1).

The nodes below the pile head are not excited by external moments at the soil-pile interface,

so these particular nodes only have three DOFs due to translation. Therefore, Eq. (3.16) can be

rewritten as 

ux
1

uy
1

uz
1

θx
1

θy
1

ux
2

uy
2

uz
2

...

ux
nP+1

uy
nP+1

uz
nP+1



= H(i)
P



fx
1

fy
1

fz
1

qx
1

qy
1

fx
2

fy
2

fz
2

...

fx
nP+1

fy
nP+1

fz
nP+1



, (3.17a)

or simplified:

u(k) = H(k)
P f(k) , (3.17b)
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where H(k)
P is the displacement FRF matrix of pile k. Note that the node at the pile head contains

five DOFs in Eq. (3.17). Torsional rotation about the pile’s longitudinal axis is excluded, as the

net contribution of the torsion of each pile on the torsional response of the entire pile-group is

negligible [190].

By partitioning H(k)
P into four sub-matrices, Eq. (3.17) can be rewritten as the following

matrix equation: 
u(k)

PH

u(k)
P

=

H(k)
P11 H(k)

P12

H(k)
P21 H(k)

P22




f(k)PH

f(k)P

 , (3.18)

where the vector subscripts ‘PH’ and ‘P’ denote the field variables at the pile-head node and all

other pile nodes, respectively. Equation (3.18) can be separated into the following two matrix

equations:

u(k)
PH = H(k)

P11f(k)PH +H(k)
P12f(k)P , (3.19)

u(k)
P = H(k)

P21f(k)PH +H(k)
P22f(k)P . (3.20)

In the subsequent section, it is shown how expressing Eqs. (3.19) and (3.20) in this form makes

it convenient to assemble the block-diagonal matrices, which describe the dynamic behaviour

of multiple piles.

3.1.2 The Pile-Group Case

Now, consider when there are N piles arranged as a pile-group. The total number of bar-beam

elements in the group is NP =
N
∑

k=1
n(k)P . By generalising Eq. (3.19) for N piles, the pile-head

displacement of each pile can be written as the following matrix equations:

u1
PH = H1

P11f1
PH +H1

P12f1
P ,

u2
PH = H2

P11f2
PH +H2

P12f2
P ,

... =
...

uN
PH = HN

P11fN
PH +HN

P12fN
P .

(3.21)

The N matrix equations in Eq. (3.21) can be combined into a single matrix equation:
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u1
PH

u2
PH
...

uN
PH


=


H1

P11 0 . . . 0

0 H2
P11 0

... . . . ...

0 0 . . . HN
P11





f1
PH

f2
PH
...

fN
PH


+


H1

P12 0 . . . 0

0 H2
P12 0

... . . . ...

0 0 . . . HN
P12





f1
P

f2
P
...

fN
P


, (3.22a)

or simplified:

uPH = HP11fPH +HP12fP, (3.22b)

where the vectors uPH, fPH and fP describe the displacements and forces of all N piles. The

block-diagonal matrices HP11 and HP12 of the piles have dimensions of 5N×5N and 5N×3NP,

respectively.

A similar matrix equation can be derived by generalising Eq. (3.20) for a pile-group:

uP = HP21fPH +HP22fP , (3.23)

where the block-diagonal matrices HP21 and HP22 have dimensions of 3Np×5N and 3Np×3Np,

respectively. Both Eqs. (3.22) and (3.23) are expressed in a form that makes it easier to couple

the pile and soil models at the soil-pile interface (see Section 3.3).

3.2 The Soil Model

In order to account for the PSPI in a piled foundation, an appropriate model of the soil must

be used that simulates the dynamic behaviour of the ground. Similar to previous papers that

have investigated the dynamics of pile-groups [43, 165, 166, 223], the BEM is used to model

the soil domain in this dissertation. Since no artificial boundaries are imposed in this method,

spurious reflections are avoided and radiation damping is inherently accounted for in the soil,

as presented in Section 2.4.2. The BEM model, described here, uses the Green’s functions for

a homogeneous, isentropic full-space (see Appendix B.4). Note, alternative Green’s functions

could also be used in this BEM formulation, such as those for a 3D layered half-space [31] so

that the ground is representative of realistic soil profiles (see Section 2.5).

By applying the viscoelastic correspondence principle [18], material damping is included

in the soil via a hysteretic loss factor ηG for the shear modulus, as discussed in Section 2.3.1.

However, Talbot [221] finds that radiation damping in the soil dominates any material damping,

so the precise value of ηG is not very important.

48



CHAPTER 3. DEVELOPMENT OF A PILED FOUNDATION MODEL

(a) (b)

Fig. 3.2 Examples of the unbounded boundary-element meshes for the soil domain around (a) a single
pile and (b) a 1×4 pile-group. The coloured elements identify the free surface (green) and the soil-pile
interface (red).

The 3D half-space domain for the soil consists of two main boundaries: the free surface and

the soil-pile interface. The free surface needs to be discretised to account for the zero traction

boundary condition at the ground surface, otherwise the full-space Green’s functions cannot

accurately capture the wave interaction within a semi-infinite domain. The dynamic coupling

between piles is achieved at the soil-pile interface, which is formed by discretising the soil

cavities around the circumference of each embedded pile.

Special consideration must be given to the number of boundary elements around each pile’s

circumference so that numerical accuracy and computational efficiency is maintained by the

solver. Talbot [221] examines how the number of circumferential boundary elements around

a rigid cylindrical cavity influences the dynamic stiffness of an infinite, viscoelastic medium

by comparing a two-dimensional BEM model, constrained under plain-strain conditions, with

analytical solutions for the non-dimensional transverse stiffness Kt and longitudinal stiffness Kl .

As the number of circumferential elements is increased from 4 to 16, the numerical results tend

to converge with the analytical solutions. However, the errors in the numerical results increase

as the excitation frequency is increased. This is because, at high frequencies, the wavelengths

in the soil approach the same order of magnitude as the cavity diameter, which means that the

wave interaction at the cavity is not fully captured by the discretised elements. Nevertheless,

Talbot concludes that the advantages in using 4 circumferential elements, which include lower

computation time and faster mesh discretisation, outweigh the numerical errors. Hence, square

elements are adopted in this dissertation to discretise the boundary-element mesh for the soil,

which forms a 4-element square section at the free surface when 4 elements are placed around

the circumference of each pile.
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The unbounded boundary-element mesh for the soil domain, as illustrated in Fig. 3.2 for a

single pile and a 1×4 pile-group, contains a total of NT elements. The sides of the free surface

are represented using N1 and N2 elements. Smooth, constant boundary elements are used in

the mesh, so the displacement and traction wave-fields are assumed to be uniform over each

element and equal to the central node value.

3.2.1 The Single-Pile Case

For a single pile, the boundary-element mesh is represented by NFS = N1N2− 1 elements at

the free surface and nSP elements at the soil-pile interface. In Appendix B.6, the relationship

between the displacement and traction wave-fields at the NT boundary element nodes is derived,

which is repeated here for convenience:

Hu = Gp , (3.24)

where H and G are the 3NT×3NT frequency-dependent collocation matrices, which inherently

account for the through-soil coupling between all discretised boundary surfaces in the domain.

This means that the soil and pile models can be fully coupled together at the soil-pile interface.

The vector u in Eq. (3.24) denotes the displacement wave-field at the NT nodes:

u =
{

ux
1,uy

1,uz
1 | ux

2,uy
2,uz

2 | . . . | ux
NT,uy

NT,uz
NT
}T

, (3.25)

where u j =
{

ux
j,uy

j,uz
j
}T

is the displacement wave-field at node j in the global Cartesian

(x,y,z) coordinate system. Likewise, the vector p corresponds to the traction wave-field at the

NT nodes:

p =
{

px
1, py

1, pz
1 | px

2, py
2, pz

2 | . . . | px
NT, py

NT , pz
NT
}T

. (3.26)

Rearranging Eq. (3.24) gives

u = H−1Gp = HSp , (3.27)

where HS is the soil displacement FRF matrix that relates the displacement and traction wave-

fields across different nodes.

By partitioning HS into four sub-matrices, Eq. (3.27) can be rewritten as the following

matrix equation:
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uFS

u(k)
SP

=

HS11 HS12

HS21 HS22


pFS

p(k)
SP

 , (3.28)

where the vector subscripts ‘SP’ and ‘FS’ denote the response at the soil-pile interface of pile

k and the free surface, respectively.

3.2.2 The Pile-Group Case

For a pile-group with N piles, there are NFS =N1N2−N free surface elements and NSP =
N
∑

k=1
n(k)SP

soil-pile interface elements. The respective soil displacement FRF matrix HS for the pile-group

can be partitioned, similar to Eq. (3.28), into four sub-matrices:



uFS

u1
SP

u2
SP
...

uN
SP


=

HS11 HS12

HS21 HS22





pFS

p1
SP

p2
SP
...

pN
SP


. (3.29)

In this case, the dimensions of sub-matrices HS11, HS12, HS21 and HS22 are 3NFS×3NFS,

3NFS×3NSP, 3NSP×3NFS and 3NSP×3NSP, respectively. Equation (3.29) can be separated

into the following two matrix equations:

uFS = HS11pFS +HS12pSP , (3.30)

uSP = HS21pFS +HS22pSP , (3.31)

where the vectors uSP =
{

u1
SP,u

2
SP, . . . ,u

N
SP

}T
and pSP =

{
p1

SP,p
2
SP, . . . ,p

N
SP

}T
denote the

displacement and traction wave-fields, respectively, at the soil-pile interfaces of all N piles.

3.3 The BEM Pile-Group Model

In this section, the coupling equations at the soil-pile interface are first derived for the single-

pile case and are then extended for the pile-group case by re-expressing the equations in terms

of block-diagonal matrices. These equations are later used to couple the pile (see Section 3.1)
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and soil (see Section 3.2) models together so that the dynamic response of a pile-group can be

evaluated due to inertial excitation.

3.3.1 The Single-Pile Case

Each pile is assumed to be perfectly bonded to the soil at the soil-pile interface, such that no

voids are present, which is justified given the low-strain amplitudes associated with the ground-

borne vibration of interest. Therefore, each node along the pile’s centroidal axis, except for the

pile-head node, is coupled to the corresponding central nodes of four boundary elements at the

soil-pile interface. Each group of four boundary elements at the soil-pile interface is assumed to

deflect as a rigid structure, as local deformation around the pile due to Poisson’s ratio effects is

neglected. Thus, compatibility between the displacements along the pile’s centroidal axis and

the displacement wave-field at the soil-pile interface requires

uSP
4 j−3 = uSP

4 j−2 = uSP
4 j−1 = uSP

4 j = uP
j for j = 1,2, . . . ,nP−1 , (3.32a)

at intermediate nodes (i.e., between the pile head and toe), and

uSP
4nP−3 = uP

nP , (3.32b)

at the pile toe, where 4nP−3 = nSP. Each pile node j is numbered starting from the first node

below the pile head towards the toe.

For pile k in a pile-group, Eq. (3.32) simplifies to the following matrix equation:

u(k)
SP = Q(k)

1 u(k)
P , (3.33)

where Q(k)
1 is a transformation matrix expressed in terms of the 3×3 identity matrix I as

Q(k)
1 =



I I I I

I I I I
. . .

I I I I

I



T

. (3.34)

Satisfying equilibrium between the traction wave-field on the soil-pile interface and the

forces on the pile’s centroidal axis leads to
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fP
j =−b2

(
pSP

4 j−3 +pSP
4 j−2 +pSP

4 j−1 +pSP
4 j
)

for j = 1,2, . . . ,nP−1 , (3.35a)

at intermediate nodes, and

fP
nP =−b2pSP

4nP−3 , (3.35b)

at the pile toe, where the side length of each square boundary-element is b.

For pile k in a pile-group, Eq. (3.34) simplifies to the following matrix equation:

f(k)P =−b2
[
Q(k)

1

]T
p(k)

SP =−Q(k)
2 p(k)

SP , (3.36)

where Q(k)
2 is a transformation matrix.

3.3.2 The Pile-Group Case

Similar to Eq. (3.22), Eq. (3.33) can be generalised to apply for N piles by combining the N

equations into a single matrix equation:



u1
SP

u2
SP
...

uN
SP


=


Q1

1 0 . . . 0

0 Q2
1 0

... . . . ...

0 0 · · · QN
1





u1
P

u2
P
...

uN
P


, (3.37a)

or simplified:

uSP = Q1uP , (3.37b)

where Q1 is a 3NSP×3NP block-diagonal transformation matrix. Applying the same pile-group

generalisation to Eq. (3.36) results in the following matrix equation:

fP =−Q2pSP , (3.38)

where Q2 is a 3NP×3NSP block-diagonal transformation matrix.

3.3.3 The Coupled Response of a Pile-Group

By using the coupling equations derived in the previous section and the governing equations

for the pile and soil models, the response of a pile-group can be derived when one or multiple
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pile heads are driven by a generalised load fPH. The following governing equations are used in

the derivation: Eqs. (3.22), (3.23), (3.30), (3.31), (3.37) and (3.38).

Pre-multiplying Eq. (3.23) by Q1 and substituting in Eqs. (3.37) and (3.38) gives

uSP = Q1HP21fPH−Q1HP22Q2pSP . (3.39)

Substituting Eq. (3.31) into Eq. (3.39) gives

HS21pFS +HS22pSP = Q1HP21fPH−Q1HP22Q2pSP . (3.40)

Equation (3.40) is rearranged as follows:

(HS22 +Q1HP22Q2)pSP = Q1HP21fPH−HS21pFS . (3.41)

Hence, the matrix equation for the traction wave-field pSP at the soil-pile interface, as a function

of the pile-head forces fPH and free surface tractions pFS, is

pSP(x,ω) = A(Q1HP21fPH−HS21pFS) , (3.42)

where

A = (HS22 +Q1HP22Q2)
−1 . (3.43)

The traction-free boundary condition at the free surface is satisfied by setting pFS = 0, which

simplifies Eq. (3.42) to

pSP(x,ω) = AQ1HP21fPH . (3.44)

By substituting Eq. (3.44) back into the governing equations, the following matrix equations

are derived for the other variables:

fP(x,ω) =−Q2AQ1HP21fPH , (3.45)

uP(x,ω) = (HP21−HP22Q2AQ1HP21) fPH , (3.46)

uPH(x,ω) = (HP11−HP12Q2AQ1HP21) fPH , (3.47)

uSP(x,ω) = HS22AQ1HP21fPH , (3.48)

uFS(x,ω) = HS12AQ1HP21fPH . (3.49)
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3.4 Validating the BEM Pile-Group Model

Talbot [221] shows there is good agreement over the frequency range of interest between the

responses predicted using the BEM single-pile model and the static and dynamic compliance

results published by Kuhlemeyer [143, 144] and Sen et al. [212]. Moreover, Talbot notes that

although the square elements around the soil-pile interface do not directly account for the

pile’s axisymmetry, disturbances at the free surface appear as circular wavefronts around the

pile. Coulier [42] also observes good agreement in his pile-group model by performing similar

validation tests to Talbot for a single pile. Therefore, to avoid repetition, the BEM pile-group

model developed in this chapter will not be validated for the case of a single pile.

Before the BEM pile-group model can be used to simulate the dynamics of a general piled

foundation, the model has to be validated to check whether the equations of motion derived in

Sections 3.1–3.3 can predict the inertial response of the simplest pile-group configuration: two

neighbouring piles. Figure 3.3 shows two piles (1 and 2) that are embedded in a homogeneous

half-space. Both piles have the same material and geometric parameters. By applying different

unit-magnitude loads at the head of pile 1, the dynamic interaction factors αi j that characterise

the PSPI between piles 1 and 2 can be calculated [132]:

αi j =
Dynamic displacement i at pile-head 2 due to load j applied to pile-head 1

Static displacement i at pile-head 1 due to load j applied to pile-head 1
. (3.50)

The time-harmonic pile-head displacement uPH can be expressed as a function of the pile

length L, the pile diameter d, the pile spacing s, the Young’s modulus E, the mass density ρ ,

the Poisson’s ratio ν , and the soil’s shear modulus loss factor ηG:

uPH = f
(

L,d,s,ω,Ep,Es,ρp,ρs,νp,νs,ηG

)
, (3.51)

where the subscripts ‘p’ and ‘s’ denote the respective material parameters for the pile and soil.

Note, the soil’s bulk modulus loss factor is not included in Eq. (3.51) because it is assumed

that material damping only occurs through shear motion, as discussed in Section 2.3.1. After

performing dimensional analysis on Eq. (3.51), the non-dimensional pile-head displacement,

or αi j, can be expressed as a function of eight non-dimensional groups:

αi j = gi j

(
a0,

L
d
,

s
d
,

Es

Ep
,

ρs

ρp
,νp,νs,ηG

)
, (3.52)
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s

Pile 1
L

d
exey

ez

Pile 2

Fig. 3.3 Schematic diagram of two neighbouring piles embedded in a homogeneous half-space. The two
piles are described by their length L, centre-to-centre spacing s, and diameter d.

where a0 = ωd/cS is the non-dimensional frequency, and cS =
(

Es
2(1+νs)ρs

)1/2
is the phase

speed of S-waves in the soil.

The dynamic interaction factors, predicted using the BEM pile-group model, are compared

against the results published by Kaynia [132] for the following non-dimensional soil and pile

parameters: L/d = 15, s/d = 2, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.4, νs = 0.25, ηG = 0.05. In

order to achieve the same non-dimensional parameters in the BEM model, the parameter values

summarised in Table 3.1 are used to describe the soil and the piles. Based on the soil parameter

values, the phase speeds of P- and S-waves in the soil are cP = 548 m/s and cS = 224 m/s,

respectively.

The real and imaginary parts of nine dynamic interaction factors are plotted against a0 in

Fig. 3.4. Note that Kaynia’s results are only available until a0 = 1.0 (≈ 50 Hz), while the results

for the BEM model are plotted up to a0 = 1.6 (≈ 80 Hz) to ensure there are no irregularities

over the entire frequency range of interest for ground-borne vibration (1-80 Hz).

Parameters [Units] Soil Piles

Young’s modulus [Pa] Es = 280×106 Ep = 280×109

Poisson’s ratio [−] νs = 0.40 νp = 0.25
Density [kg/m3] ρs = 2000 ρp = 2857
Shear modulus loss factor [−] ηG = 0.05 −
Length [m] − L = 10.5
Diameter [m] − d = 0.71

Table 3.1 Soil and pile parameter values used to validate the BEM pile-group model.
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Mesh configuration NFS NSP NT = NFS +NSP Run time [min]

1 88 170 258 5.7
2 238 170 408 12.5
3 460 170 630 30.1

Table 3.2 Mesh parameters of three different configurations used to validate the BEM pile-group model.
The number of elements at the free surface and soil-pile interface are NFS and NSP, respectively. The run
times correspond to a quadcore Intel i7-8550U (1.80 GHz) processor with 12 GB of RAM.

Table 3.2 shows the number of elements in three different mesh configurations, which are

used in the BEM model to predict the dynamic interaction factors. The number of elements at

the free surface and soil-pile interface are NFS and NSP, respectively. All three meshes contain

the same square elements of size 0.5 m× 0.5 m to ensure that at least six elements per shear

wavelength (S-wavelength) are used, as recommended by Domínguez [52].

In general, there is very good agreement between Kaynia’s model and the BEM model in

Fig. 3.4. This shows that the square elements in the boundary-element mesh are able to capture

the PSPI and the circular wavefronts radiating outwards from the pile-group. The reciprocity

relationships αuxqy = αθy fx and αuyqx = αθx fy are also satisfied [132]; however, there are small

distortions between these dynamic interaction factors, which are most likely due to numerical

errors when computing the soil displacement FRF matrix HS. Note that when a0 ≈ 0, all the

interaction factors are purely real because the motion of the two piles are in-phase; this is

expected when static pile-head loads are applied.

As the mesh configuration is varied, the largest differences in the interaction factors occur

when a0 < 0.6. This is because the long-wavelength waves at these low frequencies can leak

around the sides of the unbounded mesh and radiate out to infinity if the number of free surface

elements NFS is low. The waves have a tendency to escape the half-space domain since the full-

space Green’s functions in the soil model are defined in an infinite domain. However, Table 3.2

shows that using more elements will cause the run time to significantly increase because more

time is taken to compute the fully populated HS matrix. Thus, it is recommended to initially

run the model using a low value for NFS, and then increase NFS over multiple successive runs

until a desired level of convergence is achieved in the interaction factors. This will ensure that

a compromise is reached between two competing factors: the model’s run time is minimised

without limiting its numerical accuracy.
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Fig. 3.4 Continues over page.
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Fig. 3.4 The complex dynamic interaction factors αi j of two neighbouring piles, plotted against non-
dimensional frequency a0. The responses are predicted using the BEM model, with mesh configurations
1, 2 and 3 in Table 3.2, and Kaynia’s model. The non-dimensional soil and pile parameters are L/d = 15,
s/d = 2, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.4, νs = 0.25, and ηG = 0.05.

Figure 3.5 plots the real and imaginary parts of the lateral (αux fx ,αuy fy) and vertical (αuz fz)

dynamic interaction factors published by Kaynia [132] against those calculated using the BEM

model at different pile spacing ratios (s/d = 2, 5, 10). The same parameter values for the soil

and pile, as given in Table 3.1, are used along with mesh configuration 3 from Table 3.2. Again,

there is good agreement between the BEM model and Kaynia’s model over the frequency range

0 < a0 < 1. Note that, as s/d is increased, there is a decrease in the magnitude of the interaction

factors because there is more wave attenuation due to radiation damping in the soil when the

piles are spaced further apart.
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Fig. 3.5 The real (left) and imaginary (right) parts of the lateral (αux fx ,αuy fy) and vertical (αuz fz)
dynamic interaction factors of two neighbouring piles, plotted against non-dimensional frequency a0.
The influence of the pile spacing ratio s/d on the response, predicted using Kaynia’s model and the
BEM model, is illustrated. The non-dimensional soil and pile parameters are L/d = 15, Es/Ep = 10−3,
ρs/ρp = 0.7, νp = 0.4, νs = 0.25, and ηG = 0.05.
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3.5 Conclusions

A piled foundation model has been developed in Sections 3.1–3.3 that can account for both

the dynamics of each pile and the PSPI between multiple piles. Each pile was discretised into

bar-beam elements along its centroidal axis to analytically compute the pile displacement FRF

matrix. The soil displacement FRF matrix was calculated numerically using the BEM once the

soil-pile interface and free surface were discretised into constant, square elements in the mesh.

Each pile was then coupled to the soil by extending Talbot’s single-pile model [221] so that the

governing matrix equations for a pile embedded in a homogeneous half-space were rewritten in

terms of block-diagonal matrices. Hence, the governing matrix equations for a pile-group with

N embedded piles can be computed using a generalised set of algebraic expressions.

The BEM pile-group model was validated against Kaynia’s model [132] in Section 3.4 by

comparing the complex dynamic interaction factors of two neighbouring piles, plotted against

the non-dimensional frequency a0. Over the non-dimensional frequency range used by Kaynia,

there was very good agreement between the two models, and the interaction factors predicted

using the BEM model did not exhibit any frequency-dependent irregularities. Furthermore, the

results for the different mesh configurations showed that the number of free-surface elements

in the BEM model must be appropriately selected to ensure that the model’s accuracy, over the

frequency range of interest, is not compromised by its computational efficiency.

Throughout the remainder of this dissertation, the validated BEM pile-group model is used

to predict the fundamental dynamics of a piled foundation due to ground-borne vibration.
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Chapter 4

The Wave-Scattering Effect of a Pile-Group

When a pile-group experiences inertial excitation, dynamic interaction factors are often used to

characterise the PSPI between pairs of piles, as detailed in Section 2.5.3. In most studies, these

interaction factors are found using uncoupled source-receiver models and coupled models.

Dobry & Gazetas [51], Gazetas & Makris [78], and Makris & Gazetas [164] derived semi-

analytical solutions for the interaction factors by representing a pair of piles as an uncoupled

source-receiver system. By applying the sub-system technique, each pile in the pair is regarded

as an isolated sub-system. The source sub-system only simulates the excited pile and calculates

the response of the surrounding soil in the absence of the second pile (the receiver). The wave-

field propagating away from the source, assuming the receiver does not influence the waves,

is applied as an incident excitation on the receiver sub-system. However, this approach cannot

capture the wave scattering at high frequencies when the receiver is able to scatter the incident

wave-field, which, in turn, can propagate back to excite the source. The receiver can also affect

the wave-field propagating away from the source if the piles are closer together. This can even

occur at low frequencies if the pressure bulb of the source, where the soil stresses (and strains)

are significant, also encloses the receiver.

The alternative approach is to model the entire pile-group as a fully coupled system, which

directly accounts for the PSPI. Kaynia & Kausel [132,134] developed a boundary-integral-type

formulation to derive the pile-group response. Generally, there is good agreement between this

model and uncoupled source-receiver models. However, the interaction factors are presented

over non-dimensional frequencies that do not extend to the high-frequency content of ground-

borne vibration. Another concern is that the soil’s flexibility matrix is computed by superposing

a ‘fictitious’ column onto the soil at the location of each pile, such that the flexural and inertial
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properties of the composite solid (i.e., the column and soil) are equivalent to the pile. Thus, the

soil cavity around the pile is not represented, and this can lead to inaccuracies in the results at

high frequencies, as concluded by Mamoon et al. [166].

The main objective of this chapter is to investigate whether dynamic interaction factors can

effectively characterise the PSPI caused by the wave-scattering effect at high frequencies. Two

different techniques are used to account for the PSPI: (1) the coupled BEM pile-group model

developed in Chapter 3, and (2) an iterative BEM model. The pile-group in the iterative model

is divided into two isolated sub-systems (the source and the receiver), which are then coupled

together using the iterative wave-scattering approach. Compared to Chapter 3, the results in this

chapter are presented over a broader range of non-dimensional frequencies, which correspond

to ground-borne vibration between 1 and 160 Hz in London Clay. Although the iterative model

does not offer additional computational benefits compared to the coupled model, this chapter

serves as an initial study to explore if the iterative approach can solve a manageable problem

involving multiple piles. Later, in Chapter 6, the iterative approach is used to solve the more

complex problem of wave interaction between an underground railway tunnel and a foundation.

Most of the work in this chapter has been published in a journal paper by Edirisinghe &

Talbot [56]. The chapter begins with Section 4.1, which outlines the wave-scattering approach

adopted in the iterative BEM model to capture the coupling between the source and receiver

sub-systems in a pile-group. Sections 4.2 and 4.3 use the BEM described in Appendix B.7 to

derive the equations of motion for the two sub-systems under inertial excitation. A convergence

study is conducted in Section 4.4 so as to determine the mesh resolution required to maintain

accuracy at frequencies above 80 Hz. Then, the iterative BEM model is validated against the

coupled BEM model in Section 4.5. Section 4.6 presents an extensive parametric study, where

the influence of various material and geometric parameters on the wave-scattering effect of

pile-groups is explored. Finally, the main conclusions of the chapter are given in Section 4.7.

4.1 The Iterative Wave-Scattering Approach

The iterative wave-scattering approach, detailed in Section 2.5.1, can account for the interaction

between the scattered wave-fields induced around a source and a receiver. For a general pile-

group, the excited pile is referred to as the source sub-system, while all the other piles in the

group are collectively referred to as the receiver sub-system.
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The first iteration only accounts for the initial ‘outgoing’ wave-field from the source that

interacts with the receiver; this is equivalent to using an uncoupled source-receiver model. In

the second iteration, the ‘incoming’ wave-field that propagates back towards the source, due

to the scattered wave-field at the receiver, is computed. The motion of the source, due to both

the pile-head load and the incident wave-field from the receiver, causes another incident wave-

field to propagate towards the receiver, which revises the response of the two piles compared

to the first iteration. During each iteration, the source and receiver are thus ‘weakly’ coupled.

When this process is repeated for multiple iterations, the response converges to the solution for

when the source and receiver are fully coupled. An advantage of this approach, compared to a

coupled system, is that it gives further insight into the wave-scattering behaviour. That is to say,

if multiple iterations are required to converge to the coupled solution, then the wave-scattering

effect is clearly more significant than if only one iteration is required.

(
uR,inc

SP

)1

(
uS,inc

SP

)3

(
uR,inc

SP

)2

(
uR,inc

SP

)3

(
uS,inc

SP

)2

fS
PH

ReceiverSource

Iterations

Fig. 4.1 Schematic diagram illustrating the implementation of the iterative wave-scattering approach for
a pile-group with four piles. The pile-group is divided into a source and receiver sub-system.

Free
Soil-pile
interface

surface

(a)

Internal

(b)

points

(c)

Fig. 4.2 The pile-group in Fig. 4.1 can be modelled using the following meshes: (a) the complete pile-
group in the coupled BEM model, and (b) the source and (c) the receiver sub-systems in the iterative
BEM model. The coloured elements represent the free surface (green), and the soil-pile interfaces of the
source (red) and receiver (yellow). The blue dots represent internal points within each sub-system.
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The schematic diagram in Fig. 4.1 illustrates the incident displacement wave-fields at the

source
(

uS,inc
SP

)i
and receiver

(
uR,inc

SP

)i
sub-systems for a pile-group with four piles, which are

computed during each iteration i. The incident traction wave-fields at the source
(

pS,inc
SP

)i
and

receiver
(

pR,inc
SP

)i
sub-systems are computed using a similar approach. The meshes used in the

coupled and iterative BEM models are shown in Fig. 4.2. The mesh for the source sub-system

(Fig. 4.2b) contains NS
FS free surface elements and NS

SP soil-pile interface elements, while the

receiver sub-system’s mesh (Fig. 4.2c) contains NR
FS and NS

SP elements for the free surface and

soil-pile interface, respectively. Internal points within the mesh of a sub-system are used to

evaluate the incident wave-fields that approach the soil-pile interface of the other sub-system.

Note that the free surface in the source and receiver meshes is discretised to the same extent to

account for the zero traction boundary condition.

The following two sections derive the incident wave-fields at the receiver and source for

each iteration. For clarity, the superscript ‘i’, which denotes the iteration of the revised wave-

fields, is omitted.

4.2 The Source Sub-System of the Iterative BEM Model

This section derives the equations for the scattered wave-fields at the source sub-system, when

it is excited in isolation, and the incident wave-fields that arrive, as a consequence, at the soil-

pile interface of the receiver. Figure 4.3 shows the meshes for the source sub-system in a 1×2

pile-group, where mesh 1 is used to perturb the source (pile 1) and mesh 2 is used to evaluate the

incident wave-fields at the soil-pile interface of the receiver (pile 2). The free surface and soil-

pile interface of pile 1 are discretised in meshes 1 and 2. Mesh 2 also discretises the soil-pile

interface of pile 2 as internal points within the unbounded domain of the source sub-system.

By applying the superposition principle, the total displacement wave-field at pile 1’s soil-

pile interface u1
SP can be decomposed into a scattered wave-field u1,sca

SP and an incident wave-

field u1,inc
SP , such that u1

SP = u1,sca
SP +u1,inc

SP . Likewise, the traction wave-field at pile 1’s soil-pile

interface can be decomposed as follows: p1
SP = p1,sca

SP +p1,inc
SP . This decomposition allows the

scattered wave-field at pile 1 to be computed when an incident wave-field approaches pile 1.

When the BEM is applied by using mesh 1 for the unbounded domain’s surface, the soil

displacement FRF matrix H1
S around pile 1 can be derived, as detailed in Section 3.2.1. Thus,

the scattered displacement and traction wave-fields at the mesh boundaries can be expressed as
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Pile 2
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Fig. 4.3 An example of the meshes used for the unbounded domain of the isolated source sub-system in
a 1×2 pile-group. Internal points within the source’s domain lie along the dashed line in mesh 2. The
darker and lighter shaded regions represent pile and soil material, respectively.

 u1
FS

u1
SP−u1,inc

SP

= H1
S

 p1
FS

p1
SP−p1,inc

SP

 , (4.1)

where u1
FS and p1

FS = 0 denote the displacement wave-field and the traction-free boundary

condition, respectively, at the free surface surrounding pile 1. There are no incident wave-fields

at the free surface because the same extent of the free surface is discretised in both meshes. The

H1
S matrix can be partitioned into four sub-matrices: u1

FS

u1
SP−u1,inc

SP

=

H1
S11 H1

S12

H1
S21 H1

S22


 0

p1
SP−p1,inc

SP

 . (4.2)

Since pile 1 represents the source in a general pile-group, the superscript ‘1’ can be replaced

by ‘S’ to denote this. Equation (4.2) can be separated into the following two governing matrix

equations for the soil surrounding the isolated source:

uS
FS = HS

S12

(
pS

SP−pS,inc
SP

)
, (4.3)

uS
SP−uS,inc

SP = HS
S22

(
pS

SP−pS,inc
SP

)
. (4.4)

The soil is coupled to the source pile at the soil-pile interface by satisfying equilibrium

and compatibility conditions at the respective boundary, as described in Section 3.3. Hence,
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the displacement and traction wave-fields at the discretised boundary surface of the isolated

source can be found, which are referred to as the boundary values. The matrix equation for the

boundary value pS
SP, as a function of the excitation

(
fS
PH,u

S,inc
SP ,pS,inc

SP

)
at the source, is

pS
SP(x,ω) = AS

(
QS

1HS
P21fS

PH +HS
S22pS,inc

SP −uS,inc
SP

)
, (4.5)

where the block-diagonal matrices AS, QS
1 and HS

P21 for the isolated source are of a similar form

to the block-diagonal matrices defined in Chapter 3. The other boundary values, uS
FS and uS

SP,

can be computed by substituting Eq. (4.5) into Eqs. (4.3) and (4.4), respectively:

uS
FS(x,ω) = HS

S12AS
(

QS
1HS

P21fS
PH−uS,inc

SP

)
+HS

S12

(
ASHS

S22− I
)

pS,inc
SP , (4.6)

uS
SP(x,ω) = HS

S22ASQS
1HS

P21fS
PH +

(
HS

S22AS− I
)(

HS
S22pS,inc

SP −uS,inc
SP

)
, (4.7)

where I is the identity matrix.

It is important to note that, for the first iteration, there are no incident wave-fields at the soil-

pile interface of the source (uS,inc
SP = pS,inc

SP = 0) because the receiver has not yet been excited.

For all subsequent iterations, the expressions for uS,inc
SP and pS,inc

SP are derived later in Section 4.3,

as shown in Eqs. (4.19) and (4.20), respectively.

Once the boundary values are known for the source excited in isolation, the incident wave-

fields that propagate through the soil towards the soil-pile interface of the receiver need to be

evaluated. The BEM described in Appendix B.7 is used to compute these incident wave-fields,

with the receiver’s soil-pile interface regarded as a group of internal points within the domain

of the source sub-system.

It is worth noting that the internal points are regarded solely as integration points, and only

the boundary surface of the source sub-system is discretised as collocation points in the integral

formulation (see Appendix B.7). The number of integration and collocation points are also not

constrained to be equal, so it is possible to obtain non-square matrices. In contrast, the BEM

that is used to solve the boundary values at the domain’s surface (see Appendix B.6), uses the

same elements for both the collocation and integration points, so the resulting FRF matrices are

always square.

The general relationship between the displacement wave-field uint at internal points and the

boundary values u and p is derived in Appendix B.7, which is repeated here for convenience:

uint = Gup−Huu , (4.8)
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where Gu and Hu are the displacement-state matrices. The relationship between the traction

wave-field pint at internal points and the boundary values is also derived in Appendix B.7:

pint = Gpp−Hpu , (4.9)

where Gp and Hp are the traction-state matrices. After discretising the boundary surface of

the source sub-system into elements and the receiver’s soil-pile interface into internal points,

Eqs. (4.8) and (4.9) can be used to calculate the incident displacement uR,inc
SP and traction pR,inc

SP

wave-fields arriving at all N−1 piles in the receiver:

uR,inc
SP (x,ω) =



u2,inc
SP

u3,inc
SP
...

uN,inc
SP


= GRS

u

 0

pS
SP

−HRS
u

uS
FS

uS
SP

 , (4.10)

pR,inc
SP (x,ω) =



p2,inc
SP

p3,inc
SP
...

pN,inc
SP


= GRS

p

 0

pS
SP

−HRS
p

uS
FS

uS
SP

 , (4.11)

where the superscript ‘RS’ denotes that the transfer functions in the displacement-state and

traction-state matrices relate to the propagation of wave-fields from the source to the receiver.

The dimensions of all matrices in Eqs. (4.10) and (4.11) are 3NR
SP×3

(
NS

FS +NS
SP

)
.

4.3 The Receiver Sub-System of the Iterative BEM Model

This section derives the equations for the scattered wave-fields at the receiver sub-system, when

it is excited in isolation by the source, and the resulting incident wave-fields that arrive at the

soil-pile interface of the source. Figure 4.4 shows the meshes used for the receiver sub-system

in a pile-group containing two piles, where mesh 3 is used to perturb the receiver (pile 2) and

mesh 4 is used to find the incident wave-fields at the soil-pile interface of the source (pile 1).

The free surface and soil-pile interface of pile 2 are discretised in meshes 3 and 4. Mesh 4 also

discretises the soil-pile interface of pile 1 as internal points within the unbounded domain of

the receiver sub-system.
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Fig. 4.4 An example of the meshes used for the unbounded domain of the isolated receiver sub-system
in a 1× 2 pile-group. Internal points within the receiver’s domain lie along the dashed line in mesh 4.
The darker and lighter shaded regions represent pile and soil material, respectively.

When the BEM is applied by using mesh 3 for the unbounded domain’s surface, the soil

displacement FRF matrix H2
S around pile 2 can be derived. Similar to Eqs. (4.1) and (4.2), H2

S

can be partitioned into four sub-matrices: u2
FS

u2
SP−u2,inc

SP

=

H2
S11 H2

S12

H2
S21 H2

S22


 p2

FS

p2
SP−p2,inc

SP

 , (4.12)

where u2
FS and p2

FS = 0 denote the displacement wave-field and the traction-free boundary

condition, respectively, at the free surface surrounding pile 2. Based on the reasoning given in

the previous section, there are again no incident wave-fields at the free surface.

When Eq. (4.12) is extended for a pile-group receiver with N−1 cavities, the resulting soil

displacement FRF matrix HR
S around the receiver can be partitioned into four sub-matrices:

uR
FS

u2
SP−u2,inc

SP
...

uN
SP−uN,inc

SP


=

HR
S11 HR

S12

HR
S21 HR

S22




pR
FS

p2
SP−p2,inc

SP
...

pN
SP−pN,inc

SP


. (4.13)

Equation (4.13) can be separated into the following two governing matrix equations for the soil

surrounding the isolated receiver:
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uR
FS = HR

S12

(
pR

SP−pR,inc
SP

)
, (4.14)

uR
SP−uR,inc

SP = HR
S22

(
pR

SP−pR,inc
SP

)
, (4.15)

where the wave-fields at the receiver’s soil-pile interface are denoted by the following four

vectors: uR,inc
SP =

{
u2,inc

SP , . . . ,uN,inc
SP

}T
, pR,inc

SP =
{

p2,inc
SP , . . . ,pN,inc

SP

}T
, uR

SP =
{

u2
SP, . . . ,u

N
SP

}T
,

and pR
SP =

{
p2

SP, . . . ,p
N
SP

}T
.

The soil is coupled to the pile-group receiver at its soil-pile interface by applying the same

approach detailed in Section 3.3. Note that the off-diagonal components in the sub-matrix HR
S22

inherently account for the PSPI within the pile-group receiver when the soil is coupled to the

piles. Once the soil and piles are coupled together, the boundary values at the isolated receiver

can be found. The matrix equation for the boundary value pR
SP, as a function of the excitation(

uR,inc
SP ,pR,inc

SP

)
at the receiver, is

pR
SP(x,ω) = AR

(
HR

S22pR,inc
SP −uR,inc

SP

)
, (4.16)

where the matrix AR for the isolated receiver is of a similar form to A in Eq. (3.43). The other

boundary values, uR
FS and uR

SP, are found by substituting Eq. (4.16) into Eqs. (4.14) and (4.15),

respectively:

uR
FS(x,ω) = HR

S12AR
(

uR,inc
SP

)
+HR

S12

(
ARHR

S22− I
)

pR,inc
SP , (4.17)

uR
SP(x,ω) =

(
HR

S22AR− I
)(

HR
S22pR,inc

SP −uR,inc
SP

)
, (4.18)

where I is the identity matrix.

Once the boundary values at the isolated receiver are known, the BEM is used to find the

incident wave-fields within the receiver’s domain. This is achieved by discretising the boundary

surface of the receiver sub-system into boundary elements and the source’s soil-pile interface

into internal points. Therefore, the same relationships in Eqs. (4.8) and (4.9) can be applied to

find the incident displacement uS,inc
SP and traction pS,inc

SP wave-fields, respectively, at the soil-pile

interface of the source pile:

uS,inc
SP (x,ω) = u1,inc

SP = GSR
u

 0

pR
SP

−HSR
u

uR
FS

uR
SP

 , (4.19)
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pS,inc
SP (x,ω) = p1,inc

SP = GSR
p

 0

pR
SP

−HSR
p

uR
FS

uR
SP

 , (4.20)

where the superscript ‘SR’ denotes that the transfer functions in the displacement-state and

traction-state matrices relate to the propagation of wave-fields from the receiver to the source.

The dimensions of all matrices in Eqs. (4.19) and (4.20) are 3NS
SP×3

(
NR

FS +NR
SP

)
.

4.4 A Convergence Study of the Boundary-Element Mesh

In order to simulate the pile-group dynamics over a broader range of frequencies (from 1 to

160 Hz), the boundary-element mesh of the soil model must be discretised to an appropriate

level of resolution. Therefore, a convergence study is conducted in this section to identify the

mesh resolution required to maintain accuracy over the entire frequency range of interest. The

mesh must satisfy the following two conditions: (1) the elements at the soil-pile interface can

accurately account for soil-pile interaction; and (2) the elements at the free surface can capture

the concentric, circular wavefronts that appear around the pile.

The first condition can be investigated by comparing the compliance functions of a single

pile. In the available literature, dynamic compliance functions are obtained by normalising the

driving-point displacement FRFs at the pile head with respect to their static values:

Fi j =
Dynamic driving-point displacement i at the pile-head due to load j

Static driving-point displacement i at the pile-head due to load j
. (4.21)

8-element square section 8-element octagonal section 16-element section

Fig. 4.5 Boundary-element meshes of varying resolution used for the free surface in the piled foundation
model. The pile’s circumference (dashed circle) needs to be represented by non-rectangular elements if
the soil-pile interface is not approximated to be square.

72



CHAPTER 4. THE WAVE-SCATTERING EFFECT OF A PILE-GROUP

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

F u
x
f x

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
a0 = ωd/cS

Real

-Imag.

Real

-Imag.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

F u
z
f z

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
a0 = ωd/cS

a0 = ωd/cS

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2 2.4 2.8

Real

-Imag.

3.2

F
y
q
y

θ

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2 2.4 2.8

Real

-Imag.

3.2
a0 = ωd/cS

-0.2

F u
x
q
y

a0 = ωd/cS

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2 2.4 2.8

Real

-Imag.

3.2

F
yθ
f x

16-element section

8-element octagonal section

8-element square section

4-element square section

Fig. 4.6 The complex dynamic compliance functions Fi j of a single pile, plotted against non-dimensional
frequency a0. The effect of changing the boundary-element section around the pile’s circumference on
the responses, predicted using the coupled BEM model, is illustrated. The non-dimensional soil and pile
parameters are L/d = 15, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.4, νs = 0.25, and ηG = 0.05.
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Figure 4.5 illustrates three possible boundary-element meshes, with increasing resolution

at the soil-pile interface. The square elements at the free surface are similar to the ones used in

Section 3.4, but they now have a smaller side-length of b = 0.25 m. At the higher excitation

frequencies, in order to better capture the pile’s circumference at the soil-pile interface, non-

rectangular elements are used in the 8-element octagonal section and the 16-element section.

It is worth noting that the numerical integration steps in the BEM become more involved when

non-rectangular elements are used, as discussed in Appendix B.6.

The real and imaginary parts of the dynamic compliance functions against non-dimensional

frequency a0 = ωd/cS are presented in Fig. 4.6 when a single pile is excited in the xz-plane.

The results are plotted up to a0 = 3.2 (≈ 160 Hz), using four different meshes in the coupled

BEM model, in order to include the frequency range of interest. The four meshes include the

three shown in Fig. 4.5 and the 4-element square section (b = 0.5 m) described in Section 3.2.

For all cases, the soil and pile are modelled using the parameter values in Table 3.1. Note that,

due to symmetry, the lateral, rocking and coupled lateral-rocking compliance functions in the

yz-plane are equivalent to the respective functions in Fig. 4.6.

The compliance functions, predicted using all four meshes, show very good agreement up

to a0 = 3.2. As the resolution of the soil-pile interface is increased from a 4-element square

section to a 16-element section, the compliance functions converge. However, the use of non-

rectangular elements will increase the complexity of discretising the mesh for multiple piles,

and will also increase the computation time required for numerical integration. Therefore, it is

recommended to use the 8-element square section mesh at high excitation frequencies above

a0 = 1.6, as this mesh uses rectangular elements and it ensures that there are at least six constant

elements per S-wavelength [52].

Figure 4.7 clearly shows that concentric wavefronts appear at the free surface when using

the 8-element square section mesh, thereby satisfying the second condition of the convergence

study. For additional verification, the predicted wavelengths at the free surface can be compared

against the theoretical Rayleigh wavelength λR in an isotropic half-space [160]. Vinh & Ogden

[235] derived λR as a function of the excitation frequency f and the elastic material parameters:

λR =
1
f

√√√√4µ

ρ
(1− γ)

(
2− 4

3
γ +

3
√

R+
√

D+
3
√

R−
√

D

)−1

, (4.22)

where
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γ =
µ

λ +2µ
, (4.23)

R =
2

27

(
27−90γ +99γ

2−32γ
3
)
, (4.24)

D =
4

27
(1− γ)2

(
11−62γ +107γ

2−64γ
3
)
, (4.25)

and λ and µ are the first and second elastic Lamé constants, respectively. By using Eq. (4.22),

the expected Rayleigh wavelengths at 80 Hz and 160 Hz are 2.63 m and 1.32 m, respectively,

which are approximately equal to the predicted values shown in Fig. 4.7. However, due to the

coarseness of the mesh, the agreement between the observed and theoretical wavelengths is not

perfect.
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Fig. 4.7 Three-dimensional (left) and two-dimensional (right) views of the free surface waves generated
when a pile is excited by a vertically applied pile-head force at a frequency of (a) 80 Hz (multiplied by a
factor of 4×109) and (b) 160 Hz (multiplied by a factor of 8×109). Predicted using the coupled BEM
model with an 8-element square section.
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In summary, to improve the BEM model’s computational efficiency, the mesh resolution is

varied depending on the frequency; the 4-element square section is used at frequencies below

80 Hz, while the 8-element square section is used at higher frequencies. This type of frequency-

dependent mesh is beneficial when working with large pile-groups, as shown in Section 4.6.4.

4.5 Validating the Iterative BEM Model

In this section, the iterative BEM model is validated against the coupled BEM model developed

in Chapter 3. The dynamic interaction factors of two neighbouring piles, as shown in Fig. 4.8,

are used to validate the two models. In the iterative model, pile 1 is the source, while pile 2 is

the receiver.

Figure 4.9 presents the real and imaginary parts of the dynamic interaction factors, predicted

using the coupled and iterative models for different pile spacing ratios (s/d = 2, 5, 10). The

non-dimensional soil and pile parameters are L/d = 15, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.25,

νs = 0.4, ηG = 0.05. The interaction factors are plotted up to a non-dimensional frequency of

a0 = 3.2 (≈ 160 Hz).

In general, there is very good agreement between the interaction factors predicted using the

two models. For closely spaced piles (s/d = 2), two iterations are required when a0 > 1.2 for

the iterative BEM model to converge with the coupled BEM model when the lateral force fy

is applied at the pile head. For all other interaction factors, one iteration, which is equivalent

to the uncoupled source-receiver model, is enough for convergence. Since the force fy results

in pile deformation that is parallel to the direction of wave propagation between the piles, the

incident wave-fields are more likely to be influenced by the presence of the receiver.

ez

exey

(a)

s

Pile 1 Pile 2

ex

ey ez

(b)

Fig. 4.8 (a) Three-dimensional and (b) plan views of two neighbouring piles. Pile 1 (shaded black) is
the source, while pile 2 (shaded grey) is the receiver.
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As expected, the influence of the receiver pile on the pile-group response decreases with

increasing pile spacing: one iteration is sufficient to converge with the coupled BEM solution

when s/d ≥ 5. At high frequencies (a0 > 2), the amplitude of the interaction factors is close

to zero when the force fy is applied at the pile head; this implies that the PSPI is negligible

for high-frequency waves that oscillate parallel to the orientation of the piles. Furthermore, the

number of peaks and troughs in the results increases as the number of half-wavelengths between

the piles increases, leading to a greater degree of constructive and destructive interference in

the soil.
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Fig. 4.9 Continues over page.
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Fig. 4.9 The real (left) and imaginary (right) parts of the dynamic interaction factors of two neighbouring
piles, plotted against non-dimensional frequency a0. The influence of the pile spacing ratio s/d on
the response, predicted using the coupled BEM model and the iterative BEM model for the first three
iterations (i= 3), are shown. The non-dimensional soil and pile parameters are L/d = 15, Es/Ep = 10−3,
ρs/ρp = 0.7, νp = 0.4, νs = 0.25, and ηG = 0.05.

4.6 A Parametric Study of the Inertial Pile-Group Response

This section investigates the influence of different material and geometric parameters on the

wave-scattering effect between two neighbouring piles by focusing on the lateral (αux fx ,αuy fy)

and vertical (αuz fz) interaction factors. The inclusion of neighbouring and intermediate piles in

larger pile-groups is also analysed.

Unless stated otherwise, the pile spacing ratio between all piles is s/d = 2. The dynamic

interaction factors of the pile-groups, as presented in Figs. 4.10–4.14, are predicted using the

coupled and iterative BEM models.
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4.6.1 The Effect of the Soil-Pile Density Ratio

The interaction factors of two neighbouring piles with different soil-pile density ratios, which

correspond to light (ρs/ρp = 1) and dense (ρs/ρp = 0.7, 0.4) piles, are plotted in Fig. 4.10.

As expected, the static and low-frequency (a0 < 0.8) amplitudes of all interaction factors are

independent of ρs/ρp because inertial effects are insignificant at these frequencies. When ρs/ρp

is decreased from 1 to 0.7, there is no discernible effect on the interaction factors over the

frequency range of interest, which is in agreement with the study by Gazetas et al. [77] on the

dynamic response of floating pile-groups.

Reducing the soil-pile density ratio to ρs/ρp = 0.4 causes two effects at higher frequencies:

(1) an increase in the interaction factor amplitudes; and (2) a decrease in the frequency at which

the peaks and troughs of the interaction factors occur. In physical terms, lighter soils offer less

resistance to the motion of the piles, leading to higher amplitude waves in the soil. For the

densest piles (ρs/ρp = 0.4), two iterations of the iterative model are required for convergence at

high frequencies (a0 > 1.2), which is consistent with the wave-scattering effect: the amplitude

of the scattered wave-field increases when there is a large difference in mechanical impedance

between the soil and piles.

4.6.2 The Effect of the Soil-Pile Stiffness Ratio

Figure 4.11 plots the dynamic interaction factors of two neighbouring piles for a broad range

of soil-pile stiffness ratios, corresponding to flexible (Es/Ep = 10−2, 10−3) and relatively rigid

(Es/Ep = 10−4, 10−5) piles. In all cases, the first iteration of the iterative BEM model provides

a good approximation for the solution of the coupled BEM model, even at high frequencies.

This suggests that varying the stiffness ratio does not significantly influence the wave-scattering

effect.

Furthermore, the effect of the stiffness ratio on the lateral factors, αux fx and αuy fy , is found

to be two-fold. First, the pseudo-static and low-frequency (a0 < 0.8) amplitudes decrease as

the piles become more flexible (or as Es/Ep increases). Second, the decrease in amplitude

becomes less significant when a0 > 0.8. In contrast, there is almost no change in the vertical

factor αuz fz over the frequency range of interest when Es/Ep is varied, except for very flexible

pile (Es/Ep = 10−2). In this case, the increased flexibility reduces the amplitude across the

entire frequency range.
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Fig. 4.10 The real (left) and imaginary (right) parts of the lateral (αux fx ,αuy fy) and vertical (αuz fz)
dynamic interaction factors of two neighbouring piles, plotted against non-dimensional frequency a0.
The influence of the soil-pile density ratio ρs/ρp on the response, predicted using the coupled BEM
model and the iterative BEM model for the first three iterations (i = 3), is shown. The non-dimensional
soil and pile parameters are L/d = 15, s/d = 2, Es/Ep = 10−3, νp = 0.4, νs = 0.25, and ηG = 0.05.
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Fig. 4.11 The real (left) and imaginary (right) parts of the lateral (αux fx ,αuy fy) and vertical (αuz fz)
dynamic interaction factors of two neighbouring piles, plotted against non-dimensional frequency a0.
The influence of the soil-pile stiffness ratio Es/Ep on the response, predicted using the coupled BEM
model and the iterative BEM model for the first three iterations (i = 3), is shown. The non-dimensional
soil and pile parameters are L/d = 15, s/d = 2, ρs/ρp = 0.7, νp = 0.4, νs = 0.25, and ηG = 0.05.
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Fig. 4.12 The real (left) and imaginary (right) parts of the lateral (αux fx ,αuy fy) and vertical (αuz fz)
dynamic interaction factors of two neighbouring piles, plotted against non-dimensional frequency a0.
The influence of the pile slenderness ratio L/d on the response, predicted using the coupled BEM model
and the iterative BEM model for the first three iterations (i = 3), is shown. The non-dimensional soil
and pile parameters are s/d = 2, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.4, νs = 0.25, and ηG = 0.05.
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4.6.3 The Effect of the Pile Slenderness Ratio

Figure 4.12 presents the dynamic interaction factors of two neighbouring piles for a range of

pile slenderness ratios (L/d = 5, 15, 45). The shortest piles (L/d = 5) require two iterations

to converge using the iterative model at high frequencies (a0 > 1.2), while the longer piles

only require one iteration. Hence, increasing the slenderness ratio reduces the wave-scattering

effect. This is because the longer piles are able to constrain the motion of the soil due to the

soil-stiffening effect, resulting in a decrease in the amplitude of the scattered wave-fields.

Gazetas [75] suggests that when the pile length L exceeds the active pile length L′ there is

negligible variation in the pile’s lateral response. The active pile length is approximated by the

following empirical relationship for homogeneous soil:

L′ ≈ 2d

(
Es

Ep

)−1/4

, (4.26)

which has been found by fitting curves to numerical solutions. Since Es/Ep = 10−3 in Fig. 4.12,

the non-dimensional active pile length is L′/d ≈ 11.2. The lateral interaction factors of the two

longer piles (L/d = 15, 45), which satisfy L/d > L′/d, are equivalent over the entire frequency

range. Furthermore, the amplitude of the lateral factors of the shortest piles (L/d = 5) is higher

than the longer piles. Therefore, these observations support the presence of an active pile length

for the inertial response of a pile-group.

It is important to note that the real part of the static lateral factors is independent of L/d. In

contrast, the real part of the static vertical factor changes as L/d is varied. As the frequency is

increased above a0 = 0.4, the two shorter piles (L/d = 5,15) exhibit similar variations in αuz fz ,

whereas the αuz fz values of the longest piles (L/d = 45) deviate from those of the shorter piles.

4.6.4 The Effect of Neighbouring and Intermediate Piles

In order to identify if neighbouring and intermediate piles can influence the wave-scattering

effect, the definition in Eq. (3.51), referring to the dynamic interaction factors of two isolated

piles, needs to be extended to a general pile-group. The corresponding interaction factors αab
i j

between any two piles, namely a and b, in a large, general pile-group can be defined as

α
ab
i j =

Dynamic displacement i at pile-head a due to load j applied at pile-head b
Static displacement i at pile-head b due to load j applied at pile-head b

. (4.27)
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It is expected that the wave-scattering effect will have a greater influence on the PSPI between

any two piles as the number of piles increases. This is because there will be an increase in the

distribution of waves propagating back and forth between piles in the group to create regions

of constructive and destructive interference in the soil.

Figure 4.13 plots the interaction factors for two adjacent piles, namely piles 1 and 2, when

the number of neighbouring piles is increased from a 1× 2 pile-group to a 3× 3 pile-group.

Slight changes are observed, especially at high frequencies (a0 > 1.6), and these coincide with

an increase in the number of iterations required for the iterative model’s solution to converge,

which is consistent with the expected increase in wave scattering. For example, when a0 > 1.4,

the vertical interaction factor α21
uz fz requires two iterations for convergence when there are more

than two piles in the group. Nevertheless, these changes are not significant, and it is clear that

an isolated two-pile model provides a good approximation, across the frequency range, for the

interaction factors of larger pile-groups.

In contrast, the influence of intermediate piles is more significant. Figure 4.14 plots the

interaction factors for two diagonally opposite piles, namely piles 1 and 9, in a 3×3 pile-group

when the intermediate piles are either included or omitted. The pile spacing ratio between piles

1 and 9 is s/d = 6 when the intermediate piles are omitted. Note that the lateral interaction

factors, α91
ux fx and α91

uy fy , are equivalent because piles 1 and 9 are positioned at 45◦ to the lateral

x- and y-axes. There is no discernible difference between the two sets of results at low and

intermediate frequencies (a0 < 1.2). At higher frequencies, when the intermediate piles are

included, the peaks and troughs in the interaction factors shift to lower frequencies and increase

in number. In physical terms, when pile 1 is excited, the wave-fields that eventually arrive at

pile 9 are scattered by the intermediate piles with a different phase shift. Note that, in this case,

the wave-scattering effect is captured well with just one iteration because all the piles in the

receiver sub-system, which include the intermediate piles and pile 9, are fully coupled together.

Based on these observations, it is clear that the PSPI between two piles in a large group

can indeed be approximated by ignoring the presence of neighbouring piles, even at the higher

frequencies associated with ground-borne vibration (1-160 Hz), provided the two piles are

adjacent to each other. This approximation is also valid when intermediate piles are present, but

only at frequencies below 60 Hz. At higher frequencies, when the soil wavelengths approach

the same order of magnitude as the pile diameter, the scattered wave-fields generated at the

intermediate piles are more significant and influence the PSPI to a greater extent.
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Fig. 4.13 The real (left) and imaginary (right) parts of the lateral (αux fx ,αuy fy) and vertical (αuz fz)
dynamic interaction factors of two adjacent piles in a (a) 1× 2, (b) 2× 2 and (c) 3× 3 pile-group.
In each pile-group, pile 1 (shaded black) is excited and the displacement is measured at pile 2 (shaded
grey). The results, predicted using the coupled BEM model and the iterative BEM model for the first
three iterations (i = 3), are plotted against non-dimensional frequency a0. The non-dimensional soil and
pile parameters are L/d = 15, s/d = 2, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.4, νs = 0.25, and ηG = 0.05.
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Fig. 4.14 The real (left) and imaginary (right) parts of the lateral (αux fx ,αuy fy) and vertical (αuz fz)
dynamic interaction factors of two diagonally opposite piles in a 3×3 pile-group, when the intermediate
piles are (a) included and (b) omitted. In each case, pile 1 (shaded black) is excited and the displacement
is measured at pile 9 (shaded grey). The results, predicted using the coupled BEM model and the iterative
BEM model for the first three iterations (i = 3), are plotted against non-dimensional frequency a0. The
non-dimensional soil and pile parameters are L/d = 15, s/d = 2, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.4,
νs = 0.25, and ηG = 0.05.

4.7 Conclusions

The iterative wave-scattering approach has been applied to develop an iterative BEM model

in Sections 4.1–4.3 that couples the piles as a source-receiver system. The iterative model uses

the scattered wave-fields at the source and receiver sub-systems to revise the response of the

pile-group during each iteration. The pile-group response after the first iteration is equivalent

to the uncoupled source-receiver response because the first iteration disregards the scattered
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wave-field at the receiver. The iterative model has been shown to offer an effective alternative

to the fully coupled BEM model developed in Chapter 3 and provides additional insight into the

wave-scattering effect of a pile-group. Wave scattering is most prominent at high frequencies,

as the soil wavelengths approach the same order of magnitude as the pile diameter.

Based on the convergence study in Section 4.4, a frequency-dependent mesh was used in

the BEM models to capture the pile-group dynamics over a broad range of non-dimensional

frequencies a0, corresponding to ground-borne vibration between 1 and 160 Hz in London Clay.

By comparing the dynamic interaction factors of two neighbouring piles, Section 4.5 showed

that the standard and iterative models agree very well over the frequency range of interest. In

general, as the pile spacing ratio s/d was varied, the first iteration (uncoupled response) was

a good approximation for the coupled response over most frequencies. However, the level of

wave scattering increased when the piles were closer together (s/d = 2) because two iterations

were required for convergence at high frequencies (a0 > 1.2).

The parametric study in Section 4.6 again showed that, in general, the first iteration was a

good approximation for the coupled response as the soil-pile density ratio ρs/ρp, the soil-pile

stiffness ratio Es/Ep, and the pile slenderness ratio L/d were all varied – even at frequencies

well above those of previous publications. Furthermore, the study highlighted that the dynamic

interaction factors predicted using uncoupled source-receiver models can effectively account

for the PSPI between piles without resorting to fully coupled models. Over the entire frequency

range, an isolated two-pile model provided a good approximation for the interaction factors of

adjacent piles in larger pile-groups, although the presence of intermediate piles may need to be

considered at high frequencies (a0 > 1.2) because of the increased influence of wave scattering

that these introduce.
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Chapter 5

Uncoupled Tunnel-Foundation Systems

The previous two chapters considered a piled foundation subjected to inertial excitation at an

individual pile head. In this chapter, a numerical method is developed to predict the response

induced in a piled foundation due to the kinematic excitation from an underground railway

tunnel. Together, the railway tunnel and the piled foundation form a tunnel-foundation system.

It is assumed that the separation distance between the tunnel and foundation is greater than

the wavelengths in the soil. Therefore, an uncoupled source-receiver model can be used to

characterise the train-induced dynamics of an uncoupled tunnel-foundation system. In this

case, the excited tunnel (source) can influence the response of the piles (receiver), but the

excited piles cannot in turn influence the tunnel response. The sub-system technique is adopted

to model the tunnel and foundation as isolated sub-systems, which are then ‘weakly’ coupled by

accounting for the waves that propagate from the tunnel. The response of the tunnel sub-system

is captured using the half-space pipe-in-pipe (PiP) model, which is a computationally efficient

semi-analytical method (see Section 2.4.3), while the response of the foundation sub-system is

captured using the BEM pile-group model developed in Chapter 3.

Section 5.1 gives an overview of the half-space PiP model, developed by Forrest [68] and

Hussein [112, 114], and Section 5.2 describes the development of the PiP-BEM model for an

uncoupled tunnel-foundation system. A convergence study is conducted in Section 5.3 to find

the recommended level of discretisation for the discrete PiP parameters in order to accurately

simulate the waves propagating away from the tunnel. In Section 5.4, the uncoupled PiP-BEM

model is validated by comparing the train-induced responses of two tunnel-pile systems against

the predictions from a similar model developed by Coulier [42], and some concluding remarks

are given in Section 5.5.
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5.1 The Half-Space Pipe-in-Pipe (PiP) Model

The PiP model can be used to compute the far-field response in the soil around a tunnel. The

far-field displacement and traction wave-fields at the piled foundation (i.e., the incident waves)

are used to excite the BEM mesh surrounding the piles. This is done by rewriting Eq. (3.24)

for the BEM pile-group model as

H
(

u−uinc
)
= G

(
p−pinc

)
, (5.1)

where the two vectors uinc and pinc denote the incident displacement and traction wave-fields,

respectively. The vectors u−uinc and p−pinc denote the respective scattered wave-fields that

are induced when the incident waves interact with the soil cavities around the piles.

Appendix C provides a detailed outline of the components, assumptions and equations that

are used in the standard PiP model for a tunnel embedded in a homogeneous, isotropic half-

space. For convenience, the main assumptions and equations are summarised in this section.

The half-space PiP model described in this dissertation can predict the far-field response in

the soil when two different time-harmonic modes of excitation are applied within the tunnel.

The first mode of excitation is a time-harmonic point force at the tunnel invert, which is at the

base of the inner tunnel wall. The second mode of excitation is a spatially harmonic roughness,

which is applied at the wheel-rail interface when a train-track system is coupled to the tunnel

invert. This chapter focusses on the latter excitation mechanism, where dynamic axle loads are

generated by a train travelling over a floating slab track (FST). Alternative train-track systems

may also be used in the PiP model, such as a standard (fixed) slab track.

The tunnel is modelled as an infinitely long, thick-walled, cylindrical shell with inner radius

rti and outer radius rto. The soil is modelled as an infinitely long, cylindrical cavity with inner

radius rsi = rto and an infinite outer radius, and the tunnel is assumed to be perfectly bonded to

the soil. The train-track system is modelled as an infinite number of point masses, representing

the unsprung axles, on an FST with in-phase rail correlation. Based on these assumptions, the

model can only account for a tunnel embedded in a full-space. To account for when the tunnel

is embedded in a half-space, the fictitious-force method [113] is applied, which assumes that

the free surface does not influence the near field around the tunnel.

The fictitious-force method involves calculating an equivalent set of fictitious line-loads

that, when applied in a full-space where the tunnel cavity is filled in with soil material, produce
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the same displacements at the soil-tunnel interface as when the cavity was present. Then, these

line-loads are used to excite a half-space, and the resulting far-field displacements are computed

using the 2.5D Green’s functions derived by Tadeu et al. [218]. Note, these Green’s functions

are formulated in a left-handed Cartesian coordinate system, whereas the equations in the PiP

model are defined in a right-handed Cartesian coordinate system, as shown in Table 5.1.

Consider when M fictitious line-loads are evenly distributed around the outer tunnel wall. In

this case, each line-load f̂(p) can be expressed in the double-wavenumber-frequency (ξ ,γ,ω)-

domain as the following vector:

f̂(p)(ξ ,γ,z,ω) =
{

f̂x, f̂y, f̂z

}T
for p = 1,2, . . . ,M , (5.2)

where ξ and γ are the wavenumbers with respect to the space x- and y-domains, respectively.

By using the half-space Green’s functions to relate the fictitious line-loads to displacements in

the soil, the incident displacement wave-field ûinc is derived in Appendix C.7, which is repeated

here for convenience:

ûinc(ξ ,γ,z,ω) =
{

û inc
x , û inc

y , û inc
z

}T
=

M

∑
p=1

Ĝhalf
u(p) f̂(p) , (5.3)

where Ĝhalf
u(p) is the 3×3 displacement Green’s function matrix for a half-space.

The incident stress wave-field in the soil is also derived in Appendix C.7 by applying the

linear-elastic kinematic relationship and the generalised Hooke’s Law to the Green’s functions.

The resulting symmetric Cauchy stress tensor σ̂inc represents each component of the incident

stress wave-field as

Coordinate system
Half-space Green’s functions

(Left-handed) [218]
The PiP model
(Right-handed)

Longitudinal coordinate x′ x
Transverse coordinate z′ y
Vertical coordinate y′ z
Longitudinal wavenumber −kn ξ

Transverse wavenumber −kz γ

Table 5.1 The respective coordinates and wavenumbers used in the half-space Green’s functions and the
PiP model.
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σ̂inc(ξ ,γ,z,ω) =


σ̂ inc

xx σ̂ inc
xy σ̂ inc

xz

σ̂ inc
xy σ̂ inc

yy σ̂ inc
yz

σ̂ inc
xz σ̂ inc

yz σ̂ inc
zz

 , (5.4)

where

{
σ̂

inc
xx , σ̂ inc

xy , σ̂ inc
xz , σ̂ inc

yy , σ̂ inc
yz , σ̂ inc

zz

}T
=

M

∑
p=1

Ĝhalf
σ(p) f̂(p) , (5.5)

and Ĝhalf
σ(p) is the 6×3 stress Green’s function matrix for a half-space.

For illustrative purposes, the first elements of both the Ĝhalf
u(p) and Ĝhalf

σ(p) matrices are written

below as closed-form expressions, with respect to the kn and kz wavenumbers in the left-handed

coordinate system (see Table 5.1):

Ĝhalf
uxx

(kn,kz,ω) =
−i

2ρω2

k2
n

νn

(
Eb +Ax

nEb0

)
+

k2
z

γn

(
Ec +Bx

nEc0

)
+ γn

(
Ec +Cx

nEc0

), (5.6)

Ĝhalf
σxx,x

(kn,kz,ω) =
−kn

2ρω2

λ

(
Eb +Ax

nEb0

)(k2
n

νn
+

k2
z

νn
+νn

)
+ . . .

2µ

(
k2

n
νn

(
Eb +Ax

nEb0

)
+

k2
z

γn

(
Ec +Bx

nEc0

)
+ γn

(
Ec +Cx

nEc0

)) ,
(5.7)

where ρ is the density, λ and µ are the elastic Lamé constants, and the variables νn, γn,Eb, Eb0,

Ec, Ec0, Ax
n, Bx

n, Cx
n are defined by Tadeu et al. [218].

The incident traction wave-field p̂inc is then computed by applying Cauchy’s formula:

p̂inc(ξ ,γ,z,ω) =
{

p̂ inc
x , p̂ inc

y , p̂ inc
z

}T
= σ̂incn(x) , (5.8)

where n is the normal unit-vector at a position vector x = {x,y,z}T when the traction wave-field

is evaluated in the space-frequency (x,ω)-domain.

Both ûinc and p̂inc are transformed into the (x,ω)-domain by applying the inverse discrete

Fourier transform (IDFT) twice, with respect to each wavenumber (see Appendix A.2.1). The

resulting uinc(x,ω) and pinc(x,ω) incident wave-fields are computed at the central node x of

each boundary element in the mesh of the pile-group. It should be noted that the vector n at a

node x is normal to the element’s surface and points into the domain representing the soil.
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5.2 The Uncoupled PiP-BEM Model

The incident displacement and traction wave-fields, computed using the PiP model, are applied

as the external excitation at the boundary-element mesh of the piled foundation. To accomplish

this, the relationship between the displacement and traction wave-fields at the free surface and

the soil-pile interface of the foundation, as stated in Eq. (3.29), is modified to account for wave

scattering due to the incident wave-fields:

uFS−uinc
FS

u1
SP−u1,inc

SP

u2
SP−u2,inc

SP
...

uN
SP−uN,inc

SP


=

HS11 HS12

HS21 HS22





pFS−pinc
FS

p1
SP−p1,inc

SP

p2
SP−p2,inc

SP
...

pN
SP−pN,inc

SP


, (5.9)

where uinc
FS and pinc

FS are the incident wave-fields at the free surface, and u(k),inc
SP and p(k),inc

SP are

the incident wave-fields at the soil-pile interface of pile k. Equation (5.9) can be separated into

the following two matrix equations:

uFS−uinc
FS = HS12

(
pSP−pinc

SP

)
, (5.10)

uSP−uinc
SP = HS22

(
pSP−pinc

SP

)
, (5.11)

where the vectors uSP =
{

u1
SP,u

2
SP, . . . ,u

N
SP

}T
and pSP =

{
p1

SP,p
2
SP, . . . ,p

N
SP

}T
define the total

displacement and traction wave-fields, respectively, at the soil-pile interface of all N piles in

the foundation. The incident wave-fields
(

uinc
SP ,p

inc
SP

)
are similarly defined at the N piles. Note

that the traction-free boundary condition (pFS = pinc
FS = 0) is applied at the ground surface in

Eqs. (5.10) and (5.11).

The other governing equations for the foundation remain the same as Eqs. (3.22), (3.23),

(3.37) and (3.38), but fPH = 0 because inertial excitation is not considered at the pile head.

The pile-head displacement uPH of the foundation can be derived by rearranging the governing

equations. The matrix equation for uPH, as a function of the incident wave-fields
(

uinc
SP ,p

inc
SP

)
from an excited tunnel, is

uPH(x,ω) = HP12Q2A
(

uinc
SP −HS22pinc

SP

)
, (5.12)

93



CHAPTER 5. UNCOUPLED TUNNEL-FOUNDATION SYSTEMS

where the matrices HP12, Q2 and A are defined in Eqs. (3.22), (3.38) and (3.43), respectively.

Similar matrix equations can also be derived for the displacement wave-fields at the free surface

uFS(x,ω) and soil-pile interface uSP(x,ω), and the traction wave-field at the soil-pile interface

pSP(x,ω) by substituting Eq. (5.12) into the governing equations.

Assuming all N piles in the group are the same length, the soil FRF sub-matrix HS22 can be

sub-divided further into N2 square matrices that account for the kinematic interaction between

piles: the N matrices along the leading diagonal of HS22 account for the kinematic response

of each individual pile, while the remaining N2−N matrices account for the kinematic pile-

soil-pile interaction (k-PSPI) between neighbouring piles. This has the benefit of enabling the

pile-group response to be predicted with and without the inclusion of k-PSPI, the latter being

achieved simply by setting all elements outside the matrices along the leading diagonal of HS22

to zero.

5.3 A Convergence Study of the Discretised PiP Parameters

The PiP model contains multiple parameters that need to be discretised within a finite domain

in the semi-analytical formulation. Therefore, it is important to perform a convergence study

to find the level of discretisation required for each of these parameters so that a compromise

is reached between the numerical accuracy and computational efficiency of the uncoupled PiP-

BEM model.

In this section, a convergence study is conducted on the following discretised parameters:

the wavenumbers, the circumferential ring modes, the fictitious-force points and the train axles.

Further details on these PiP parameters can be found in Appendix C.

∅ 6

20
15

y

z

x

Fig. 5.1 Schematic diagram of a centred pile directly above an underground railway tunnel. Dimensions
in [m]. Not drawn to scale.
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Parameters [Units]
Soil (London

Clay)
Tunnel

(Concrete)
Pile

(Concrete)

Young’s modulus [Pa] Es = 286×106 Et = 50×109 Ep = 30×109

Poisson’s ratio[−] νs = 0.49 νt = 0.30 νp = 0.25
Density [kg/m3] ρs = 1980 ρt = 2500 ρp = 2500
Shear modulus loss factor [−] ηG = 0.08 − −
Outer wall radius [m] − rto = 3.00 −
Inner wall radius [m] − rti = 2.75 −
Diameter [m] − − d = 0.71

Table 5.2 Soil, tunnel and pile parameter values.

FST beam parameters [Units] Each rail beam Slab beam

Mass per unit length [kg/m] mr = 50 ms = 3500
Bending stiffness [Nm2] Kr = 5.00×106 Ks = 1.43×109

FST support parameters [Units] Each rail pad Slab bearing

Stiffness per unit length [N/m/m] kr = 200×106 ks = 221×106

Loss factor [−] ηr = 0.3 ηs = 0.5

Train parameters [Units] Axles

Unsprung mass [kg] Ma = 500
Spacing [m] La = 20

Table 5.3 Floating slab track (FST) and train parameter values.

In the convergence study, the tunnel-pile system, shown in Fig. 5.1, is used to calculate the

train-induced vibration of a centred pile. The pile length and tunnel depth are fixed at L = 15 m

and D = 20 m, respectively. Note that the pile will only deform in the vertical direction because

it is located directly above the tunnel centre-line and the wave-field distribution is symmetric

on either side of the pile. The pile toe is located 2 m away from the tunnel crown (i.e., the top

of the outer tunnel wall). This ensures that the recommended discretisation for the parameters

will accurately predict the waves approaching the soil-pile interface of any pile positioned close

to a tunnel with similar dimensions. Since the distributed force due to the wheel-rail roughness

is an extension of the point force applied at the tunnel invert, as described in Appendix C, the

recommended discretisation parameters from this study will apply for both modes of excitation.
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The respective parameter values summarised in Table 5.2 are used to model the piles and

the railway tunnel, which are both constructed out of concrete. In order to produce results that

are representative of physical soil, it is modelled as London Clay using the parameter values

given in Table 5.2. The phase speeds of P- and S-waves in London Clay are cP = 1572 m/s and

cS = 220 m/s, respectively. These soil parameter values are based on seismic cone penetration

tests made close to the London Underground’s Bakerloo Line, beneath Regent’s Park, London

[105], and are consistent with small-strain geotechnical properties reported elsewhere [101].

The train and the FST are modelled using the data in Table 5.3. Based on the parameter values

for the slab beam and bearing, the isolation frequency of the FST is fs =
1

2π

√
ks/ms = 40 Hz.

The vertical (wph/∆) displacement FRF at the pile head, which is the vertical displacement

wph at the pile head due to a spatially harmonic roughness ∆ at the wheel-rail interface, is used

to find the recommended discretisation for the four parameters analysed in this section. The real

and imaginary parts of the vertical displacement FRFs are plotted in Fig. 5.2 as the excitation

frequency is swept from 1 to 80 Hz.

5.3.1 Wavenumbers

Two wavenumber domains are required to find the wave-field distribution around the tunnel:

(1) the wavenumber ξ , with respect to the longitudinal x-domain, describes the variation in the

force applied along the tunnel invert; and (2) the wavenumber γ , with respect to the transverse

y-domain, describes the variation in the fictitious line-loads around the tunnel’s circumference.

Since exciting the tunnel leads to a force distribution that is (anti-)symmetric in the longitudinal

and circumferential directions, arguments based on symmetry can be applied to restrict the ξ -

and γ-domains to positive wavenumbers (0 ≤ ξ < ∞ and 0 ≤ γ < ∞), which improves the

model’s computational efficiency. In order to compute the incident wave-fields in the (x,ω)-

domain, the wavenumbers need to be discretised so that the IDFT can be performed with respect

to the ξ - and γ-domains. Both domains contain the same number of discrete wavenumber points

Nξ and the same maximum wavenumber component ξmax. The discrete components of the ξ

and γ wavenumbers are defined as

ξm = γm = mξ max/(Nξ −1) for m = 0,1, . . . ,(Nξ −1) . (5.13)

The wavenumbers associated with P- and S-waves in the soil are denoted as ξS and ξP,

respectively. Therefore, at a given excitation frequency ω , the largest wavenumber in the soil
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is ξS = ω/cS. In order to ensure that all the broad wavenumber information is captured for

waves travelling through the soil, the maximum wavenumber component is set to ξmax = 5ξS

so that ξm and γm vary with frequency. Also, the 2.5D Green’s functions for a half-space contain

exponential terms of the form e−iνP|D−D0| and e−iνS|D−D0|, where νP,S =
(

ξ 2
P,S−ξ 2− γ2

)1/2
are

wavenumbers in the vertical direction that satisfy Im(νP,S ≤ 0), and |D−D0| is the difference

in height between the tunnel depth D and the depth D0 at which the response is measured [218].

Since the imaginary parts of νP and νS are negative, the magnitude of the waves propagating

from the tunnel tend to decrease exponentially as ξm and γm increase, similar to the behaviour

of evanescent waves. That is, at high wavenumbers, the magnitude of the incident displacement

and traction wave-fields will be too low to influence the response of the centred pile. Hence,

the maximum wavenumber component ξmax can be limited to an upper bound value at high

frequencies when the wavenumbers are also large.

The convergence process used to find appropriate values for Nξ and the upper bound for

ξmax is illustrated in Figs. 5.2a and 5.2b. These sub-figures show that the solution obtained

using ξmax = min(5ξS,2π), with 401 points, is comparable in accuracy to the solution when

ξmax = min(5ξS,π) and just 201 points are used, which means that the upper bound for ξmax

can be lowered at high frequencies. Therefore, it is recommended that the ξ - and γ-domains

of an incident wave-field should be discretised using 201 points with a frequency-dependent

ξmax = min(5ξS,π) to accurately model the train-induced response of a piled foundation. Note,

if (anti-)symmetric arguments are not applied to restrict the wavenumber domains to 0≤ ξ < ∞

and 0≤ γ <∞, both positive and negative wavenumbers need to be discretised using 401 points,

and the minimum wavenumber component is then ξmin =−ξmax.

5.3.2 Circumferential Ring Modes

In the PiP model, a Fourier series expansion, with respect to the circumferential direction, is

used to evaluate the response in terms of circumferential ring modes (see Appendix C.3.1). The

nth mode, where n ≥ 0, is associated with a natural frequency. Note that n = 0 accounts for

the rigid-body vibration modes of the tunnel [67]. If the excitation frequency is greater than

the natural frequency of a particular mode, the modal tunnel displacement, associated with that

mode, transitions from a localised disturbance into propagating waves [67]. It is expected that

the magnitude of these waves, some distance from the tunnel, will only depend on the modal

displacements that have begun to propagate (i.e., have natural frequencies below the excitation
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frequency). Modes with natural frequencies that are greater than the frequency range of interest

will also have a negligible effect on the waves propagating away from the tunnel. Figure 5.2c

shows the variation in the FRFs as the largest mode nmax is increased. When the first 6 modes

(nmax = 5) are used, the corresponding FRF agrees well with the other FRFs (nmax > 5) when

the frequency is below 60 Hz. At frequencies above 60 Hz, the FRFs diverge because the higher

mode numbers, which result in propagating waves at these high frequencies, are omitted when

nmax = 5. When nmax is increased to 10 and 20, there is good agreement between the FRFs over

the entire frequency range. This means that at least the first 11 circumferential ring modes need

to be discretised to maintain numerical accuracy.

5.3.3 Fictitious-Force Points

In the fictitious-force method, the line-loads at M equidistant points around the tunnel’s outer

circumference need to be calculated in the (ξ ,γ,ω)-domain, as mentioned in Section 5.1. The

pile-head displacement FRFs in Fig. 5.2d clearly show that the FRF when M = 10 quickly

diverges as the excitation frequency increases because the soil displacement around the tunnel

is not fully captured when fewer line-loads are used. As M is increased, there is good agreement

between the FRFs when using more than 20 points. The distance between the 20 fictitious-force

points around the outer tunnel wall in Fig. 5.1 is 0.939 m ≈ λS/3, where λS = 2.75 m is the

high-frequency S-wavelength in the soil. Therefore, it is recommended to ensure there are at

least 3 fictitious-force points per S-wavelength in the soil to accurately simulate the propagating

waves from an excited tunnel.

5.3.4 Train Axles

When a train-track system is coupled to the tunnel invert, it is assumed that the train, track

and tunnel are infinitely long in the longitudinal direction. Although it is possible to model an

infinite track and tunnel by working in the wavenumber-frequency (ξ ,ω)-domain, only a finite

number of axle masses can be included in the numerical model for the train. The pile-head

displacement FRFs plotted in Fig. 5.2e are used to find the least possible number of axle masses

Na required to obtain convergence. For frequencies under 70 Hz, all the FRFs with different

Na are comparable with each other, but the FRF when Na = 7 diverges slightly from the other

FRFs at higher frequencies. Hence, 11 axle masses should be used to accurately capture the

train-induced excitation of the tunnel due to a spatially harmonic wheel-rail roughness.

98



CHAPTER 5. UNCOUPLED TUNNEL-FOUNDATION SYSTEMS

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10 -4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

ξmax = min(5ξS, π) with 101 points
ξmax = min(5ξS, π) with 201 points
ξmax = min(5ξS, π) with 401 points

Re(wph / ) [m/m]

/
) 

[m
/m

]
Im

(w
ph

10 -4

(a)

Re(wph / ) [m/m]

/
) 

[m
/m

]
Im

(w
ph

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10 -4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

ξmax = min(5ξS, 2π) with 201 points
ξmax = min(5ξS, 2π) with 401 points
ξmax = min(5ξS, π) with 201 points

10 -4

(b)

Re(wph / ) [m/m]

/
) 

[m
/m

]
Im

(w
ph

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10 -4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5 10 -4

nmax = 5
nmax = 15

nmax = 10
nmax = 20

(c)

Re(wph / ) [m/m]

/
) 

[m
/m

]
Im

(w
ph

M = 10
M = 30

M = 20
M = 40

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10 -4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5 10 -4

(d)

Re(wph / ) [m/m]

/
) 

[m
/m

]
Im

(w
ph

Na = 7
Na = 15

Na = 11
Na = 19

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10 -4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5 10 -4

(e)

wph

Fig. 5.2 The real and imaginary parts of the vertical displacement FRFs at the head of a centred
pile above an underground railway tunnel. The influence in varying the following PiP parameters is
shown: (a) the number of wavenumber points, (b) the maximum wavenumber ξmax, (c) the maximum
circumferential ring mode nmax, (d) the number of fictitious-force points M and (e) the number of train
axles Na. The arrows in the sub-figures represent the direction of increasing excitation frequency.
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5.4 Validating the Uncoupled PiP-BEM Model

The uncoupled PiP-BEM model is validated against results published by Coulier [42] for two

different tunnel-pile systems, as illustrated in Fig. 5.3; the pile configuration in each system

represents an off-centred pile and a centred 1× 4 pile-group. Since, in both cases, the piled

foundation is far from the tunnel, the source and receiver can be assumed to be uncoupled.

Coulier adopts the BEM to capture the dynamics of the soil and uses the PiP model to compute

the far-field waves from a railway tunnel. Unlike the uncoupled PiP-BEM model, Coulier uses

Timoshenko beam theory [228] to characterise the flexural motion of the piles. Moreover, one

of the main disadvantages in Coulier’s equivalent model is that the algebraic expressions need

to be extensively reformulated when the pile configuration is changed.

The response of each tunnel-pile system is computed using the parameter values in Table 5.4

for the soil, tunnel and piles. Based on these values, the phase speeds of P- and S-waves in the

soil are cP = 944 m/s and cS = 309 m/s, respectively. However, Coulier does not explicitly

state the parameter values of the FST and the train, so the train-track parameters in Table 5.3,

which are the default values in the free licenced PiP software [116], are used in the PiP-BEM

model

For each pile configuration, a comparison is made when the heads are fixed and when they

are free to rotate about the x- and y-axes. The pile heads can be constrained against rotation

when they are bonded to a concrete slab, such as in a piled-raft foundation [198]. The pile-

head constraint can be applied by removing the two columns and rows in the dynamic-stiffness

matrix K in Eq. (3.15) that correspond to the pile-head rotations and moments, respectively.
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Fig. 5.3 Schematic diagrams of (a) the off-centred pile and (b) the centred 1× 4 pile-group near their
respective underground railway tunnels. Dimensions in [m]. Not drawn to scale.
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Material parameters [Units] Soil Tunnel Piles

Young’s modulus [Pa] Es = 550×106 Et = 50×109 Ep = 30×109

Poisson’s ratio [−] νs = 0.44 νt = 0.30 νp = 0.25
Density [kg/m3] ρs = 2000 ρt = 2500 ρp = 2500
Shear modulus loss factor [−] ηG = 0.06 − −
Outer wall radius [m] − rto = 3.00 −
Inner wall radius [m] − rti = 2.75 −
Diameter [m] − − d = 0.71

Table 5.4 Soil, tunnel and pile parameter values used to validate the uncoupled PiP-BEM model.

By inverting the condensed K matrix, the displacement FRF matrix for a pile with a fixed head

can be computed.

The magnitude and phase of the pile-head displacement FRFs in the transverse (vph/∆) and

vertical (wph/∆) directions are presented in Figs. 5.4–5.9 for the two tunnel-pile configurations.

The vertical displacements of the inner and outer piles of the 1× 4 pile-group are equivalent

on the left- and right-hand sides due to symmetry. Note, Coulier does not publish the results

for the transverse displacement and the phase of the free pile-heads in the 1×4 pile-group, so

they are not included in Figs. 5.8 and 5.9. Figures 5.6–5.9 also plot the pile-head displacement

FRFs when k-PSPI is neglected in the 1×4 pile-group – the PiP-BEM formulation provides an

opportunity to study this using the approach detailed in Section 5.2. The greenfield FRFs (i.e.,

displacement at the free surface before adding the piles) are included in Figs. 5.4–5.9, which are

calculated using three different formulations: the half-space PiP model detailed in Section 5.1,

Coulier’s model [42], and the PiP software [116]. The three formulations should give the same

greenfield displacements if the same parameter values are used.

The results show reasonably good agreement between Coulier’s model and the uncoupled

PiP-BEM model. In particular, there is almost perfect agreement in the transverse responses

of the two tunnel-pile configurations. This shows that a simple, analytical pile model based on

Euler-Bernoulli beam theory can accurately capture the transverse pile motion, over the entire

frequency range, instead of adopting Timoshenko beam theory as Coulier does. The differences

in the vertical responses, evident between approximately 50 to 70 Hz and 50 to 60 Hz for the

off-centred pile (Figs. 5.4 and 5.5) and 1×4 pile-group (Figs. 5.6–5.9), respectively, are likely

to be due to Coulier using different parameter values for the train-track system.
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Fig. 5.4 The magnitude and phase of the (a) transverse and (b) vertical displacement FRFs at the fixed
head of the off-centred pile near an underground railway tunnel. The pile-head FRFs are predicted using
the PiP-BEM model and Coulier’s equivalent model. The greenfield FRFs are predicted using three PiP
formulations: the half-space PiP model, Coulier’s model and the PiP software.
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Fig. 5.5 The magnitude and phase of the (a) transverse and (b) vertical displacement FRFs at the free
head of the off-centred pile near an underground railway tunnel. The pile-head FRFs are predicted using
the PiP-BEM model and Coulier’s equivalent model. The greenfield FRFs are predicted using three PiP
formulations: the half-space PiP model, Coulier’s model and the PiP software.
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Fig. 5.6 The magnitude and phase of the (a) transverse and (b) vertical displacement FRFs at the fixed,
outer pile head (shaded) of the centred 1× 4 pile-group near an underground railway tunnel. The pile-
head FRFs are predicted using the PiP-BEM model, with and without k-PSPI, and Coulier’s equivalent
model. The greenfield FRFs are predicted using three PiP formulations: the half-space PiP model,
Coulier’s model and the PiP software.
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Fig. 5.7 The magnitude and phase of the (a) transverse and (b) vertical displacement FRFs at the fixed,
inner pile head (shaded) of the centred 1× 4 pile-group near an underground railway tunnel. The pile-
head FRFs are predicted using the PiP-BEM model, with and without k-PSPI, and Coulier’s equivalent
model. The greenfield FRFs are predicted using three PiP formulations: the half-space PiP model,
Coulier’s model and the PiP software.
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Fig. 5.8 The magnitude and phase of the (a) transverse and (b) vertical displacement FRFs at the free,
outer pile head (shaded) of the centred 1× 4 pile-group near an underground railway tunnel. The pile-
head FRFs are predicted using the PiP-BEM model, with and without k-PSPI, and Coulier’s equivalent
model. The greenfield FRFs are predicted using three PiP formulations: the half-space PiP model,
Coulier’s model and the PiP software.
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Fig. 5.9 The magnitude and phase of the (a) transverse and (b) vertical displacement FRFs at the free,
inner pile head (shaded) of the centred 1× 4 pile-group near an underground railway tunnel. The pile-
head FRFs are predicted using the PiP-BEM model, with and without k-PSPI, and Coulier’s equivalent
model. The greenfield FRFs are predicted using three PiP formulations: the half-space PiP model,
Coulier’s model and the PiP software.
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A key point to address from the results is the modification in ground vibration levels once a

piled foundation is constructed, which, in this case, is referred to as the added-pile effect. The

transverse displacement at the heads of both pile configuration closely follow that of the soil

(i.e., the greenfield displacement) over the full frequency range of interest, which means that

the added-pile effect in the transverse direction is negligible. Likewise, the same negligible

difference is observed in the vertical displacement, but only below 20 Hz. This is because the

piles undergo rigid-body motion at low frequencies by closely following the long-wavelength

deformation of the soil. At higher frequencies, the vertical displacement at each pile head

differs considerably from that of the soil: at certain frequencies the pile-head displacement is

approximately 15 dB lower than the greenfield displacement, and the well-defined undulations

in the greenfield response, which arise due to wave interference in the soil [85], are smoothed

out by embedding the piles. This occurs due to the soil-stiffening effect, as the piles constrain

the soil’s motion, which was observed earlier in Section 4.6 when considering PSPI. A similar

effect is also observed by Makris and Fan et al. when considering the response of a single pile

to R-waves [162] and upward-travelling S-waves [62], respectively. Thus, the addition of piles

tends to attenuate the wave-field in the soil, albeit with occasional ‘amplification’, as observed

in Figs. 5.6–5.9 between 40 and 46 Hz. A comprehensive analysis on how the soil-stiffening

effect influences the pile-head response, as the pile length is varied, is presented in Section 6.6.

When the pile heads are unconstrained, Figs. 5.4, 5.5, 5.8 and 5.9 show that the transverse

displacements of the off-centred pile and the centred 1×4 pile-group increase by around 3 dB

between 40 and 60 Hz, compared to when the heads are fixed. This is possibly due to in-phase

rocking motion induced at the free pile-head, which causes the net transverse displacement to

increase. In contrast, the same figures exhibit no differences between the vertical displacements

when the pile heads are fixed and free. This is expected given that the pile’s axial and flexural

modes of vibration are uncoupled, as described in Section 3.1, so constraining the rotation does

not affect the vertical response.

A further observation is that the response of the 1× 4 pile-group is essentially the same

whether or not k-PSPI is included. The negligible effect of k-PSPI may be surprising given

the close spacing between the piles and the soil wavelengths involved (approximately 3 m at

80 Hz), which is in stark contrast to the response of piles to inertial excitation (see Chapter 3),

where it is necessary to account for PSPI. However, this insensitivity to k-PSPI may be due to

the orientation of the tunnel – orthogonal to, and deep below, the row of piles – and the shortness
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of the piles, which reduces the surface area of the soil-pile interface. Since the tunnel is located

beneath the centre-line of the pile-group, a large proportion of the scattered wave-field from

each pile propagates vertically downwards, instead of interacting with adjacent piles. Similar

observations of low k-PSPI have been made in various seismic studies involving the response

of piles to upward-travelling S- and P-waves [62, 164, 178], as well as R-waves and obliquely

incident SH-waves [163].

5.5 Conclusions

In Sections 5.1 and 5.2, the BEM pile-group model developed in Chapter 3 has been combined

with the pipe-in-pipe (PiP) model, which captures the dynamics of a tunnel in a half-space, to

predict the train-induced response of a piled foundation due to an underground railway tunnel.

The separation distance between the tunnel and foundation was assumed to be greater than the

soil wavelengths, which means that the two structures can be treated as isolated sub-systems in

the uncoupled PiP-BEM model.

The convergence study in Section 5.3 highlighted the compromises that need to be made

between numerical accuracy and computational efficiency when discretising the parameters in

the PiP model. For the frequency range of interest (1-80 Hz), appropriate levels of discretisation

were recommended for the wavenumbers, the circumferential ring modes, the fictitious-force

points and the train axles. By adopting the recommended values for these PiP parameters, the

uncoupled PiP-BEM model was used in Section 5.4 to predict the train-induced vibration of

two tunnel-pile systems and compare the responses against the predictions made by Coulier’s

equivalent model [42]. In general, there was reasonably good agreement between both models.

However, there were some discrepancies in the vertical pile-head responses, which were likely

due to Coulier using different parameter values for the floating slab track (FST) and the train

axle mass.

The added-pile effect, which is the modification of the ground (greenfield) response when a

piled foundation is constructed, was found for the transverse and vertical responses of the two

tunnel-pile systems. At low excitation frequencies, both the transverse and vertical pile-head

responses followed the long-wavelength deformation of the soil. The same general trend was

observed in the transverse response at high frequencies. In contrast, the added-pile effect had

a greater influence on the vertical response at high frequencies: at certain frequencies the pile-
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head displacement was approximately 15 dB lower than the greenfield displacement, and the

well-defined undulations in the greenfield response were smoothed out by the addition of piles.

The soil-stiffening effect due to the addition of piles tends to attenuate the vertical greenfield

response, albeit with occasional ‘amplification’ due to undulation smoothing. Furthermore, it

was found that constraining the pile heads against rotation only reduced the transverse pile-head

response at high frequencies, whereas the vertical response was unaffected.

Interestingly, the effect of kinematic pile-soil-pile interaction (k-PSPI) on the response of

the centred 1×4 pile-group was found to be negligible. This insensitivity to k-PSPI is possibly

caused by both the orientation of the tunnel relative to the pile-group and the shortness of the

individual piles. The result is that a large proportion of the scattered wave-field from each pile

propagates vertically downwards, instead of interacting with adjacent piles.
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Chapter 6

Coupled Tunnel-Foundation Systems

In Chapter 5, the tunnel-foundation model only captures the dynamics of an uncoupled source-

receiver system because the separation distance between the tunnel and foundation is assumed

to span multiple wavelengths in the soil. However, site surveys have found instances where the

separation distance is around the same order of magnitude as the soil wavelengths [119, 194],

which may increase the prevalence of source-receiver interaction due to through-soil coupling.

A study by Clouteau et al. [32] on the structure-soil-structure interaction (3SI) between

multiple buildings found that through-soil coupling has a greater effect on the response when

deep embedded foundations, rather than surface foundations, are used. In a recent paper, Kuo et

al. [147] assess the differences between the uncoupled and coupled responses of a building near

a surface railway as the source-receiver separation distance is varied. The railway and building

are coupled using a 2.5D FEM-BEM model by assuming that both structures are infinitely long.

They conclude that the separation distance has a negligible effect on the coupled response, as

the two structures are resting on top of the ground instead of being embedded in it. Coulier et

al. [44] use a similar 2.5D FEM-BEM model to analyse the source-receiver interaction between

a building, supported on embedded strip foundations, and an underground tunnel excited via a

time-harmonic point load. They observe that the source-receiver interaction mainly affects the

train-induced response if the separation distance is less than the pressure wavelength in the soil.

At particular locations, the insertion gain (IG) between the coupled and uncoupled responses

can be as high as 10 dB, which re-emphasises that through-soil coupling can have a significant

effect on the response when either the source or receiver is fully embedded in the ground [32].

In this chapter, the iterative wave-scattering approach described in Chapter 4 is applied to

the tunnel-foundation system to develop an iterative PiP-BEM model, which can approximate
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the through-soil coupling between a finite piled foundation and an infinitely long underground

railway tunnel. Section 6.1 provides a detailed overview of the new iterative PiP-BEM model.

Section 6.2 examines whether the new model can account for wave scattering at the free surface.

A convergence study is performed in Section 6.3 to identify the level of discretisation required

at the soil-tunnel interface when a piled foundation is positioned next to a tunnel. The iterative

PiP-BEM model is then used to investigate the significance of source-receiver interaction in

some test cases of tunnel-foundation systems in Section 6.4. Section 6.5 describes the changes

in the soil response when a standard slab, instead of a floating slab, is used in the railway track.

A parametric study is conducted in Section 6.6 for the case of a single pile next to a railway

tunnel with a standard slab track, and some concluding remarks are given in Section 6.7.

6.1 The Iterative PiP-BEM Model

In principle, the iterative wave-scattering approach presented in Section 4.1 can approximate

the coupling between multiple soil-embedded structures that can be divided into a source sub-

system and a receiver sub-system. The result is a coupled source-receiver model that accounts

for the wave-fields that propagate back and forth between the two isolated sub-systems, thereby

capturing the source-receiver interaction. For the case of a tunnel-foundation system, the sub-

systems are represented by the underground tunnel (source) and the piled foundation (receiver),

both of which are embedded in their own respective homogeneous half-space.

The iterative approach consists of the four main steps that are illustrated in Fig. 6.1, which

are repeated for each iteration. During the first iteration, the full-space PiP model is used in the

first step (Fig. 6.1a) to calculate the tunnel response when it is only driven by modal tractions

q̃n at the tunnel invert. In the second step (Fig. 6.1b), the fictitious-force method and the 2.5D,

half-space Green’s functions are used to find the far-field displacements ũinc and tractions p̃inc

induced in a half-space by the fictitious line-loads f̃ around the soil-tunnel interface. For further

details on applying the second step, the reader can refer to Appendices C.6 and C.7. In the third

step (Fig. 6.1c), the far-field displacements and tractions that propagate towards the soil-pile

interface (uinc
SP ,p

inc
SP ) and the free surface (uinc

FS ,p
inc
FS = 0) are used to excite the boundary-element

mesh of the pile-group model developed in Chapter 3. Finally, the BEM is used in the fourth

step (Fig. 6.1d) to calculate the incident wave-fields that propagate back towards the soil-tunnel

interface (uinc
ST,p

inc
ST) once the foundation is excited.
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Internal
points

(d) Step 4: BEM at internal points

Fig. 6.1 Summary of the four steps during each iteration of the iterative PiP-BEM model, which is used
to approximate the tunnel-pile coupling in a tunnel-foundation system.

In all subsequent iterations, the modal components of the incident displacement ũinc
n,st and

traction p̃inc
n,st wave-fields at the soil-tunnel interface are applied as additional excitation loads on

the outer tunnel wall during the first step, which revises the tunnel response. These four steps

are repeated until convergence is observed. Convergence is deemed to have been achieved when

the change, between successive iterations, in the Euclidean norm of the pile-head displacement

vector is less than 1%. During each iteration, the tunnel and piled foundation sub-systems are

‘weakly’ coupled together, thereby giving a better approximation for the fully coupled train-

induced response.

Note, the first three steps in the first iteration are identical to the method described in the

uncoupled tunnel-foundation model (see Sections 5.1 and 5.2). The remainder of this section

outlines: the fourth step, which is used to compute the incident wave-fields at the soil-tunnel

interface; and the first step that is used in subsequent iterations to revise the tunnel response.

Once the displacement and traction wave-fields at the free surface (uFS,pFS = 0) and soil-

pile interface (uSP,pSP) are computed using the BEM pile-group model, the BEM at internal

points in the domain (see Appendix B.7) is used to calculate the wave-fields that propagate
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Soil-tunnel
interface

Soil-pile
interface

Boundary
elements

Internal points

Free
surface

Fig. 6.2 An example of the unbounded 3D mesh for a tunnel-foundation system. Boundary elements are
included at the free surface and soil-pile interface, while internal points are included at the soil-tunnel
interface.

towards the soil-tunnel interface. The equations in the BEM are derived using the full-space

Green’s functions in the space-frequency (x,ω)-domain. As shown in Fig. 6.2, an unbounded

3D mesh is used to discretise the free surface, soil-pile interface and soil-tunnel interface. The

free surface and soil-pile interface consists of square boundary elements, whereas the soil-

tunnel interface is discretised as a collection of internal points within the soil domain. By using

the general relationships between the boundary values and the wave-fields at the internal points,

which are expressed in Eqs. (4.8) and (4.9), the incident wave-fields at the soil-tunnel interface

(uinc
ST,p

inc
ST) can be expressed as the following matrix equations:

uinc
ST = Gu

 0

pSP

−Hu

uFS

uSP

 , (6.1)

pinc
ST = Gp

 0

pSP

−Hp

uFS

uSP

 , (6.2)

where the matrices Gu, Hu, Gp and Hp are defined in Appendix B.7. The extent of the free

surface mesh and the number of internal points that is required at the soil-tunnel interface to

achieve convergence in the response are explored in Sections 6.2 and 6.3, respectively.

In subsequent iterations, the incident wave-fields at the soil-tunnel interface need to be

applied as external excitation on the outer tunnel wall in the full-space PiP model. Thus, these
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wave-fields must first be transformed from the (x,ω)-domain into the modal-wavenumber-

frequency (n,ξ ,ω)-domain that is used in the PiP model.

The discrete Fourier transform (DFT), as detailed in Appendix A.2.1, is applied with

respect to the longitudinal x-domain to transform the incident wave-fields (uinc
ST,p

inc
ST) into the

wavenumber ξ -domain (ũinc
ST, p̃

inc
ST). Note that the discretised ξ -components in the transformed

wave-fields and those used the PiP model must be equivalent. In order to avoid artefacts due to

aliasing when computing the DFT, the Nyquist sampling criterion must be met: the sampling

wavenumber 2π/∆x must at least be twice the maximum ξ -component ξmax. The longitudinal

spacing ∆x between internal points will at most be 0.5 m to ensure that at least six points per

S-wavelength are used [52]. Based on the Nyquist criterion, the largest ξ -component that can

be captured using ∆x = 0.5 m is ξmax = 2π . In Section 5.3.1, the convergence study on the

wavenumbers shows that using the ξ -components up to ξmax = π in the half-space PiP model

can accurately predict the high-frequency waves that propagate away from the tunnel. Thus, a

spacing of at least 0.5 m will be able to capture the large ξ -components of the incident waves

at the soil-tunnel interface over the frequency range of interest (1-80 Hz).

Since the distribution of incident wave-fields around the soil-tunnel interface is periodic in

the circumferential θ -direction, the wave-fields can be transformed into n circumferential ring

modes by finding the discrete Fourier series coefficients. For more details on computing these

coefficients for a sampled data set, the reader can refer to Appendix A.3. Therefore, the modal

displacement and traction wave-fields can be decomposed into their symmetric (ũinc
n1,st , p̃

inc
n1,st)

and anti-symmetric (ũinc
n2,st , p̃

inc
n2,st) components. Since the data is discretely sampled, a sampling

criterion, similar to Nyquist’s theorem, must be satisfied to avoid errors:

Nθ > 2nmax +1 , (6.3)

where Nθ is the number of internal points in the θ -direction, and nmax is the largest harmonic

mode of the incident wave-fields. Numerical errors that could arise due to under-sampling are

shown in Fig. A.3. In Section 5.3.2, it is observed that convergence is achieved when the first

11 circumferential ring modes (nmax = 10) are used in the half-space PiP model. Therefore, at

least Nθ = 22 internal elements should be used around the soil-tunnel interface to accurately

capture the modal distribution of the incident waves.

Now that the incident waves have been transformed into the (n,ξ ,ω)-domain, the excitation

due to these waves at the tunnel wall can be expressed in terms of the scattered field in the PiP

model. For example, the scattered displacement wave-field at an interface can be written as
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ũn− ũinc
n , where ũn is the revised displacement wave-field. The tunnel response is expressed

in terms of the coefficient vectors c̃ and b̃, which describe the propagation of waves in a full-

space. In Appendix C.5, the coefficient vectors that describe the revised tunnel motion due to

the incident waves at the soil-tunnel interface and the tunnel invert tractions q̃n are derived,

which are repeated here for convenience. The revised coefficients due to symmetric loading are

c̃1 =

[
C̃11 C̃12

]
q̃n

p̃inc
n1,st− T̃m1

∣∣∣
r=rto

Ũ−1
m1

∣∣∣
r=rto

ũinc
n1,st

 , (6.4)

b̃1 = Ũ−1
m1

∣∣∣
r=rto

(
Ũ1

∣∣∣
r=rto

c̃1− ũinc
n1,st

)
, (6.5)

and the revised coefficients due to anti-symmetric loading are

c̃2 =

[
C̃21 C̃22

]
0

p̃inc
n2,st− T̃m2

∣∣∣
r=rto

Ũ−1
m2

∣∣∣
r=rto

ũinc
n2,st

 , (6.6)

b̃2 = Ũ−1
m2

∣∣∣
r=rto

(
Ũ2

∣∣∣
r=rto

c̃2− ũinc
n2,st

)
, (6.7)

where the matrices are defined in Appendix C. The revised displacements and tractions at the

soil-tunnel interface are found by substituting the coefficient vectors into Eqs. (C.69)–(C.72).

6.2 The Effect of the Free Surface on the Tunnel Response

Over the frequency range from 1 to 80 Hz, multiple studies have demonstrated that there is good

agreement between the PiP model and coupled FEM-BEM models when a tunnel is embedded

in either a homogeneous [110,114] or layered [118] half-space. To reiterate, the PiP model uses

the fictitious-force method to find an equivalent set of line-loads that, when applied in a full-

space where the tunnel cavity is filled in with soil material, produce the same displacements

at the soil-tunnel interface as when the cavity was present. These fictitious line-loads are then

used to excite a homogeneous half-space. One of the key assumptions in this step is that the free

surface does not influence the near field around the tunnel; that is, the response at the soil cavity

is the same whether the tunnel is embedded in a full-space or a half-space. This assumption

is valid when the distance between the tunnel crown and the free surface (the tunnel-ground

separation distance) spans multiple wavelengths in the soil. However, when the tunnel is closer
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to the free surface, the response between the tunnel and free surface becomes coupled. Hence,

the near field around the tunnel is likely to be modified by waves that reflect off the free surface.

Hussein et al. [113] use the PiP model and a periodic, coupled FEM-BEM model [50] to

compare the greenfield FRFs induced by an excited tunnel in a homogeneous half-space as the

tunnel depth D is varied between 5 m and 20 m. In all cases, the tunnel is excited by exerting

a time-harmonic point force at the invert. When the tunnel depth is greater than 10 m, there is

very good agreement between the two models because the tunnel-ground separation distance is

sufficiently large. However, when the tunnel depth is decreased to 5 m, significant differences

begin to appear in the displacement magnitudes, which are sometimes in excess of 15 dB at

certain frequencies.

In a separate study, Galvín et al. [72] compare the greenfield FRFs predicted by a rigorous,

coupled FEM-BEM model [70] and the PiP model when a very shallow tunnel (D = 5.5 m) is

embedded in a single-layered half-space. This time, the tunnel is driven via a time-harmonic

point force at the top of a floating slab track (FST), which is directly coupled to the tunnel invert.

The difference in the greenfield response is roughly 10 dB or higher over most frequencies,

which is similar to the observations made by Hussein et al. [113]. In both studies, significant

differences are present between the PiP and FEM-BEM models because the waves reflected by

the ground, which can influence soil-tunnel interaction of shallow tunnels, are not evaluated in

the PiP model.

Therefore, this section explores whether the iterative PiP-BEM model (see Section 6.1) can

capture the effect of the free surface on the coupled soil-tunnel response of shallow tunnels. For

all cases, the tunnel is embedded in a half-space while it is driven by two modes of excitation at

the invert: (1) a time-harmonic point force; and (2) a spatially harmonic wheel-rail roughness

along the train-track system. Additional information on the excitation mechanisms is available

in Appendix C. Most of the work presented in Section 6.2.1 has been published in a conference

paper by Edirisinghe et al. [58].

6.2.1 The Response Due to a Time-Harmonic Point Force

Here, the greenfield displacement FRFs are evaluated at three receiver points (0 m,0 m,0 m),

(0 m,20 m,0 m) and (20 m,20 m,0 m) on the free surface using the iterative PiP-BEM model

when a time-harmonic point force F0 is applied at the tunnel invert, as illustrated in Fig. 6.3.

These FRFs are then compared against the coupled solutions, which are computed using the
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(0,20,0)
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Soil
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∅ 6

Fig. 6.3 The three receiver points (0 m,0 m,0 m), (0 m,20 m,0 m) and (20 m,20 m,0 m) on the free
surface where the greenfield displacement FRFs are predicted for a tunnel embedded in a homogeneous
half-space at depth D. The tunnel is excited at the tunnel invert by a time-harmonic point force F0.
Dimensions in [m].

rigorous FEM-BEM model developed by Degrande et al. [50], to validate if the iterative PiP-

BEM model can account for the coupled soil-tunnel response.

Three different values of D are considered: very shallow (5 m), shallow (10 m) and medium

depth (20 m). For all cases, the tunnel has an inner radius of rti = 2.75 m and an outer radius

of rto = 3.0 m, and it is constructed out of concrete with a Young’s modulus of Et = 50 GPa, a

Poisson’s ratio of νt = 0.3 and a density of ρt = 2500 kg/m3. Material damping in the tunnel is

accounted for by using a hysteretic loss factor of ηt = 0.03 associated with both elastic Lamé

constants. The half-space consists of a homogeneous soil with P- and S-wave phase speeds of

cP = 400 m/s and cS = 200 m/s, respectively, a density of ρs = 1800 kg/m3 and a hysteretic

loss factor of ηs = 0.04 associated with both elastic Lamé constants.

The resolution of the mesh is 0.4 m×0.4 m at the free surface. The longitudinal spacing ∆x

between internal points at the soil-tunnel interface is 0.4 m, which satisfies the Nyquist criterion

when computing the DFT of the incident wave-fields at the outer tunnel wall. In order to satisfy

the sampling criterion in Eq. (6.3) when computing the discrete Fourier series coefficients, the

number of circumferential points around the soil-tunnel interface is set as Nθ = 42, resulting in

a spacing ∆θ of 0.448 m.
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It is important to find out whether the free surface in the boundary-element mesh needs

to be discretised above the tunnel or around the receiver points, where the displacement FRFs

are measured. If the response, based on the former discretisation approach, agrees better with

the FEM-BEM solution, it will suggest that the coupled soil-tunnel response is predominantly

influenced by the reflected waves at the local free surface near the tunnel. The two discretisation

approaches for the free surface are investigated in the following sub-sections.

Discretising the Local Free Surface Above the Tunnel

In order to find the greenfield displacement at the receiver point (0 m,0 m,0 m), the local free

surface above the tunnel centre-line needs to be discretised because the response is measured

directly above the excitation point at the tunnel invert. An unbounded 3D mesh, similar to the

example shown in Fig. 6.4, can be used to discretise the free surface and the soil-tunnel interface

in the soil domain. The number of elements at the free surface (N1,N2) and the number of

longitudinal points Nx at the soil-tunnel interface are constrained by setting N1 = N2 = Nx, so

that the extent of the mesh can be changed by varying a single parameter. In this sub-section,

the extent of the mesh is varied between N1 = 26 and N1 = 101 to observe the effect this may

have on the greenfield response.

The magnitude of the vertical (ws/F0) greenfield displacement FRFs at (0 m,0 m,0 m) are

plotted in Fig. 6.5 for the first six iterations of the PiP-BEM model as both D and N1 are varied.

N2 elements

N1 elements

Soil-tunnel
interface

Free surface

(0,0,0)

0

−5

−10

z [m]

0510
−5 −10

−10

y [m]

0

10

x [m]
Nx pointsNθ points

Fig. 6.4 An example of the unbounded 3D mesh, which discretises a finite region of the free surface
(green) and soil-tunnel interface (blue), for a tunnel of depth D = 10 m. The mesh is used to find the
greenfield displacement at a receiver point by only accounting for the waves reflected by the local free
surface above the tunnel. N1 = N2 = Nx and Nθ = 42.
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The responses using the coupled FEM-BEM model are also plotted. Note, for the first iteration

of the iterative PiP-BEM model, the FRFs are equivalent to those predicted by the standard PiP

model because the tunnel response has not yet been revised by the reflected waves at the free

surface. By computing more successive iterations, the response converges towards the coupled

solution.
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Fig. 6.5 The magnitude of the vertical greenfield displacement FRFs at the point (0 m,0 m,0 m) when
a time-harmonic point force is applied within an underground tunnel. The influence of the tunnel depth
D on the response, predicted using the FEM-BEM model and the iterative PiP-BEM model for the first
six iterations (i = 6), is illustrated. For the iterative PiP-BEM model, the extent of the mesh shown in
Fig. 6.4 is varied by adjusting the number of elements N1.
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When D ≥ 10 m, there is good agreement between the iterative PiP-BEM model and the

FEM-BEM model. At these depths, the FRFs also converge after just one iteration (i = 1),

which is expected because the tunnel-ground separation distance spans multiple wavelengths.

In contrast, when D = 5 m, there is a greater difference between the first iteration of the PiP-

BEM model (uncoupled response) and the FEM-BEM model (coupled response), particularly

at high frequencies above 60 Hz. A distinct anti-resonance is visible in the first iteration’s FRF

at around 64 Hz, which corresponds to an S-wavelength of approximately 3.1 m in the soil. For

a dynamic system, an anti-resonance can be interpreted as a resonance of the system when it is

fixed at the excitation point [239]. At 64 Hz, the distance between the excitation point at the

tunnel invert and the free surface at (0 m,0 m,0 m) spans approximately 2.5 S-wavelengths.

This suggests that when wave-scattering effects are neglected during the first iteration, the anti-

resonance is caused by the destructive interference of S-waves. The anti-resonance at 64 Hz is

absent in the FEM-BEM solution and when more iterations are applied to revise the PiP-BEM

solution.

In addition, for the very shallow tunnel (D = 5 m), there is better agreement between the

two models as the number of elements is increased from N1 = 26 to N1 = 51. This is expected

because the waves are prevented from leaking around the edges of the mesh when a larger extent

of the free surface is discretised. However, as the number of elements is increased further from

N1 = 51 to N1 = 101, fluctuating artefacts begin to appear in the greenfield FRFs.

Discretising the Local Free Surface Around the Receiver Points

In this sub-section, the greenfield responses at the points (0 m,20 m,0 m) and (0 m,20 m,0 m),

which are located far from the tunnel, are predicted using the iterative PiP-BEM model. The

local free surface around these points are discretised in the unbounded 3D mesh, as illustrated

in Fig. 6.6, to revise the coupled soil-tunnel response.

Figure 6.7 plots the magnitude of the longitudinal (us/F0), transverse (vs/F0), and vertical

(ws/F0) greenfield displacement FRFs at the two receiver points for the first three iterations

of the PiP-BEM model when D = 5 m. The corresponding results for the coupled FEM-BEM

model are also plotted. Note, the longitudinal displacement at the point (0 m,20 m,0 m) is zero

due to symmetry. In general, there are no significant changes in the responses at both points as

the number of iterations is increased, implying that the reflected waves at the local free surface

around the receiver points do not influence the coupled soil-tunnel response.
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Fig. 6.6 An example of the unbounded 3D mesh, which discretises a finite region of the free surface
(green) and soil-tunnel interface (blue), for a tunnel of depth D = 5 m. The mesh is used to find the
greenfield displacement at a receiver point by only accounting for the waves reflected by the local free
surface around that point. N1 = N2 = Nx = 51 and Nθ = 42.
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Fig. 6.7 The magnitude of the longitudinal, transverse and vertical greenfield displacement FRFs at the
points (a) (0 m,20 m,0 m) and (b) (20 m,20 m,0 m) (bottom) when a time-harmonic point force is
applied within an underground tunnel at depth D = 5 m. The FRFs are predicted using the FEM-BEM
model and the iterative PiP-BEM model for the first three iterations (i = 3). A mesh similar to Fig. 6.6
is used in the iterative PiP-BEM model.
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In comparison with the FEM-BEM solutions, the greenfield displacement FRFs predicted

using the iterative PiP-BEM model deviate by at most 15 dB at some frequencies, which is very

significant. This is because, unlike in the previous sub-section, the waves reflected by the local

free surface directly above the tunnel centre-line are not captured by the mesh in the iterative

PiP-BEM model. Thus, the mesh should be modified to capture the waves reflected by the local

free surface near the tunnel, as they predominantly affect the coupled soil-tunnel interaction.

The Free Surface Displacement in the Far Field

Based on the observations made in the previous sub-section, a mesh that is similar to the one

illustrated in Fig. 6.4, where the local free surface above the tunnel centre-line is discretised,

is used to obtain better estimates for the coupled soil-tunnel response at the two points furthest

from the tunnel. The extent of the mesh is also fixed by setting N1 = 51 in order to minimise the

amplitude of the fluctuating artefacts, which previously appeared in the FRF plots in Fig. 6.5.
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Fig. 6.8 The magnitude of the (a) transverse and (b) vertical greenfield displacement FRFs at the point
(0 m,20 m,0 m) when a time-harmonic point force is applied within an underground tunnel. The
influence of the tunnel depth D on the response, predicted using the FEM-BEM model and the iterative
PiP-BEM model for the first six iterations (i = 6), is illustrated. A mesh similar to Fig. 6.4 is used in the
iterative PiP-BEM model with N1 = 51 elements.
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Figures 6.8 and 6.9 plot the magnitude of the longitudinal (us/F0), transverse (vs/F0), and

vertical (ws/F0) greenfield displacement FRFs at (0 m,20 m,0 m) and (20 m,20 m,0 m),

respectively, for the first six iterations of the iterative PiP-BEM model. The influence on the

FRFs, when varying D, is also shown. As expected, there is good agreement between the FEM-

BEM model and the first iteration of the PiP-BEM model when D ≥ 10 m. When the tunnel

depth is lowered to D = 5 m, the FRFs predicted using the sixth iteration (i = 6) agree better

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180

|u
s
/F

0
[d

B
re

f m
/N

]
|

D = 5 m

|u
s
/F

0
[d

B
re

f m
/N

]
|

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180
D = 10 m

(a)

|u
s
/F

0
[d

B
re

f m
/N

]
|

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180
D = 20 m

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180

|v
s
/F

0
[d

B
re

f m
/N

]
|

D = 5 m

|v
s
/F

0
[d

B
re

f m
/N

]
|

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180
D = 10 m

(b)

|v
s
/F

0
[d

B
re

f m
/N

]
|

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180
D = 20 m

|w
s
/F

0
[d

B
re

f m
/N

]
|

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180
D = 5 m

|w
s
/F

0
[d

B
re

f m
/N

]
|

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180
D = 10 m

(c)

|w
s
/F

0
[d

B
re

f m
/N

]
|

0 20 40 60 80

Frequency [Hz]

-260

-240

-220

-200

-180
D = 20 m

Iterative PiP-BEM: i = 2FEM-BEM: i = 3 i = 4 i = 5 i = 6i = 1

Fig. 6.9 The magnitude of the (a) longitudinal, (b) transverse and (c) vertical greenfield displacement
FRFs at the point (20 m,20 m,0 m) when a time-harmonic point force is applied within an underground
tunnel. The influence of the tunnel depth D on the response, predicted using the FEM-BEM model and
the iterative PiP-BEM model for the first six iterations (i = 6), is illustrated. A mesh similar to Fig. 6.4
is used in the iterative PiP-BEM model with N1 = 51 elements.
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with the FEM-BEM solutions in comparison to the first iteration. In particular, the maximum

difference in the transverse response between the models decreased from about 20 dB to 10 dB

as the number of iterations is increased. This demonstrates that the iterative PiP-BEM model

can capture the coupled soil-tunnel response by revising the response based on the reflected

waves at the free surface above the tunnel.

However, fluctuating artefacts are still prevalent in the responses of the very shallow tunnels

in Figs. 6.5, 6.8 and 6.9. One possibility for this phenomenon is that when D = 5 m, the tunnel

crown is positioned very close to the free surface over a large extent of the mesh. Therefore,

the unbounded mesh can closely resemble a bounded domain, which may cause the solutions

of the boundary-integral equations to lose their uniqueness at certain frequencies, which are

known as fictitious eigenfrequencies [52] (see Appendix B.8).

Another possibility for the fluctuations is based on the fact that applying a time-harmonic

point force at the tunnel invert equally excites all the wavenumbers between −∞ and ∞. This

could lead to numerical errors in the revised response at the soil-tunnel interface, as the waves

that propagate towards the tunnel can only be transformed into a finite range of the wavenumber

ξ -domain when computing the DFT. However, as seen later in Section 6.2.2, these fluctuations

becomes less of an issue when a train-track system is coupled to the invert.

6.2.2 The Response Due to Train-Induced Excitation

This section explores the effect of the free surface on the tunnel response when the train-track

system coupled to the tunnel invert is excited by a spatially harmonic wheel-rail roughness ∆.

The iterative PiP-BEM model is used to evaluate the greenfield displacement FRFs at three

receiver points on the free surface: (0 m,0 m,0 m), (0 m,5 m,0 m) and (5 m,5 m,0 m). Note

that these points are spaced closer together than those in Section 6.2.1 to ensure that the extent

of the discretised free-surface mesh is kept to a computationally manageable size. The influence

of varying D on the greenfield response is also analysed by considering the same three tunnel

depths (D = 5 m,10 m,20 m) that were studied in the previous section.

For all cases, the railway tunnel has the same geometry and material parameter values as the

concrete tunnel in Section 6.2.1. The train-track system, which is represented by equally spaced

train axles on top of an FST, is modelled using the same parameter values that are summarised

in Table 5.3. The homogenous half-space around the tunnel is modelled as London Clay so that

it is representative of physical soil. The same material parameter values that are summarised in
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Table 5.2 are used to characterise the London Clay, resulting in phase speeds of cP = 1572 m/s

and cS = 220 m/s for the P- and S-waves. Based on the soil wavelengths between 1 and 80 Hz,

the mesh resolution at the free surface and the soil-tunnel interface need to be 0.5 m×0.5 m and

0.5 m× 0.448 m, respectively, to maintain numerical accuracy. The local free surface above

the tunnel centre-line is discretised in the mesh, similar to Fig. 6.4, and the extent of the mesh

in the longitudinal and transverse directions can be adjusted by varying the number of elements

N1, as outlined in Section 6.2.1.
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Fig. 6.10 The magnitude of the vertical greenfield displacement FRFs at the point (0 m,0 m,0 m) due
to the ground-borne vibration from an underground railway tunnel. The influence of the tunnel depth
D on the response, predicted using the iterative PiP-BEM model for the first six iterations (i = 6), is
illustrated. The extent of the mesh shown in Fig. 6.4 is varied by adjusting the number of elements N1.

126



CHAPTER 6. COUPLED TUNNEL-FOUNDATION SYSTEMS

Figure 6.10 plots the magnitude of the vertical (ws/∆) greenfield displacement FRFs at the

point (0 m,0 m,0 m) for the first six iterations of the PiP-BEM model. The sub-figures also

illustrate the variations in the responses as both D and N1 are varied. Similar to the results in

Section 6.2.1, when D ≥ 10 m, convergence is observed in the free surface response after one

iteration. As D is decreased to 5 m, the difference in magnitude between the FRFs of the first

(uncoupled) and sixth (coupled) iterations increases, but, on average, it is within 5 dB over

the whole frequency range. Furthermore, when the extent of the mesh is increased for a very

shallow tunnel (D = 5 m), there are fewer fluctuating artefacts visible in Fig. 6.10 compared

to Fig. 6.5. A possible reason for this is that, theoretically, a narrower band of wavenumbers is

excited when the train-track system exerts a distributed force, rather than a single point force,

along the infinitely long tunnel invert. Therefore, when the wavenumber domain is discretised

in the iterative model, there are likely to be fewer numerical errors that cause the artefacts to

appear.
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Fig. 6.11 The magnitude of the (a) transverse and (b)) vertical greenfield displacement FRFs at the point
(0 m,5 m,0 m) due to the ground-borne vibration from an underground railway tunnel. The influence
of the tunnel depth D on the response, predicted using the iterative PiP-BEM model for the first six
iterations (i = 6), is illustrated. A mesh similar to Fig. 6.4 is used with N1 = 51 elements.
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Figures 6.11 and 6.12 plot the longitudinal (us/∆), transverse (vs/∆), and vertical (ws/∆)

greenfield displacement FRFs at the points (0 m,5 m,0 m) and (5 m,5 m,0 m), respectively,

for the first six iterations of the PiP-BEM model as D is varied. In both figures, the extent

of the mesh is fixed by using N1 = 51 elements. When D = 5 m, the free surface has a more

significant effect on soil-tunnel interaction in the longitudinal direction, where the difference in

the response between the first and sixth iterations can be as high as 10 dB; the corresponding
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Fig. 6.12 The magnitude of the (a) longitudinal, (b) transverse and (c) vertical greenfield displacement
FRFs at the point (5 m,5 m,0 m) due to the ground-borne vibration from an underground railway tunnel.
The influence of the tunnel depth D on the response, predicted using the iterative PiP-BEM model for
the first six iterations (i = 6), is illustrated. A mesh similar to Fig. 6.4 is used with N1 = 51 elements.
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differences in the other two directions are at most 5 dB. In contrast, when D≥ 10 m, the effect

of the free surface on the soil-tunnel interaction becomes negligible.

In conclusion, the two modes of tunnel excitation studied in Section 6.2 show that waves

reflected by the free surface can significantly modify the near field around the tunnel when the

tunnel-ground separation distance is less than the tunnel diameter. In this case, the iterative PiP-

BEM model is effective at capturing the interaction between the free surface and the shallow

tunnel. However, when the separation distance is greater than the tunnel diameter, the effect of

the free surface on the tunnel response becomes insignificant, meaning that the PiP model for

a homogeneous half-space provides a good solution for the greenfield response.

6.3 A Convergence Study of the Iterative PiP-BEM Model

One of the main conclusions from Section 6.2 is that when the tunnel depth D is greater than the

tunnel diameter 2rto, the free surface has a negligible effect on the tunnel response. Hussein et

al. [113] reach a similar conclusion for a tunnel embedded in a multi-layered half-space. Based

on these conclusions, the extent of the mesh in the iterative PiP-BEM model can be reduced for

specific cases. For example, a large extent of the free surface above the tunnel centre-line does

not have to discretised in the mesh for a tunnel with D≥ 10 m and an outer radius of rto = 3 m

because the waves reflected by the ground will not significantly modify the tunnel’s near field.

Thus, all tunnels considered henceforth in this dissertation will have D≥ 10 m.

If a piled foundation is now positioned close to the tunnel, only the local free surface near

the piles must be discretised in the mesh to capture the dynamic interaction between the soil-pile

interface and the ground. The extent of the free surface, to avoid numerical errors, can be found

by following the approach described in Section 3.4, whereby the number of elements (N1,N2)

is increased until the inertial response of the pile-group converges. Examples of the unbounded

meshes for a centred and an off-centred 1× 4 pile-group near their respective railway tunnels

are illustrated in Fig. 6.13.

To accurately capture the incident waves that propagate towards the tunnel from the excited

piled foundation, the number of internal points across the soil-tunnel interface also needs to be

determined. This is achieved by using the iterative PiP-BEM model to predict the train-induced

displacement at the pile heads of a foundation and then varying the number of points until the

response convergences over the frequency range of interest. To demonstrate this approach, the

number of longitudinal Nx and circumferential Nθ points at the soil-tunnel interface are found
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for the two tunnel-foundation configurations illustrated in Fig. 6.14, which represent a centred

1×2 and 2×2 pile-group directly above their respective railway tunnels.

In both configurations, the pile-group is positioned above the tunnel centre-line, and the

transverse distance from the centre of each pile to the outer tunnel wall is 1 m. Therefore, the

source-receiver distance is around the same order of magnitude as the soil wavelengths. This

means that the tunnel-pile coupling, due to the interaction between the tunnel and foundation,

can affect the pile-head response.

Both the railway tunnel and the piles are constructed out of concrete; the respective material

parameters values of each structure are equivalent to those in Table 5.2. Table 5.3 summarises

the parameter values of the train and FST. The soil is modelled as London Clay using the same

material parameter values in Table 5.2, and the mesh is discretised to the same resolution that

was recommended in Section 6.2.2.

Figures 6.15 and 6.16 plot the real and imaginary parts of the displacement FRFs at the

shaded pile head in the 1×2 and 2×2 pile-groups, respectively. The figures also illustrate the

variation in the FRFs as Nx and Nθ are varied. The lines representing the FRFs spiral outwards

from the origin as the excitation frequency is increased from 1 to 80 Hz. For each configuration,

note that the displacement magnitude at any pile head will be the same due to symmetry. Only

the phase of the transverse and longitudinal displacements may vary based on the pile location

(a) (b)

Fig. 6.13 Examples of the unbounded 3D meshes used in the iterative PiP-BEM model, where only the
local free surface near the piles is discretised. The two tunnel-foundation meshes represent (a) a centred
and (b) an off-centred 1×4 pile-group near their respective underground railway tunnels. The coloured
elements represent the free surface (green) and the soil-pile interface (red), and the blue dotes represent
internal points at the soil-tunnel interface.
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relative to the tunnel. Also, note that the first iteration (i = 1) of the PiP-BEM model captures

the response of an uncoupled source-receiver system, which neglects the interaction between

the tunnel and foundation.

In general, the results show that convergence in the coupled tunnel-foundation response is

achieved after just the second iteration (i = 2). Furthermore, The difference in the FRFs of the

uncoupled and coupled responses tends to increase as the frequency increases. This is expected

given that the soil wavelengths approach the same order of magnitude as the source-receiver

distance when the frequency increases, thus increasing the effect of source-receiver interaction

on the pile-head response.

Figure 6.15a shows that Nθ = 42 circumferential points are sufficient to cause both the

transverse and vertical pile-head displacements to converge. Having this many circumferential

points also satisfies the sampling criterion in Eq. (6.3) for the discrete Fourier series. Since the

1×2 pile-group contains only one row of piles along the tunnel, at least Nx = 21 longitudinal
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Fig. 6.14 Schematic diagrams of a centred (a) 1× 2 and (b) 2× 2 pile-group directly above their
respective underground railway tunnels. The plan views show the tunnel’s outline below the free surface
(dashed lines). Dimensions in [m]. Not drawn to scale.
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Fig. 6.15 The real and imaginary parts of the transverse and vertical displacement FRFs at the shaded
pile head in a centred 1× 2 pile-group near an underground railway tunnel. The FRFs are predicted
using the first two iterations (i = 2) of the iterative PiP-BEM model as the number of (a) circumferential
Nθ and (b) longitudinal Nx points at the soil-tunnel interface is varied. The arrows in the sub-figures
represent the direction of increasing excitation frequency.
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Fig. 6.16 The real and imaginary parts of the (a) longitudinal, (b) transverse and (c) vertical displacement
FRFs at the shaded pile head in a centred 2× 2 pile-group near an underground railway tunnel. The
FRFs are predicted using the first two iterations (i = 2) of the iterative PiP-BEM model as the number
of longitudinal Nx points at the soil-tunnel interface is varied. The arrows in the sub-figures represent
the direction of increasing excitation frequency.

points are required to achieve convergence in the pile-head response, as shown in Fig. 6.15b.

When the number of pile rows is increased, as in the 2×2 pile-group, Fig. 6.16 shows that the

number of longitudinal points required for convergence increases to Nx = 41, so the longitudinal

length of the soil-tunnel interface must be at least 20.5 m. This implies that the reflected waves

from a nearby piled foundation only influence a localised region of the idealised infinitely long

tunnel. Hence, to accurately capture the source-receiver interaction over the frequency range of

interest, the longitudinal length of the soil-tunnel interface must be at least twice the footprint

of the foundation itself.
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6.4 The Significance of Source-Receiver Interaction

The inclusion of tunnel-pile coupling in the iterative PiP-BEM model enables the significance

of source-receiver interaction between a railway tunnel and a piled foundation to be investigated

for the first time. This section presents the results, first published by Edirisinghe & Talbot [57],

for some initial test cases where the tunnel and foundation are located close together.

Building designers are often interested in predicting the difference in the ground vibration

levels before and after a foundation is constructed. For the case of a pile, this is regarded as the

added-pile effect. The insertion gain (IG) at the pile head is used to characterise the added-pile

effect in a particular direction and to compare the vibration performance of different tunnel-pile

systems. For example, the insertion gain in the vertical direction is defined as

IG(ap)
z = 20log10

(
|wph|
|ws|

)
, (6.8)

where the superscript ‘(ap)’ refers to the added-pile effect, wph is the vertical displacement at

the pile head, and ws is the vertical greenfield displacement at the same location in the soil

before embedding the pile.

For all test cases, the parameter values in Table 5.2 for the tunnel (concrete), soil (London

Clay) and piles (concrete) are fixed. Likewise, the parameter values in Table 5.3 for the train-

track system with an FST are also fixed. The following five geometric parameters can be varied

L

y

z

x

D

S

Ø 6

(a)

y
x

sy

sx

Ø 0.71

(b)

Fig. 6.17 The (a) side (yz-plane) and (b) plan (xy-plane) views of an off-centred 3×2 pile-group near a
railway tunnel, illustrating the five geometric parameters (D,S,L,sx,sy) that can be varied. For all cases,
the pile diameter, and the parameter values of the tunnel and the train-track system are fixed. The dotted
line in (a) and the dashed lines in (b) represent the pile-group centre-line and the tunnel’s outline below
the free surface, respectively. Dimensions in [m]. Not drawn to scale.
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in the tunnel-foundation system: the tunnel depth D, the tunnel-foundation separation distance

S, the pile length L, and the pile spacings sx and sy in the respective x- and y-directions. These

parameters are shown in Fig. 6.17 for an off-centred 3×2 pile-group near a railway tunnel.

6.4.1 A Single Pile Directly Above an Underground Railway Tunnel

Figure 6.18 plots the vertical insertion gain IG(ap)
z and the piled-head and greenfield FRFs of a

single centred pile, directly above the tunnel crown. The IG responses are calculated using the

first three iterations (i= 3) of the iterative PiP-BEM model. Convergence is achieved following

just the first iteration, which is equivalent to the uncoupled response of the tunnel-pile system

and implies that the effects of wave scattering between the pile and tunnel are negligible. Thus,

although the pile toe is just 2 m above the tunnel crown, source-receiver interaction is negligible

for the case of a single pile.
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Fig. 6.18 The (a) vertical insertion gain and the (b) vertical pile-head and greenfield FRFs of a centred
pile directly above an underground railway tunnel. The insertion gain is predicted using the first three
iterations (i= 3) of the iterative PiP-BEM model, while the FRFs are only predicted using the converged
first iteration. Pile length L = 15 m and tunnel depth D = 20 m.
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The insertion gain is approximately 0 dB at very low frequencies, below 5 Hz, with the pile

undergoing rigid-body motion. At higher frequencies, IG(ap)
z becomes dependent on frequency

because the soil wavelengths approach the same orders of magnitude as the pile’s dimensions,

leading to more significant effects of local wave scattering near the pile.

The IG(ap)
z also exhibits some ‘amplification’ over the frequency range of interest. However,

it is important to note that these peaks do not directly correspond to the eigenfrequencies of the

pile itself. Since the pile is only excited axially due to its placement above the tunnel, the only

eigenmode of the pile that could be excited over the frequency of interest is the fixed-free axial

mode at 58 Hz. By comparing the responses in Fig. 6.18, it becomes evident that the peaks of

the insertion gain occur at the same frequencies as the troughs of the greenfield FRF when the

pile is not present. The troughs in the greenfield response appear as peaks in the IG(ap)
z because

the insertion gain, by definition, divides the pile-head FRF by the greenfield FRF. This means

that the peaks in the IG primarily occur as a result of smoothing the troughs of the greenfield

FRF, as observed in Section 5.4. In this sense, positive values of IG(ap)
z should not be regarded

as amplification because, due to natural inhomogeneity in the soil, the distinct troughs of the

greenfield response are unlikely to be observed so strongly in practice.

6.4.2 The Effect of the Pile Length

When piles are offset from the tunnel centre-line, the transverse response becomes significant

and changes the nature of wave scattering around the piles. The effect is analysed in this section

by considering a centred 1×2 pile-group and varying L, whilst D is fixed at 20 m. Figure 6.19

shows the transverse IG(ap)
y and vertical IG(ap)

z insertion gains at an individual pile head for both

an uncoupled (the first iteration) and coupled (the converged solution) tunnel-pile system as L

is incrementally increased from 10 to 30 m.

When comparing the transverse and vertical displacements of the piles, the added-pile effect

in the transverse direction is significantly smaller than that in the vertical direction, as, over the

frequency range of interest, the variation in IG(ap)
y is about 10 dB, compared to 50 dB for IG(ap)

z .

It is important to note that the frequencies of the four distinct peaks in IG(ap)
z – at 12, 52, 64 and

76 Hz – are unchanged when L is increased. Hence, the peaks of the vertical response do not

correspond to the eigenfrequencies of the piles, as increasing L decreases the eigenfrequencies,

which in turn would have shifted the peaks, but this is not observed. The two peaks at around

14 and 70 Hz in IG(ap)
y also remain unchanged when L is increased. This means that, similar to
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the observations in Section 6.4.1, the peaks in the insertion gains appear due to the smoothing

of the troughs of the greenfield response.

In general, the added-pile effect is affected by a combination of wave scattering and soil

stiffening – the stiffening effect was also observed in Section 5.4 when the uncoupled model

was used. Given the relative flexibility of the piles in bending, compared to axial deformation,

the relatively low values of IG(ap)
y may be expected, even as the soil wavelengths become shorter

than the pile length. The increased pile flexibility in bending renders the added-pile effect in the

transverse direction largely insensitive to pile length; this has a more significant effect in the

vertical direction. When L < D (i.e., the tunnel lies below the pile-group), the vertical response

is, in general, attenuated by the presence of the pile-group; the frequency-averaged IG(ap)
z is

less than 0 dB, again due to the stiffening effect. In contrast, when L ≥ D and the frequency

is greater than 50 Hz, IG(ap)
z increases above 0 dB, indicating an amplification of the pile-head

response. The piles appear to be providing a more efficient vibration transmission path than the
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Fig. 6.19 The (a) transverse and (b) vertical insertion gains at the shaded pile in a centred 1× 2 pile-
group near an underground railway tunnel. The influence of the pile length L on the response, predicted
with (black lines) and without (grey lines) tunnel-pile coupling, is illustrated. Tunnel depth D = 20 m
and pile spacing sy = 8 m.
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soil when the piles are closer to the tunnel wall. This enhanced transmission effect is explored

in more detail in Section 6.6.2.

As observed in Section 6.4.1, the responses of the coupled and uncoupled approaches are

equivalent when L < D. When L≥ D, there are small differences (within ±2 dB) between the

two approaches, although these are negligible compared to the variations that generally arise

due to uncertainties in the numerical model [126]. Thus, an uncoupled approach can at least be

used to model the train-induced vibration of a 1× 2 pile-group, as the waves scattered by the

piles have a negligible effect on the tunnel response. Later, in Section 6.4.4, it is found that the

effect of tunnel-pile coupling increases as more rows of piles are embedded along the tunnel.

6.4.3 The Effect of the Kinematic Pile-Soil-Pile Interaction (k-PSPI)

In this section, the effect of kinematic pile-soil-pile interaction (k-PSPI) on the train-induced

vibration of a 1× 5 pile-group is examined by considering the three configurations shown in

Fig. 6.20. Configuration 1 is equivalent to the (single pile) tunnel-pile system investigated in

Section 6.4.1, and represents the response if k-PSPI is neglected. The two other configurations

model all five piles explicitly but at different positions relative to the tunnel. In each case, the

vertical insertion gain IG(ap)
z is calculated at the pile head directly above the tunnel (shaded in

Fig. 6.20), and this is presented in Fig. 6.21. As the tunnel is positioned below the piles in each

configuration, convergence is achieved after just one iteration of the coupled approach.

At frequencies under 55 Hz, the differences in IG(ap)
z between the three configurations is

within 2 dB, with the exception of the frequency range from 10 to 20 Hz, where the difference

between Configurations 1 and 2 is up to 7 dB. Above 55 Hz, the difference between the three

configurations is greater, resulting in more wave scattering between adjacent piles, as observed

in similar pile-groups [56]. The maximum difference exists between Configurations 1 and 2,

which might be expected given that the latter involves piles on both sides of the observed pile,

and this reaches approximately 10 dB between 68 and 74 Hz. At this level, the difference is

becoming significant and suggests that k-PSPI could be important to consider when predicting

the train-induced response over certain frequency ranges. It is worth highlighting that these

results contrast with those of the 1×4 pile-group (L = 5 m) considered in Section 5.4, where

k-PSPI is insignificant. The longer piles in the 1×5 pile-group (L = 15 m), considered in this

section, provide a larger surface area for a greater proportion of the wave-field to be scattered

between adjacent piles, which is expected to contribute to the observed differences in k-PSPI.
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Fig. 6.20 Schematic diagrams of the three tunnel-pile configurations used to analyse the influence of
kinematic PSPI (k-PSPI) on the train-induced response of a 1× 5 pile-group. Dimensions in [m]. Not
drawn to scale.

IGz
(ap)

0 10 20 30 40 50 60 70 80

Frequency [Hz]

IG
z

[d
B

]
(a

p)

-30

-20

-10

0

10

20

30

Configuration 1 Configuration 2 Configuration 3

Fig. 6.21 The vertical insertion gain at the shaded pile directly above the underground railway tunnel
for the three tunnel-pile configurations in Fig. 6.21. Just the first (converged) iteration of the coupled
approach is plotted. Pile length L = 15 m, tunnel depth D = 20 m, and pile spacing sy = 2 m.

6.4.4 Piles Arranged Along the Tunnel’s Longitudinal Axis

Previous studies on the dynamic interaction in a tunnel-foundation system have only considered

individual rows of piles arranged perpendicular to the tunnel cross-section [42, 117, 145]. In

reality, piles are typically constructed in groups and, thus, also contain rows of piles arranged

parallel to the tunnel. The influence of additional piles along the longitudinal x-axis is explored

in this section. Figure 6.22 shows the three centred pile-groups considered, in which the number

of rows along the x-axis is incrementally increased.

The transverse IGy and vertical IGz insertion gain at an outer pile head in each pile-group,

represented by the shaded pile in Fig. 6.22, are plotted in Fig. 6.23 when the tunnel-foundation
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model is uncoupled (grey lines) and coupled (black lines). The frequency-averaged difference

between the uncoupled and coupled insertion gains of the 1×2 pile-group is less than 1 dB, in

both the transverse and vertical directions. This again shows that, as in Sections 6.4.2 and 6.4.3,

tunnel-pile coupling can be neglected when the pile-group consists of only one row of piles.

The difference between the coupled and uncoupled responses increases with the number

of piles along the tunnel. This becomes more noticeable above 20 Hz, as the soil wavelength

approaches the same order of magnitude as the tunnel diameter and the pile length. Increasing

the number of piles along the x-axis positions more of them close to the tunnel; this increases

the level of tunnel-pile coupling and increases the tunnel length affected by the pile-scattered

wave-field. The difference in IG(ap)
y between the coupled and uncoupled responses lies within

3 dB for all three pile-groups; considering IG(ap)
z , the 2×2 and 3×2 pile-groups have maximum

differences of 4 and 14 dB, respectively. While the latter difference appears to be significant, it

should be noted that this occurs at the troughs in the response and, as mentioned earlier, such

differences are unlikely to be observed so strongly in practice due to the soil’s inhomogeneity.
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Fig. 6.22 Schematic diagrams of the (a) common side view (yz-plane) and the plan views (xy-plane) of
a centred (b) 1×2 (c) 2×2 and (d) 3×2 pile-group near their respective underground railway tunnels.
The dashed lines in the plan views represent the tunnel’s outline below the free surface. Dimensions in
[m]. Not drawn to scale.
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Fig. 6.23 The (a) transverse and (b) vertical insertion gains at the shaded pile for the three tunnel-pile
configurations of Fig. 6.22, as predicted using the uncoupled (grey lines) and coupled (black lines)
approaches. Pile length L = 15 m, tunnel depth D = 10 m, and pile spacing sx = 3 m and sy = 8 m.

6.4.5 The Effect of the Source-Receiver Distance

In this section, the 3× 2 pile-group in Section 6.4.4 is used to extensively explore how the

distance between a tunnel and foundation can influence the tunnel-pile coupling. To assist with

this, the insertion gain is redefined to illustrate the effect of either including or omitting the

tunnel-pile coupling. For vibration in the vertical direction, the coupling insertion gain is

IG(c)
z = 20log10

 ∣∣w(c)
ph

∣∣∣∣w(uc)
ph

∣∣
 , (6.9)

where w(c)
ph and w(uc)

ph are the vertical pile-head displacements calculated using the coupled and

uncoupled approaches – likewise for vibration in the transverse and longitudinal directions.

Furthermore, rather than computing the insertion gain at a single pile head, the mean insertion

gain IG(c) due to coupling is computed across all six piles in an attempt to quantify the overall

response of the foundation.
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Figures 6.24–6.26 plot the variation in the source-receiver insertion gain as the location of

the tunnel, relative to the foundation, is varied. It is reasonable to expect the source–receiver

interaction to be insignificant if the soil wavelengths are small compared to the source–receiver

distance D, based on the prior use of uncoupled approaches in the seismic analysis of buildings

[17, 249]. Lines are therefore superimposed on the figures to indicate the frequencies at which

the distance D is equal to the S-wavelength λS (solid) and 2λS (dashed) in the soil.

Figure 6.24 plots the results for a centred pile-group as the vertical distance Dz between

the tunnel crown and the pile toes is varied. This is achieved by increasing the tunnel depth D

from 10 to 34 m. In each direction, the source-receiver insertion gain is greatest when the piles

extend below the tunnel crown (Dz < 0), which is consistent with the tunnel-pile interaction

observed in Section 6.4.4. When the tunnel lies underneath the pile-group (Dz > 0), IG(c) is less

than 1 dB over the full frequency range of interest, and the tunnel-pile system may reasonably

be treated as being uncoupled. Note, IG(c) tends to 0 dB outside the region bounded by the solid

line, indicating negligible coupling for frequencies at which the tunnel-foundation separation

exceeds the soil S-wavelength.

Figures 6.25 and 6.26 plot the respective results for a centred and an off-centred pile-group,

this time as the transverse distance Dy between the railway tunnel and the nearest pile is varied.

This is achieved, for the centred pile-group, by changing the transverse pile spacing sy, and for

the off-centred pile-group, by keeping the pile spacing fixed (sx = 3 m,sy = 8 m) and varying

the distance between the pile-group centre-line and the tunnel. These results support the general

conclusion, that tunnel-pile interaction is greatest when the tunnel is close to the foundation –

in particular, when the piles extend below the tunnel crown – and that this becomes negligible

when the separation exceeds the soil S-wavelength. The interaction is most significant in the

longitudinal direction, where IG(c) can vary as much as ±10 dB – compared to ±2 dB in both

the transverse and vertical directions. At this level, the tunnel-pile coupling is again likely to

be significant, being comparable with other sources of uncertainty in the system [126].

In a similar study, Coulier et al. [44] investigate the source-receiver interaction between a

building supported on embedded strip foundations and an underground railway tunnel excited

by a time-harmonic point force. In this case, the tunnel and building are coupled in the 2.5D

wavenumber-frequency domain by assuming that both structures are infinitely long. They find

that the vertical insertion gain, quantifying the tunnel-building coupling, at certain locations can

be as high as 10 dB, which is of a similar order of magnitude to the IG observed in this section.
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Fig. 6.24 The (a) longitudinal, (b) transverse and (c) vertical mean, source-receiver insertion gains of
a centred 3× 2 pile-group near an underground railway tunnel, illustrating the influence of the vertical
source-receiver distance Dz. The superimposed lines indicate the frequencies at which Dz = λS (solid)
and Dz = 2λS (dashed), where λS is the soil’s shear wavelength. Pile length L = 15 m, and pile spacing
sx = 3 m and sy = 8 m. Note that the piles extend below the tunnel crown when Dz < 0.
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Fig. 6.25 The (a) longitudinal, (b) transverse and (c) vertical mean, source-receiver insertion gains of a
centred 3×2 pile-group near an underground railway tunnel, illustrating the influence of the transverse
source-receiver distance Dy. The superimposed lines indicate the frequencies at which Dy = λS (solid)
and Dy = 2λS (dashed), where λS is the soil’s shear wavelength. Pile length L = 15 m, tunnel depth
D = 10 m, and pile spacing sx = 3 m.
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Fig. 6.26 The (a) longitudinal, (b) transverse and (c) vertical mean, source-receiver insertion gains
of an off-centred 3× 2 pile-group near an underground railway tunnel, illustrating the influence of
the transverse source-receiver distance Dy. The superimposed lines indicate the frequencies at which
Dy = λS (solid) and Dy = 2λS (dashed), where λS is the soil’s shear wavelength. Pile length L = 15 m,
tunnel depth D = 10 m, and pile spacing sx = 3 m and sy = 8 m.
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Furthermore, by varying the tunnel depth between 5 and 25 m, they observe that the power-flow

insertion gain of the building varies by±2 dB when the source-receiver distance is less than the

pressure wavelength (P-wavelength) in the soil. In contrast, the source-receiver distance in this

section correlates with the S-wavelength, which is shorter than the P-wavelength. One possible

explanation for this is that the 3D foundation model, unlike the 2.5D model, captures the shorter

length scales along the longitudinal direction, such as the pile spacing. These shorter lengths

are likely to induce more interaction due to S-waves compared to P-waves. Nevertheless, the

observations discussed in this section, and those made by Coulier et al., signify the importance

of accounting for dynamic coupling when the source-receiver distance is around the same order

of magnitude as the soil wavelengths.

6.5 The Response from a Standard and Floating Slab Track

Although a floating slab track (FST), such as the one used in Sections 5.4 and 6.2–6.4, can, in

practice, isolate the tunnel from noise and vibration, there are some constraints that limit its

use over long spans of railway line. In addition to having high installation costs, more space is

sometimes required inside the tunnel to house the slabs and bearings of the FST [225]. Further

construction limitations arise due to the finite length of the pre-cast concrete slabs.

Compared to the FST, a typical standard (fixed) slab track consists of a lighter, continuous

concrete slab, which is supported above the tunnel invert by a bonding layer of self-compacting

concrete (SCC). The SCC is also much stiffer than the FST bearings. This type of trackform

Track beam parameters [Units] Each rail beam Slab beam

Mass per unit length [kg/m] mr = 50 ms = 3500
Bending stiffness [Nm2] Kr = 5.00×106 Ks = 1.43×109

Track support parameters [Units] Each rail pad Slab support

Stiffness per unit length [N/m/m] kr = 0.2×109 ks = 17.0×109

Loss factor [−] ηr = 0.3 ηs = 0.5

Train parameters [Units] Axles

Unsprung mass [kg] Ma = 500
Spacing [m] La = 20

Table 6.1 Standard (fixed) slab track and train parameter values.
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Parameters [Units]
Soil (London

Clay)
Tunnel

(Concrete)

Young’s modulus [Pa] Es = 286×106 Et = 50×109

Poisson’s ratio[−] νs = 0.49 νt = 0.30
Density [kg/m3] ρs = 1980 ρt = 2500
Shear modulus loss factor [−] ηG = 0.08 −
Outer wall radius [m] − rto = 3.00
Inner wall radius [m] − rti = 2.75

Table 6.2 Soil and tunnel parameter values.

is often used in underground metros due to the cost and construction benefits; it approximately

accounts for 80% of the railway lines on London Crossrail’s central section [35]. Hence, over

the remainder of this dissertation, a standard slab track, with the parameter values presented in

Table 6.1, is used in the PiP model.

In order to demonstrate the different vibration profiles produced by a standard and floating

slab track, this section compares the soil response around an underground railway tunnel with

these two track configurations. For both configurations, the parameter values in Table 6.2 are

used to model the soil and tunnel. The parameter values of the FST are presented in Table 5.3.

Based on these values, the isolation frequency of the FST is 40 Hz. For all the cases investigated

in this section, the tunnel depth D is fixed at 25 m.

Figure 6.27 plots the vertical (ws/∆) soil displacement FRFs at the point (0 m,0 m,z m) on

the tunnel centre-line for the two track configurations. By varying the vertical z-coordinate, the

change in the soil response at different depths is illustrated. Likewise, Fig. 6.28 illustrates the

variation in the longitudinal (us/∆), transverse (vs/∆), and vertical (ws/∆) soil displacement

FRFs as the z-coordinate is varied at the point (5 m,5 m,z m) beside the tunnel centre-line.

In general, the soil response decreases in magnitude as the measuring point moves further

away from the tunnel due to the radiation damping in a half-space (see Section 2.3). When the

excitation frequency is below the FST’s isolation frequency (40 Hz), the soil responses of both

track configurations are relatively similar in Figs. 6.27 and 6.28. However, when the frequency

is greater than 40 Hz, the soil response due to the FST is about 10 dB lower compared to that of

the standard slab track. This is because the transfer of vibrational energy from the train axles to

the slab becomes inefficient when the excitation frequency is greater than the FST’s isolation

frequency, thereby leading to a decrease in the distributed force along the tunnel invert [153].
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Fig. 6.27 The magnitude of the vertical soil displacement FRFs at the point (0 m,0 m,z m) due to the
ground-borne vibration from an underground railway tunnel. The influences of the vertical z-coordinate
and the type of slab track (standard or floating) on the response, predicted using the PiP model, are
illustrated. Tunnel depth D = 25 m.
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Fig. 6.28 The magnitude of the (a) longitudinal, (b) transverse and (c) vertical soil displacement FRFs
at the point (5 m,5 m,z m) due to the ground-borne vibration from an underground railway tunnel. The
influences of the vertical z-coordinate and the type of slab track (standard or floating) on the response,
predicted using the PiP model, are illustrated. Tunnel depth D = 25 m.
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Fig. 6.29 The vertical insertion gain, at excitation frequencies of (a) 20 Hz, (b) 40 Hz (c) 60 Hz and
(d) 80 Hz, comparing the soil responses due to a standard and floating slab track within an underground
railway tunnel. The responses are predicted using the PiP model. The tunnel, at a depth of D = 25 m, is
represented as a white circle in the plane of the tunnel cross-section.

The difference in isolation performance between the two railway track configurations can

be evaluated using the vertical insertion gain in the soil, which is defined as

IG(soil)
z = 20log10

∣∣w(stand)
s

∣∣∣∣w(float)
s

∣∣
 , (6.10)

where w(stand)
s and w(float)

s are the vertical soil displacements using the standard and floating

slab track configurations, respectively. Figure 6.29 illustrates the spatial variation of IG(soil)
z in

the plane of the tunnel cross-section at four excitation frequencies (20, 40, 60 and 80 Hz). Note

that the variation of IG(soil)
z is symmetric about the vertical axis due to the inherent symmetry

of the problem.
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At excitation frequencies below 40 Hz, the IG(soil)
z is approximately 0 dB in the soil above

the tunnel, so there is a negligible difference in the soil response due to each track configuration.

However, when the frequency is increased above 40 Hz, the standard configuration produces

larger vertical displacements in the soil, which is similar to the observations made in Figs. 6.27

and 6.28. At certain locations above the tunnel, the IG(soil)
z is as high as 20 dB at 60 and 80 Hz.

It is also worth noting that, at all four frequencies, the IG(soil)
z is generally positive in the soil

underneath the tunnel.

6.6 A Parametric Study of the Train-Induced Vibration of a
Single Pile

Works of literature that investigate the parameters governing the level of vibration attenuation

or amplification associated with the presence of a foundation near a source of ground vibration

are few and far between. Exceptions include numerical studies by Auersch [7] and Sanitate &

Talbot [209], who analysed the effects of concrete slab foundations subjected to incident waves

in the ground; both papers made highly useful progress in identifying dimensionless parameters

that can influence slab design.

With the aim of making similar progress in understanding the parameters that govern the

train-induced vibration of piled foundations, this section presents a parametric study undertaken

using the iterative PiP-BEM model. The results deliver new insight on the added-pile effect for

the benefit of both academics and practitioners. A journal article covering the main results that

are presented in this section has been accepted for publication [55].

The parametric study concerns the pile-head response of just a single pile, rather than a pile-

group. This limits the number of parameters so that the study can focus on the general trends

associated with the fundamental unit of a piled foundation, which may then be extrapolated to

inform the design of an entire pile-group. It also mirrors the practice of embedding a test pile in

the ground so that foundation designers can assess the added-pile effect on a construction site

[171].

It should be noted that only interaction in the vertical direction is considered in this study.

That is, the vertical insertion gain IG(ap)
z , which characterises the added-pile effect, is analysed.

Section 6.4 highlights that the added-pile effect is significantly lower in the transverse direction

compared to the vertical direction due to the relative flexibility of the piles in bending. It may
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also be argued that the axial motion of a pile couples most effectively to the axial motion of

a subsequent building column, and propagates more efficiently to higher floors. Nevertheless,

it is acknowledged that there is some evidence of additional vibration transmission at specific

frequencies due to pile-head motion in the lateral and rocking DOFs [224].

The parameter values in Tables 6.1 and 6.2, to model the trackform (standard slab track),

soil (London Clay), and tunnel (concrete), are fixed; the focus will be on how the added-pile

effect depends on the properties of the pile and its position relative to the tunnel. The effect of

the pile Poisson’s ratio is judged to be minor based on the kinematic response of single piles to

seismic waves [155], so it is fixed at νp = 0.25. The pile diameter is also fixed at d = 0.71 m.

The influence of the following six parameters on the added-pile effect are investigated: the

non-dimensional frequency a0 = ωd/cS, the soil-pile density ratio ρs/ρp, the soil-pile stiffness

ratio Es/Ep, the pile length L, the tunnel depth D, and the tunnel-pile separation distance S. The

results are plotted over the non-dimensional frequency range 0 < a0 < 1.6, which corresponds

to excitation frequencies between 1 and 80 Hz for piles embedded in London Clay.

As noted in Section 6.2, the iterative PiP-BEM model is only valid when the circular tunnel

is located at least one diameter (2rto) below the free surface. Therefore, four different values of

D that satisfy this condition are explored in this parametric study: 10 m (shallow), 25 m, 40 m

and 60 m (deep). This range accounts for both the average (25 m) and deepest (60 m) railway

tunnels in the London Underground.

6.6.1 The Effect of the Soil-Pile Density Ratio

Each sub-figure in Fig. 6.30 plots the IG(ap)
z of a centred pile as the soil-pile density ratio ρs/ρp

is increased incrementally from 0.4 (dense piles) to 1.2 (light piles). For reference, the density

ratio of a concrete pile in London Clay is approximately 0.8. The soil-pile stiffness ratio is fixed

at 10−2 (representative of a solid concrete pile in London Clay). The sub-figures also illustrate

the variation in IG(ap)
z as the pile length L is increased from 10 m (left) to 20 m (right) and as

the tunnel depth D is increased from 25 m (top) to 60 m (bottom).

It is clear that the IG is largely insensitive to the density ratio, which is in broad agreement

with the seismic study of Liu et al. [155] on the response of piles to vertically incident P-waves.

As ρs/ρp is increased in each sub-figure, the IG(ap)
z decreases by only a few decibels, with the

exception of Fig. 6.30b, where IG(ap)
z decreases by up to 10 dB at high frequencies. In this case,

the pile is relatively long and the pile toe is close the tunnel crown. However, the underlying
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mechanism is not entirely clear. In general, increasing the density ratio corresponds to lighter

piles and, therefore, the observed decrease in IG is not a direct effect of the pile’s inertia. This

contrasts with the response of slab foundations, where the density ratio has been found to have

a similarly weak influence on the IG but in the opposite sense, and which is indeed attributed to

the slab’s inertia [7,209]. In the case of piles, wave scattering, due to differences in impedance

with the soil, plays a more significant role. It is suspected that this is the underlying mechanism

responsible for the high-frequency sensitivity to density observed here.

In conclusion, the results clearly demonstrate that the added-pile effect under train-induced

excitation is not governed by density. Realistically, any variations in the pile-head motion due

to differences in pile or soil density are expected to be negligible in comparison to those that

generally arise from system uncertainties and modelling inaccuracies [126].

Before leaving Fig. 6.30, there is a second observation that is worth mentioning. In general,

as observed previously in Section 5.4, the greenfield response of an isolated railway tunnel,

remote from any neighbouring structures, contains distinct troughs at certain frequencies due

to wave interference in the soil. An embedded pile acts to smooth out these undulations over

the frequency range [57]. When the pile-head response is divided by the greenfield response

to calculate the IG, the troughs appear as distinct peaks, as evident in Fig. 6.30. Based on the

observations in Section 6.4, it is important to note that these undulations in the response are

due to wave interaction between the pile and soil, and not caused by the dynamics of the pile

itself. That is, the frequency spacing between the undulations in IG(ap)
z is independent of the

pile parameters. Gupta et al. [85] demonstrate that the spacing ∆ f , in units of hertz, between

the undulations in the wave-field from an excited tunnel is approximately the same as that from

a time-harmonic point force applied in a full-space:

∆ f =
cPcS

R(cP− cS)
, (6.11)

where R is the shortest distance between the centre of the tunnel and the response point, and cP

and cS are the phase speeds of P- and S-waves in the soil. In this case, taking R as the distance

between the centre of the tunnel and the pile head, the non-dimensional frequency spacing can

be expressed as

∆a0 =
2πdcP

R(cP− cS)
. (6.12)
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Fig. 6.30 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the soil-pile density ratio
ρs/ρp on the pile-head response is illustrated. The pile length L is increased from 10 m (left) to 20 m
(right), and the tunnel depth D is increased from 25 m (top) to 60 m (bottom). Soil-pile stiffness ratio
Es/Ep = 10−2.
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The tunnel depths of 25 m, 40 m and 60 m yield ∆a0 values of 0.23, 0.14 and 0.09, respectively,

which agree closely with those observed in Fig. 6.30.

It is important to be mindful of these undulations when interpreting the IG results presented

in Sections 6.6.2 and 6.6.3. Positive values of IG(ap)
z at the peaks of the undulations should not

be regarded as true amplification, in the sense that constructing a pile will significantly amplify

the vibration, since the distinct troughs in the predicted greenfield response will unlikely be so

pronounced in practice due to the natural inhomogeneity of the soil. In general, the main focus

should be on identifying the underlying trends in the results when they are averaged over the

full frequency range of interest.

6.6.2 The Effects of the Pile Length and Soil-Pile Stiffness Ratio

The effects of the pile length L and soil-pile stiffness ratio Es/Ep on the pile-head response

are found to be interlinked, so both parameters are considered together in this section with

reference to Figs. 6.31–6.37. The soil-pile density ratio is fixed at ρs/ρp = 0.8 (representative

of a concrete pile in London Clay). Note that Figs. 6.31–6.33 and 6.35–6.37 present the same

results but in two different ways: the sub-figures in the former set are arranged to illustrate the

effect of varying L, while the sub-figures in the latter set illustrate the effect of varying Es/Ep.

For the cases when D ≥ 25 m (relatively deep tunnels), it is worth noting that the frequency

spacing ∆a0 evident in Figs. 6.31–6.33 and 6.35–6.37 is approximately equal to that predicted

by Eq. (6.12). Since the influence of the free surface on the greenfield response becomes more

significant as D decreases, ∆a0 cannot be accurately predicted in Fig. 6.34, corresponding to

the shallow tunnel (D = 10 m), because the full-space assumption applied in Eq. (6.12) is no

longer valid.

The effect of varying L is investigated first. Figures 6.31–6.33 plot the IG(ap)
z of a centred

pile, for tunnel depths of 25 m, 40 m and 60 m, respectively. In each sub-figure, Es/Ep is held

constant while L is increased from 5 m until the pile toe is just 2 m above the tunnel crown.

Therefore, the length of the shortest pile remains fixed at L= 5 m in Figures 6.31–6.33, whereas

the length of the longest pile varies with the tunnel depth considered in the respective figures,

such that D−L = 5 m. By comparing between the sub-figures, the effect of decreasing Es/Ep

from 10−1 (flexible piles) to 10−5 (relatively rigid piles) is also illustrated. For reference, the

soil-pile stiffness ratios of a solid concrete and steel pile in London Clay are of the order of

10−2 and 10−3, respectively.
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Fig. 6.31 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the pile length L on the pile-
head response is illustrated. The soil-pile stiffness ratio Es/Ep is decreased from (a) 10−1 to (e) 10−5.
Soil-pile density ratio ρs/ρp = 0.8 and tunnel depth D = 25 m.
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Fig. 6.32 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the pile length L on the pile-
head response is illustrated. The soil-pile stiffness ratio Es/Ep is decreased from (a) 10−1 to (e) 10−5.
Soil-pile density ratio ρs/ρp = 0.8 and tunnel depth D = 40 m.
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Fig. 6.33 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the pile length L on the pile-
head response is illustrated. The soil-pile stiffness ratio Es/Ep is decreased from (a) 10−1 to (e) 10−5.
Soil-pile density ratio ρs/ρp = 0.8 and tunnel depth D = 60 m.
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When Es/Ep ≥ 10−2, there are two counteracting mechanisms that influence the IG as L is

increased. Firstly, the pile constrains the motion of the local soil, which tends to decrease the

pile-head response. Secondly, the pile offers a more efficient transmission path than the soil

for vibration propagating from the tunnel to the free surface, thereby increasing the response.

Figures 6.31–6.33 illustrate how the soil-stiffening effect dominates in piles that are relatively

far from the tunnel crown, with the IG decreasing as L is increased from the shortest (L = 5 m)

to the second-longest (D−L = 10 m) pile in each case. Any amplification due to the enhanced

transmission effect along these piles remains negligible because the waves propagating from the

tunnel must travel a significant distance through the soil before reaching the pile. On average,

over the frequency range of interest, the decrease in IG(ap)
z is approximately 20 dB between the

shortest and the second-longest pile.

In contrast, the IG of the longest piles (D−L= 5 m) is approximately 10 dB greater than the

second-longest piles, particularly when a0 < 1, when IG(ap)
z typically becomes positive and the

overall result is an amplification of the greenfield response. This occurs because the enhanced

transmission effect overcomes the attenuation caused by the soil-stiffening effect. With regard

to the longest piles, the gap, consisting of soil material, between the tunnel crown and the pile
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Fig. 6.34 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. The influence of the soil-pile stiffness ratio Es/Ep on the pile-
head response is illustrated. Pile length L = 5 m, soil-pile density ratio ρs/ρp = 0.8, and tunnel depth
D = 10 m.
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Fig. 6.35 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the soil-pile stiffness ratio
Es/Ep on the pile-head response is illustrated. The pile length L is increased from (a) 5 m to (d) 20 m.
Soil-pile density ratio ρs/ρp = 0.8 and tunnel depth D = 25 m.

toe is reduced to 2 m, which is sufficiently less than the soil wavelengths – the S-wavelength at

a0 = 1 is λS = 2πd/a0 = 4.44 m. This means that the incident waves at the piles are attenuated

less by the soil. Furthermore, when a0 < 1, the IG(ap)
z of the longest pile is observed to be as

high as that of the shortest pile.

Another significant observation is that when the pile is relatively flexible, there is negligible

variation in IG(ap)
z as L is increased. This is noticeable in Fig. 6.31 for a medium depth tunnel

(D = 25 m), when Es/Ep = 10−1, and in Figs. 6.32 and 6.33 for deep tunnels (D≥ 40 m), when
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Fig. 6.36 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the soil-pile stiffness ratio
Es/Ep on the pile-head response is illustrated. The pile length L is increased from (a) 5 m to (e) 35 m.
Soil-pile density ratio ρs/ρp = 0.8 and tunnel depth D = 40 m.
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Fig. 6.37 The vertical insertion gains of a centred pile above an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the soil-pile stiffness ratio
Es/Ep on the pile-head response is illustrated. The pile length L is increased from (a) 5 m to (f) 55 m.
Soil-pile density ratio ρs/ρp = 0.8 and tunnel depth D = 60 m.
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Es/Ep ≤ 10−2. In these cases, it appears that the piles are sufficiently flexible that the added-

pile effect is negligible, with the underlying IG being close to zero. Section 6.6.4 explores why

varying L at these values of Es/Ep and D does not influence the pile-head response.

Now, consider the effect of varying Es/Ep as L is fixed. Figures 6.34–6.37 plot the IG(ap)
z of

a centred pile, for tunnel depths of 10 m, 25 m, 40 m and 60 m, respectively. In each sub-figure,

L is held constant while Es/Ep is decreased from 10−1 (flexible piles) to 10−5 (relatively rigid

piles). By comparing between the sub-figures of Figures 6.35–6.37, the effect of increasing L is

also shown, in increments of 5 or 10 m, until the pile toe is just above the tunnel crown. Note,

the length of the pile is restricted to L = 5 m when it is above the shallowest tunnel (D = 10 m).

It is clear that, for a pile length of L = 5 m, there is no significant variation in IG as Es/Ep is

decreased below 10−2. For a very short pile, the soil-stiffening effect is insignificant because its

length does not span multiple wavelengths of the incident wave-field from the tunnel. Varying

the pile stiffness, therefore, has a negligible effect on the response of very short piles.

For the longer piles (D−L ≥ 10 m), it is clear that as Es/Ep is decreased from 10−1, the

IG decreases until convergence is achieved when Es/Ep = 10−4. Although the reduction level

varies with the excitation frequency, Figs. 6.35–6.37 show that the general decrease in IG(ap)
z

lies between 5 and 20 dB. The largest decreases in IG occur at higher frequencies because the

pile spans more wavelengths of the incident wave-field, thereby increasing the soil-stiffening

effect. Therefore, these results illustrate that the added-pile effect is clearly governed by the pile

stiffness, which is consistent with previous studies on the response of piles due to seismic P-

waves [155,178]. Stiffness, rather than density, has also been found to have a similar governing

influence on the IG of slab foundations [7, 209].

In contrast, the results for the longest piles (D−L = 5 m) show that decreasing Es/Ep from

10−2 to 10−4 increases IG(ap)
z by approximately 10 dB when a0 < 1. This occurs due to the

enhanced transmission effect observed earlier, which overcomes the soil-stiffening effect when

the distance between the tunnel crown and pile toe is sufficiently less than the soil wavelength.

6.6.3 The Effect of the Tunnel-Pile Separation Distance

In this section, the IG of off-centred piles (S > 0 m) is investigated, in contrast to the centred

piles (S = 0 m) analysed in Sections 6.6.1 and 6.6.2. Figures 6.38–6.40 plot the IG(ap)
z of an

off-centred pile, for tunnel depths of 10 m, 25 m and 40 m, respectively, with each sub-figure

illustrating the variation in the IG as L is increased beyond the tunnel depth. By comparing
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Fig. 6.38 The vertical insertion gains of an off-centred pile near an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the pile length L on the pile-
head response is illustrated. The soil-pile stiffness ratio Es/Ep is decreased from 10−2 (left) to 10−3

(right), and the tunnel-pile separation distance S is increased from 5 m (top) to 20 m (bottom). Soil-pile
density ratio ρs/ρp = 0.8 and tunnel depth D = 10 m.
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Fig. 6.39 The vertical insertion gains of an off-centred pile near an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the pile length L on the pile-
head response is illustrated. The soil-pile stiffness ratio Es/Ep is decreased from 10−2 (left) to 10−3

(right), and the tunnel-pile separation distance S is increased from 5 m (top) to 20 m (bottom). Soil-pile
density ratio ρs/ρp = 0.8 and tunnel depth D = 25 m.
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Fig. 6.40 The vertical insertion gains of an off-centred pile near an underground railway tunnel, plotted
against non-dimensional frequency a0. In each sub-figure, the influence of the pile length L on the pile-
head response is illustrated. The soil-pile stiffness ratio Es/Ep is decreased from 10−2 (left) to 10−3

(right), and the tunnel-pile separation distance S is increased from 5 m (top) to 20 m (bottom). Soil-pile
density ratio ρs/ρp = 0.8 and tunnel depth D = 40 m.
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between the sub-figures, the effect of decreasing Es/Ep from 10−2 (left) to 10−3 (right) and

increasing S from 5 m (top) to 20 m (bottom) is also illustrated. Similar to Section 6.6.2, the

soil-pile density ratio is again fixed at ρs/ρp = 0.8.

Although varying S does influence the added-pile effect, no general trend in the results can

be observed over the full frequency range of interest. Nonetheless, some of the trends discussed

previously on the influence of L and Es/Ep remain evident, including the same counteracting

effects noted in Section 6.6.2 for a centred pile.

A key parameter to consider is the pile-tunnel depth ratio L/D. When L/D < 1 (i.e., the

pile toe remains above the depth of the tunnel centre), the IG tends to decrease as L is increased

due to the soil-stiffening effect. In general, the enhanced transmission effect takes over as the

dominant mechanism once the pile toe reaches the depth of the tunnel centre, leading to positive

values of IG and a net amplification of the greenfield response. When L/D = 1, the IG can be

as high as 15 dB at high frequencies (a0 > 1). As L is increased further (L/D > 1), so does the

IG, but this never exceeds approximately 20 dB. There appears to be a point at which further

increases in L produce negligible changes in IG as the pile toe descends below the tunnel.

When Es/Ep is decreased from 10−2 to 10−3 for a shallow tunnel (D = 10 m, Fig. 6.38),

there is negligible variation in the IG of equal-length piles. As for a deeper tunnel (D = 25 m,

Fig. 6.39), provided L/D < 1, the same decrease in Es/Ep tends to cause the IG to decrease due

to the soil-stiffening effect, as seen in Figures 6.34–6.37 for a centred pile. In contrast, when

L/D≥ 1, the decrease in Es/Ep causes the IG to increase over the frequency range of interest.

Note also that, for the deepest tunnel (D = 40 m, Fig. 6.40), when the off-centred pile is

flexible (Es/Ep = 10−2), the IG is largely insensitive to pile length, as observed in Figs. 6.32

and 6.33 for a centred pile.

6.6.4 A Note on the Displacement Along the Length of Flexible Piles

Sections 6.6.2 and 6.6.3 highlight that when the pile is relatively flexible with a high Es/Ep,

increasing L does very little to change the pile-head response. In an attempt to explain why,

this section compares the displacement wp along centred piles of varying length against the soil

displacement winc
s solely due to the incident wave-field from the railway tunnel.

For a medium depth tunnel (D = 25 m), Figs. 6.41 and 6.42 illustrate the variation in these

displacements along different lengths of piles (L is increased from 5 to 20 m) when Es/Ep is

10−1 and 10−2, respectively. Likewise, for a deep tunnel (D = 40 m), Figs. 6.43 and 6.44 show
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Fig. 6.41 The magnitude of the train-induced displacements along the pile (left) and the incident wave-
fields in the soil (right), plotted against non-dimensional frequency a0. The length of the pile L above
the underground railway tunnel is increased from (a) 5 m to (d) 20 m. The superimposed black lines
highlight similarities in the pile and soil displacements. Soil-pile stiffness ratio Es/Ep = 10−1, soil-pile
density ratio ρs/ρp = 0.8, and tunnel depth D = 25 m.
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Fig. 6.42 The magnitude of the train-induced displacements along the pile (left) and the incident wave-
fields in the soil (right), plotted against non-dimensional frequency a0. The length L of the centred pile
above the underground railway tunnel is increased from (a) 5 m to (d) 20 m. Soil-pile stiffness ratio
Es/Ep = 10−2, soil-pile density ratio ρs/ρp = 0.8, and tunnel depth D = 25 m.
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Fig. 6.43 The magnitude of the train-induced displacements along the pile (left) and the incident wave-
fields in the soil (right), plotted against non-dimensional frequency a0. The length L of the centred pile
above the underground railway tunnel is increased from (a) 5 m to (e) 35 m. The superimposed black
lines highlight similarities in the pile and soil displacements. Soil-pile stiffness ratio Es/Ep = 10−2,
soil-pile density ratio ρs/ρp = 0.8, and tunnel depth D = 40 m.
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Fig. 6.44 The magnitude of the train-induced displacements along the pile (left) and the incident wave-
fields in the soil (right), plotted against non-dimensional frequency a0. The length L of the centred pile
above the underground railway tunnel is increased from (a) 5 m to (e) 35 m. Soil-pile stiffness ratio
Es/Ep = 10−3, soil-pile density ratio ρs/ρp = 0.8, and tunnel depth D = 40 m.
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the variation in the pile and soil displacements when Es/Ep is 10−2 and 10−3, respectively, as

L is increased from 5 to 35 m. The black lines superimposed over the sub-figures in Figs. 6.41

and 6.43, relating to the more flexible piles at each tunnel depth, highlight similarities in the

distribution of the pile and soil displacements, both spatially along the pile and in frequency.

The similarities between the pile and soil responses in Figs. 6.41 and 6.43 indicate that,

for these particular values of D and Es/Ep, the mechanical impedances of the pile and soil are

similar. Therefore, there is little or no difference in the pile and soil displacements at the soil-

pile interface. It is also worth noting that the displacement distribution over the same distance

along piles of different lengths, for example from 0 to 10 m in Figs. 6.41b–6.41d and from 0 to

20 m in Figs. 6.43c–6.43e, remains approximately identical.

On the other hand, Figs. 6.42 and 6.44 illustrate how the distribution of the pile and soil

displacements can vary considerably when Es/Ep is decreased so that the piles are no longer

relatively flexible. Here, the greater impedance mismatch between the pile and soil causes the

pile-head response to vary as the pile length is increased.

In conclusion, the two counteracting mechanisms that have been identified in Section 6.6.2

– the soil-stiffening effect and the enhanced transmission effect – become more pronounced

when there are large differences in the relative characteristics of the soil-pile system, resulting

in a mismatch in the soil-pile impedance. This mismatch can occur by either varying the soil-

pile stiffness ratio or the pile length.

6.7 Conclusions

An iterative PiP-BEM model was developed in Section 6.1 to simulate the 3SI due to tunnel-pile

and pile-pile interaction in a coupled tunnel-foundation system. Section 6.2 demonstrated that

the dynamic interaction between the ground surface and very shallow tunnels can be captured

by the iterative PiP-BEM model. When the tunnel-ground separation distance is greater than the

tunnel diameter, only the local free surface around the piled foundation needs to be discretised

in the mesh. The mesh also contains internal points along the soil-tunnel interface. Based on the

convergence study in Section 6.3, the soil-tunnel mesh must contain at least 42 circumferential

points and its longitudinal length must be at least twice the footprint of the foundation itself to

maintain numerical accuracy over the frequency range of interest (1-80 Hz).

The results in Section 6.4 support the general conclusion that source-receiver interaction is

greatest when the tunnel is close to the foundation, particularly when the piles descend below
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the crown of the tunnel. Increasing the number of rows of piles along the tunnel also increased

the effect of tunnel-pile coupling. In the large 3×2 pile-group, the coupling became negligible

when the distance between the tunnel and the nearest pile exceeded the S-wavelength in the

soil. Moreover, the significance of kinematic interaction between neighbouring piles (k-PSPI)

depended on the length of the piles and their location and orientation relative to the tunnel.

Wave scattering was also more significant at relatively high frequencies (short wavelengths), to

the extent that k-PSPI could be important to consider when predicting the response, particularly

when long piles provide a large surface for scattering.

Section 6.6 used the standard slab track described in Section 6.5 to conduct a parametric

study on the train-induced vibration of a single pile in the vertical direction. The insertion gain

(IG) at the pile head was used to characterise the added-pile effect. The results clearly showed

that variations in density had an insignificant effect on the added-pile effect. In contrast, both

the pile length L and the soil-pile stiffness ratio Es/Ep can influence the added-pile effect. Two

counteracting mechanisms were identified when L was increased: (1) the soil-stiffening effect,

which was particularly significant at high frequencies; and (2) the enhanced transmission effect

when the pile was close to the railway tunnel. Provided the pile length was less than the tunnel

depth, the soil-stiffening effect dominated the pile-head response, meaning that increasing L

or decreasing Es/Ep decreased the IG, as long as the pile was not too short or flexible that it

failed to constrain sufficient wavelengths in the soil. If the soil gap between the tunnel crown

and the pile toe was small in comparison to the soil S-wavelength, the amplification due to

the enhanced transmission effect overcomes the attenuation due to the soil stiffening effect,

thereby causing the IG to increase and become positive at some frequencies. For off-centred

piles, increasing L beyond the tunnel depth led to further increases in IG, but at a diminishing

rate.
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Chapter 7

Coupled Tunnel-Foundation-Building Systems

In circumstances where it is necessary to construct a building near a pre-existing underground

railway tunnel, numerical models that can predict the vibration performance of the building are

very desirable for practising engineers. If the vibration levels exceed the frequency-dependent

thresholds for human annoyance, countermeasures, such as base isolation (see Section 2.2.3),

may have to be implemented to attenuate the vibration. However, in practice, existing models

are either computationally intensive or do not fully capture the fundamental physics [39].

A better option is to use computationally efficient models for the tunnel, ground, foundation

and building that capture the essential dynamics of the entire system. This allows practitioners

to compare the performance of different designs before the important features of the building

are finalised during pre-construction. In this chapter, the BEM model is used for the foundation

(see Chapter 3) and the PiP model is used for the railway tunnel (see Appendix C), henceforth

denoted as the Fb and Tp models, respectively. The resulting Tp-Fb model for the fully coupled

tunnel-foundation system (see Chapter 6) accounts for the 3SI due to tunnel-pile coupling and

k-PSPI. A similarly comprehensive model of a building needs to be used in this chapter.

Section 7.1 introduces a generalised model that can assess the vibration performance of a

building that is directly coupled to the Tp-Fb model. The added-building effect, predicted using

three different models for a modern tall building, is investigated in Section 7.2. These building

models are then used to examine the overall vibration of different foundation-building systems

in Section 7.3. To minimise the train-induced vibration of a building, Section 7.4 explores the

effect of installing base isolation. Section 7.5 presents a virtual case study that shows how the

techniques developed in this dissertation can be used to help guide the design of buildings near

pre-existing railway tunnels. Finally, some concluding remarks are presented in Section 7.6.
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7.1 The Generalised Model of a Foundation-Building System

By adapting the work of Sanitate [206], this section describes how the ground-borne vibration

problem of a generalised building can be evaluated. While Sanitate only considered the effect of

planar incident waves on the response of 2D portal-framed buildings, this chapter models the

buildings as 3D portal frames, as a first approximation, in order to fully capture the effect of

the 3D wave-fields from an underground railway tunnel on the entire 3D foundation-building

system. Further simplifications to the building model are introduced later in Section 7.2. Non-

structural components (floor slabs, walls, façade, etc.) are neglected in the building model.

7.1.1 Variation in the Response During Building Construction

Consider when an existing underground railway tunnel generates steady-state, time-harmonic

excitation with angular frequency ω . Prior to building construction, the vibration that reaches a

position vector x = {x,y,z}T on the free surface is the greenfield displacement vector uS(x,ω).

Adding the foundation modifies the greenfield displacement due to wave interaction at the soil-

foundation interface (added-foundation effect), which results in the displacement wave-field

uF(x,ω) at the top of the foundation. Constructing the building modifies the wave-field further

due to coupling between the building and soil-foundation systems (added-building effect), with

the resulting displacement wave-field uB(x,ω) at the base of the building. The displacement at

different floors in the building will depend on the distribution of uB(x,ω) across the foundation-

building interface. An overview of these effects is illustrated in Fig. 7.1.

Sanitate & Talbot [208] observed that the inclusion of soil-foundation-building interaction

for a 2D portal-framed building supported on rigid, surface footings attenuated the greenfield

uS

(a)

uF

(b)

uB

(c)

Fig. 7.1 An overview of the ground-borne vibration problem of a tunnel-foundation-building system:
(a) greenfield displacement uS generated by an underground railway tunnel; (b) displacement wave-
field uF at the top of the foundation, accounting for tunnel-foundation interaction; and (c) displacement
wave-field uB at the base of the building, accounting for soil-foundation-building interaction.
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response. In particular, when the frequency was greater than 40 Hz, the added-building effect

in the vertical direction resulted in attenuation around the order of 10 dB. A more recent study

by Kuo et al. [148], which used a 2.5D, coupled FEM-BEM model to predict the vibration of

a building next to a surface railway, observed similar attenuation in the vertical direction when

the building was supported on embedded strip and raft foundations. Furthermore, increasing the

soil stiffness generally decreased the added-building effect at high frequencies. These studies

highlight the significance of the interaction between the soil, foundation and building systems.

7.1.2 Coupling at the Foundation-Building Interface

The added-building effect can be analysed by assuming that the base of each building column

is directly coupled at a single point to the head of a corresponding foundation pile. Figure 7.2

illustrates the coupling model for the fundamental unit of a general foundation-building system,

which can capture any changes in the response during each construction stage of the building.

The notation is generalised so that it is applicable for any foundation-building model.

The semi-infinite, 3D soil system is denoted by S, the 3D foundation system by F and the

3D building system by B. As far as the building response is concerned, the added-foundation

effect is represented by the difference between uS and uF without the presence of the building.

When the building is coupled to the foundation at the coupling point O, the added-building

effect is similarly represented by the difference between uF and uB. The modification in uF can

S

y

z

uS

O

(a)

y

z

uF

S

O F

(b)

y

z

uB

uN

S

O F

B

(c)

Fig. 7.2 Schematic diagrams illustrating the coupling model for the fundamental unit of a foundation-
building system. (a) The incident waves-fields from a vibration source in the 3D soil system S leads to
the greenfield displacement uS at a point O on the free surface. (b) The presence of a 3D foundation
system F is then considered, with the resulting displacement uF at the top of F. (c) A 3D building
system B is coupled to the soil-foundation system, with the resulting displacements uB and uN at the
base and remainder of B, respectively.
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be approached as a wave-scattering problem in its generalised form:

uB(x0,ω) = uF(x0,ω)+HF(x0,x0,ω)fF(x0,ω) , (7.1)

where the vector fF is the force exerted by the building on the foundation at O , and HF is the

driving-point displacement FRF matrix of the coupled soil-foundation system. The directional

components of the vectors in Eq. (7.1) correspond to the five DOFs at the foundation-building

interface: three translations in the x-, y- and z-axes; and two rotations about the x- and y-axes.

In general, the displacement and force vectors can be expressed as follows:

u(x0,ω) =
{

ux0,uy0,uz0,θx0,θy0
}T

= {u0,v0,w0,φ0,θ0}T , (7.2)

f(x0,ω) =
{

fx0, fy0, fz0,qx0,qy0
}T

= {s0, t0, f0, p0,q0}T . (7.3)

Torsion due to rotation about the z-axis of individual building columns is neglected because it

has a negligible effect on the overall building structure.

Equilibrium of forces is satisfied by letting fF = −fB, where fB is the force exerted on the

building at O. In general, the global displacement-force relationship within B can be written in

the form:

uBG(xG,ω) =


uB(x0,ω)

uN(xN,ω)

=

HBB(x0,x0,ω) HBN(x0,xN,ω)

HNB(xN,x0,ω) HNN(xN,xN,ω)


 fB(x0,ω)

fN(xN,ω)


= HBG(xG,xG,ω)fBG(xG,ω) ,

(7.4)

where xG = x0
⋃

xN is the collection of position vectors x0 and xN at the base and remainder of

B, respectively. Given there are no external forces within the building (fN = 0), Eq. (7.4) can

be rewritten in terms of the displacement-force relationship at the coupling point:

fB(x0,ω) = H−1
BB(x0,x0,ω)uB(x0,ω) = H−1

B (x0,x0,ω)uB(x0,ω) , (7.5)

where HB is the driving-point displacement FRF matrix of the building at O. Alternatively,

KB =H−1
B is defined as the condensed dynamic-stiffness matrix [199] of the building. Note that

the FRF matrices HF and HB are symmetric. By eliminating the forces in Eqs. (7.1) and (7.5),

the relationship characterising the change in the displacement wave-field at the foundation-

building interface, once the building is constructed, can be derived [222]:

uB = (I+HFKB)
−1uF = TBuF , (7.6)
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where I is the identity matrix, and TB is the foundation-building transfer matrix describing the

added-building effect. In general, TB is a fully populated, non-symmetric matrix. The response

of the building at xN can be retrieved from Eqs. (7.4) and (7.6):

uN = HNBKBuB = HNBKBTBuF . (7.7)

It is worth noting that the added-building effect depends on the dynamics of both the foundation

and building, as Eqs. (7.6) and (7.7) are expressed in terms of HF and KB.

7.1.3 Assessing the Performance of Different Building Configurations

It is yet relatively unclear how effective deep piled foundations (typically, where the length is

more than 3 m) are at mitigating the vibration transmitted into a building compared to shallow

foundations, such as soil-embedded footings. Although they are unlikely to be used in practice

to support tall buildings, footings provide a useful reference against which the effect of piles

on the vibration may be compared. In this chapter, the circular footings are assumed to exhibit

elastic behaviour, so the Fb model can be used to characterise their motion by considering each

footing as equivalent to a very short pile with a fixed length of 0.5 m and a diameter of 0.71 m.

The insertion gain (IG) can be used as a measure of variation in the vibration performance

between two different configurations of the foundation-building system. In order to compare

the response between buildings supported on piles and footings, the IG can be defined as

IG(pf) = 20log10

 |u(pile)
N |
|u(foot)

N |

 , (7.8)

where u(pile)
N and u(foot)

N are the displacements at a single point within the foundation-building

system in the pile and footing configurations, respectively, and the superscript ‘(pf)’ denotes

that the IG measures changes in the displacement of the pile and footing configurations.

However, the effectiveness of IG is limited, as it only captures the performance of a single

point with respect to a particular direction. Section 6.4 shows how the IG can characterise the

added-pile effect of a single pile, but it is unable to describe the performance of the entire piled

foundation. The mean source-receiver insertion gain in Section 6.4.5 was an attempt to find the

overall response of a piled foundation by computing the average response across the pile heads.

Instead of measuring the displacement, the mean vibrational power is a more effective scalar

measure of the building’s multi-directional response, as described in Section 2.2.4. Based on
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the notation defined in Section 7.1.2, the mean vibrational power flow entering the building can

be evaluated by taking the dot product of the force fB and velocity iωuB vectors at the base of

the building:

P̄ =
1
2

Re
(

f∗B · iωuB

)
=

1
2

Re
(

iω
[
f∗B
]T uB

)
=

1
2

Re
(

iωf†
BuB

)
, (7.9)

where the superscripts ‘∗’ and ‘†’ denote the complex conjugate and the Hermitian transpose,

respectively. Based on the sign convention adopted in Eq. (7.9), positive values represent power

flow entering the building. By using Eqs. (7.5) and (7.6) to eliminate fB and uB, Eq. (7.9) can

be rewritten in terms of the displacement uF before the building is constructed:

P̄ =
1
2

Re
(

iωu†
FT†

BK†
BTBuF

)
. (7.10)

To compare the overall vibration performance between the pile and footing configurations,

the power-flow insertion gain (PFIG) can be defined as

PFIG(pf) = 10log10

(
|P̄(pile)|
|P̄(foot)|

)
, (7.11)

where P̄(pile) and P̄(foot) define the mean power flows entering the building when it is supported

on piles and footings, respectively.

7.2 Modelling a Building

This section discusses three possible approaches in which a building can be modelled, using a

benchmark building design as a generic example. The three building models are used to study

the similarities and differences in the added-building effect and the mean power flow entering

the benchmark building when it is supported on either piles or embedded footings.

7.2.1 The Benchmark Building

The benchmark building is represented by the 10-storey, 2-by-2-bay frame illustrated in Fig. 7.3

because it is not too computationally demanding to solve, yet it is sufficiently comprehensive

enough to capture the fundamental dynamic behaviour of a modern tall building. In total, there

are N = 9 coupling points at the foundation-building interface. At each coupling point, the base

of a building column is directly coupled to the top of a corresponding pile or footing by using
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the coupling model presented in Section 7.1.2. The steady-state motion of an elastic bar and

an Euler-Bernoulli beam are used to characterise the propagation of axial and flexural waves,

respectively, through the individual building columns and beams.

Table 7.1 presents the parameter values of the building and foundation, both of which are

constructed out of concrete. The parameter values in Table 6.1 are used to model the concrete

tunnel and the London Clay soil. The train-track system is modelled using the parameter values

in Table 6.2 that represent a standard slab track.

Typically, two principal mechanisms cause damping in the dynamic response of a building:

material damping and boundary damping. The former is related to energy dissipation within the

bulk building material, while the latter is due to energy dissipation at the connections between

various elements (columns, floors, windows, etc.). When the damping is measured in a built-up

D
L

x

S

ρp, Ep, Ip, Ap

ρc, Ec, Ic, Ac, ηclc

y

z

Ø 6

ρb, Eb, Ib, Ab, ηb

(a)

xy

z

ρf , Ef , If , Af

(b)

y

x

321

987

654lb

lb

(c)

Fig. 7.3 Schematic diagrams of the benchmark building, represented as a 10-storey, 2-by-2-bay frame
supported on a foundation of (a) piles and (b) embedded footings, near an underground railway tunnel.
(c) Common plan view shows the N = 9 coupling points (numbered) at the foundation-building interface
and the tunnel’s outline below the free surface (dashed lines).

179



CHAPTER 7. COUPLED TUNNEL-FOUNDATION-BUILDING SYSTEMS

Building parameters [Units] Columns Beams

Young’s modulus [Pa] Ec = 30×109 Eb = 30×109

Density [kg/m3] ρc = 2500 ρb = 2500
Cross-section area [m2] Ac = 0.25 Ab = 1.25
Second moment of area [m4] Ic = 5.2×10−3 Ib = 6.5×10−3

Length [m] lc = 3 lb = 4
Loss factor [−] ηc = 0.1 ηb = 0.1

Foundation parameters [Units] Piles Footings

Young’s modulus [Pa] Ep = 30×109 E f = 30×109

Density [kg/m3] ρp = 2500 ρ f = 2500
Cross-section area [m2] Ap = 0.39 A f = 0.39
Second moment of area [m4] Ip = 12.3×10−3 I f = 12.3×10−3

Table 7.1 Building and foundation parameter values for the benchmark foundation-building system.

structure, such as a building, it is usually found to be at least an order of magnitude higher than

the intrinsic material damping of the structural components [244]. This difference is attributed

to effects such as frictional micro-slipping at bolted joints [46, 96], which make it difficult to

accurately simulate the boundary damping. Hence, the contribution due to boundary damping

in the building is assumed to be captured by a model that accounts for the material damping.

Experimental evidence suggests that the damping in concrete columns does not strongly

depend on the frequency, and different reinforcement configurations can cause small variations

in the damping. Based on this, Newland & Hunt [182] state that a hysteretic damping model, as

mentioned in Section 2.3.1, with loss factors in the order of η = 0.01 can be representative of

the material damping in a concrete column. Moreover, they highlight the difficulty in modelling

the damping in a complete building, suggesting a tenfold value of η in such a case. This order

of magnitude is in agreement with the typical damping values assigned to equivalent SDOF

models of concrete buildings, when analysing design spectra in earthquake engineering [216].

Therefore, a hysteretic loss factor of η = 0.1 is used in this dissertation to account for both

material and boundary damping in the overall building.

7.2.2 The Portal-Frame (Bp) Model

In order to explicitly capture the influence of through-floor coupling and modal behaviour, the

building can be modelled as a portal frame (Bp model). This is an ‘exact’ model because the
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frame is divided into bar-beam elements, which are then coupled together using appropriate

boundary conditions. However, although the Bp model is useful in many applications, such as

predicting the absolute isolation performance of a building [206], it requires more resources to

develop and run compared to the other two models presented in Sections 7.2.3 and 7.2.4.

For the element shown in Fig. 7.4, the generalised displacements and forces at the nodes

are represented by the following vectors:

u′e =
{

u′1,v
′
1,w
′
1,φ
′
1,θ
′
1,u
′
2,v
′
2,w
′
2,φ
′
2,θ
′
2
}T

, (7.12)

f ′e =
{

s′1, t
′
1, f ′1, p′1,q

′
1,s
′
2, t
′
2, f ′2, p′2,q

′
2
}T

. (7.13)

The dynamic-stiffness method (DSM) [30] is applied, as presented in Section 3.1.1 for a pile,

to obtain a force-displacement relationship between the nodes of the element:

l

q′ 1
(

θ
′
1

)f′1( w
′
1

)
s′ 1

( u′ 1
) e′ x

e′ z

f′2( w
′
2

)s′ 2

( u′ 2
)

q′ 2
(

θ
′
2

)

ex

ez
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′
1
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f′2( w
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)
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(
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2
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ψ
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Fig. 7.4 Representation of a bar-beam element of length l in the global (x,y,z) coordinate system due to
rotations of γ and ψ about the (a) y- and (b) x-axes. The generalised displacements

(
u′,v′,z′,φ ′,θ ′

)
and

forces
(
s′, t ′, f ′, p′,q′

)
at the element’s nodes are defined in the local (x′,y′,z′) coordinate system.
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f ′e = K′eu′e , (7.14)

where K′e is the element’s dynamic-stiffness matrix in the local (x′,y′,z′) coordinate system.

In the portal frame, multiple elements are coupled together in the global (x,y,z) coordinate

system. A transformation matrix R is needed to refer to the displacements u and forces f in the

global coordinate system when each element is rotated by the angles of ψ and γ about the x-

and y-axes, as illustrated in Fig. 7.4. These transformations can be expressed as

ue = Ru′e , fe = Rf ′e , and R =

S 0

0 S

 , (7.15)

where

S =



cosγ −sinγ sinψ sinγ cosψ 0 0

0 cosψ sinψ 0 0

−sinγ −cosγ sinψ cosγ cosψ 0 0

0 0 0 cosγ 0

0 0 0 0 cosψ


. (7.16)

Note, R does not transform torsional rotation about the element’s local z′-axis. By substituting

Eq. (7.14) into Eq. (7.15), the global dynamic-stiffness matrix Ke of the element can be found:

fe = Rf ′e = RK′eu′e = RK′eR−1ue = Keue , (7.17)

Once multiple elements are coupled together in the portal frame, by satisfying equilibrium

and compatibility at the nodes, the global dynamic-stiffness matrix KBGp of the entire frame

can be calculated. By partitioning the inverse of KBGp, the fully populated displacement FRF

matrix HBp at the base of the portal frame can be determined. The H(m,n)
Bpij components in HBp

that relate the displacement i at coupling point m, when a force j is applied at coupling point n,

can be expressed as the following matrix:

H(m,n)
Bp =



H(m,n)
Bpxx H(m,n)

Bpxy H(m,n)
Bpxz H(m,n)

Bpxφ
H(m,n)

Bpxθ

H(m,n)
Bpyx H(m,n)

Bpyy H(m,n)
Bpyz H(m,n)

Bpyφ
H(m,n)

Bpyθ

H(m,n)
Bpzx H(m,n)

Bpzy H(m,n)
Bpzz H(m,n)

Bpzφ
H(m,n)

Bpzθ

H(m,n)
Bpφx H(m,n)

Bpφy H(m,n)
Bpφz H(m,n)

Bpφφ
H(m,n)

Bpφθ

H(m,n)
Bpθx H(m,n)

Bpθy H(m,n)
Bpθz H(m,n)

Bpθφ
H(m,n)

Bpθθ


. (7.18)

182



CHAPTER 7. COUPLED TUNNEL-FOUNDATION-BUILDING SYSTEMS

Note, reciprocity between the coupling points
(

H(m,n)
Bp = H(n,m)

Bp

)
and the force-displacement

components
(

H(m,n)
Bpij = H(m,n)

Bpji

)
is considered in HBp.

7.2.3 The Column (Bc) Model

In circumstances where the added-building effect, or the isolation performance of a building,

has to be evaluated, it is important to explore if simplified models, which can predict the base

impedance, are as effective as the Bp model at capturing the essential dynamics of the building.

This section derives the equations of motion at the base of a simplified building model, where

the building is represented as a series of independent columns (Bc model) because the through-

floor coupling between adjacent columns is neglected.

The mass and stiffness of each column is assumed to be uniformly distributed along its

height of Lc = nstoreyslc, where nstoreys is the number of storeys. The columns are described by

their Young’s modulus Ec, density ρc, cross-section area Ac, second moment of area Ic, and loss

factor ηc, as presented in Table 7.1. From these parameters, the mass per unit length mc = ρcAc

and the bending stiffness Kc = EcIc of each column are used to derive the equations of motion

for the Bc model.

Consider the column shown in Fig. 7.5, with generalised forces applied at the coupling point

O. The displacement FRF matrix HBc of the column at O is derived by assuming that the axial

and flexural motion are uncoupled. In this section, the equations are derived for the undamped

case; the equations for the damped case can be found by substituting E∗c = Ec(1+ iηc) for Ec.

In the space-time (z, t)-domain, the general solution describing the undamped, steady-state

axial motion of an elastic bar in the z-direction is

w̄(z, t) = w(z,ω) · eiωt =
(

a1eiαz +a2e−iαz
)
· eiωt for z≥ 0 , (7.19)

where ω is the angular frequency and α = ω

(
ρc
Ec

)1/2
is the wavenumber of axial waves in the

column. Note, only the real part of Eq. (7.19) represents the column’s physical motion. When

s0q0

ey

ex

ez Ec        Kc        mc        ρc

z

Lc

Of0

Fig. 7.5 The generalised forces at the coupling point O of a finite column. Note that only the forces in
the xz-plane are represented.
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a time-harmonic axial force ( f0 · eiωt) is applied at O, the following boundary conditions need

to be satisfied:

Ecmc

ρc

∂ w̄
∂ z

∣∣∣∣
z=0

=− f0 · eiωt , and
∂ w̄
∂ z

∣∣∣∣
z=Lc

= 0 . (7.20)

By substituting Eq. (7.19) into Eq. (7.20), the complex coefficients a1 and a2 can be found:a1

a2

=

 1 −1

eiαLc −e−iαLc


−1

iρc
αEcmc

f0

0

 . (7.21)

The general solution in the (z, t)-domain that describes the undamped, steady-state flexural

motion of an Euler-Bernoulli beam in the x-direction is

ū(z, t) = u(z,ω) · eiωt =
(

b1eβ z +b2e−β z +b3eiβ z +b4e−iβ z
)
· eiωt for z≥ 0 , (7.22)

where β =
√

ω

(
mc
Kc

)1/4
is the wavenumber of flexural waves. The complex coefficients b1, b2,

b3 and b4 can be determined by applying appropriate boundary conditions. Since excitation

due to both shear forces and bending moments can generate flexural waves, the overall motion

of the column needs to be considered by applying the superposition principle.

When a time-harmonic shear force (s0 · eiωt) is applied at point O, the following boundary

conditions need to be satisfied:

∂ 2ū
∂ z2

∣∣∣∣∣
z=0

=
∂ 2ū
∂ z2

∣∣∣∣∣
z=Lc

=
∂ 3ū
∂ z3

∣∣∣∣∣
z=Lc

= 0 , and Kc
∂ 3ū
∂ z3

∣∣∣∣∣
z=0

= s0 · eiωt . (7.23)

By substituting Eq. (7.22) into Eq. (7.23), the complex coefficients due to the shear force can

be found: 

b1s

b2s

b3s

b4s


=


1 1 −1 −1

1 −1 −i i

eβLc e−βLc −eiβLc −e−iβLc

eβLc −e−βLc −ieiβLc ie−iβLc



−1

0
1

Kcβ 3 s0

0

0


. (7.24)

When a time-harmonic bending moment (q0 · eiωt) is applied at O, the following boundary

conditions need to be satisfied:
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Kc
∂ 2ū
∂ z2

∣∣∣∣∣
z=0

=−q0 · eiωt , and
∂ 3ū
∂ z3

∣∣∣∣∣
z=0

=
∂ 2ū
∂ z2

∣∣∣∣∣
z=Lc

=
∂ 3ū
∂ z3

∣∣∣∣∣
z=Lc

= 0 . (7.25)

By substituting Eq. (7.22) into Eq. (7.25), the complex coefficients due to the bending moment

can be found: 

b1q

b2q

b3q

b4q


=


1 1 −1 −1

1 −1 −i i

eβLc e−βLc −eiβLc −e−iβLc

eβLc −e−βLc −ieiβLc ie−iβLc



−1

−1
Kcβ 2 q0

0

0

0


. (7.26)

Note, the equations that describe the flexural motion of the column in the y-direction are similar

to Eqs. (7.22)–(7.26).

By evaluating all the equations describing the axial and flexural motion at O, the following

displacement-force relationship in the space-frequency (z,ω)-domain can be derived for the Bc

model: 

u0

v0

w0

φ0

θ0


=



HBcxx 0 0 0 HBcxθ

0 HBcyy 0 HBcyφ 0

0 0 HBczz 0 0

0 HBcφy 0 HBcφφ 0

HBcθx 0 0 0 HBcθθ





s0

t0

f0

p0

q0


, (7.27)

or simplified:

uB = HBcfB . (7.28)

7.2.4 The Dashpot (Bd) Model

A further simplification can be applied to the Bc model by assuming that each building column

is semi-infinite, which is the extreme case for very tall buildings. In this case, vibrational energy

entering at the base of each semi-infinite column is completely dissipated along its height. It

is assumed that all waves propagate up the column without being reflected downwards; that is,

the waves are damped out before they reach any boundaries, so the building’s modal behaviour

is neglected. Thus, the benchmark building, although having finite dimensions, can be assumed

to be infinitely tall from the perspective of wave propagation, as viewed from the base.
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(a) (b)

Fig. 7.6 Representation of (a) a semi-infinite column as (b) an equivalent viscous dashpot. Note that the
dashpot represented here accounts for motion in the five DOFs at the base of the semi-infinite column.

In principle, the response at the base of each semi-infinite column can be idealised using the

equations of motion for an equivalent viscous dashpot, as represented in Fig. 7.6. A dashpot

is a type of mechanical element that dissipates the kinetic energy supplied to it by producing a

resistive force that is proportional to the driving velocity. Thus, the benchmark building can be

modelled as a series of independent, viscous dashpots (Bd model), with each dashpot coupled

to either a pile or footing at a single point.

Consider the semi-infinite column illustrated in Fig. 7.7, with generalised forces applied at

the coupling point O. The dynamic behaviour of a dashpot is characterised by its impedance

function Z, which is defined as the generalised force divided by the driving-point velocity [181].

Therefore, the displacement FRF matrix HBd at the base of each semi-infinite column can be

expressed in terms of the impedance functions for an equivalent dashpot. It is worth noting that

the impedance functions for axial and flexural motion of the semi-infinite column are different.

Since the column is semi-infinite, the general solution for the undamped axial motion of a

semi-infinite bar is similar to Eq. (7.19), but the complex coefficient a1 = 0, as only forward-

travelling axial waves are able to propagate in the positive z-direction. When a time-harmonic

axial force ( f0 · eiωt) is applied at O, only the boundary condition at z = 0 needs to be satisfied

in Eq. (7.20). By substituting Eq. (7.19) into Eq. (7.20), the motion in the (z,ω)-domain due to

the axial force can be derived:

w(z,ω) =
−iρc

Ecmcα
f0e−iαz for z≥ 0 . (7.29)

The complex impedance ZA due to the axial response at O is defined as [46]
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ZA =
f0

ẇ0
= cAmc , (7.30)

where ẇ0 = iωw0 is the driving-point velocity, and cA =
(

Ec
ρc

)1/2
is the phase speed of axial

waves.

The general solution for the undamped flexural motion of a semi-infinite beam is similar to

Eq. (7.22), but the complex coefficients must satisfy b1 = b3 = 0 so that only forward-travelling

flexural waves propagate in the positive z-direction. Again, similar to the axial response, only

the boundary conditions at z = 0 need to be satisfied in Eqs. (7.23) and (7.25) when a time-

harmonic shear force (s0 ·eiωt) and bending moment (q0 ·eiωt), respectively, is applied at point

O. By substituting Eq. (7.22) into Eqs. (7.23) and (7.25), the following equations in the (z,ω)-

domain describe the flexural motion of the semi-infinite column due to the shear force:

us (z,ω) =
−(i+1)
2Kcβ 3 s0

(
e−β z + e−iβ z

)
for z≥ 0 , (7.31)

and the bending moment:

uq (z,ω) =
(i+1)
2Kcβ 2 q0

(
ie−β z + e−iβ z

)
for z≥ 0 . (7.32)

The complex impedances ZS, ZQ and ZC due to the lateral, rocking and coupled lateral-rocking

responses, respectively, at O are defined by the following equations [46]:

ZS =
s0

u̇s(0,ω)
=

s0

u̇s0
=

i+1
2

cBmc , (7.33)

ZQ =
q0

∂ u̇q
∂ z (0,ω)

=
q0

θ̇q0
=

1− i
2ω

cB
√

Kcmc , (7.34)

ZC =
s0

∂ u̇s
∂ z (0,ω)

=
s0

θ̇s0
=

q0

u̇q(0,ω)
=

q0

u̇q0
=−
√

Kcmc , (7.35)

where cB =
√

ω

(
Kc
mc

)1/4
is the phase speed of flexural waves. By adding Eqs. (7.33) and (7.35)

through superposition, the net lateral driving-point velocity u̇0 due to both shear and bending

Ec        Kc        mc        ρc

z
ey

ex

ez f0

s0q0

O

Fig. 7.7 The generalised forces at the coupling point O of a semi-infinite column. Note, only the forces
in the xz-plane are represented.
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can be expressed as

u̇0 = iωu0 = u̇s0 + u̇q0 =
s0

ZS
+

q0

ZC
. (7.36)

Likewise, the superposition of Eqs. (7.34) and (7.35) expresses the net angular driving-point

velocity θ̇0 as

θ̇0 = iωθ0 = θ̇s0 + θ̇q0 =
s0

ZC
+

q0

ZQ
. (7.37)

Equations (7.30), (7.36) and (7.37) can be combined into the following displacement-force

relationship in the (z,ω)-domain that describes the axial and flexural motion of the equivalent

dashpot model:

u0

v0

w0

φ0

θ0


=

1
iω



1/ZS 0 0 0 1/ZC

0 1/ZS 0 −1/ZC 0

0 0 1/ZA 0 0

0 −1/ZC 0 1/ZQ 0

1/ZC 0 0 0 1/ZQ





s0

t0

f0

p0

q0


, (7.38)

or simplified:

uB = HBdfB . (7.39)

Note, reciprocity is considered between the lateral-rocking components in HBd. The negative

components in Eq. (7.38) are present as a result of the sign convention used for the generalised

displacements and forces.

7.2.5 The Added-Building Effect of the Benchmark Building

When the Fb (BEM) model of the foundation system is coupled to the three building models

in Sections 7.2.2–7.2.4, the following models for the foundation-building system are produced:

Fb-Bp (portal frame), Fb-Bc (columns) and Fb-Bd (dashpots). Even though the latter model is

limited because it neglects the through-floor coupling and modal behaviour of the building, it

is important to explore whether the simplified Fb-Bd model can account for the fundamental

physics that are associated with the added-building effect when a tall building is supported on

either piles or embedded footings. The significance of these assumptions on the added-building

effect is analysed in this section.
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Equation (7.6), which is representative of the added-building effect, can be rewritten in

terms of the displacements i and j at coupling points m (base of the building) and n (top of the

foundation), respectively:

u(m)
Bi =

N

∑
n=1

5

∑
j=1

T (m,n)
Bij u(n)Fj . (7.40)

Figures 7.8 and 7.9 plot the components in the T(1,n)
B sub-matrices of the benchmark building

supported on footings and piles (of equal length L = 20 m), respectively. The response of the

foundation-building system is predicted using three models: Fb-Bp, Fb-Bc and Fb-Bd. For the

Fb-Bp model, the coupling points at n = 1,2,5 are used to compare between components of the

diagonal T(1,1)
B and off-diagonal T(1,n)

B sub-matrices. In contrast, components of the diagonal

T(1,1)
B sub-matrix are only shown in Figs. 7.8 and 7.9 for the Fb-Bc and Fb-Bd models; the off-

diagonal T(1,n)
B sub-matrices are null, as there is no coupling between the columns or dashpots.

Whether the building is supported on piles or footings, there is good agreement between

the three models for the components of T (1,1)
Bxx , T (1,1)

Bxθ
, T (1,1)

Bθx , T (1,1)
Bzz and T (1,1)

Bθθ
, which relate to

lateral, lateral-rocking, vertical and rocking motion at the foundation-building interface. Over

most frequencies between 1 and 80 Hz, the predicted magnitudes of these components, using

the Fb-Bp and Fb-Bc models, remain within ±5 dB of the Fb-Bd model. Therefore, the Fb-Bd

model is able to capture these components, as the variation is less than those that generally arise

due to system uncertainties and inaccuracies in the model [126]. When n = 2 or n = 5 for the

Fb-Bp model, the off-diagonal counterparts of these diagonal components are, on average, at

least 10 dB less than when n = 1. In order words, at the base of the portal frame, the interaction

between columns, due to through-floor coupling, is less than the interaction at an individual

column. For a 2D portal-framed building supported on five surface footings, Sanitate & Talbot

[208] made similar observations about the coupling between neighbouring columns, which in

their case was at least 20 dB less than the interaction at an individual column.

In Figs. 7.8 and 7.9, the diagonal components of T (1,1)
Bxz , T (1,1)

Byx , T (1,1)
Byθ

, T (1,1)
Bzx , T (1,1)

Bzθ
, T (1,1)

Bθy ,

T (1,1)
Bθx and T (1,1)

Bθφ
are null when using the Fb-Bc and Fb-Bd models. The same is also true for the

remaining twelve components of the diagonal T(1,1)
B sub-matrix, which are not shown in these

figures for convenience. This is because the HB matrix for the column and dashpot models, as

expressed in Eqs. (7.27) and (7.38), are not fully populated, unlike Eq. (7.18) for the portal-

frame model. These latter diagonal components, obtained using the Fb-Bp model, are often less
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Fig. 7.8 Magnitude of the components in the T(1,n)
B transfer matrix of the benchmark building supported

on embedded footings. The results are predicted using the Fb-Bp, Fb-Bc and Fb-Bd models, and ±5 dB
uncertainty bounds are superimposed for the Fb-Bd model predictions.
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Fig. 7.9 Magnitude of the components in the T(1,n)
B transfer matrix of the benchmark building supported

on piles of length L = 20 m. The results are predicted using the Fb-Bp, Fb-Bc and Fb-Bd models, and
±5 dB uncertainty bounds are superimposed for the Fb-Bd model predictions.
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than−20 dB over the frequency range of interest and are of the same order of magnitude as their

respective off-diagonal components (n = 2,5). In contrast, the former diagonal components,

obtained using all three models, are greater than −20 dB, particularly for the case of T (1,1)
Bxx ,

T (1,1)
Bzz and T (1,1)

Bθθ
. Based on the results, the influence of these latter components on the overall

vibration of the benchmark building is likely to be limited, and the use of a simplified dashpot

model can be representative of the added-building effect.

Note that, regardless of whether the building is supported on piles or embedded footings,

the lateral T (1,1)
Bxx component is close to 0 dB over the full frequency range of interest. In other

words, constructing a building above a pre-existing foundation does not significantly modify

the lateral response at the top of the foundation. Likewise, when the building is supported on

piles (Fig. 7.9), the vertical T (1,1)
Bzz and rocking T (1,1)

Bθθ
components, evaluated using the Fb-Bd

model, do not deviate significantly from 0 dB as the frequency is increased. In contrast, when

the building is instead supported on embedded footings (Fig. 7.8), both T (1,1)
Bzz and T (1,1)

Bθθ
tend

to decrease from 0 dB at 1 Hz to approximately −15 dB at 80 Hz. Sanitate & Talbot [208] also

observed a similar steady decrease from 0 dB to around−10 dB in both the vertical and rocking

components when the frequency was increased from 1 to 80 Hz. These results suggest that the

vertical impedance of the footings and the building differ significantly, which constrains the

foundation’s vertical motion when the building is constructed. The same can also be said about

the difference in rocking impedance. On the other hand, the piles and the building have similar

lateral, vertical and rocking impedances, so constructing the building has a negligible effect on

constraining the vibration of the piled foundation.

7.2.6 The Mean Power Flow due to Base Excitation

The previous section explored the TB transfer matrix in detail to better understand the dynamic

behaviour of a foundation-building system. However, engineers are interested in predicting the

overall building vibration, which is transmitted into the building due to base excitation, because

it can help guide design-based decisions on vibration mitigation methods. Thus, in this section,

the three foundation-building models are used to analyse the mean vibrational power entering

the benchmark building due to excitation at the base of a single column.

Figure 7.10 plots the mean power flows when a unit-magnitude shear force, an axial force,

and a bending moment is independently applied at coupling points n = 1, 2, 5. The building is

supported above two different foundation configurations: embedded footings (Fig. 7.10a) and
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20 m piles (Fig. 7.10b). Bounds of ±5 dB, which correspond to the typical uncertainty levels

associated with numerical models of ground-borne vibration problems [126], are superimposed

on Fig. 7.10 for the Fb-Bd model predictions.

The resonant peaks in the mean power flows show that the Fb-Bp and Fb-Bc models capture

the building’s modal behaviour. In contrast, these peaks are absent when using the Fb-Bd model

because the waves in the building are damped out. Furthermore, as both the Fb-Bc and Fb-Bd

models neglect through-floor coupling between the columns, the power flow is independent of

which coupling point is excited. Only the Fb-Bp model produces varying power flows when the
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Fig. 7.10 Magnitude of the mean power flows entering the benchmark building supported on (a)
embedded footings and (b) piles of length L = 20 m when a unit-magnitude, time-harmonic shear force
(left), axial force (centre), and bending moment (right) is applied at coupling point n on the foundation-
building interface. The results are predicted using the Fb-Bp, Fb-Bc and Fb-Bd models, and ±5 dB
uncertainty bounds are superimposed for the Fb-Bd model predictions.
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generalised forces are applied at different coupling points. Even so, the average difference, over

the full frequency range, between the power flows at the three coupling points (n = 1,2,5) is

within±2 dB, which shows that the influence of through-floor coupling on the mean vibrational

power is rather small compared to uncertainties in the Fb-Bp model.

It is worth noting that the footing configuration generally causes less power to flow into

the building than the pile configuration; in particular, applying either an axial force or bending

moment causes the mean power flow to decrease by about 10 dB at frequencies over 40 Hz. This

decrease in power flow, when the building is supported on footings, correlates with the decrease

in the transfer matrix components that relate to vertical and rocking motion in Section 7.2.5.

In conclusion, the results presented in this section and Section 7.2.5 suggest that the dashpot

(Bd) model, where a tall building is assumed to behave as a collection of semi-infinite columns,

is effective at capturing the frequency-averaged variation in both the added-building effect and

the mean vibrational power entering the building. Moreover, the modal behaviour of the column

(Bc) and portal-frame (Bp) models, as well as the through-floor coupling captured in the latter

model, does not significantly influence the overall building vibration. However, the difference

in impedance between the foundation and building may contribute to the added-building effect,

particularly when using footings.

7.3 Vibration in the Presence of an Underground Railway

By using the generalised equations in Section 7.1 and the portal-frame (Bp), column (Bc) and

dashpot (Bd) models presented in Section 7.2, this section analyses the vibration performance

of a building when it is next to an underground railway tunnel. Firstly, the analysis focuses on

the significance of the added-foundation and added-building effects on the fundamental unit of

a foundation-building system. Later, for the purpose of analysing any differences in the train-

induced vibration of a realistic building supported on piles and footings, the mean power flow

entering the benchmark building in each foundation configuration is predicted.

7.3.1 A Note on the Equivalence of the Vertical and Power-Flow Insertion
Gains of a Centred Fundamental Unit

Suppose that a fundamental unit is positioned directly above the centre-line of an underground

railway tunnel. In this particular arrangement, the fundamental unit only experiences vibration
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in the vertical direction due to symmetry, so the entire structure can be represented as a single-

input, single-output system. For the special case of a single-input, single-output system, it has

been proven that the insertion gain (IG) and the power-flow insertion gain (PFIG) are directly

equivalent when they are used to characterise the system’s isolation performance [206, 221].

This section shows that a similar equivalence relationship can be derived for the vertical IG and

the PFIG that measure the change in the displacement and the vibrational power, respectively,

between the pile and footing configurations.

By substituting Eq. (7.7) into Eq. (7.8), the vertical IG between the displacements of the

pile and footing configurations can be computed for a centred fundamental unit:

IG(pf)
z = 20log10

 ∣∣HNBzzKBzzT
(pile)

Bzz w(pile)
F

∣∣∣∣HNBzzKBzzT
(foot)

Bzz w(foot)
F

∣∣


= 20log10

 ∣∣T (pile)
Bzz w(pile)

F

∣∣∣∣T (foot)
Bzz w(foot)

F

∣∣
 ,

(7.41)

where w(pile)
F and w(foot)

F are the displacements at the top of the pile and footing, respectively,

before the building column is constructed. Equation (7.41) highlights that IG(pf)
z is independent

of position.

Similarly, the PFIG between the mean vibrational power that gets transmitted into the pile

and footing configurations can be computed by substituting Eq. (7.10) into Eq. (7.11) and then

simplifying the resulting equation:

PFIG(pf) = 10log10


1
2

∣∣∣∣Re
(

iω
[
w(pile)

F

]∗ [
T (pile)

Bzz

]∗
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∣∣∣∣Re
(

iω
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w(foot)

F
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T (foot)

Bzz

]∗
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(foot)
Bzz w(foot)

F

)∣∣∣∣
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∣∣T (pile)
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iω
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= 10log10
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(7.42)
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Fig. 7.11 The vertical and power-flow insertion gains of a centred foundation-building fundamental
unit above an underground railway tunnel, predicted using the Tp-Fb-Bc and Tp-Fb-Bd models. The
insertion gains compare the vibration responses of the pile and footing configurations when the pile
length L is (a) 10 m and (b) 20 m. Tunnel-foundation separation distance S = 0 m and tunnel depth
D = 25 m.

Note, Eqs. (7.41) and (7.42) show that IG(pf)
z and PFIG(pf) are equivalent when evaluating

the vibration performance of a centred fundamental unit above an underground railway tunnel.

Although this equivalence relationship is only true when there is a single coupling point at the

foundation-building interface, it suggests that PFIG is a feasible scalar metric for characterising

the overall vibration performance of a general building with multiple columns.

In order to validate the equivalence in IG(pf)
z and PFIG(pf), Fig. 7.11 presents the respective

insertion gains of a centred fundamental unit above a 25 m depth tunnel. The insertion gains,

predicted using the Tp-Fb-Bc and Tp-Fb-Bd models, compare the responses of the pile and

footing configurations when the pile length is 10 and 20 m. In both cases, the parameter values

in Section 7.2.1, for the soil, tunnel, foundation and building, are used to model the system.

As expected, IG(pf)
z and PFIG(pf) are equal over the entire frequency range of interest for

both pile lengths. Furthermore, although the Bc and Bd models for the building column predict

slightly different insertion gains, the undulations in the responses are consistent with each other.
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7.3.2 The Added-Column Effect of a Fundamental Unit

When a building is constructed above a pre-existing foundation, being able to predict the added-

building effect as a result of its own mass, stiffness and damping is considered to be particularly

important in deciding whether or not some form of vibration isolation is necessary [222]. The

combination of both the added-foundation effect and the added-building effect accounts for the

overall modification in the ground vibration field when an entire foundation-building system is

constructed, which, in this section, is referred to as the ‘added-foundation-building effect’.

The work presented here examines the insertion gains that capture these three effects due

to the construction of an off-centred fundamental unit near a railway tunnel. Differences in the

responses when the column is supported on either a footing or pile are also investigated. Since

the fundamental unit is off-centred from the tunnel centre-line, the footing-column and pile-

column systems will experience motion in both the transverse and vertical directions. Thus, the

analysis is an extension to the parametric study presented in Section 6.6, which only focused

on the vertical added-pile effect of a pile near an underground railway tunnel.

For the particular case of a pile-column system, the added-foundation effect is referred to

as the added-pile effect, which was previously considered in Sections 6.4 and 6.6. The vertical

IG characterising the added-pile effect in the vertical direction is defined as

IG(ap)
z = 20log10

 |w(pile)
F |
|wS|

 , (7.43)

where wS is the vertical displacement at the free surface before a pile is embedded in the ground.

In order to measure the added-building effect when a column is constructed above the pile, the

following additional IG definitions are introduced:

IG(ac)
z = 20log10

 |w(pile)
B |
|w(pile)

F |

 , (7.44)

where the superscript ‘(ac)’ refers to the added-column effect when the column is constructed,

and w(pile)
B is the vertical displacement at the column-pile interface; and

IG(apc)
z = IG(ap)

z + IG(ac)
z = 20log10

 |w(pile)
B |
|wS|

 , (7.45)

where the superscript ‘(apc)’ refers to the added-pile-column effect of the overall pile-column
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system. The comparable terms of the added-foundation and added-foundation-building effects

for a footing-column system are referred to as the added-footing (af) and added-footing-column

(afc) effects, respectively.

Figures 7.12 and 7.13 plot the transverse (IGy) and vertical (IGz) insertion gains of an

off-centred footing-column and pile-column system, respectively. Figure 7.13 also shows the

influence of increasing the pile length L from 10 to 30 m on the insertion gains. For both the

footing-column and pile-column systems, the tunnel depth D is 25 m and the tunnel-foundation

separation distance S is 5 m. Note, when the column is present, the Tp-Fb-Bc and Tp-Fb-Bd

models are used to predict the response of the fundamental unit. In the absence of the column,

the added-pile and added-footing effects are predicted using the Tp-Fb model.

First, consider the transverse IG, with respect to frequency, of the fundamental unit. The

IG(ac)
y for the footing-column system remains close to 0 dB as the frequency is increased up to

50 Hz, and then decreases to a minimum of −3 dB at 80 Hz. Even more so, the IG(ac)
y for the

pile-column system remains close to 0 dB over the entire frequency range. These observations

highlight that, for both the footing and pile configurations, the added-column effect is negligible
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Fig. 7.12 The transverse (left) and vertical (right) insertion gains of an off-centred footing-column
system near an underground railway tunnel, predicted using the Tp-Fb-Bc and Tp-Fb-Bd models.
The footing response without a column is predicted using the Tp-Fb model. In each sub-figure, the
insertion gains corresponding to the added-footing (af), added-column (ac) and added-footing-column
(afc) effects are shown. Tunnel-foundation separation distance S = 5 m and tunnel depth D = 25 m.
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Fig. 7.13 The transverse (left) and vertical (right) insertion gains of an off-centred pile-column system
near an underground railway tunnel, predicted using the Tp-Fb-Bc and Tp-Fb-Bd models. The pile-head
response without a column is predicted using the Tp-Fb model. In each sub-figure, the insertion gains
corresponding to the added-pile (ap), added-column (ac) and added-pile-column (apc) effects are shown.
The influence of the pile length L on the response is also illustrated: (a) 10 m, (b) 20 m and (c) 30 m.
Tunnel-foundation separation distance S = 5 m and tunnel depth D = 25 m.
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in the transverse direction because the long, slender column is flexible under bending. Hence,

constructing a column does not significantly modify the transverse displacement at the top of

the foundation.

There is also excellent agreement between the transverse responses predicted using the Bc

and Bd models over the whole frequency range of interest. This demonstrates that the lateral

and coupled lateral-rocking motion at the foundation-building interface is captured well by an

equivalent dashpot model.

Now, consider the vertical IG of the footing-column and pile-column systems. In general, as

the excitation frequency is increased, both fundamental units exhibit attenuation in the vertical

added-column effect, which is similar to the vertical component of the foundation-building

transfer matrix (see Section 7.2.5). However, the attenuation is more significant in the footing-

column system, as the IG(ac)
z is roughly −10 dB at 80 Hz. Furthermore, the Tp-Fb-Bc model

prediction for the footing-column system exhibits large-magnitude undulations in the IG(ac)
z

that vary between 10 dB and−20 dB. In contrast, the IG(ac)
z of the pile-column system remains

close to 0 dB over most frequencies, particularly when predictions are made using the Tp-Fb-

Bd model. Therefore, the vertical added-column effect is negligible for the pile-column system,

meaning that the overall IG(apc)
z of the whole fundamental unit is approximately equal to the

IG(ap)
z of the pile alone.

Sanitate & Talbot [208] observed that, for a 2D portal-framed building supported on surface

footings, the added-building effect in the vertical direction decreased steadily from 0 dB to

roughly −10 dB, as the frequency was increased from 1 to 80 Hz. At higher frequencies, up to

250 Hz, the added-building effect remained constant at−10 dB. This decrease in the response is

similar, in order of magnitude, to the attenuation in IG(ac)
z for the footing-column system in the

present study. Since both studies consider shallow footings that are coupled to long columns,

the large difference in axial impedance between the two components causes the addition of the

building to greatly constrain the vertical vibration of the foundation. In the present study, when

piles are used instead of footings, the difference in axial impedance between the foundation

and building is not as great, resulting in significantly less attenuation.

A few observations can be made about the undulations between 10 and 40 Hz when the

Tp-Fb-Bc model is used to predict the IG(ac)
z in Figs. 7.12 and 7.13. These undulations contain

distinct peaks and troughs because the column (Bc) model accounts for modal behaviour in the

finite-length column (see Section 7.2.3). The trough at around 30 Hz is present in the responses
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of the footing-column and pile-column systems, with the former system causing twice as much

attenuation as the latter due to the greater difference in axial impedance between the footing

and column. The attenuation at 30 Hz is found to be caused by the first anti-resonance of the

free-free column under axial vibration. The first anti-resonant frequency, when the base of the

column is excited, can be approximated by assuming that the base is fixed, and then calculating

the natural frequency of the column’s fixed-free axial mode:

f0 =
1

4Lc

(
Ec

ρc

)1/2

= 29 Hz . (7.46)

In contrast to the trough at 30 Hz, the frequency of the peak increases from 16 to 24 Hz when the

foundation is changed from a shallow (0.5 m) footing to a deep (30 m) pile. In order to explain

this phenomenon, assume that the first axial vibration mode of the entire fundamental unit can

be modelled as an SDOF system, where the inertial mass of the column is coupled to a spring

corresponding to the dynamic stiffness of the soil-foundation system. The parametric study in

Section 6.6 found that the soil-stiffening effect dominates as the pile length is increased, which

increases the stiffness of the soil-foundation system. Therefore, using a deep pile instead of a

footing will increase the spring stiffness, and indeed the natural frequency, of the SDOF system,

thereby increasing the frequency of the peak.

It is also worth noting that when the pile length is increased from 20 to 30 m in Fig. 7.13,

the overall IG(apc)
z tends to increase above 0 dB at frequencies greater than 50 Hz. This occurs

because of the efficient vibration transmission path along the pile when the pile toe descends

below the tunnel. The amplification of the response due to the enhanced transmission effect was

discussed previously in Section 6.6.3 when the vertical added-pile effect of off-centred piles

was investigated.

In summary, if the observations from the fundamental unit can be extrapolated to apply for

a multi-storey building with multiple columns, the added-foundation effect will likely be more

significant than the added-building effect over the range of frequencies associated with ground-

borne vibration. That is to say, the dynamics associated with the building will be dominated by

that of the piled foundation. Furthermore, the addition of a column itself does not significantly

alter the general trends observed in Section 6.6 for a single pile, so the added-column effect is

negligible. Nevertheless, it is important to note that the added-building effect of a more realistic

building could be significant if it is supported on footings or when the excitation frequency is

close to the resonant frequencies of the building itself.
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7.3.3 The Effect of the Foundation-Building System on the Greenfield

Rather than analysing the train-induced vibration of a single fundamental unit, the following

sections focus on the response of the benchmark building because it is more representative of

the fundamental dynamic motion of modern buildings. This section explores how constructing

the entire foundation-building system directly above a pre-existing underground railway tunnel

modifies the greenfield displacement near the foundation. To simply the analysis of the results,

only the vertical displacement of the soil will be considered.

The modification in the vertical greenfield displacement can be evaluated using the vertical

insertion gain in the soil, which is defined as

IG(soil)
z = 20log10

∣∣w(found)
S

∣∣∣∣wS
∣∣
 , (7.47)
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Fig. 7.14 The vertical insertion gain of the soil near the building’s foundation at an excitation frequency
of 20 Hz. The insertion gain characterises the modification of the greenfield displacement before and
after a centred benchmark building is constructed above an underground railway tunnel. The influence
of using (a) footings and piles of length (b) 5 m, (c) 10 m and (d) 15 m on the soil response, predicted
using the Tp-Fb-Bp model, is also illustrated. Tunnel depth D = 25 m.

202



CHAPTER 7. COUPLED TUNNEL-FOUNDATION-BUILDING SYSTEMS

where wS and w(found)
S are the vertical displacements of the soil before and after the foundation-

building system is constructed, respectively. For a fixed tunnel depth of 25 m, Figs. 7.14–7.17

plot the spatial variation of IG(soil)
z in the plane perpendicular to the tunnel’s longitudinal axis

as the excitation frequency is incrementally increased from 20 to 80 Hz. The sub-figures also

show the changes in the soil displacements when footings and piles, of varying length, are used.

At the four different excitation frequencies, Figs. 7.14–7.17 clearly show that embedding

shallow footings near a pre-existing underground railway tunnel does not modify the greenfield

displacements significantly, as the vertical insertion gain of the local soil around the footings

is close to 0 dB. This is expected because the length of each footing is much shorter than the

wavelengths in the soil, even when the excitation frequency is 80 Hz. Therefore, there will be

insignificant wave scattering at the footings, and the resulting scattered waves have a negligible

effect on the incident waves from the excited railway tunnel.
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Fig. 7.15 The vertical insertion gain of the soil near the building’s foundation at an excitation frequency
of 40 Hz. The insertion gain characterises the modification of the greenfield displacement before and
after a centred benchmark building is constructed above an underground railway tunnel. The influence
of using (a) footings and piles of length (b) 5 m, (c) 10 m and (d) 15 m on the soil response, predicted
using the Tp-Fb-Bp model, is also illustrated. Tunnel depth D = 25 m.
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Now, consider the case when the building is supported on piles. At an excitation frequency

of 20 Hz, the short (5 m) piles have a negligible effect on the vertical greenfield displacement,

whereas the longer (10 and 15 m) piles cause significant attenuation near the free surface, as

shown in Fig. 7.14. This is because the scattered waves at the soil-pile interface have a greater

effect on modifying the greenfield displacement when the S-wavelength in the soil is less than

the lengths of the longer piles. Furthermore, when the longest (15 m) piles are embedded in the

soil, the vertical insertion gain exhibits an additional amplification band at a soil depth of 4 m.

Therefore, at low excitation frequencies, a large proportion of the scattered waves at the piles

tend to propagate downwards rather than interacting with adjacent piles, as the soil wavelengths

are longer than the pile spacing. The superposition of the downward-travelling scattered waves

with the upward-travelling incident waves from the tunnel produces the stratified amplification

and attenuation bands observed in Fig. 7.14d.

0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(a)

0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(b)
0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(c)

0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(d)

Fig. 7.16 The vertical insertion gain of the soil near the building’s foundation at an excitation frequency
of 60 Hz. The insertion gain characterises the modification of the greenfield displacement before and
after a centred benchmark building is constructed above an underground railway tunnel. The influence
of using (a) footings and piles of length (b) 5 m, (c) 10 m and (d) 15 m on the soil response, predicted
using the Tp-Fb-Bp model, is also illustrated. Tunnel depth D = 25 m.
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At the high excitation frequencies above 40 Hz, the PSPI becomes more significant because

the S-wavelengths in the soil are now less than the pile spacing. Therefore, there is more wave

scattering between adjacent piles, which causes the amplification and attenuation zones of the

insertion gains to be interspersed near the piles, as illustrated in Figs. 7.15–7.17. Note that these

insertion gain plots are highly intricate due to the short wavelengths of the interfering waves.

In conclusion, this section highlights the complexity of the 3SI in ground-borne vibration

problems, which makes it difficult to discern the nature of the interfering waves, particularly

when the deep piles of a foundation-building system modify the greenfield at the high excitation

frequencies. However, measuring the insertion gain of the soil does not help in understanding

the factors that influence the vibration entering the building. These factors are highly important

for vibration consultants to recognise. Therefore, the mean power flow is used in the following

two sections to study how different factors affect the vibrational energy entering the building.

0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(a)

0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(b)
0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(c)

0

20

12

8

4

16

-8 0 4 8-4

S
oi

l d
ep

th
 [

m
]

0

10

15

-15

-10

5

-5

Transverse distance [m]

IG
z

[d
B

]
(s

oi
l)

(d)

Fig. 7.17 The vertical insertion gain of the soil near the building’s foundation at an excitation frequency
of 80 Hz. The insertion gain characterises the modification of the greenfield displacement before and
after a centred benchmark building is constructed above an underground railway tunnel. The influence
of using (a) footings and piles of length (b) 5 m, (c) 10 m and (d) 15 m on the soil response, predicted
using the Tp-Fb-Bp model, is also illustrated. Tunnel depth D = 25 m.

205



CHAPTER 7. COUPLED TUNNEL-FOUNDATION-BUILDING SYSTEMS

7.3.4 The Effect of Piles and Footings on the Directional Power Flow

In this section, the vibration performance of different tunnel-foundation-building systems is

investigated by varying features of the foundation and analysing the directional components of

the mean power flow entering each configuration. The effects due to the following three features

are explored: (1) the presence of footings, (2) the pile length L, and (3) the tunnel-foundation

separation distance S. For all configurations, the foundation supports the benchmark building.

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-100

-50

0

50

100

150

P
i/
P

to
ta

l [
%

]

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-100

-50

0

50

100

150

P
i/
P

to
ta

l [
%

]

(a)

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-100

-50

0

50

100

150

P
i/
P

to
ta

l [
%

]

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-100

-50

0

50

100

150

P
i/
P

to
ta

l [
%

]

(b)

Px Py Pz Pϕ Pθ

S

Pi

Tunnel wall

x
y

z
ϕ θ x

y

z

yz-plane: xz-plane:

Fig. 7.18 The directional components of the mean power flows entering (a) a centred (S = 0 m) and (b)
an off-centred (S = 15 m) footing-building system near their respective underground railway tunnels,
presented as percentages of the total mean power flow. The responses are predicted using the Tp-Fb-Bp
(left) and Tp-Fb-Bd (right) models. Note that a negative value signifies vibrational power leaving the
building. Tunnel depth D = 25 m.
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The effect of using footings on the vibrational power transmitted into the building is studied

first. Figure 7.18 plots the directional components of the mean power flow entering a centred

(S = 0 m) and an off-centred (S = 15 m) footing-building system. The responses are predicted

using the Tp-Fb-Bp and Tp-Fb-Bd models. The total mean power flow P̄total can be decomposed

into five directional components (P̄x, P̄y, P̄z, P̄φ , P̄θ ), which correspond to the five DOFs at the

foundation-building interface, as denoted in Section 7.1.2. Each mean power flow component
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(c) L = 15 m (L/D = 0.6)
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Fig. 7.19 The directional components of the mean power flows entering a centred pile-building system
above an underground railway tunnel, presented as percentages of the total mean power flow. The effect
of increasing the pile length L from (a) 5 m to (d) 20 m is illustrated. The responses are predicted
using the Tp-Fb-Bd model. Note that a negative value signifies vibrational power leaving the building.
Tunnel-foundation separation distance S = 0 m and tunnel depth D = 25 m.
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(b) L = 10 m (L/D = 0.4)
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(c) L = 20 m (L/D = 0.8)
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(d) L = 25 m (L/D = 1)
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(e) L = 30 m (L/D = 1.2)
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(f) L = 40 m (L/D = 1.6)
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Fig. 7.20 The directional components of the mean power flows entering an off-centred pile-building
system near an underground railway tunnel, presented as percentages of the total mean power flow. The
effect of increasing the pile length L from (a) 5 m to (f) 40 m is illustrated. The responses are predicted
using the Tp-Fb-Bd model. Note that a negative value signifies vibrational power leaving the building.
Tunnel-foundation separation distance S = 15 m and tunnel depth D = 25 m.
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is presented as a percentage of the total power flow entering the building. Note that, based on

the power flow definition in Eq. (7.9), positive values correspond to vibrational energy entering

the building, whereas negative values mean that the energy is re-radiated back into the soil and

the foundation.

When the Tp-Fb-Bp model is used, there are distinctive undulations that appear in the mean

power flow components. In particular, the undulations in Fig. 7.18a cause the longitudinal (P̄x),

transverse (P̄y), and vertical (P̄z) mean power flows to oscillate between positive and negative

values at high frequencies above 40 Hz. Based on Eq. (7.9), these undulations arise as a result of

shifts in the phase difference between the displacement and force wave-fields at the foundation-

building interface. The phase is likely to shift due to the superposition of wave-fields that are

reflected by the boundaries of the portal-framed building.

On the other hand, the Tp-Fb-Bd model is able to approximately capture the same general

variation in the mean power flow components as the Tp-Fb-Bp model over the entire frequency

range of interest, but without the undulations. This makes it easier to analyse the trends in the

responses. Therefore, based on the results of the Tp-Fb-Bd model, the following observations

can be made about the footing-building system.

In general, the vibrational power entering the building is mainly in the vertical direction

when the frequency is below 30 Hz. At higher frequencies, the mean power flow is more or less

equally distributed between the P̄x, P̄y and P̄z components for the centred system. In contrast,

the dominant component of power flow switches from P̄z to P̄y for the off-centred system at

frequencies above 30 Hz. Some of the power flow also leaves the building due to rocking about

the x-axis (P̄φ ). This variation in the vibration of the centred and off-centred systems can be

explained as follows. Due to symmetry in the centred system, the net displacement at the four

corner footings will be of equal magnitude, resulting in almost equivalent power transmission

in these respective directions. When the building is instead located beside the tunnel, a greater

proportion of the propagating wave-fields from the tunnel will reach the footings at an oblique

angle, thereby inducing more transverse and rocking motion in the building.

Now, consider the effect of varying the pile length L on the vibrational performance of a

pile-building system. Figures 7.19 and 7.20 plot the power flow components entering a centred

(S = 0 m) and an off-centred (S = 15 m) pile-building system, respectively, as L is increased

and the tunnel depth D is fixed at 25 m. The responses are predicted using the Tp-Fb-Bd model

in order to better observe the general trends in the results.
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For the centred system, P̄z is clearly the dominant component of vibrational power entering

the building, with the proportion being greater than 50% over the frequency range of interest.

This demonstrates that when the piled foundation is directly above the tunnel centre-line, the

piles provide a vibration transmission path in the vertical direction for waves to propagate into

the building. Nonetheless, for long piles (L≥ 15 m), there are certain frequencies between 25

and 50 Hz where P̄y is greater than P̄z.

In contrast, Fig. 7.20 shows that, regardless of the pile length, the proportion of P̄y and P̄φ

is greater than P̄z between 20 and 55 Hz for the off-centred pile-building system. Furthermore,

when the toe of the piled foundation descends below the tunnel (L/D > 1), increasing L has a

negligible effect on the variation of the power flow components with respect to frequency. This

is similar to the observation made in Section 6.6.3, where the insertion gain, characterising the

added-pile effect of a single off-centred pile, is insensitive to changes in L once L/D > 1.

It is worth noting that Figs. 7.18–7.20 show that the transmission of vibrational power due

to translational motion in the x- and y-directions (P̄x, P̄y) acts in the opposite direction to rocking

motion about the y- and x-axes (P̄θ , P̄φ ), respectively. That is to say, if P̄x is positive, then P̄θ will

be around the same order of magnitude but negative, and vice versa. Also, at most frequencies,

rocking causes the vibrational power to radiate out of the building. Talbot & Hunt [224] make

a similar observation when analysing the horizontal and rocking components of the power flow

entering a 2D portal-framed building due to vertical excitation at the centre pile head.

In summary, this section highlights the importance of considering vibration transmission in

multiple DOFs when investigating the overall vibration of a 3D building. Furthermore, as some

vibrational power can be re-radiated into the foundation, it raises an interesting point: not all

vibration transmission paths across the foundation-building interface are undesirable.

7.3.5 The Effect of Piles and Footings on the Power-Flow Insertion Gain

Although the previous section has highlighted some new interesting features on the directional

components of the mean power flow, it does not clearly indicate whether there are noticeable

differences between the overall vibration of the pile and footing configurations. The analysis

of these differences is particularly important on a building construction site because vibration

consultants need to ensure that the foundation design prevents undesirable noise and vibration

from being transmitted into the building. Since piles and footings are widely used in foundation

structures, building designers would need to understand if deep piles, which could be embedded
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closer to the tunnel walls, significantly compromise the vibration performance of the building

compared to using shallow footings.

To compare the mean vibrational power entering a typical pile-building system against the

baseline case of a footing-building system, this section evaluates the PFIG(pf), which is defined

in Eq. (7.11), of different test cases of the benchmark building. The effect of the pile length L

on the overall vibration of centred and off-centred arrangements of the benchmark building is

also explored. Figures 7.21 and 7.22 plot the PFIG(pf) of a centred (S = 0 m) and an off-centred

(S = 15 m) building, respectively, near an underground railway tunnel of depth D = 25 m. The

mean vibrational power is predicted using the Tp-Fb-Bp and Tp-Fb-Bd models.

In general, the undulations in the PFIG, predicted using the Tp-Fb-Bd model, agree well

with those of the Tp-Fb-Bp model, albeit with slightly more attenuation of around 5 dB. Note

that the Tp-Fb-Bp model predicts peaks at 8 and 10 Hz for the centred and off-centred buildings,
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Fig. 7.21 The power-flow insertion gains of a centred foundation-building system above an underground
railway tunnel, predicted using the (a) Tp-Fb-Bp and (b) Tp-Fb-Bd models. The insertion gain compares
the overall vibration of the pile and footing configurations. The influence of the pile length L on the
response is illustrated. Tunnel-foundation separation distance S = 0 m and tunnel depth D = 25 m.
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Fig. 7.22 The power-flow insertion gains of an off-centred foundation-building system near an
underground railway tunnel, predicted using the (a) Tp-Fb-Bp and (b) Tp-Fb-Bd models. The insertion
gain compares the overall vibration of the pile and footing configurations (pf). The influence of the pile
length L on the response is illustrated. Tunnel-foundation separation distance S = 15 m and tunnel depth
D = 25 m.

respectively, which are absent when using the Tp-Fb-Bd model. These low-frequency peaks are

close to 12 Hz, corresponding to the eigenfrequency of the portal frame’s first mode in which

all the columns deformed axially. When the building is coupled to the piled foundation, the new

eigenfrequencies of the entire structure will tend to decrease compared to those of the building

itself. Hence, the frequencies of the peaks at 8 and 10 Hz are slightly less than 12 Hz.

For both the centred and off-centred buildings, as L is increased from 5 to 10 m, PFIG(pf)

tends to decrease by approximately 5 dB, on average, over the frequency range of interest. In

contrast, when L is increased from 10 to 20 m, PFIG(pf) increases by around 3 dB. For the off-

centred building in particular, increasing L from 20 to 25 m, such that L = D, causes the PFIG

to increase by only a few decibels. Increasing L further (L/D > 1) has a negligible effect on

the PFIG. It is worth noting that these observations are similar to those observed in Section 6.6
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for single piles. That is, the trends in the PFIG results can be explained using the soil-stiffening

effect, which decreases the PFIG as L is increased for piles that satisfy L < D, and the enhanced

transmission effect, which increases the PFIG when L > D.

Finally, the variation in PFIG(pf) over the entire frequency range is roughly±5 dB, which is

around the same order of magnitude as the generally regarded uncertainty in numerical models

[126]. Therefore, for the cases explored in this section, there is little to no difference between

the overall vibration of buildings supported on deep piles or shallow footings. In conclusion, if

practitioners are required to embed piles rather than footings near a railway tunnel, they can be

reasonably confident that the piles will not adversely compromise the vibration of the building.

7.4 Base-Isolated Buildings

Section 7.3 has highlighted that the added-foundation effect can often be more significant than

the added-building effect when the overall vibration of the entire foundation-building system is

considered. However, in situations when the vibration attenuation, due to the added-foundation

effect, is insufficient to prevent the absolute vibration levels of the building from exceeding the

guideline values set by standards [21,22,24], steps need to be taken to mitigate the disturbances.

Base isolation, as reviewed in Section 2.2.3, is a commonly used countermeasure against

excessive vibration and re-radiated noise. To a certain extent, the base isolation de-couples the

building from the soil-foundation system. Most isolation systems consist of either elastomeric

bearings or helical steel springs. This section presents the model used for the isolation system

and derives the power-flow insertion gain for characterising the isolation performance of a base-

isolated building. The isolation model is then used to analyse the performance of a base-isolated

design of the benchmark building near an underground railway tunnel.

7.4.1 Modelling the Isolation

Each isolator is modelled as a linear, massless spring that accounts for motion in the vertical,

lateral and rocking DOFs. The stiffnesses of the springs, with respect to the two lateral (x,y)

and rocking (φ ,θ) DOFs, are assumed to be equivalent. In most applications, lateral-rocking

coupling due to flexural deformation of the isolator is negligible, so it is not considered in this

dissertation. Hence, each isolator is associated with three independent modes of deformation

(vertical, lateral and rocking), as illustrated in Fig. 7.23 for an elastomeric bearing.
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In practice, the main design parameter of an isolated system is the isolation frequency fiso.

This parameter is derived by assuming that the base-isolated building can be modelled as an

equivalent SDOF system, whereby the rigid mass of the building is coupled to a single isolator

that is vertically excited at its base. Therefore, the performance of the system can be described

by the transmissibility, which is defined as the frequency-dependent ratio of the building and

ground displacements. The essential features of the simplified isolated system, as illustrated in

the transmissibility plot in Fig. 7.24, are as follows: (1) the isolator amplifies the low-frequency

vibration; (2) maximum transmissibility is observed when the excitation frequency equals fiso;

and (3) the isolator is only effective when the frequency is more than fiso
√

2, above which the

isolation improves with increasing frequency. It should be mentioned that although the SDOF

system neglects the multi-directional input at the base, it does provide a convenient method for

characterising the vertical stiffness of an isolator:

kvv = (2π fiso)
2 MT , (7.48)

where MT is the building mass that is supported by each isolator. In this chapter, MT is found

by only considering the individual building columns with mass MT = Mc = mcLc, where these

parameters are defined in Section 7.2. This is because including the additional floor mass in the

portal-frame (Bp) model (see Section 7.2.2) does not significantly change the dynamics of the

building compared to the column (Bc) model (see Section 7.2.3), as presented in Section 7.2.5.

Natural rubber exhibits elastomeric properties that vary with strain amplitude and frequency

due to material non-linearities [210]. Nevertheless, it is reasonable to assume that these effects

are negligible when considering base-isolated buildings since the strain amplitudes associated

with ground-borne vibration are around the order of 10−4 [74]. At these strain levels, the rubber

may be assumed to behave linearly, provided that an appropriate dynamic stiffness is used, as

expressed in Eq. (7.48). In contrast, given the inherent small-strain elastic behaviour of steel,

(a) (b) (c)

Fig. 7.23 The (a) vertical, (b) lateral and (c) rocking deformation of an elastomeric bearing (reproduced
from Talbot [219]).
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the assumption of linearity is more easily justified for helical steel springs. Furthermore, the

dynamic stiffness of steel springs can be assumed to be equal to its static stiffness because there

is no significant variation with frequency; the stiffness only depends on the spring’s geometry

and properties [238].

The lateral kll and rocking kθθ stiffnesses of the isolator are assigned as

kll = kθθ = 0.5kvv . (7.49)

In general, for laminated rubber bearings, the kll/kvv and kθθ/kvv ratios depend on the shape

factor of constituent pads, which is inversely proportional to the square of the pad thickness

[179]. For the case of steel springs, the same ratios depend on its length and diameter [238].

Nonetheless, based on the comprehensive investigations by Talbot [221] and Sanitate [206], the

ratios in Eq. (7.49) are considered to be appropriate for most isolation bearings. If more precise

values for kvv, kll and kθθ do become available, or a different isolation model altogether, they

may be implemented in future work without affecting the conclusions drawn in this dissertation.

A hysteretic damping model is used to account for damping in the isolators. Loss factors

of ηk = 0.01 and ηk = 0.1 are representative of the approximate limiting values for undamped

steel springs and high-hysteresis rubber bearings, respectively [221]. For an equivalent SDOF

system of a base-isolated building, increasing the loss factor only attenuates the transmissibility

when the excitation frequency is close to fiso, as shown in Fig. 7.24.

In practice, depending on the region of the building being isolated (single column, structural

core, etc.), the base isolation can either be installed individually or as a cluster of isolators. The

former is assumed here by using a two-point connection O ′–O to isolate the building from the

foundation at each coupling point. The points O ′ and O refer to the base and top of an isolator,
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Fig. 7.24 The transmissibility, plotted with respect to the excitation frequency f , of an SDOF system
representing a simplified base-isolated building with mass MT , stiffness kvv, and isolation frequency
fiso = 1/2π

√
kvv/MT . The influence of the hysteretic loss factor ηk on the response is illustrated.

215



CHAPTER 7. COUPLED TUNNEL-FOUNDATION-BUILDING SYSTEMS

respectively. Given no external forces at O, the force-displacement relationship at the ends of

an isolator can be expressed as

f(x0) =−f(x0 ′) = KI
(
u(x0)−u(x0 ′)

)
. (7.50)

where the isolator’s dynamic stiffness matrix KI, with respect to the five DOFs at the coupling

point, is

KI =



kll 0 0 0 0

0 kll 0 0 0

0 0 kvv 0 0

0 0 0 kθθ 0

0 0 0 0 kθθ


. (7.51)

7.4.2 Coupling at the Isolation Interface of a Base-Isolated Building

In this section, Eq. (7.50) is used to augment the coupling model in Section 7.1.2 so that, now,

the dynamics of a base-isolated building can be simulated. The variation in the displacement,

when an isolator is connected between the foundation F and building B systems, is illustrated by

the coupling model in Fig. 7.25. Given that there are no external forces at the isolation-building

y

z

uS

S

O

(a)

y

z

uF

S

O F

(b)

y

z

uB

uF

uN

S

O

F

B

O'

'

(c)

Fig. 7.25 Schematic diagrams illustrating the coupling model for the fundamental unit of a base-isolated
foundation-building system. (a) The incident wave-fields from a vibration source in the 3D soil system
S leads to the greenfield displacement uS at a point O on the free surface. (b) The presence of a 3D
foundation system F is then considered, with the resulting displacement uF at the top of F. (c) A base-
isolated 3D building system B is coupled to the soil-foundation system using a two-point connection
O ′–O, with the resulting displacements uF′ and uB at the base of the isolator and B, and uN in the
remainder of B.
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interface, the equilibrium of forces at the base of the building (point O ) can be expressed as

fB = fF′ = KI (uF′−uB) = KBuB , (7.52)

where the vectors uF′ and fF′ are the respective displacement and force at the base of the isolator

(point O ′). By rearranging Eq. (7.52), the displacement-force relationship at O ′ can be written

as

uF′ = (K−1
B +K−1

I )fB = HCfF′ , (7.53)

where HC is the driving-point displacement FRF matrix of the isolation-building system at O ′.

Rearranging Eqs. (7.52) and (7.53) gives the following matrix equation:

uF′ = HCKBuB . (7.54)

Following the same method used in Section 7.1.2 to derive Eq. (7.6), the displacement uF′

can be related to the displacement uF at the top of the foundation prior to building construction:

uF′ = (I+HFKC)
−1 uF = Tiso

C uF , (7.55)

where KC = H−1
C is the dynamic stiffness matrix of the isolation-building system. Rearranging

Eqs. (7.54) and (7.55) gives the following matrix equation:

uB = K−1
B KCTiso

C uF = Tiso
B uF , (7.56)

where Tiso
B is the foundation-building transfer matrix for the isolated case. Similar to Eq. (7.7)

for the unisolated case, the displacement uN at a point within the building can be obtained:

uN = HNBKBuB = HNBKBTiso
B uF , (7.57)

where HNB is a sub-matrix of the building’s global displacement FRF matrix HBG in Eq. (7.4).

7.4.3 The Isolation Performance of the Benchmark Building

The IG and PFIG have been discussed in Section 2.2.4 as two metrics that can offer insight

into the isolation performance of a base-isolated building. In this section, the PFIG is used to

evaluate the isolation performance of the benchmark building when different isolation systems

are installed. However, Section 7.1.3 has shown that IG is not an effective performance metric

for structures with multiple DOFs, so it will not be considered in this section. Unless specified

otherwise, only the dashpot (Bd) model is used to simulate the motion of tall buildings over the
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remainder of this chapter because Sections 7.2 and 7.3 have demonstrated that the simplified

model can account for the essential building dynamics between 1 and 80 Hz.

For the unisolated case, the mean power flow entering a building has already been derived

in Section 7.1.3, which is repeated here for convenience:

P̄(uniso) =
1
2

Re
(

iωu†
FT†

BK†
BTBuF

)
. (7.58)

By substituting Eqs. (7.52) and (7.56) into Eq. (7.9), a similar expression can be derived for the

mean power flow entering an isolated building:

P̄(iso) =
1
2

Re
(

iωu†
FTiso†

B K†
BTiso

B uF

)
. (7.59)

Given Eqs. (7.58) and (7.59), the isolation performance can be evaluated using the PFIG:

PFIG(iso) = 10log10

(
|P̄(iso)|
|P̄(uniso)|

)
. (7.60)

In practice, a building isolation system is classified on its designed isolation performance:

‘very high’ ( fiso = 2-4 Hz), ‘high’ ( fiso = 5-12 Hz) and ‘medium’ ( fiso = 13-20 Hz) [63]. The

parameter values in Table 7.2 are used to study the performance of four isolation systems that

span a wide range of isolation frequencies. Figure 7.26 plots the PFIGs of a centred (S = 0 m)

and an off-centred (S= 15 m) pile-building system when the four isolation systems are installed

at the base of every column in the benchmark building.

In general, the performance of the base isolation improves as the excitation frequency is

increased, which is similar to the performance of the SDOF system in Fig. 7.24. The isolation

becomes more significant when the isolation frequency is low. For example, isolation system

1, which has the lowest isolation frequency of 2.5 Hz, exhibits the lowest frequency-averaged

PFIG(iso) of around −20 dB. Increasing the isolation frequency from 2.5 to 5 Hz causes the

System Material Classification Isolation frequency [Hz] Loss factor [−]

1 Steel springs Very high fiso = 2.5 ηk = 0.01
2 Steel springs High fiso = 5 ηk = 0.01
3 Rubber bearings High fiso = 10 ηk = 0.1
4 Rubber bearings Medium fiso = 15 ηk = 0.1

Table 7.2 Parameter values of four isolation systems, classified based on their isolation performance.
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PFIG(iso) to increase by approximately 12 dB. Further increasing the isolation frequency by

increments of 5 Hz, from 5 to 15 Hz, causes the marginal increase in PFIG(iso) to significantly

decrease from 10 dB to around 3 dB.

Since the columns in the centred and off-centred configurations undergo flexural and axial

vibration, due to the tunnel position relative to each column, the performances of the identical

isolation systems in both configurations are similar to within ±5 dB over the frequency range.

However, between 70 and 80 Hz, there is a significant decrease of 10 dB in the PFIG(iso) of all

four isolation systems when the centred configuration is used, while there is lower decrease of

5 dB for the off-centred configuration. This suggests that the isolation performance might be

dependent on the location of the building relative to the tunnel at certain frequencies.

Figures 7.27 and 7.28 plot the directional components of the mean power flows entering the

centred and off-centred buildings, respectively, when the four isolation systems are installed.

From these figures, any variation in the overall vibration, with respect to the five DOFs, can be

observed between the unisolated and isolated building configurations.
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Fig. 7.26 The isolation power-flow insertion gains of (a) a centred (S = 0 m) and (b) an off-centred
(S = 15 m) pile-building system near their respective underground railway tunnels. The effect of varying
the isolation system on the response is illustrated. Pile length L = 10 m and tunnel depth D = 25 m.

219



CHAPTER 7. COUPLED TUNNEL-FOUNDATION-BUILDING SYSTEMS

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-100

-50

0

50

100

150

P
i/
P

to
ta

l [
%

]

(a) Unisolated

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-100

-50

0

50

100

150

P
i/
P

to
ta

l [
%

]

(b) Isolation system 1 ( fiso = 2.5 Hz,ηk = 0.01)
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(c) Isolation system 2 ( fiso = 5 Hz,ηk = 0.01)
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(d) Isolation system 3 ( fiso = 10 Hz,ηk = 0.1)
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(e) Isolation system 4 ( fiso = 15 Hz,ηk = 0.1)
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Fig. 7.27 The directional components of the mean power flows entering a centred, base-isolated pile-
building system above an underground railway tunnel, presented as percentages of the total mean power
flow. The sub-figures illustrate the effect of varying the isolation system on the response. Note that a
negative value signifies vibrational power leaving the building. Pile length L = 10 m, tunnel-foundation
separation distance S = 0 m, and tunnel depth D = 25 m.
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(b) Isolation system 1 ( fiso = 2.5 Hz,ηk = 0.01)
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(c) Isolation system 2 ( fiso = 5 Hz,ηk = 0.01)
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(d) Isolation system 3 ( fiso = 10 Hz,ηk = 0.1)

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-100

-50

0

50

100

150

P
i/
P

to
ta

l [
%

]

(e) Isolation system 4 ( fiso = 15 Hz,ηk = 0.1)
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Fig. 7.28 The directional components of the mean power flows entering an off-centred, base-isolated
pile-building system near an underground railway tunnel, presented as percentages of the total mean
power flow. The sub-figures illustrate the effect of varying the isolation system on the response. Note
that a negative value signifies vibrational power leaving the building. Pile length L = 10 m, tunnel-
foundation separation distance S = 15 m, and tunnel depth D = 25 m.
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It is clearly evident from Figs. 7.27 and 7.28 that all four isolation systems are very good at

mitigating the vibrational power in the vertical direction. When the excitation frequency is less

than the isolation frequency of the respective isolation system, the proportion of the vertical

power flow entering a base-isolated building is generally greater than 50%, whereas it is under

10% at higher excitation frequencies. This shows that the isolation frequency can be used to

determine the frequencies at which the isolation system is most effective at mitigating the axial

vibration in the building.

At frequencies above 20 Hz, the summation of the longitudinal and transverse power flows

is significantly higher than the vertical power flow entering a base-isolated building. That is, a

greater proportion of the mean power is transmitted into the building via flexural vibration than

axial vibration when the excitation frequency is higher than the isolation frequency. This occurs

because the lateral stiffness of a tall, narrow-based building, such as the benchmark building, is

much lower than its axial stiffness. Therefore, when lateral excitation is applied to the base of

the isolators, flexural vibration is more efficiently transmitted into the base-isolated building,

which is not the desired effect of the isolation system.

Going back to Fig. 7.26, it is important to recognise that isolation system 4, which has the

highest isolation frequency of 20 Hz, is the only system that exhibits amplification over a large

frequency range from 30 to 70 Hz, with a maximum PFIG(iso) of 4 dB. An explanation for the

amplification can be found by also analysing Figs. 7.27 and 7.28. Based on the isolation model,

Eqs. (7.48) and (7.49) indicate that a high isolation frequency will increase the lateral stiffness

of the isolators. Therefore, the high lateral stiffness of isolation system 4 lowers the difference

in lateral impedance at the isolation-building interface, thereby increasing the flexural vibration

that enters the building, as observed in Figs. 7.27 and 7.28. When the amplification of flexural

vibration overcomes the isolation of axial vibration, the base-isolated building will experience

an overall amplification in the PFIG with respect to all five DOFs.

In summary, this study reiterates that base isolation can be effective at mitigating the overall

building vibration induced by railway tunnels, which is in agreement with other similar studies

on base-isolated buildings [206, 222]. However, using the isolation frequency, which is based

on the vibration of an SDOF system, to guide design might produce misleading results because

it only accounts for axial vibration in the building. It is therefore recommended to account for

vibration isolation in multiple DOFs by using the PFIG as a viable performance metric.
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7.5 A Virtual Case Study

A virtual case study on the construction of a tall building near a pre-existing railway tunnel

is presented in this section to demonstrate how the models developed in this dissertation can

be used in practice to mitigate the perceptible vibration. Suppose that the project architect has

produced the design for a 10-storey, 4-by-4-bay residential building, as shown in Fig. 7.29, but

the location of the foundation, relative to the tunnel, and the lengths of the 25 piles have not yet

been finalised. In this situation, the role of a vibration consultant would be to use the models to

help guide the foundation design and the installation of base isolation so that the vibration limits

for a residential building are not exceeded. The IG and PFIG are used as vibration performance

metrics to evaluate the designs.

The Tp-Fb and Tp-Fb-Bd models are used to capture the dynamics of the foundation alone

and the entire building, respectively, due to train-induced vibration. The parameter values and

reference data for the concrete foundation and building are summarised in Tables 7.3 and 7.4,

Parameters [Units] Columns Beams Piles

Young’s modulus [Pa] Ec = 30×109 Eb = 30×109 Ep = 30×109

Density [kg/m3] ρc = 2500 ρb = 2500 ρp = 2500
Cross-section area [m2] Ac = 0.25 Ab = 1.25 Ap = 0.39
Second moment of area [m4] Ic = 5.2×10−3 Ib = 6.5×10−3 Ip = 12.3×10−3

Length [m] lc = 3 lb = 5 L
Loss factor [−] ηc = 0.1 ηb = 0.1 −

Table 7.3 Building and piled foundation parameter values for the virtual case study. Note, the length L
of piles in the foundation is not fixed, so it can be varied to produce different foundation designs.

Building and foundation Number of storeys 10
Number of bays 4 by 4
Number of piles 25

Non-structural dead load Building category A - residential
Partition category 1 - weight ≤ 1 kN/m
Floor density 1600 kN/m
Floor thickness 0.1 m

Table 7.4 Building and piled foundation reference data for the virtual case study.
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Fig. 7.29 Schematic diagrams of the (a) side and (b) plan views of the pile-building system in the virtual
case study. The residential building is represented by a 10-storey, 4-by-4-bay frame.

while Table 6.1 presents the parameter values of the concrete tunnel and the London Clay soil.

For the train excitation to be representative of a typical subway line, the parameter values in

Table 6.2 are used to model the train-track system within the tunnel. In all cases, the depth of

the tunnel is fixed at D = 25 m, which is around the average depth of the London Underground.

7.5.1 The Tunnel-Foundation-Building Configurations

The four tunnel-foundation-building configurations shown in Fig. 7.30 are considered in this

study. The centred piled foundation in Configuration 1 can be regarded as a conservative design,

as the lengths of all 25 piles is 20 m. Given the total mass of the residential building, as based on

Tables 7.3 and 7.4, the foundation of Configuration 1 meets the criteria of the EN 1991-1-1 [60]

and EN 1990 [59] design codes, where the actions on the building and their combination, with

respect to the serviceability state, are considered using static analysis.

However, a practical drawback with Configuration 1 is that the foundation is located directly

above the railway tunnel, thereby limiting the vertical clearance between the central piles and

the tunnel to just 2 m. Configuration 2 resolves this issue, as the shorter inner piles nearer the

tunnel are 10 m in length, while the ten outermost piles are 30 m in length. The dimensions of

the piles in Configuration 3 are the same as in Configuration 2, but the longer 30 m piles are

instead positioned beside the tunnel. Since tunnel-pile coupling has a significant effect on the
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Fig. 7.30 Schematic diagrams of Configurations (a) 1, (b) 2, (c) 3 and (d) 4 for the tunnel-foundation-
building system. Dimensions in [m]. Not drawn to scale.

response when the pile toes descend below an adjacent tunnel, as observed in Section 6.4.5, the

source-receiver interaction is expected to be more significant in Configuration 3. The respective

foundations of Configurations 2 and 3 also comply with the aforementioned design codes.

Configuration 4 contains the same piles as Configuration 1, but the foundation is off-centred

from the tunnel by a separation distance of 30 m. At first glance, it is reasonable to assume that

Configuration 4 will produce the lowest vibration levels in the building because the foundation

is furthest from the tunnel. Nevertheless, a thorough technical analysis should be conducted
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on all four configurations to decide which designs are most effective at mitigating the overall

vibration of the building.

7.5.2 The Added-Foundation and Added-Building Effects

This section studies the added-foundation and added-building effects of the four configurations.

In order to characterise the overall modification in the vibration, the mean insertion gain IG is

calculated over all 25 piles in each configuration. Hence, the added-foundation effect IG(aF) and

the added-building effect IG(aB) are described by the respective means of Eqs. (7.43) and (7.44),

taken across all pile heads. Figures 7.31 and 7.32 plot the directional components of the former

and latter effects, respectively.

First, consider the added-foundation effect of Configurations 1, 2 and 3, where the piles are

above the railway tunnel. In general, attenuation is observed in both the transverse and vertical

directions, while amplification is observed in the longitudinal direction. Over most frequencies,

the variation in IG(aF) between these centred configurations is similar in the three orthogonal
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Fig. 7.31 The (a) longitudinal, (b) transverse and (c) vertical mean insertion gains of Configurations 1,
2, 3 and 4, characterising the added-foundation effect before building construction. The responses are
predicted using the Tp-Fb model.
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directions. However, when the frequency is above 60 Hz, the differences in IG(aF)
y and IG(aF)

z

between the centred configurations can be as high as 10 dB, which is significant. At these high

frequencies, the S-wavelengths in the soil are less than the 5 m pile spacing of the foundations.

This can thereby increase the effect of k-PSPI due to the wave scattering between neighbouring

piles, as observed in Section 6.4.3. Furthermore, when the lengths of adjacent piles positioned

along the y-direction are different, as in Configurations 2 and 3, the resulting k-PSPI is likely to

differ from that in Configuration 1, where all the piles are equivalent. Therefore, variations in

the k-PSPI of the centred foundations can lead to the differences observed in IG(aF)
y and IG(aF)

z ,

particularly at the high frequencies.

In addition to k-PSPI, the differences in IG(aF)
z between Configurations 2 and 3, when the

frequency is greater than 60 Hz, are partly due to the greater effect of tunnel-pile coupling in

Configuration 3. This is because the distance from the 30 m piles to the sides of the tunnel in

Configuration 3 is only 2 m, whereas the same respective distance in Configuration 2 is 7 m.

Thus, based on the conclusions drawn in Section 6.4.5, tunnel-pile coupling is more significant

in Configuration 3, as the tunnel-foundation separation distance is less than the S-wavelengths.

Now, consider the added-foundation effect of Configuration 4. Compared to the three other

configurations, Configuration 4 causes significantly more attenuation in the vertical response

between 15 and 60 Hz, with a minimum IG(aF)
z of −20 dB at 32 Hz. The results in Section 6.6

show that when the pile toe lies below or a few metres above the tunnel crown, a more efficient

vibration transmission path along the pile increases the vertical pile-head response. As the pile

toes in Configuration 1 are just above the tunnel crown and the outer piles in Configurations 2

and 3 descend below the tunnel, the transmission path will be more effective at increasing the

vertical response of the centred configurations rather than Configuration 4. This helps explain

the attenuation in the vertical response of Configuration 4.

Moreover, Configuration 4 is the only design that produces noticeable amplification in the

transverse foundation response, as IG(aF)
y is roughly 10 dB at 80 Hz. Due to the slender nature

of each pile, the entire piled foundation is more flexible under bending than axial deformation

in the vertical direction. Consequently, when all the piles are located on one side of the tunnel,

as in Configuration 4, more flexural motion will be induced in the off-centred foundation rather

than the centred foundations and, as a result, will increase the transverse foundation response.

In summary, it is clearly evident from Fig. 7.31 that constructing a piled foundation near a

pre-existing railway tunnel can significantly modify the vibration field over the frequency range
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of interest. This emphasises that the added-foundation effect, with the inclusion of k-PSPI and

tunnel-pile coupling, should not be neglected in prediction tools for ground-borne vibration.

In contrast, Fig. 7.32 shows that the added-building effect of all four configurations is close

to 0 dB throughout the entire frequency range. This is in agreement with the conclusions drawn

in Section 7.3.2 for a fundamental unit of the foundation-building system. Thus, over the range

of frequencies associated with vibration perception, the added-building effect is negligible due

to similarities in the impedances of the piles and building.
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Fig. 7.32 The (a) longitudinal, (b) transverse, (c) vertical and (d,e) two rocking mean insertion gains of
Configurations 1, 2, 3 and 4, characterising the added-building effect after building construction. The
responses are predicted using the Tp-Fb-Bd model.
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The results in Fig. 7.32 differ considerably in comparison to the insertion gains predicted by

Hussein et al. [117], where the added-building effect of a 2D portal-framed building supported

on 10 m piles was around−15 dB at 80 Hz. This discrepancy arises because the semi-analytical

approach used by Hussein et al. neglects the presence of soil cavities at the soil-pile interface,

so the dynamics of the foundation may not be captured effectively. Note that the TB matrix in

Eq. (7.6), which characterises the added-building effect, depends on the foundation dynamics.

7.5.3 Comparing the Overall Building Vibration of the Configurations

This section uses the PFIG to compare the overall building vibration of the four configurations

by considering Configuration 1 as the baseline design. Since Section 7.5.2 highlighted that the

added-building effect is negligible, the mean vibrational power entering the base of the building

will be predominantly affected by the added-foundation effect. The PFIG comparing between

the train-induced vibration of Configuration i and Configuration 1 is defined as

PFIG(config) = 10log10

(
|P̄(Config. i)|
|P̄(Config. 1)|

)
, (7.61)

where P̄(Config. i) is the mean power flow entering the building of Configuration i. Figure 7.33

plots the PFIGs comparing the vibration of Configurations 2, 3 and 4 with Configuration 1.

Based on the results, the best design is clearly Configuration 4 because it causes the largest

attenuation in the overall building vibration, particularly at the high frequencies. Reassuringly,

this is in agreement with the common-sense approach, where a practitioner with a basic grasp

of ground-borne vibration might expect the vibration levels to be lowest in the building furthest
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Fig. 7.33 The power-flow insertion gains comparing the overall building vibration in Configurations 2,
3 and 4 with Configuration 1. The responses are predicted using the Tp-Fb-Bd model.
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from the underground tunnel due to the effect of radiation damping in the ground. Nevertheless,

between 4 and 14 Hz, there is more vibration transmission into the building in Configuration

4 compared to the others, with a maximum PFIG(config) of around 7 dB. Note that the peaks

do not directly correspond to the eigenfrequencies of the system, as the PFIG(config), defined in

Eq. (7.61), evaluates the differences in the mean power flow entering the respective buildings in

two different configurations. Figure 7.33 does not exhibit any eigenfrequencies of the building

because it is simulated using the dashpot model, which does not consider the modal behaviour

of the building (see Section 7.2.4).

If, however, site regulations constrain the building so that it can only be constructed directly

above the pre-existing tunnel, a different design will need to be approved from the three centred

configurations. Out of these, the worst design is clearly Configuration 3, as there is significant

amplification greater than 5 dB at the high frequencies. This increase in PFIG is brought about

by a combination of k-PSPI and tunnel-pile coupling effects. In contrast, Configurations 1 and

2 produce relatively similar vibration responses; on average, the PFIG remains relatively close

to 0 dB over the entire frequency range of both designs. In this case, additional factors, other

than building vibration, will need to be reviewed before Configurations 1 or 2 is approved.

One factor that is important to consider when constructing close to underground railways is

the tunnel exclusion zone, which is defined as an area around the tunnel perimeter that cannot

be encroached by planned developments. The size of the exclusion zone can vary depending on

the tunnel’s location and its diameter, but, in general, it includes the area that is 3 m away from

each side of the tunnel and 6 m above the tunnel crown [230,231]. Thus, based on the response

of the buildings and the subterranean clearance between the piles and the tunnel, Configuration

2 is the only design that can be approved out of the three centred configurations.

7.5.4 The Effects of Partial and Full Base Isolation in Configuration 4

The effect of installing full base isolation to mitigate the building vibration was investigated in

Section 7.4.3, where isolators were fitted to the base of every column in the benchmark building.

However, the installation cost for full isolation can be expensive when the building footprint

covers a large area, such as the residential building in the present study. In this case, partial base

isolation could be a potential solution, where only particular columns that contribute heavily to

the transmission of vibration are isolated to cut costs. An initial numerical study by Heaton &

Talbot [95], which looked at isolating a 2D portal-framed building supported on footings from
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incident R-waves, has shown that partial base isolation can be as effective as full base isolation,

provided the ground vibration is localised near a particular region of the wide building footprint.

In this section, the effectiveness of using partial and full base isolation in Configuration 4 is

analysed. Configuration 4 is chosen because the foundation is positioned on the left-hand side

of the railway tunnel, as illustrated in Figure 7.30, so the building can be partially isolated by

installing isolation at the base of the columns near the tunnel. Figure 7.34 shows the different

isolation layouts that are investigated in this section. Firstly, Layout 1 provides partial isolation

at the right-most row of columns parallel to the tunnel. Then, from Layouts 2 to 4, the number

of rows of base-isolated columns is incrementally increased to isolate a greater footprint of the

building’s right-hand side. Finally, Layout 5 presents the fully base-isolated building.

By comparing against the unisolated case, the isolation PFIGs of the five different layouts

are plotted in Fig. 7.35. The effect of using the ‘very high’ and ‘high’ isolation steel springs in

Table 7.2 on the isolation performance is also illustrated. These springs are used in this section

because they were effective at isolating the benchmark building in Section 7.4.3.

Considering the partial isolation in Layouts 1 and 2, both are ineffective at mitigating the

building vibration, as only the right-side columns are isolated. Therefore, the vibration induced

in the left-side piles can be freely transmitted across the greater number of unisolated columns.

Furthermore, in both layouts, there is no significant difference in the performance of the ‘very

high’ and ‘high’ isolation cases, as the vibration transmission across the unisolated columns

significantly outweighs the attenuation provided by the springs.

When the number of base-isolated columns is incrementally increased, from Layouts 2 to 4,

the performance of the partial isolation improves, with Layout 4 providing an acceptable PFIG

Isolation
springs

(a) (b) (c) (d) (e)

Fig. 7.34 Schematic diagrams of five different base isolation layouts for the building in Configuration 4.
Layouts (a) 1, (b) 2, (c) 3 and (d) 4 represent different forms of partial base isolation as the number of
base-isolated columns is incrementally increased, while (e) Layout 5 represents full base isolation.
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of −10 dB at 80 Hz. As the frequency is initially increased, the use of ‘very high’ isolation in

Layouts 3 and 4 is more effective at mitigating the building vibration than the ‘high’ isolation.

This is consistent with Fig. 7.26, where the performance of a fully isolated building is studied.

However, at frequencies above 50 Hz, the PFIGs of the two spring systems in each layout tend

to converge and remain approximately constant, without further improving the isolation as the

frequency is increased. This means that any additional isolation provided by the springs at the

high frequencies is balanced by increased vibration transmission across the unisolated left-side
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Fig. 7.35 The isolation power-flow insertion gains of Layouts (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5 of the
respective base-isolated buildings in Fig. 7.34. The effect of installing ‘very high’ and ‘high’ isolation
springs on the responses, predicted using the Tp-Fb-Bd model, is also illustrated.
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columns, which diminishes the performance of the partially base-isolated buildings compared

to the fully isolated case.

In summary, with regards to mitigating the overall vibration of an entire building supported

on piles, it is found that partial isolation is not as effective as full isolation. Nevertheless, it is

conceivable that the former could be used to isolate specific areas of the building, such as rooms

containing vibration-sensitive equipment [95]. In addition to the isolation performance, other

factors have to be considered in practice before selecting a base isolation system. These include

the system’s static and dynamic load capacities; the ambient temperature, which is particularly

relevant for elastomeric systems; the cost of installation and maintenance; and the service life.

7.6 Conclusions

In order to capture the fundamental dynamics of a coupled tunnel-foundation-building system,

the generalised model presented in Section 7.1 has been used to combine the iterative PiP-BEM

model of a tunnel-foundation system with simplified building models. Section 7.2 highlighted

that the dashpot model, which simulates the entire building as a collection of independent semi-

infinite columns, successfully captured the frequency-averaged variation of the added-building

effect and the mean vibrational power entering the benchmark building. This is because, across

the range of frequencies associated with the perception of ground-borne vibration (1-80 Hz),

the modal behaviour and through-floor coupling of the building have a negligible effect on the

vibration at its base.

Section 7.3 emphasised that the transverse added-column effects of both the footing-column

and pile-column systems were negligible. In contrast, the vertical added-column effect resulted

in a significantly greater decrease in the train-induced vibration of the footing-column system

than the pile-column system because of differences in axial impedance between the footings

and columns. However, in the context of the entire foundation-building system, the differences

between the power-flow insertion gain (PFIG) of a tall building supported on deep piles and

shallow footings were not very significant. As the length of the piles was increased, the general

frequency-dependent trends in the PFIG of the centred and the off-centred tunnel-foundation-

building systems were similar to the trends observed in the parametric study in Section 6.6.

Through the use of power-flow techniques, Section 7.4 demonstrated that full base isolation

could effectively mitigate the vibration induced in a tall building due to an underground railway,

provided that the isolation frequency was below 10 Hz. The isolation system was most effective
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at attenuating the axial vibration of the building. However, there was notably less attenuation in

the flexural vibration due to the high lateral flexibility of tall buildings. Furthermore, when the

isolation frequency was greater than 10 Hz, the resulting increase in the lateral stiffness of the

isolation system adversely amplified the overall vibration of the building at certain excitation

frequencies. Hence, it is recommended to evaluate the isolation performance of a base-isolated

building against train-induced vibration by considering the mean vibrational power entering the

building at different excitation frequencies.

The virtual case study presented in Section 7.5 showed that the added-building effect due

to constructing a foundation-building system near a pre-existing railway tunnel was negligible.

The overall train-induced vibration of the building was instead significantly dominated by the

added-foundation effect due to 3SI in the ground. By using the PFIG to compare between the

mean vibrational power entering the building of four different configurations, Configuration 4

was found to be the best at attenuating the train-induced response. Moreover, the use of partial

base isolation in Configuration 4 was not as effective as using full base isolation at mitigating

the overall vibration of the building.
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Chapter 8

Conclusions and Further Work Recommendations

This chapter reviews the original objectives of the research and considers the extent to which

they have been met. The conclusions from the work of previous chapters are summarised and,

based on these, recommendations are then made for further work.

8.1 Conclusions

The main aim of this research has been to develop efficient, numerical models that account for

the essential dynamic interaction between piled foundations and nearby underground railway

tunnels as a means of predicting the train-induced vibration in three-dimensional space. To this

end, a number of specific objectives were set, as stated in Section 1.2. These are now reviewed,

and consideration is given to the extent to which they have been met.

A comprehensive, coupled model of a general piled foundation has been developed using

the boundary-element method (BEM) in Chapter 3 that considers the behaviour of each pile due

to inertial excitation at the pile heads and pile-soil-pile interaction (PSPI) between neighbouring

piles. Furthermore, a novel iterative approach has been developed in Chapter 4 using a source-

receiver BEM model to account for the wave-scattering effect of pile-groups that becomes more

significant at high frequencies. The coupled and iterative BEM models were formulated in the

space-frequency (x,ω)-domain, and the head of each pile accounted for motion in five degrees

of freedom: three translations in the x-, y- and z-axes; and two rotations about the lateral x- and

y-axes. Both models showed good agreement in predicting the pile-group response over a broad

range of non-dimensional frequencies a0, corresponding to ground-borne vibration between 1

and 160 Hz – well above existing models. An extensive parametric study highlighted that the

dynamic interaction factors, predicted using uncoupled source-receiver models, can effectively
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account for the PSPI without resorting to fully coupled models. Furthermore, an isolated two-

pile model provided a good approximation for the interaction factors of adjacent piles in large

pile-groups, although the presence of intermediate piles might need to be considered at high

frequencies due to wave scattering.

In order to predict the essential dynamic behaviour of a coupled tunnel-foundation system,

the iterative approach has been used in Chapter 6 to combine the BEM foundation model with

the pipe-in-pipe (PiP) model of an underground tunnel. Since the PiP model is formulated in the

wavenumber-frequency (ξ ,ω)-domain to account for the longitudinally-invariant nature of the

tunnel, Fourier techniques have been utilised to appropriately couple the tunnel and foundation

models. The excitation due to a train was simulated by a spatially harmonic roughness applied

onto the train-track system at the tunnel invert. By comparison with the results from a rigorous

FEM-BEM model, the accuracy of the iterative PiP-BEM model has been shown to be good

at capturing the interaction between the ground surface and shallow tunnels over the excitation

frequencies between 1 and 80 Hz, which is the frequency range associated with the perception

of ground-borne vibration. For the first time in the available literature, the iterative PiP-BEM

model also efficiently captured the structure-soil-structure interaction (3SI) due to tunnel-pile

interaction between the source and receiver, as well as pile-pile interaction within the receiver

itself.

The change in the greenfield vibration when a pile is embedded in the ground is known as

the added-pile effect, which can be evaluated using the insertion gain. The initial test cases in

Chapter 6, involving the construction of single piles and pile-groups near underground railways,

highlighted new features of the added-pile effect that will give valuable insight to practitioners.

It was observed that the significance of kinematic PSPI depended on the length of the piles and

their location and orientation relative to the tunnel. For example, when multiple rows of piles

were positioned parallel to the tunnel, significant differences of up to 14 dB were observed in

the insertion gain at high frequencies. Furthermore, when the separation distance between the

tunnel and the piles was less than the shear wavelengths in the soil, tunnel-pile coupling caused

the mean insertion gain of the entire foundation to vary by as much as ±10 dB, particularly in

the longitudinal direction. Moreover, the novel parametric study of the train-induced vibration

of a single pile clearly showed that the soil-pile density ratio ρs/ρp has an insignificant impact

on the added-pile effect, while the pile length L, the tunnel depth D, and the soil-pile stiffness

ratio Es/Ep can significantly influence the response. Two counteracting mechanisms governing
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the pile-head displacement were also identified: (1) the soil-stiffening effect, which attenuated

the response as the pile length was initially increased; and (2) the enhanced transmission effect,

which amplified the response when the pile toe was just above the tunnel crown or descended

below it.

Finally, in Chapter 7, simplified building models were combined with the iterative PiP-BEM

model to simulate the essential dynamics of the entire tunnel-foundation-building system. The

dashpot model, which assumes that the building behaves as a collection of independent semi-

infinite columns, effectively captured the frequency-averaged variation in the mean vibrational

power entering a tall benchmark building. It was also highlighted that the added-building effect,

defined as the change in the piled foundation response when the building is constructed, was

negligible over the entire frequency range of interest (1-80 Hz). Therefore, the general trends

of the building response were similar to the trends observed in the response of the foundation

itself. This emphasises that the model used for the foundation-building system needs to capture

the wave interaction in the ground due to soil-embedded structures, as it dominates the overall

vibration response of the building. In terms of vibration mitigation, initial tests have shown that

full base isolation is more effective than partial base isolation at mitigating the overall building

vibration, particularly at the high frequencies. A virtual case study concerning the construction

of a residential building near a pre-existing railway tunnel also demonstrated how the models

developed in this dissertation could be used in practice to mitigate the ground-borne vibration.

These conclusions are expected to help establish new guidelines for designing buildings, and

their foundations, near underground railway tunnels.

8.2 Further Work Recommendations

The coupled tunnel-foundation-building model, as it stands, provides an efficient and versatile

means of analysing the ground-borne vibration of the entire system. There are several valuable

studies, in addition to those presented in Chapter 7, which may be undertaken with little further

development. These include, but are not limited to, the following studies: the effect of different

foundation and building arrangements on their respective responses; the significance of adding

pile caps and ground beams on the piled foundation response; and the effect of side-restraint

bearings on the performance of base-isolated buildings.

In their present form, the numerical models developed in this dissertation assume that the

soil behaves as a homogeneous half-space. While this assumption accounts for the main body
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(pressure and shear) waves and surface (Rayleigh) waves, it does not capture the elastodynamic

waves due to layering, as described in Section 2.3.2. In reality, the soil is stratified, with each

soil layer defined by different material properties. Layering is expected to introduce additional

wave reflections and mode conversions at the soil-layer interfaces, and this is likely to affect

the pile-pile and tunnel-pile interactions at the high frequencies associated with ground-borne

vibration. The ElastoDynamics Toolbox [211], developed at KU Leuven, provides an extensive

set of MATLAB functions for computing the Green’s functions that simulate wave propagation

in a layered half-space. Using these layered Green’s functions in the iterative PiP-BEM model,

additional wave-scattering effects at the soil-layer interfaces may be captured.

Further work is required to improve the boundary-element mesh used for the soil-structure

interfaces of the foundation and tunnel, so that accurate predictions can be made at excitation

frequencies above 80 Hz. There are two possibilities worth exploring. Firstly, the use of higher-

order elements could reduce the total number of elements required to achieve the same accuracy

as the constant elements used in the current formulation. Secondly, while the author made every

effort to write computationally efficient code that executes the BEM in the numerical models,

better performance could be achieved using commercially available boundary-element code.

There also remains a need to experimentally validate the piled foundation model, the tunnel-

foundation model, and the final tunnel-foundation-building model for the entire fully coupled

system. To this end, future construction projects should be identified, and attempts made to gain

access for taking measurements from real buildings near underground railway tunnels.

In general, this dissertation has shown that the newly developed iterative wave-scattering

approach can capture the dynamic coupling between a source sub-system and a receiver sub-

system for the case of pile-pile and tunnel-pile interaction. Therefore, the iterative approach is

worthy of further development to solve more complex problems in the field of elastodynamics.

One such problem is the ground-borne vibration near underground basements, for which there

is no evidence-based guidance on vibration mitigation. The iterative approach may be extended

to account for the through-soil coupling between basements and various subterranean structures

(foundations, sewers, water pipes, railway tunnels, etc.) when modelling this problem.
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Appendix A

Fourier Analysis

Fourier analysis is the study of how functions can be decomposed into oscillatory components.

This appendix summarises the different Fourier analysis techniques used in this dissertation.

A.1 The Fourier Transform

Consider the continuous function x(t). The Fourier transform of x(t), with respect to the time

t-domain, transforms x(t) into the function X(ω) in the frequency ω-domain [141]:

X(ω) =
∫

∞

−∞

x(t) · e−iωtdt . (A.1)

Equivalently, the Fourier transform of the function y(x), with respect to the space x-domain,

transforms y(x) into the function Ỹ (ξ ) in the wavenumber ξ -domain:

Ỹ (ξ ) =
∫

∞

−∞

y(x) · e−iξ xdx . (A.2)

In order to transform X(ω) back into the t-domain, the inverse Fourier transform of X(ω)

is applied with respect to the frequency ω-domain [141]:

x(t) =
1

2π

∫
∞

−∞

X(ω) · eiωtdω . (A.3)

Similarly, to transform Ỹ (ξ ) back into the x-domain:

y(x) =
1

2π

∫
∞

−∞

Ỹ (ξ ) · eiξ xdξ . (A.4)

It is worth noting that if the continuous function is periodic, Eqs. (A.1)–(A.4) can be evaluated

over a finite period of the function rather than from −∞ to ∞.
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A.2 Computing the Fourier Transform

The numerical models developed in this dissertation operate by processing digital signals that

consist of discrete data points. This means that the Fourier transform of a general signal needs

to be evaluated over a finite interval. In this section, two approaches for numerically computing

the Fourier transform are described: the discrete Fourier transform and contour integration.

A.2.1 The Discrete Fourier Transform

The discrete Fourier transform (DFT) is a numerical approach used to approximate the Fourier

transform of a sampled signal. Consider that the function y(x) is sampled at N discrete points,

with equal sample spacing ∆x, to obtain the signal y[m], where the integer m denotes each data

point from 0 to N−1. The DFT of y[m] can be expressed as [141]

Ŷ [k] =
N−1

∑
m=0

y[m]e−i(2πkm/N) for k = 0,1, . . . ,(N−1) , (A.5)

where the sampled Ŷ [k] is evaluated at discrete wavenumber components ξk =
2πk
N∆x of the DFT

Ŷ (ξ ). It can be shown that Ŷ (ξ ) is equivalent to the following expression [141]:

Ŷ (ξ ) =
1

∆x

∞

∑
k=−∞

Ỹ
(

ξ − 2πk
∆x

)
, (A.6)

where the continuous Fourier transform Ỹ (ξ ) is shifted along the ξ -domain by the sampling

wavenumber 2π/∆x. Although the Fourier transform is not periodic by definition, Eq. (A.6)

shows that the DFT is periodic, which means that Eq. (A.5) computes the DFT using a finite

number of sampled values over one period.

In order to obtain a good approximation of the Fourier transform over one DFT period, the

x-domain data must be over-sampled. This allows ∆x to be small enough to ensure there is

sufficient separation between the shifted Fourier transforms in the sum of Eq. (A.6); otherwise,

they will overlap. Under-sampling can result in aliasing, which is a form of sampling artefact

where high-wavenumber components are falsely mapped onto lower wavenumbers due to the

Fourier transforms overlapping. To avoid aliasing, it is necessary to satisfy the Nyquist criterion

(or sampling theorem): the sampling wavenumber 2π/∆x must at least be twice the largest ξ -

component in the sampled signal to accurately capture all the ξ -components. It follows that

the highest ξ -component extracted by the DFT is half the sampling wavenumber, known as the
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Nyquist wavenumber ξNyquist = π/∆x.

The inverse discrete Fourier transform (IDFT) of Ŷ [k] can be expressed as [141]

y[m] =
1
N

N−1

∑
k=0

Ŷ [k]ei(2πkm/N) for m = 0,1, . . . ,(N−1) . (A.7)

A.2.2 Contour Integration

Contour integration is another approach by which the Fourier transform can be computed. This

is an analytical method that applies the residue theorem to evaluate the infinite integral along

curved paths in a complex plane, referred to as contours.

For convenience, the example provided here demonstrates how contour integration can be

applied to find the inverse Fourier transform of the function F(ξ ), but a similar approach can

also be used to find the Fourier transform. The inverse Fourier transform can be expressed as

f (x) =
1

2π

∫
∞

−∞

F(ξ ) · eiξ xdξ . (A.8)

In this case, assume that the function F(ξ ) · eiξ x has eight poles, which are its singular points.

As shown in Fig. A.1, the integration of F(ξ ) ·eiξ x along the real axis from ξa→−∞ to ξb→∞

is equivalent to integrating along the closed-path contour that includes the real axis from ξa to

ξb and the complex semicircle from ξb to ξa, provided that the integral along the semicircle is

zero. The integral along the contour is equivalent to the summation of the residues at the poles

of F(ξ ) · eiξ x [141]: ∫
∞

−∞

F(ξ ) · eiξ xdξ = 2πi
n

∑
j=1

Res
(

F(ξ ) · eiξ x,ξ j

)
, (A.9)

where Res
(

F(ξ ) · eiξ x,ξ j

)
is the residue of F(ξ ) · eiξ x at the pole ξ j and n is the total number

of poles enclosed by the contour. By substituting ξ = reiθ , where the complex wavenumber is

expressed in polar notation, the integral along the semicircle in Fig. A.1 can be written as

∫
∞

−∞

F(ξ ) · eiξ xdξ =
∫

π

0
F(riθ ) · reiθ · e(ir cosθ−r sinθ)xdθ . (A.10)

The e−irxsinθ term in Eq. (A.10) determines whether the integral approaches zero or infinity

as r→∞. In the first and second quadrant of the complex plane, sinθ ≥ 0 and the integral only

tends to zero when x≥ 0, which means that the closed path illustrated in Fig. A.1a is used. The
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contours in the third and fourth quadrants, as shown in Fig. A.1b, are used to solve the integral

when x < 0. This ensures that the integral along the semicircle contour always tends to zero as

r→ ∞.

Once a closed-path contour is selected along the complex plane, the contour integral can be

replaced by a summation of the residues evaluated at the enclosed poles [141]. If none of the

poles lie on the real axis, as represented in Fig. A.1, Eq. (A.8) can be simplified to

f (x) =


i

4

∑
j=1

F(ξ j) · eiξ jx for x≥ 0 ,

−i
8

∑
j=5

F(ξ j) · eiξ jx for x < 0 .
(A.11)

However, if some poles lie on the real axis, the contour path must be modified to include or

exclude specific poles on the basis of physical arguments. With regard to wave motion, poles

on the real axis represent purely propagating waves due to the eiξ x term in Eq. (A.11). In the

absence of sources at x≥ 0, these propagating waves should only travel to the right (i.e., in the

direction of increasing x values). Therefore, positive real poles must be excluded when solving

the integral for x≥ 0, as shown by the small semicircle in Fig. A.2a, because they cause waves

to propagate to the left. A similar argument can be applied when there are no sources at x < 0.

ξ
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ξRe
0

0
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ξa ξb

ξ4
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0
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ξ
Im

ξRe
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Fig. A.1 The integration of the function F(ξ )eiξ x along the real axis from ξa → −∞ to ξb → ∞ is
equivalent to integrating along the closed-path contour that includes the real axis from ξa to ξb and the
complex semicircle from ξb to ξa when (a) x ≥ 0 and (b) x < 0. Integrating along the contour is also
equivalent to the sum of integrals along the closed paths around the poles ξ j that lie within the contour.
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Fig. A.2 The modified contour path when some poles lie on the real axis for (a) x≥ 0 and (b) x < 0.

In this case, the same positive real poles must be excluded, as shown in Fig. A.2b, because the

purely propagating waves should only travel to the left when x < 0.

A.3 The Fourier Series

Consider the continuous function f (t) with period T . By decomposing f (t) into harmonically

related sinusoids, its Fourier series can be expressed as [141]

f (t) =
∞

∑
n=0

(
an cos

(
2πnt

T

)
+bn sin

(
2πnt

T

))
, (A.12)

where the Fourier series coefficients are

a0 =
1
T

∫ T

0
f (t)dt , (A.13)

b0 = 0 , (A.14)

an =
2
T

∫ T

0
f (t) · cos

(
2πnt

T

)
dt for n≥ 1 , (A.15)

bn =
2
T

∫ T

0
f (t) · sin

(
2πnt

T

)
dt for n≥ 1 , (A.16)

and the integer n represents the nth harmonic mode.
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Now, consider that f (t) is discretised over the interval [0,T ] at N evenly spaced points with

spacing ∆t = T/(N−1) to obtain the sampled function f [k], where the integer k denotes each

data point from 0 to N−1. In this case, the discrete Fourier series, which is related to the DFT

described in Appendix A.2.1, can decompose f [k] into a summation of sinusoids [141]:

f [k] =
nmax

∑
n=0

(
an cos

(
2πnk
N−1

)
+bn sin

(
2πnk
N−1

))
for k = 0,1, . . . ,(N−1) , (A.17)

where the discrete Fourier series coefficients are

a0 =
1

N−1

(
f [0]
2

+
N−2

∑
k=1

f [k]+
f [N−1]

2

)
, (A.18)

b0 = 0 , (A.19)

an =
2

N−1

(
f [0]
2

+
N−2

∑
k=1

f [k] · cos
(

2πnk
N−1

)
+

f [N−1]
2

)
for 1≤ n≤ nmax , (A.20)

bn =
2

N−1

N−2

∑
k=1

f [k] · sin
(

2πnk
N−1

)
for 1≤ n≤ nmax . (A.21)

It is worth noting that the summation in Eq. (A.17) is finite, where the upper bound is the largest

mode nmax extracted from the sampled data.

In order to avoid sampling errors when computing the coefficients, the following sampling

condition must be satisfied:

N > 2nmax +1 . (A.22)

Figure A.3 shows the importance of over-sampling the data. Here, the discrete Fourier series

coefficients of the function y= cos(4θ) are evaluated using three different data samples over the

interval [−π,π]. The coefficients are then used to reconstruct y by computing the summation

in Eq. (A.17) up to nmax = 4. When the data is under-sampled (N = 6 or N = 9), the discrete

Fourier series coefficients do not reconstruct y perfectly because the sampling condition is not

satisfied. In contrast, when the coefficients are computed using N = 12 points, the function y is

accurately reconstructed, as the sampling condition is now satisfied.
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Fig. A.3 Reconstructing the function y = cos(4θ) by (a) sampling over the interval [−π,π], and then
evaluating the discrete Fourier series coefficients using (b) N = 6, (c) N = 9 and (d) N = 12 points.
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Appendix B

The Boundary-Element Method (BEM)

In most fields of engineering, the governing equations for a problem may be represented by a

system of boundary integral equations (BIEs). After extensive development work throughout

the 1970s, the boundary-element method (BEM) is now the most popular numerical technique

for solving BIEs.

This appendix summaries the integral formulation of the BEM, which is used to solve the

governing equations of an elastodynamic continuum experiencing steady-state, time-harmonic

excitation. There are two different integral formulations that provide equivalent solutions: the

direct and indirect approaches. The latter introduces fictitious sources with unknown intensities

along the boundary [241], while the former, which is described in this appendix, expresses the

integral equations directly in terms of the actual field variables of the problem concerned [20].

In elastodynamics, the field variables are the displacements and tractions.

All the equations in this appendix are derived by assuming the continuum is linear-elastic.

Nonetheless, the continuum can also be assumed to display viscoelastic behaviour by applying

the viscoelastic correspondence principle [18]: an elastic material property k is replaced by its

complex equivalent k∗ = k(1+ iη), where i =
√
−1 and η is the hysteretic loss factor.

B.1 Integral Transforms

Before describing the BEM, it is important to understand the definition of an integral transform.

These transforms can be expressed as a Fredholm integral equation of the first kind [141]:

g(x) =
∫

K (x,s) f (s)ds , (B.1)
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where an input function f (s) is transformed into an output function g(x) by using a specific

kernel function or integral kernel K(x,s), relating the variables x and s. The motivation behind

this mathematical operation is to ‘map’ an equation from its original domain, where it might

be algebraically unwieldly to solve, to another domain where the algebraic manipulation is far

simpler. An example is the Fourier transform, while is detailed in Appendix A.

In linear vibration analysis, differential equations involving ordinary derivatives or partial

derivatives need to be solved. One approach for solving them is to derive the Green’s function.

Given a linear differential operator L = L (x) acting over a domain Ω⊂Rn, a Green’s function

G(x,s) at the point s ∈Ω is a solution to

L G(x,s) = δ (x− s) , (B.2)

where δ (x− s) is the Dirac delta function translated to the point x = s. In order words, G(x,s)

inverts L so that a differential equation L f (x) = g(x) can be solved:

g(x) =
∫

G(x,s) f (s)ds , (B.3)

where the integral is analogous to Eq. (B.1). Hence, if a Green’s function can be derived for

a governing linear differential equation, multiplying and integrating it with an input function

f (s) will solve the desired response function g(x) using the linear superposition principle.

B.2 Types of Boundary Conditions

Different boundary conditions can be applied to solve the BIEs. This section discusses three

methods for structuring a problem based on its boundary conditions: Dirichlet, Neumann and

Cauchy problems [41].

The Dirichlet (first-type) boundary condition specifies the value that a solution needs to take

along a finite boundary of the domain, whereas the Neumann (second-type) boundary condition

specifies the derivative of the solution along the boundary. Consider the homogeneous, elliptic

equation:

∇
2y+ y = 0 , (B.4)

where y(x) is a function of the position vector x. Different boundary conditions can be applied

onto the boundary Γ of domain Ω, where y ∈Ω. A Dirichlet boundary conidtion satisfies:
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y(x) = f (x) for all x⊂ Γ , (B.5)

while a Neumann boundary condition satisfies:

∂y
∂n

(x) = f (x) for all x⊂ Γ , (B.6)

where n is the normal unit-vector to Γ, and the function f ∈ Γ.

For an elastodynamic problem, a Dirichlet boundary condition specifies the displacement

field vector u along Γ, similar to Eq. (B.5), and the traction field vector p along Γ is unknown.

In contrast, a Neumann boundary condition specifies p along Γ, similar to Eq. (B.6), and u

along Γ is unknown. This is because the tractions are proportional to the first derivative of the

displacements normal to a surface.

A Cauchy boundary condition specifies both a function and its normal derivative on Γ. This

corresponds to imposing Dirichlet and Neumann boundary conditions over the sub-boundaries

Γ1 and Γ2, respectively, where Γ1 and Γ2 are free to overlap and (Γ1∪Γ2)⊂ Γ. The BIEs in this

dissertation are solved as a Cauchy problem by satisfying both the displacement and traction

conditions at the same boundary.

B.3 The Dynamic (Betti-Rayleigh) Reciprocity Theorem

Consider a homogeneous, isotropic, linear-elastic body defined by a three-dimensional (3D)

domain Ω, with position vector x = {x1,x2,x3}T in a Cartesian coordinate system, and a two-

dimensional (2D) boundary surface Γ. The steady-state, time-harmonic displacement u of the

body at a given angular excitation frequency ω is governed by Navier’s equation:

(λ +µ)∇∇ ·u+µ∇
2u+ρb =−ω

2
ρu , (B.7)

where the vector b denotes the internal body forces per unit mass, ρ is the mass density, and λ

and µ are the first and second elastic Lamé constants, respectively. Cauchy boundary conditions

are applied onto Γ to specify a particular elastodynamic state, as illustrated in Fig. B.1a.

One method of deriving the BIEs, relating u and p on the surface of the body, is to use the

dynamic reciprocity theorem. The dynamic reciprocity theorem of elastodynamics, which is an

extension of Betti’s theorem in elastostatics, relates two arbitrary elastodynamic states of the

body in a strong formulation of Navier’s equation [52]. The first state includes u and b from

Eq. (B.7) and the associated tractions p due to u; the corresponding variables in the second
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state are denoted as u∗, b∗ and p∗. For the case of time-harmonic excitation, the reciprocity

integral in index notation is

∫
Γ

pku∗kdΓ+
∫

Ω

ρbku∗kdΩ =
∫

Γ

p∗kukdΓ+
∫

Ω

ρb∗kukdΩ . (B.8)

The first state represents the problem of interest with applied boundary conditions and the

internal body forces can be assumed to be zero (bk = 0) because the problem only considers

vibration about an equilibrium position. The second state, which is known as the fundamental

solution or Green’s function, is the forced response in the el direction at a receiver or integration

point xi due to a unit-magnitude, time-harmonic point force applied in the ek direction at a

source or collocation point x j (see Fig. B.1b). To apply the reciprocity theorem, both states

must be defined for the same body, and it is assumed that Ω is part of an infinite domain.

Ω

Γ

p

u

b = 0

u(x j)

x j

x1
x2

x3

(a)

Ω

p∗

u∗

b∗

x j

x1
x2

x3

Γ

(b)

Fig. B.1 Elastodynamic states of a body, with domain Ω and boundary surface Γ, illustrating (a) the
problem of interest with no body forces (b = 0) and (b) the fundamental solution corresponding to a
point force b∗ applied at the collocation point x j. The infinite domain is represented by the dashed
circle.

B.4 The Fundamental Solution

It is important to note that different fundamental solutions may suit the problem based on

its domain. This appendix describes the Green’s functions for a time-harmonic point force

applied in a full-space, or infinite domain because they can be written as closed-form, analytical

expressions. Therefore, the soil domain is modelled as an homogeneous, isotropic continuum.
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The Green’s functions for a homogeneous [8] or layered [31] half-space, computed using the

ElastoDynamics Toolbox (EDT) [211], are also suitable for modelling elastodynamic problems

that contain propagating wave-fields in the soil. Note that when the Green’s functions for a full-

space are used, the free surface has to be discretised (see Section 3.2). However, this is not the

case when using the half-space Green’s functions.

The displacement and traction Green’s functions are denoted as the second-order tensors

(or matrices) u∗lk, and p∗lk, respectively, in index notation. The time-harmonic point force in a

linear-elastic full-space can be expressed as a body force:

ρb∗k = δ (r)δlk , (B.9)

where δ (r) is the 3D Dirac delta function centred at r =
∣∣xi−x j

∣∣, and δlk is the Kronecker

delta. The explicit expressions for the full-space Green’s functions are [52]:

u∗lk =
1

4πρc2
S

(
ψδlk−χr,lr,k

)
, (B.10)

p∗lk =
1

4π

[
A
(

∂ r
∂n

δlk +nlr,k

)
+Br,lr,k

∂ r
∂n

+Cr,lnk

]
, (B.11)

where nl is the normal unit-vector in the el direction. Equations (B.10) and (B.11) are expressed

in terms of the following variables:

ψ =
e−kSr

r

(
1+

1
kSr

+
1

k2
Sr2

)
− e−kPr

r
c2

S

c2
P

(
1+

1
kPr

+
1

k2
Pr2

)
, (B.12)

χ =
e−kSr

r

(
1+

3
kSr

+
3

k2
Sr2

)
− e−kPr

r
c2

S

c2
P

(
1+

3
kPr

+
3

k2
Pr2

)
, (B.13)

A =
dψ

dr
− χ

r
, (B.14)

B = 4
χ

r
−2

dχ

dr
, (B.15)

C =
λ

µ

(
dψ

dr
− dχ

dr
−2

χ

r

)
−2

χ

r
, (B.16)

with wavenumbers:
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kP,S =
iω
cP,S

, (B.17)

and phase speeds:

cP =

√
λ +2µ

ρ
, (B.18)

cS =

√
µ

ρ
, (B.19)

where the subscripts ‘P’ and ‘S’ denote the variables associated with P- and S-waves in the

body Ω. For convenience, the analytical expressions for
dψ

dr
and

dχ

dr
are not stated here, but

the reader can refer to them in [52].

B.5 The Boundary Integral Equation (BIE)

The BIE, which describes the displacement-state at an internal point y ∈ Ω, can be derived

by substituting Eq. (B.9) into Eq. (B.8) and disregarding the internal body forces about the

equilibrium position:

ul (y,ω)+
∫

Γ

p∗lk
(
y,x j,ω

)
uk
(
x j,ω

)
dΓ =

∫
Γ

u∗lk
(
y,x j,ω

)
pk
(
x j,ω

)
dΓ . (B.20)

The BIE expresses the displacement ul (y,ω) at y in terms of the displacement uk
(
x j,ω

)
and

traction pk
(
x j,ω

)
at the collocation point x j ∈ Γ. The field variables ul , uk and pk represent

3×1 column vectors, whereas u∗lk and p∗lk represent 3×3 matrices of the fundamental solutions.

Equation (B.20) is valid for both bounded and unbounded domains, as illustrated in Fig. B.2.

The ability to model unbounded domains, is one of the advantages of the BEM, as described in

Section 2.3.2, because it satisfies the radiation damping condition for elastodynamic waves in

an infinite or semi-infinite domain.

Now, consider when the internal point y moves to the boundary surface Γ to become the

integration point xi ∈ Γ. Note that at the limit when xi coincides with x j, the fundamental

solutions and the integral in Eq. (B.20) become singular as r→ 0. To avoid these singularities,

Domínguez [52] recommends to extend a surface Γε around the sub-domain Ωε containing

the collocation point x j ∈ Ωε into a hemisphere of small radius ε , as shown in Fig. B.2. The

singular behaviour of the integral is then evaluated at the limit ε → 0. Further details on the

limiting process, which depends on the type of boundary-element and number of dimensions,
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can be found in books by Domínguez [52] and Beer et al. [12]. For the special case when Γ is

smooth, Eq. (B.20) becomes

1
2

ul (xi,ω)+
∫

Γ

p∗lk
(
xi,x j,ω

)
uk
(
x j,ω

)
dΓ =

∫
Γ

u∗lk
(
xi,x j,ω

)
pk
(
x j,ω

)
dΓ . (B.21)

Γε

Ωε

Ω

x j

Γ

Ωε ε

(a)

ΓεΩε

Ω

x j

Γ

Ωε ε

(b)

Fig. B.2 The lighter shaded regions illustrate (a) a bounded and (b) an unbounded domain Ω within an
infinite domain, represented using the dashed line. The darker shaded regions show the limiting process
applied to avoid singularities when a collocation point x j coincides with an integration point xi.

B.6 Solving the BIEs at the Boundary Surface

By evaluating the integrals in Eq. (B.21) over the boundary surface Γ, with both the integration

points xi and collocation points x j, the unknown boundary values at Γ can be calculated. For

an elastodynamic problem, the displacement and traction wave-fields represent the boundary

values. The techniques used for solving the BIEs at the boundary surface are described in this

section.

Numerical integration schemes can approximately compute the BIEs. The best option is to

use standard Gauss-Legendre quadrature because of its high degree of precision [141]. In this

method, the surface Γ is divided into N elements and the integral is restructured as a summation

over n interpolated Gauss points within each element. For example, the integration of a one-

dimensional function g(t) over the limit [t1, t2] can be approximated as

∫ t2

t1
g(t)dt =

∫ 1

−1
f
(
ξ
) dg

dξ
dξ ≈

n

∑
p=1

dg
dξ

fpwp , (B.22)
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where ξ is an intrinsic transformed coordinate system with limit [−1,1], and fp and wp are the

discrete values of the transformed function and the corresponding weighting functions of each

Gauss point p, respectively.

The boundary surface is discretised into smooth, constant, rectangular elements, where the

displacement and traction wave-fields at the central node j of each element are denoted by

the vectors u
(
x j
)

and p
(
x j
)
, respectively. Although higher-order boundary elements, which

vary linearly or quadratically over each element, offer faster convergence, they require more

extensive, numerical techniques to evaluate [12]. As u and p are assumed to be constant over

each element, Eq. (B.21) can be rewritten as

1
2

u(xi,ω)+
N

∑
j=1

(∫
Γ j

p∗
(
xi,x j,ω

)
dΓ j

)
u
(
x j,ω

)
=

N

∑
j=1

(∫
Γ j

u∗
(
xi,x j,ω

)
dΓ j

)
p
(
x j,ω

)
,

(B.23)

where Γ j is the surface of each boundary element. Note that the integrals enclosed within the

brackets only depend on the Green’s functions u∗ and p∗. These integrals are denoted as the Ĥ

and G matrices, which means that Eq. (B.23) can be rewritten as

1
2

u(xi,ω)+
N

∑
j=1

Ĥ
(
xi,x j,ω

)
u
(
x j,ω

)
=

N

∑
j=1

G
(
xi,x j,ω

)
p
(
x j,ω

)
. (B.24)

Now assume that the body force expressed in Eq. (B.9) is applied at each of the boundary-

element nodes from 1 to N. Thus, Eq. (B.24) can be expressed as N matrix equations:

N

∑
j=1

H
(
xi,x j,ω

)
u
(
x j,ω

)
=

N

∑
j=1

G
(
xi,x j,ω

)
p
(
x j,ω

)
for i = 1,2, . . . ,N , (B.25)

where

H
(
xi,x j,ω

)
=


Ĥ if i 6= j ,

Ĥ+ 1
2I if i = j .

(B.26)

The N equations in Eq. (B.25) can be grouped into the following matrix equation:

Hu = Gp , (B.27)
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where H and G are the 3N× 3N collocation matrices, and the 3N× 1 vectors u and p are the

boundary values. It is important to note that the collocation matrices inherently account for the

dynamic coupling between all nodes located on the boundary surface because the fundamental

solutions in Eq. (B.23) are used to find the response at all nodes when a body force is applied

at each node one-by-one.

Standard Gauss-Legendre quadrature [141] is used to compute the integrals at each element

in the collocation matrices. When i 6= j, H can be computed as follows:

H
(
xi,x j,ω

)
=
∫

Γ j

p∗
(
xi,x j,ω

)
dΓ j =

∫ 1

−1

∫ 1

−1
p∗
(
xi,x j,ω

)
|J|dξ1dξ2 ,

≈
n

∑
p=1

n

∑
q=1

p∗
(
ξp,ξq,ω

)
|J|wpwq ,

(B.28)

where |J| is the Jacobian, ξp and ξq are the transformed coordinates, and wp and wq are the

corresponding weighting functions at each Gauss point. Talbot [221] suggests that six Gauss

points are sufficient to achieve reasonable convergence over the frequency range of interest

from 1 to 80 Hz. Figure B.3 illustrates how the global Cartesian coordinates along the boundary

surface can be transformed into intrinsic coordinates.

As expressed previously, when i = j (i.e., the points xi and x j coincide) a limiting process

is required to avoid integrating over the singularities. At the limit when r→ 0, p∗lk contains a

1

2

3

4

x1
x2

x3

n

(a)

1’

2’ 3’

4’

ξ1

ξ2

(b)

Fig. B.3 Transformation from (a) the global Cartesian (x1,x2,x3) coordinate system to (b) the intrinsic
(ξ1,ξ2) coordinate system so that the wave-fields can be numerically integrated over the boundary
surface using standard Gauss-Legendre quadrature.
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strong singularity of order 1/r2 in 3D space. For rectangular elements, computing H(xi,xi,ω)

is straightforward: H(xi,xi,ω) = 1
2I [52]. When non-rectangular elements are used instead,

computing H(xi,xi,ω) becomes more involved, requiring the consideration of static rigid-body

displacements [52].

Calculating G(xi,xi,ω) requires element subdivision, as proposed by Lachat [150], where

the element is subdivided into four triangular sub-elements. Each sub-element is treated as a

quadrilateral domain, with two of the corners coinciding with the central node of the original

element [52]. Thus, the weak singularity in u∗lk, which is of order 1/r in 3D space, cancels out

with the Jacobian |J| as the limit r→ 0 is reached. Standard Gauss-Legendre quadrature can

then be used to compute the integrals numerically.

When Cauchy boundary conditions, denoted by a vector f, are applied on Γ, Eq. (B.27) can

be solved by restating it as the following matrix equation:

Ay = f , (B.29)

where y is a vector representing the unknown displacement and traction wave-fields, and the

matrix A is a linear combination of H and G. Equation (B.29) is best solved numerically using

Gaussian elimination, as A is often a fully populated, non-symmetric matrix in elastodynamic

problems.

B.7 Solving the BIEs at the Internal Points

Now, consider when the internal point y ∈ Ω also lies on the surface Γy of sub-domain Ωy,

where Ωy ⊂Ω, as shown in Fig. B.4. In this case, the integral equations in the BEM need to be

modified so as to find the displacement and traction wave-fields at multiple internal points yi.

By approximating the integral in Eq. (B.20) using standard Gauss-Legendre quadrature

and assuming the wave-fields are uniform at the N collocation nodes located on the boundary

surface Γ, the displacement at M internal nodes on the surface Γy can be expressed as

ul (yi,ω)+
N

∑
j=1

(∫
Γ j

p∗lk
(
yi,x j,ω

)
dΓ j

)
uk
(
x j,ω

)
=

N

∑
j=1

(∫
Γ j

u∗lk
(
yi,x j,ω

)
dΓ j

)
pk
(
x j,ω

)
for i = 1,2, . . . ,M ,

(B.30)

where yi and x j denotes each internal integration point and collocation point, respectively. The

276



APPENDIX B. THE BOUNDARY-ELEMENT METHOD (BEM)

Ωy
Γy

Ω

n
y

Γ

Fig. B.4 A body, with domain Ω (lighter shaded region) and boundary surface Γ, is defined within an
infinite domain, represented by the dashed line. The internal point y ∈Ω, with normal unit-vector n, lies
on the surface Γy separating the sub-domain Ωy (darker shaded region) from Ω.

distance between each integration and collocation point is r =
∣∣yi−x j

∣∣. It is worth noting that

the weak and strong singularities in u∗lk and p∗lk, respectively, at the limit when r→ 0 do not

need to be considered. This is because the integration and collocation points never share the

same coordinates, so element subdivision, as detailed in Appendix B.6, is not required.

The integrals enclosed within the brackets in Eq. (B.30) are denoted as the displacement-

state collocation matrices Gu and Hu. Thus, the BIE can be rewritten as

uint (yi,ω) =
N

∑
j=1

Gu
(
yi,x j,ω

)
p
(
x j,ω

)
−

N

∑
j=1

Hu
(
yi,x j,ω

)
u
(
x j,ω

)
, (B.31)

where the vector uint (yi,ω) is the displacement wave-field at each internal node i. Applying

Eq. (B.31) to all M internal nodes and performing the summation over the N collocation nodes

gives the matrix equation:

uint = Gup−Huu , (B.32)

where the vector uint is the displacement wave-field at all M internal nodes within the domain

Ω, and the vectors u and p are the displacement and traction boundary conditions, respectively,

applied at the N nodes on the surface Γ. It should be noted that both Gu and Hu are 3M×3N

non-square matrices.

In order to compute the traction wave-field at an internal point y ∈ Ωy, the stress-state at y

needs to be defined. This is done by taking the partial derivatives of Eq. (B.20), with respect to

y, and then substituting the resulting equation into the linear-elastic kinematic relationship:

277



APPENDIX B. THE BOUNDARY-ELEMENT METHOD (BEM)

εlm (y,ω) =
1
2
(
ul,m (y,ω)+um,l (y,ω)

)
, (B.33)

and the generalised Hooke’s Law for an isotropic continuum:

σlm (y,ω) = λεkk (y,ω)δlm +2µεlm (y,ω) , (B.34)

where δlm is the Kronecker delta, εlm is the infinitesimal strain tensor, σlm is the Cauchy stress

tensor, and εkk = εxx+εyy+εzz is the volumetric strain. Thus, the BIE for the stress-state [201]

at y can be defined as follows:

σlm (y,ω)+
∫

Γ

p∗lmk
(
y,x j,ω

)
uk
(
x j,ω

)
dΓ =

∫
Γ

u∗lmk
(
y,x j,ω

)
pk
(
x j,ω

)
dΓ , (B.35)

where u∗lmk and p∗lmk are third-order tensors that represent the stress-state fundamental solutions:

u∗lmk =−
1

4π

[
A
(
r,lδmk + r,mδlk− r,kδlm

)
+Br,lr,mr,k

]
, (B.36)

p∗lmk =
ρc2

S
4π

−A
2
r
(nlδmk +nmδlk)+D

(
r,kδlm

∂ r
∂n

+ r,lr,mnk

)
+

E
(

∂ r
∂n

[
r,lδmk + r,mδlk

]
+ r,mr,knl + r,lr,knm

)
+

Fr,lr,mr,k
∂ r
∂n

+Gnkδlm

 ,
(B.37)

with the following coefficients:

D = 2

[
d2ψ

dr2 −
1
r

(
dψ

dr
+

dχ

dr

)
+

χ

r2

]
, (B.38)

E =−d2ψ

dr2 +
1
r

(
dψ

dr
+3

dχ

dr

)
−6

χ

r2 , (B.39)

F = 4

(
3
2

d2χ

dr2 −
5
r

dχ

dr
+7

χ

r2

)
, (B.40)

G =−2

(
d2ψ

dr2 +2
d2χ

dr2

)
. (B.41)
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The expressions for ψ , χ , A and B are the same as those denoted in Eqs. (B.12)–(B.15), and

the derivatives d2ψ/dr2 and d2χ/dr2 are fully expressed by Rego Silva et al. [201].

The stress σlm (y,ω) in Eq. (B.35) can be converted into the traction pl (y,ω) by applying

Cauchy’s formula, which can be represented as

pl (y,ω) = σlm (y,ω)nm (y) , (B.42)

where nm (y) is the normal unit-vector at the surface Γy associated with the internal point y, as

shown in Fig. B.4. Once Cauchy’s formula is applied to Eq. (B.35), standard Gauss-Legendre

quadrature can be used to approximate the integrals. Therefore, the traction at M internal nodes

on the surface Γy can be expressed as

pl (yi,ω)+
N

∑
j=1

(∫
Γ j

p∗lmk
(
yi,x j,ω

)
nm (yi)dΓ j

)
uk
(
x j,ω

)
=

N

∑
j=1

(∫
Γ j

u∗lmk
(
yi,x j,ω

)
nm (yi)dΓ j

)
pk
(
x j,ω

)
for i = 1,2, . . . ,M .

(B.43)

It is worth noting that both u∗lmknm and p∗lmknm are second-order tensors. Hence, the integrals

enclosed within the brackets in Eq. (B.43) are denoted as the traction-state collocation matrices

Gp and Hp, and the BIE can be rewritten as

pint (yi,ω) =
N

∑
j=1

Gp
(
yi,x j,ω

)
p
(
x j,ω

)
−

N

∑
j=1

Hp
(
yi,x j,ω

)
u
(
x j,ω

)
, (B.44)

where the vector pint (yi,ω) is the traction wave-field at each internal node i. By applying

Eq. (B.44) to all M internal nodes and performing the summation over the N collocation nodes,

the following matrix equation can be obtained:

pint = Gpp−Hpu , (B.45)

where the vector pint is the traction wave-field at all M internal nodes within the domain Ω, and

the vectors u and p are equivalent to the ones defined in Eq. (B.32). Similar to Gu and Hu in

Eq. (B.32), Gp and Hp are also 3M×3N non-square matrices.
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B.8 A Note on Fictitious Eigenfrequencies

While the BEM is very powerful when applied to unbounded ground-borne vibration problems,

it does have some shortcomings due to numerical difficulties. It turns out that the BIEs have

a unique solution for the unbounded problem with boundary Γ, except when the excitation

frequency coincides with one of the eigenvalues (natural frequencies) of the bounded problem,

with the same boundary conditions on Γ [52]. Therefore, fictitious eigenfrequencies may be

predicted in the unbounded domain formulation.

There are methods that can eliminate these fictitious eigenfrequencies by using special

BEM formulations. An example is the approach used by Burton & Miller [27] when a second

integral equation is derived and combined with the original BIE. However, these fictitious

eigenfrequencies are not always present; the implementation of full-space Green’s functions,

in conjunction with a free surface that is appropriately discretised, is one such example [14].
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The Iterative Pipe-in-Pipe (PiP) Model

The standard pipe-in-pipe (PiP) model, which simulates a tunnel embedded in a homogeneous,

isotropic half-space [114], is a computationally efficient tool that can predict the response of the

surrounding soil when the tunnel is excited by train-induced loads. The PiP model originates

from a study conducted by Köpke [138] on the vibration of underground pipelines. Köpke

applies the thick-walled, cylindrical shell approach used by Gazis [79,80] to a ‘pipe in a pipe’;

the inner shell represents a buried pipeline, while the outer shell, which extends to an infinite

outer diameter, represents the surrounding soil as a full-space. Hunt & May [111] use Köpke’s

solution to calculate soil’s response around a railway tunnel. Further work conducted by Forrest

[68] and Hussein [112] on symmetric and anti-symmetric loading laid the foundation for the

current version of the standard PiP model [116].

In this dissertation, the response of the soil is considered when two different time-harmonic

modes of excitation are applied within the tunnel. The first mode of excitation is a vertical point

force applied at the base of the inner tunnel wall, which is referred to as the tunnel invert. The

second mode of excitation is a roughness applied at the wheel-rail interface when a train-track

system is coupled to the tunnel invert. Forrest [68] describes in detail how to calculate the soil

response when a time-harmonic point force is applied within a tunnel embedded in a full-space.

However, a notable disadvantage of the standard PiP model is that it inaccurately predicts

the soil response of shallow tunnels, as it is assumed that the waves reflected at the free surface

do not affect the near-field response around the tunnel [113]. Thus, the iterative wave-scattering

approach, as described in Section 2.5.1, is applied in this appendix to approximate the dynamic

interaction between the ground and the tunnel, such that the near-field response of the tunnel

can be modified. The first section presents the components and assumptions of the iterative PiP
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model. The following three sections derive the equations of motion for a tunnel embedded in a

full-space when it is driven by the passage of a train. In the fifth section, the iterative approach

is applied to account for the scattered wave-field that is induced at the outer tunnel wall due

to wave interaction. Finally, the expressions for the far-field displacements and tractions in the

soil around a tunnel embedded in a half-space are derived in the last two sections.

C.1 Components

When the excitation due to a train is applied at the tunnel invert, the PiP model can be divided

into four main components: the train, the track, the tunnel, and the soil. To simplify the derived

equations, the train, track and tunnel are assumed to be infinitely long in the longitudinal space

x-domain. This section describes the modelling parameters of each component.

C.1.1 Train

The train is assumed to move at constant speed v, and it includes bogies with fixed axle spacing

La. Since the average speed of underground trains is low, it is reasonable to only account for

excitation due to wheel-rail roughness (see Section 2.1.1). It is important to note that the PiP

model is only appropriate for predicting the vibration when the train speed is below the critical

speed of the track, which is dependent on the track’s cut-on frequency (see Section 2.4).

Excitation occurs as the train axles pass over a fixed point on the track at low frequencies

below the track’s cut-on frequency. Simple train bogie models can capture this by using either a

single degree of freedom (SDOF) system, consisting of the unsprung axle mass, or a two DOF

system, which accounts for the semi-sprung bogie mass and primary suspension. A parametric

study of various train parameters by Colaço et al. [38] showed that the semi-sprung mass has an

insignificant effect on the generation of ground-borne vibration. The study also highlighted that

the primary suspension effectively decouples the unsprung mass from its bogie at frequencies

above 15 Hz. Therefore, an SDOF axle system is used in the PiP model, with Ma denoting the

unsprung axle mass.

The governing equations of motion are derived by keeping the train stationary and moving a

pull-through roughness at speed v between the axle masses and the track’s rails. The roughness

accounts for the irregularities along the wheel-rail interface, and it is assumed to be spatially

harmonic in the x-domain, with wavelength λ and magnitude ∆ in the vertical direction. Thus,
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the wheel-rail roughness can be expressed in the space-time (x, t)-domain as ∆̄(x, t) = ∆eiωt ,

where ω = 2πv/λ is the angular excitation frequency. As the axles follow the profile of the

pull-through roughness, time-harmonic forces, which oscillate at frequency ω , are applied onto

the rails due to the inertia of the axles.

Note that the roughness is typically approximated as a random, stationary process using

random vibration analysis, so the spectrum or power-spectral density (PSD) is used to define the

variation of the roughness with frequency [180]. The simplest case is to assume the roughness

has a white-noise distribution; however, this is physically unrealistic. More realistic roughness

spectra are also available; Frederich [71] (paper in German) defines a formula for the PSD of

irregularities at the wheel-rail interface, which is dependent on the track unevenness, waviness

and train speed, by fitting curves to measured data.

C.1.2 Track

A slab (non-ballasted) track, which consists of two parallel rails mounted via rubber rail pads

on a pre-cast or in-situ concrete slab, is coupled to the tunnel invert. Slab tracks provide better

service performance and a longer life-span compared to traditional ballasted tracks that are

often used for surface railways. In a standard (fixed) slab track, the slab is supported above the

tunnel invert by a layer of mortar or self-compacting concrete (SCC), which acts as a bonding

agent. At particular locations where track vibration or noise may be of concern, a floating slab

track (FST) can be used as an effective countermeasure [158]. Here, the slab is supported by

a combination of rubber bearings and springs, as illustrated in Fig. C.1. In practice, the FST’s

design parameters, such as the slab’s natural frequency, need to be carefully selected in order

to isolate the motion of the track from the tunnel wall over certain frequencies [153].

Free surface

Slab bearings

Floating slab

Rail pads

Rail

Tunnel

Soil

Fig. C.1 Components of the floating slab track (FST) and the underground railway tunnel embedded in
a homogeneous half-space.

283



APPENDIX C. THE ITERATIVE PIPE-IN-PIPE (PIP) MODEL

−∞ ∞

x

(a)

k∗r = kr(1+ iηr)

Slab

Rails

Rail pads

Slab
support

k∗s = ks(1+ iηs)

mr Kr

ms Ks

(b)

Fig. C.2 (a) Side and (b) front views of the two degree of freedom (DOF) system representing an infinite,
continuous slab track coupled to the tunnel invert.

The slab and the two rails are modelled as infinite, continuous Euler-Bernoulli beams. It

is possible to account for discontinuous slabs, which induce parametric excitation, in the track

model [112], but this is not considered in this dissertation because it only has a significant effect

on high-speed trains. It is assumed that there is no phase-delay in wheel-rail roughness between

the two rails (strongly correlated), so both rails can be combined into a single beam with mass

per unit length mr and bending stiffness Kr = ErIr. Likewise, the material parameters of the

slab are defined as ms and Ks = EsIs. Although it is justifiable to assume the rails are strongly

correlated at low frequencies (long wavelengths) as the rails follow the track-bed profile, perfect

correlation is not observed at high frequencies [225].

The rail pads and slab sub-layer are modelled as uniformly distributed hysteretic springs

with stiffness per unit length k and loss factor η . The complex stiffnesses of the rail pads and

the slab sub-layer can be expressed as k∗r = kr(1+ iηr) and k∗s = ks(1+ iηs), respectively, using

the viscoelastic correspondence principle [18]. The frequency-independent, hysteretic damping

model characterises how the energy dissipated in structural materials depends on the vibration

amplitude. In contrast, the viscous damping model assumes the energy dissipated depends on

the frequency, which overpredicts the material damping at high frequencies [45]. Based on

these considerations, the vertical displacement of a slab track can be captured using the two

DOF system illustrated in Fig. C.2.

C.1.3 Tunnel

The tunnel is assumed to behave as a homogeneous, isotropic, linear-elastic continuum that is

longitudinally invariant. The governing equations of motion for the tunnel can be found by
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either modelling it as a thin-walled, cylindrical shell using shell theory [66, 237], if the wall

thickness is small compared to the mean radius, or as a thick-walled, cylindrical shell [82].

Between 1 and 200 Hz, there is good agreement in the dispersion curve characteristics of a free

tunnel modelled as a thin-shell and a thick-shell [112]. Since the thin-shell formulation only

causes a negligible reduction in computation time compared to the latter approach, and to be

consistent with the governing equations for the soil, the tunnel is modelled using the thick-shell

formulation. Therefore, the tunnel’s circular geometry is described by an inner radius rti and

an outer radius rto.

C.1.4 Soil

The soil surrounding the tunnel is assumed to be a homogeneous, isotropic, linear-viscoelastic

continuum in an infinite full-space. As described in Section 2.3.1, material damping in the soil

can be captured using a complex shear modulus G∗ = G(1+ iηG). The governing equations of

motion for the soil are found by modelling it as a thick, cylindrical cavity with an infinite outer

radius rso→ ∞ and an inner radius rsi = rto. The soil is assumed to be perfectly bonded to the

tunnel along the soil-tunnel interface. However, a study by Jones et al. [126] found that voids

at the soil-tunnel interface can cause the vibration predictions to vary by at least 5 dB.

C.2 The Excitation Force at the Rails

In this section, the distributed force at the rails is derived due to motion of the train’s axles

when a spatially harmonic roughness is applied at the wheel-rail interface.

In order to find the distributed force at the rails, the tunnel invert coupled to the slab sub-

layer of the two DOF system, shown in Fig. C.2, is modelled as a rigid foundation instead of

as an elastic structure. A rigid foundation is used so that the inverse Fourier transform of the

rail displacement, with respect to the x-domain, can be expressed analytically, as shown later in

Eq. (C.15). The analytical expression for the integral gives an exact solution compared to the

numerically computed IDFT (see Appendix A.2.1). Since the rubber rail pads have a relatively

lower stiffness compared to the concrete base, modelling the tunnel invert as a rigid foundation

will have a negligible effect on the force distribution applied onto the rails.

Consider a time-harmonic, vertical point force F̄ applied at x = 0 on the rails, as shown in

Fig. C.3. The point force, with angular excitation frequency ϖ , is defined in the (x, t)-domain:
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F̄(x, t) = F0 ·δ (x) · eiϖt , (C.1)

where δ (x) is the Dirac delta function centred at x = 0. Equation (C.1) is written using complex

notation for convenience, but it is worth noting that only the real part accounts for the physical

representation of the force. This complex notation will be used through the remainder of this

appendix.

The differential equations for the rails and slab in the (x, t)-domain are

Kr
∂ 4ȳr

∂x4 +mr
∂ 2ȳr

∂ t2 + k∗r (ȳr− ȳs) = F0 ·δ (x) · eiϖt , (C.2)

Ks
∂ 4ȳs

∂x4 +ms
∂ 2ȳs

∂ t2 + k∗s ȳs− k∗r (ȳr− ȳs) = 0 , (C.3)

where ȳr and ȳs are the displacements along the rails and slab, respectively. Equations (C.2)

and (C.3) are transformed into the wavenumber-time (ξ , t)-domain by applying the Fourier

transform with respect to the x-domain:

Krξ
4y̌r +mr

∂ 2y̌r

∂ t2 + k∗r (y̌r− y̌s) = F0 · eiϖt , (C.4)

Ksξ
4y̌s +ms

∂ 2y̌s

∂ t2 + k∗s y̌s− k∗r (y̌r− y̌s) = 0 , (C.5)

where the displacements y̌r and y̌s are defined in the (ξ , t)-domain. Equations (C.4) and (C.5)

are transformed into the wavenumber-frequency (ξ ,ω)-domain by taking the Fourier transform

with respect to the t-domain:

F̄

ȳr

ȳs

x

−∞ ∞

Fig. C.3 The slab track coupled to a rigid foundation is excited at x = 0 by a time-harmonic point force
F̄ , which causes the rails and slab to deform by ȳr and ȳs, respectively, in the space-time (x, t)-domain.
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Krξ
4ỹr−mrω

2ỹr + k∗r (ỹr− ỹs) = F0 ·2π(ω−ϖ) , (C.6)

Ksξ
4ỹs−msω

2ỹs + k∗s ỹs− k∗r (ỹr− ỹs) = 0 , (C.7)

where the displacements ỹr and ỹs are defined in the (ξ ,ω)-domain. Equations (C.6) and (C.7)

can be restated as the matrix equation:

A

ỹr

ỹs

=

F0 ·2π(ω−ϖ)

0

 , (C.8)

where the matrix A is

A =

Krξ
4−mrω

2 + k∗r −k∗r

−k∗r Ksξ
4−msω

2 + k∗r + k∗s

 . (C.9)

Solving for ỹr and ỹs in Eq. (C.8) gives

ỹr = F0 ·2π(ω−ϖ) · f2(ξ ,ω)

f1(ξ ,ω)
, (C.10)

ỹs = F0 ·2π(ω−ϖ) · k∗r
f1(ξ ,ω)

, (C.11)

where f1 = |A|, f2 = Ksξ
4−msω

2 + k∗r + k∗s , and |A| is the determinant of the matrix A. For

convenience, the computation of ỹs are not presented here; nonetheless, the approach detailed

below for solving ỹr can also be applied to solve for ỹs. Equation (C.10) is transformed into the

(ξ , t)-domain by applying the inverse Fourier transform with respect to the ω-domain:

y̌r(ξ , t) = F0 · eiϖt · f2(ξ ,ω = ϖ)

f1(ξ ,ω = ϖ)
. (C.12)

Note that the time-harmonic response of a function ū can be expressed as

ū(x, t) = u(x,ω = ϖ) · eiϖt . (C.13)

By taking the inverse Fourier transform of Eq. (C.12) with respect to the ξ -domain and applying

Eq. (C.13), the displacement at the rails can be expressed in the space-frequency (x,ω)-domain:

yr(x,ω) =
F0

2π
·
∫

∞

−∞

f2(ξ ,ω)

f1(ξ ,ω)
· eiξ xdξ , (C.14)
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where ω = ϖ is implied due to the time-harmonic nature of the excitation. Equation (C.14)

can be either solved numerically using the IDFT or analytically using contour integration (see

Appendix A.2). In this case, contour integration is used because it avoids the complexity of

discretising the ξ -domain when computing the IDFT. The complex function f1 is an eighth-

order polynomial, so the integrand in Eq. (C.14) contains eight complex poles. By applying the

residue theorem to find the equivalent contour integral of Eq. (C.14), the analytical expression

for yr/F0 can be written as

yr

F0
=



i
KrKs

·
4

∑
j=1

f2(ξ j,ω) · eiξ jx

Π j
= H+(x,ω) for x≥ 0 ,

−i
KrKs

·
8

∑
j=5

f2(ξ j,ω) · eiξ jx

Π j
= H−(x,ω) for x < 0 ,

(C.15)

where Π j = (ξ j− ξ1)(ξ j− ξ2) . . .(ξ j− ξ j−1)(ξ j− ξ j+1)(ξ j− ξ8), and H is the displacement

frequency-response function (FRF) of the rails due to F0. The roots of the equation f1 = 0 are

denoted as ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, with the roots in the first and second quadrants being

ξ1, ξ2, ξ3, ξ4 and the roots in the third and fourth quadrants being ξ5, ξ6, ξ7, ξ8.

Due to symmetry in the x-domain and the infinite nature of the slab track and the tunnel, the

rail FRF is only dependent on the magnitude of the separation s between the position where the

rail displacement yr is measured and the position where the point force F0 is applied. Hence,

Eq. (C.15) can be rewritten as

yr = H(s,ω)F0 . (C.16)

When a train, modelled using equally spaced unsprung axle masses, is positioned above the

track, the deformation of the rails becomes

yr = Hafa , (C.17)

where the vectors yr and fa describe the rail displacements and dynamic axle loads, respectively,

at the contact points between each axle mass and the rail, and Ha is the rail-axle displacement

FRF matrix. Each element in Ha is determined by the H component at the location of each

axle mass. To illustrate the general approach, the rail-axle displacement FRF matrix for a finite

number of five axles masses, with regular spacing La, is
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Ha =



H(0) H(La) H(2La) H(3La) H(4La)

H(La) H(0) H(La) H(2La) H(3La)

H(2La) H(La) H(0) H(La) H(2La)

H(3La) H(2La) H(La) H(0) H(La)

H(4La) H(3La) H(2La) H(La) H(0)


. (C.18)

The frequency ω is omitted from Eq. (C.18) for clarity, but the reader should note that the FRF

matrix is expressed in the (x,ω)-domain. This approach can easily be extended to include more

axle masses until the response converges for an infinite train. When five masses are considered,

the dynamic axle loads at the rail are fa =
{

F−2La,F−La,F0,FLa,F2La

}T, as shown in Fig. C.4,

where the superscript ‘T’ denotes the vector transpose. The number of axle masses Na must be

odd, with the central mass located at x = 0, to ensure a symmetrical distribution of axle loads

in the x-domain.

In Fig. C.4, the train axles are modelled as point masses with unsprung mass Ma and spacing

La. The vector yr +∆ describes the vertical displacements of the axles, where ∆ is the wheel-

rail roughness beneath each axle. The governing equation of motion for all the axles is

fa = ω
2Ma(yr +∆) . (C.19)

Substituting Eq. (C.17) into Eq. (C.19) and rearranging the equation gives

fa = ω
2Ma

[
I−ω

2MaHa

]−1
∆ , (C.20)

FLaF0F−La F2LaF−2La

Ma

−∞ ∞

x

La

(a)

yr

ys

∆

fa

(b)

Fig. C.4 (a) Side and (b) front views of the train-track system. The train axles are represented as point
masses with unsprung mass Ma and spacing La. The dynamic axle loads fa, the wheel-rail roughness ∆,
and the displacements of the rails yr and slab yb are described in the space-frequency (x,ω)-domain.
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where I is the Na×Na identity matrix. The distributed force Fb at the rails due to the five axle

masses is

Fr(x,ω) =F−2La ·δ (x+2La)+F−La ·δ (x+La)+F0 ·δ (x)+ . . .

FLa ·δ (x−La)+F2La ·δ (x−2La) .
(C.21)

Equation (C.21) can be generalised for Na axles:

Fr(x,ω) =
Nm

∑
p=−Nm

Fp ·δ (x− pLa) , (C.22)

where Nm = (Na−1)/2. The distributed force Fr is transformed into the force F̃r in the (ξ ,ω)-

domain by taking the Fourier transform of Eq. (C.22) with respect to the x-domain. Since each

point force Fp is multiplied by a delta function, which is shifted in the x-direction by a multiple

of La, the Fourier transform simply relates to applying the shifting principle:

F̃r(ξ ,ω) =
Nm

∑
p=−Nm

Fp · e−iξ pLa . (C.23)

C.3 The Driving-Point Response of the Tunnel Invert

In this section, the driving-point displacement FRF of the tunnel invert is derived in the (ξ ,ω)-

domain. This FRF is defined as the vertical displacement along the invert when a distributed

force is applied within a tunnel embedded in a full-space.

C.3.1 Modelling the Excitation at the Tunnel Invert

The tunnel response is defined in the cylindrical (r,θ ,x) coordinate system with respect to the

radial r-, circumferential θ -, and longitudinal x-directions. Consider a time-harmonic, radial

distributed force Ft applied along the x-axis of the tunnel invert, as illustrated in Fig. C.5a. The

distributed force, with angular excitation frequency ω , can be defined in the (x,ω)-domain by

the inverse Fourier transform:

Ft(x,ω) =
1

2π

∫
∞

−∞

F̃t · eiξ xdξ , (C.24)

where the force F̃t is defined in the (ξ ,ω)-domain.
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Ft

x
θ

−∞

∞

r

(a)

θ = 0

rti∆θ

∆θ

x = 0

1
rti∆θ

−∞

∞

(b)

Fig. C.5 Schematic diagram of (a) the distributed force Ft(x,ω) applied at the tunnel invert can be
constructed as (b) an appropriately scaled normal traction acting over an infinitesimal length rti∆θ .

The distributed force can be transformed into a normal traction acting over an infinitesimal

length rti∆θ that is centred at θ = 0, as illustrated in Fig. C.5b. The traction is scaled by a factor

of 1/rti∆θ so that it is equal in magnitude to the distributed force. Therefore, the components of

the traction wave-field q = {qr,qθ ,qx}T at the tunnel invert can be expressed as

qr =


1

2π

∫
∞

−∞

F̃t ·
1

rti∆θ
· eiξ xdξ for −∆θ

2 < θ < ∆θ

2 ,

0 otherwise ,

qr→
1

2π

∫
∞

−∞

F̃t ·
δ (θ)

rti
· eiξ xdξ as ∆θ → 0 ,

qθ = qx = 0 ,

(C.25)

where δ (θ) is the Dirac delta function centred at θ = 0, with period 2π . This means the term

δ (θ)/rti in Eq. (C.25) can be decomposed into a linear summation of n circumferential ring

modes using the Fourier series:

δ (θ)

rti
=

1
πrti

(
1
2
+

∞

∑
n=1

cosnθ

)
. (C.26)

The reader is referred to Appendix A.3 for additional details on the Fourier Series. Note that

Eq. (C.26) excludes sine terms from the Fourier series because δ (θ) is an even, symmetric

function about θ = 0. Substituting Eq. (C.26) into Eq. (C.25) gives
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q(r,θ ,x,ω) =


qr

qθ

qx

=
1

2π

∫
∞

−∞

∞

∑
n=0


q̃rn cosnθ

q̃θn sinnθ

q̃xn cosnθ

 · e
iξ xdξ , (C.27)

where the components of q̃n = {q̃rn, q̃θn, q̃xn}T in the modal-wavenumber-frequency (n,ξ ,ω)-

domain are

q̃rn(n,ξ ,ω) =


F̃t

2πrti
for n = 0 ,

F̃t

πrti
for n≥ 1 ,

q̃θn(n,ξ ,ω) = q̃xn(n,ξ ,ω) = 0 for all n .

(C.28)

It should be noted that the traction components in Eq. (C.28) are symmetric about θ = 0

because F̃t only acts in the vertical direction. As n increases, the modal traction wave-field q̃n

decreases in magnitude. Thus, in practice, only a finite number of modes are required to achieve

convergence over the frequency range of interest. All the governing equations of motion for

the tunnel and surrounding soil in the following two sections are transformed into the (n,ξ ,ω)-

domain to account for the tunnel’s longitudinal invariance and circumferential periodicity. If

a unit-magnitude, time-harmonic point force Ft(x,ω) = δ (x) is applied at the tunnel invert

instead, the equations in the remainder of this appendix can be used to find the soil response by

setting F̃t = 1 [67].

C.3.2 Modelling the Tunnel and the Soil

Section 2.3.1 describes how Navier’s equations for a homogeneous, isotropic continuum can be

decomposed into scalar φ and vector H potentials, as shown using Helmholtz decomposition

in Eqs. (2.10)–(2.12). In order to solve these equations, the potentials can be expressed in the

cylindrical coordinate system, as illustrated in Fig. C.6a, by separation of variables. When the

loading at the tunnel invert is symmetrical, the potentials are

φ = f (r) · cosnθ · ei(ωt+ξ x) , (C.29)

Hr = gr(r) · sinnθ · ei(ωt+ξ x) , (C.30)

Hθ = gθ (r) · cosnθ · ei(ωt+ξ x) , (C.31)
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Hx = gx(r) · sinnθ · ei(ωt+ξ x) . (C.32)

Once the expressions in Eqs. (C.29)–(C.32) are substituted into Eqs. (2.11) and (2.12), the

general solutions for f , gr, gθ and gx can be evaluated. These expressions are substituted back

into Eq. (2.10) to compute the displacement wave-field u = {ur,uθ ,ux}T of an infinitesimal

element, as shown in Fig. C.6b. The linear-elastic kinematic relationship and the generalised

Hooke’s Law, relating the displacements, strains and stresses in 3D space, are used to evaluate

the traction wave-field p = {σrr,σrθ ,σrx}T at the inner surface of an infinitesimal element, as

illustrated in Fig. C.6c. Therefore, the displacement and traction wave-fields for a thick-walled,

cylindrical shell can be expressed as the following matrix equations:

u(r,θ ,x,ω) =


ur

uθ

ux

=
1

2π

∫
∞

−∞

∞

∑
n=0

S1ũn1 · eiξ xdξ , (C.33)

p(r,θ ,x,ω) =


σrr

σrθ

σrx

=
1

2π

∫
∞

−∞

∞

∑
n=0

S1p̃n1 · eiξ xdξ , (C.34)

where

S1 =


cosnθ 0 0

0 sinnθ 0

0 0 cosnθ

 , (C.35)

ũn1(r,n,ξ ,ω) =


ũrn1

ũθn1

ũxn1

= Ũ1c̃1 , (C.36)

p̃n1(r,n,ξ ,ω) =


σ̃rrn1

σ̃rθn1

σ̃rxn1

= T̃r1c̃1 . (C.37)
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er

eθ

ex

rto

rti

r

x

θ

(a)

ux

ur

uθ

(b)

σxr

σθr

σrx

σrr

σxx

σθθ

σrθσxθ

σθx

(c)

Fig. C.6 Cylindrical (r,θ ,x) coordinate system used for an elastic continuum, showing (a) the principal
directions for an infinitesimal element of radius r and the sign convention applied at the infinitesimal
element’s inner surface for the (b) displacement and (c) traction components.

The vector c̃1 denotes the six unique coefficients in the general solutions for f , gr, gθ and gx

in Eqs. (C.29)–(C.32). Closed-form, analytical expressions for the 3×6 matrices Ũ1(r,n,ξ ,ω)

and T̃r1(r,n,ξ ,ω) are presented in Appendix D. It is important to note that Eqs. (C.33)–(C.37)

correspond to symmetric displacement and traction components, denoted by the subscript ‘1’

in the vectors and matrices. The derivation of Eqs. (C.36) and (C.37) is thoroughly presented

by Forrest [68], so it is not repeated here.

By evaluating Eqs. (C.36) and (C.37) at particular radii, the modal displacement and traction

wave-fields at the inner (r = rti) and outer (r = rto) tunnel walls can be found:

ũn1,ti(n,ξ ,ω) = Ũ1

∣∣∣
r=rti

c̃1 , (C.38)

p̃n1,ti(n,ξ ,ω) = T̃r1

∣∣∣
r=rti

c̃1 , (C.39)

ũn1,to(n,ξ ,ω) = Ũ1

∣∣∣
r=rto

c̃1 , (C.40)

−p̃n1,to(n,ξ ,ω) = T̃r1

∣∣∣
r=rto

c̃1 . (C.41)

Note the negative sign in Eq. (C.41) because the tractions at the outer and inner surfaces of an

infinitesimal element are equal in magnitude but act in opposite directions.
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As described in Appendix C.1.4, the soil is modelled as a thick, cylindrical cavity with an

infinite outer radius rso → ∞ and an inner radius rsi = rto. The radiation boundary condition

at infinity requires ũ→ 0 and p̃→ 0, which reduces the number of coefficients denoted by the

vector b̃1 to three. Hence, the modal displacement ũn1,st and traction p̃n1,st wave-fields at the

soil-tunnel interface are

ũn1,st(n,ξ ,ω) = Ũm1

∣∣∣
r=rto

b̃1 , (C.42)

p̃n1,st(n,ξ ,ω) = T̃m1

∣∣∣
r=rto

b̃1 , (C.43)

where the 3×3 matrices Ũm1(r,n,ξ ,ω) and T̃m1(r,n,ξ ,ω) contain the second, fourth and sixth

columns of Ũ1(r,n,ξ ,ω) and T̃r1(r,n,ξ ,ω), respectively.

If anti-symmetric loads are applied at the tunnel invert, the general form of the equations

will be similar to those given in Eqs. (C.33)–(C.43), but the subscript ‘2’ will be used instead

of ‘1’ to denote all the vectors and matrices. Closed-form expressions for the 3× 6 matrices

Ũ2(r,n,ξ ,ω) and T̃r2(r,n,ξ ,ω) are given in Appendix D, and the matrix S2 can be found by

simply replacing any cosnθ terms in Eq. (C.35) with sinnθ terms, and vice versa for the sinnθ

terms.

C.3.3 Coupling at the Soil-Tunnel Interface

Perfect bonding at the soil-tunnel interface means that the displacements must satisfy ũto = ũsi

due to compatibility. Assuming there are also no resultant forces at the soil-tunnel interface, the

tractions must satisfy p̃to =−p̃si due to equilibrium. Both of these relationships are imposed to

couple the tunnel and soil together. By substituting Eqs. (C.39)–(C.43) into the compatibility

and equilibrium relationships, the coefficient vectors c1 and b1 can be written as the following

matrix equations:

c̃1 =

 T̃r1

∣∣∣
r=rti

T̃r1

∣∣∣
r=rto
− T̃m1

∣∣∣
r=rto

Ũ−1
m1

∣∣∣
r=rto

Ũ1

∣∣∣
r=rto


−1p̃n1,ti

0

 ,

=

[
C̃11 C̃12

]p̃n1,ti

0

= C̃11q̃n ,

(C.44)
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b̃1 = Ũ−1
m1

∣∣∣
r=rto

Ũ1

∣∣∣
r=rto

c̃1 ,

= Ũ−1
m1

∣∣∣
r=rto

Ũ1

∣∣∣
r=rto

C̃11q̃n ,

(C.45)

where 0 is a 3×1 vector of zeros, and C̃11 and C̃12 are 6×3 sub-matrices. Note that q̃n = p̃n1,ti

in Eqs. (C.44) and (C.45).

As described in Appendix C.3.1, the traction wave-field q̃ at the tunnel invert due to the

force F̃t is purely symmetric, so Eq. (C.28) can be substituted into Eqs. (C.44) and (C.45).

Thus, the displacement wave-field ũti at the tunnel invert can be found in the (ξ ,ω)-domain

by computing the Fourier series summation of the symmetric and anti-symmetric displacement

wave-fields:

ũti(ξ ,ω) =
∞

∑
n=0

S1ũn1 +S2ũn2 =
∞

∑
n=0

S1 U1|r=rti
C11q̃n , (C.46)

where ũn2 = 0 because there is no anti-symmetric loading at the tunnel invert. Since only the

radial component of q̃n is non-zero, the vertical displacement ỹt at the tunnel invert is found by

evaluating Eq. (C.46) at θ = 0 to give

ỹt =
∞

∑
n=0

S1|θ=0 Ũ1

∣∣∣
r=rti

C̃11


q̃rn/F̃t

0

0

F̃t = H̃t F̃t , (C.47)

where H̃t is the driving-point displacement FRF of the tunnel invert.

C.4 The Excitation Force at the Tunnel Invert

In this section, the force F̃t that is transferred to the tunnel invert by the track is calculated when

the force F̃r, derived in Appendix C.2, is applied at the rails. The track and tunnel are coupled

by defining the equations of motion in the (ξ ,ω)-domain.

Figure C.7 illustrates the same slab track in Fig. C.2, but it is now coupled to an elastic

foundation. The track-tunnel system is divided into five sub-structures: the rails, the slab, the

tunnel invert, the rail pads, and the slab sub-layer. Coupling forces, denoted by G̃1, G̃2 and G̃3,

are imposed between the sub-structures.
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F̃rỹr

ỹs

ỹt

(a)

F̃r

G̃1

(b)

G̃2

G̃3

(c)

F̃t

(d)

G̃1

G̃2

(e)

G̃3

F̃t

(f)

Fig. C.7 Coupling of the five sub-structures in (a) the track-tunnel system: (b) the rails, (c) the slab, (d)
the tunnel invert, (e) the rail pads and (f) the slab sub-layer. The displacements and forces are defined in
the wavenumber-frequency (ξ ,ω)-domain.

To couple the sub-structures together, the displacement FRFs of the tunnel invert, and the

beams representing the rails and slab, need to be found. Note that the displacement FRF of the

tunnel invert H̃t was derived in the previous section.

Consider a time-harmonic, vertical distributed force P̄ applied to an Euler-Bernoulli beam.

The following equation describes the beam’s undamped motion in the (x, t)-domain [181]:

K
∂ 4ȳ
∂x4 +m

∂ 2ȳ
∂ t2 = P̄ , (C.48)

where ȳ is the beam’s vertical displacement. When the beam is driven at an angular frequency of

ω , the displacement and force can be expressed as ȳ(x, t) = ỹei(ξ x+ωt) and P̄(x, t) = P̃ei(ξ x+ωt),

respectively. Substituting these expressions into Eq. (C.48) gives

Kξ
4ỹ−mω

2ỹ = P̃ , (C.49)

where both the displacement and force are transformed into the (ξ ,ω)-domain. Rearranging

Eq. (C.49) results in

H̃b =
ỹ

P̃
=

1
Kξ 4−mω2 , (C.50)

where H̃b is the displacement FRF of an Euler-Bernoulli beam. Applying Eq. (C.50) to the rails

and slab beams gives:

H̃r =
1

Krξ 4−mrω2 , (C.51)
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H̃s =
1

Ksξ 4−msω2 , (C.52)

where H̃r and H̃s denote the displacement FRFs of the rails and slab, respectively.

The motion of the rails, slab and tunnel invert are described by the following equations:

ỹr = H̃r

(
F̃r− G̃1

)
, (C.53)

ỹs = H̃s

(
G̃2− G̃3

)
, (C.54)

ỹt = H̃t F̃t , (C.55)

where ỹr, ỹs and ỹt are the displacements at the rails, slab and tunnel invert, respectively. The

coupling forces at the rail pads and slab sub-layer satisfy the following equations:

G̃1 = G̃2 = k∗r (ỹr− ỹs) , (C.56)

G̃3 = F̃t = k∗s (ỹs− ỹt) . (C.57)

Equations (C.53)–(C.57) can be restated as the following matrix equation:

B


ỹr

ỹs

ỹt

=


H̃rF̃r

0

0

 , (C.58)

where the matrix B is

B =


1+ H̃rk∗r −H̃rk∗r 0

−H̃sk∗r 1+ H̃s
(
k∗s + k∗r

)
−H̃sk∗s

0 −H̃tk∗s 1+ H̃tk∗s

 . (C.59)

Solving Eq. (C.58) gives the following displacement FRFs for the track-tunnel system:

ỹr

F̃r
=

1
|B|
· H̃r

(
1+ H̃sk∗r +

(
H̃s + H̃t

)
k∗s + H̃sH̃tk∗r k∗s

)
, (C.60)

ỹs

F̃r
=

1
|B|
· H̃rH̃sk∗r

(
1+ H̃tk∗s

)
, (C.61)
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ỹt

F̃r
=

1
|B|
· H̃rH̃sH̃tk∗r k∗s , (C.62)

where the determinant of B is

|B|= 1+
(

H̃r + H̃s

)
k∗r +

(
H̃s + H̃t

)
k∗s +

(
H̃rH̃s + H̃rH̃t + H̃sH̃t

)
k∗r k∗s . (C.63)

Substituting Eq. (C.55) into Eq. (C.62) derives the force transmissibility ratio from the input

force F̃r at the rails to the output force F̃t at the tunnel invert:

F̃t

F̃r
=

1
|B|
· H̃rH̃sk∗r k∗s . (C.64)

By substituting Eq. (C.23) into Eq. (C.64), and the resulting equation into Eq. (C.28), the

modal traction wave-field q̃n at the tunnel invert can be expressed as a function of the wheel-

rail roughness vector ∆ at each axle’s position. This expression for q̃n can be substituted into

the coefficient vectors c̃1 and b̃1 in Eqs. (C.44) and (C.45), respectively. Once c̃1 and b̃1 are

solved, the following matrix equations can be used to find the modal displacement and traction

wave-fields at a radius R from a tunnel in a full-space:

ũn1(r,n,ξ ,ω) = Ũ1

∣∣∣
r=R

c̃1 and p̃n1(r,n,ξ ,ω) = T̃r1

∣∣∣
r=R

c̃1 , (C.65)

if rti < R < rto (within the tunnel wall), or

ũn1(r,n,ξ ,ω) = Ũm1

∣∣∣
r=R

b̃1 and p̃n1(r,n,ξ ,ω) = T̃m1

∣∣∣
r=R

b̃1 , (C.66)

if R≥ rto (within the soil).

C.5 The Scattered Wave-Fields at the Soil-Tunnel Interface

When the railway tunnel is close to the free surface or other soil-embedded structures, such as

foundations, the wave-fields reflected towards the tunnel can induce dynamic coupling. In this

section, the iterative wave-scattering approach is used to account for the through-soil coupling

between a tunnel and a pile-group; this is done by defining the scattered wave-field at the soil-

tunnel interface and revising the tunnel response after each iteration, as detailed in Section 6.1.

Note, the incident wave-fields at the soil-tunnel interface are calculated using the BEM

described in Appendix B.7, so the wave-fields are defined in the (x,ω)-domain, where x is a
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position vector. The wave-fields can be transformed into the (n,ξ ,ω)-domain by applying the

discrete Fourier transform (DFT), with respect to the x-domain, and then finding the discrete

Fourier series coefficients, with respect to the θ -domain (see Section 6.1).

Since the BEM is also defined in the Cartesian (x,y,z) coordinate system, the incident wave-

fields need to be transformed into the cylindrical (r,θ ,x) coordinate system of the PiP model

before the scattered wave-fields can be computed. Given a wave-field u′ = {ux,uy,uz}T in the

Cartesian coordinate system, the vector components can be transformed into u = {ur,uθ ,ux}T

in the cylindrical coordinate system using the matrix equation:

u = Qu′ , (C.67)

where the 3×3 transformation matrix Q is

Q =


0 sinθ −cosθ

0 cosθ sinθ

1 0 0

 . (C.68)

Once the incident displacement ũinc
st and traction p̃inc

st wave-fields at the soil-tunnel interface

are found, the waves can excite the outer tunnel wall in addition to the traction wave-field q̃ at

the tunnel invert, as illustrated in Fig. C.8. Note that the wave-fields reflected by the free surface

or the pile-group may contain (anti-)symmetric components, while q̃ only contains symmetric

components. By decomposing the wave-field at the soil-tunnel interface into an incident wave-

q̃

ũinc
st p̃inc

st

Pile-group

Free surface

Tunnel

Fig. C.8 Schematic diagram of the incident displacement ũinc
st and traction p̃inc

st wave-fields at the outer
tunnel wall and the traction wave-field q̃ at the tunnel invert, which are applied as external excitation on
the tunnel in the iterative PiP model.
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field and a scattered wave-field, as first described in Section 4.2, Eqs. (C.42) and (C.43) can be

rewritten as the following matrix equations:

ũn1,st− ũinc
n1,st = Ũm1

∣∣∣
r=rto

b̃1 , (C.69)

p̃n1,st− p̃inc
n1,st = T̃m1

∣∣∣
r=rto

b̃1 , (C.70)

where ũn1,st − ũinc
n1,st and p̃n1,st − p̃inc

n1,st are the scattered displacement and traction wave-fields,

respectively, due to symmetric loading. Similarly, the following matrix equations express the

scattered wave-fields due to anti-symmetric loading:

ũn2,st− ũinc
n2,st = Ũm2

∣∣∣
r=rto

b̃2 , (C.71)

p̃n2,st− p̃inc
n2,st = T̃m2

∣∣∣
r=rto

b̃2 . (C.72)

By applying the same coupling procedure detailed in Appendix C.3.3, Eqs. (C.69)–(C.72)

for the soil can be rearranged with the governing equations of motion for the tunnel to find the

revised coefficient vectors due to symmetric loading:

c̃1 =

[
C̃11 C̃12

]
q̃n

p̃inc
n1,st− T̃m1

∣∣∣
r=rto

Ũ−1
m1

∣∣∣
r=rto

ũinc
n1,st

 , (C.73)

b̃1 = Ũ−1
m1

∣∣∣
r=rto

(
Ũ1

∣∣∣
r=rto

c̃1− ũinc
n1,st

)
, (C.74)

and anti-symmetric loading:

c̃2 =

[
C̃21 C̃22

]
0

p̃inc
n2,st− T̃m2

∣∣∣
r=rto

Ũ−1
m2

∣∣∣
r=rto

ũinc
n2,st

 , (C.75)

b̃2 = Ũ−1
m2

∣∣∣
r=rto

(
Ũ2

∣∣∣
r=rto

c̃2− ũinc
n2,st

)
. (C.76)

Substituting Eqs. (C.73)–(C.76) into Eqs. (C.69)–(C.72) solves the revised response at the soil-

tunnel interface during each iteration.

Note, for the first iteration, ũinc
n1,st = p̃inc

n1,st = 0 because the free surface and pile-group have

not yet been excited by the railway tunnel. Thus, the tunnel response due to the first iteration

is equivalent to response predicted by the standard PiP model for a tunnel in a full-space [69].
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C.6 The Fictitious-Force Method

At present, the equations in Appendices C.3–C.5 describe the motion of a tunnel in a full-space.

However, for the purpose of modelling the ground-borne vibration of a realistic underground

tunnel, it needs to be embedded in a homogeneous, isotropic half-space. Hence, the fictitious-

force method [114] is used to find an equivalent set of fictitious line-loads that, when applied

in a homogeneous full-space where the tunnel cavity is filled in with soil material, produce the

same displacements at the soil-tunnel interface as when the cavity was present. The line-loads

are then used to excite a half-space by applying them at the same depth as the tunnel. Figure C.9

summarises the three main steps in the fictitious-force method:

1. calculate the displacement wave-field ũto at the soil-tunnel interface when the tunnel is

excited using the iterative PiP model in a full-space;

2. find the internal source p̃in that produces the same ũto when applied at the outer surface

of a virtual cylinder comprising of the soil material around the tunnel;

3. convert p̃in into an equivalent set of fictitious line-loads f̃ that are later applied around the

soil-tunnel interface in a homogenous half-space.

When the fictitious-force method is applied, an important assumption is that the near-field

displacement of the soil surrounding the tunnel is not influenced by the far-field displacement at

the free surface. Hence, the standard PiP model can only make valid predictions of the response

when the tunnel is at least two tunnel diameters below the free surface [113]. Nevertheless, the

iterative wave-scattering approach described in the prior section can approximate the coupling

between the free surface and the tunnel (see Section 6.2).

q̃ũinc
st p̃inc

st

(a)

p̃in
rtorti

(b)

f̃

rto

(c)

Fig. C.9 The fictitious-force method: (a) the excited tunnel embedded in a full-space; (b) the internal
source p̃in applied onto the outer surface of a virtual cylinder that produce the same tunnel response; and
(c) the source p̃in is converted into an equivalent set of fictitious line-loads f̃ that are later applied around
the soil-tunnel interface in a homogenous half-space.
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The internal source p̃in is computed by using the elastic continuum formulation described

in Appendix C.4 to derive the governing equations of motion for a virtual cylinder with radius

rto = rsi. Given that the displacement and traction wave-fields at r = 0 need to be finite, the

coefficients of the functions f , gr, gθ and gx in Eqs. (C.29)–(C.32) reduce to three; a detailed

explanation for this is provided by Hussein [112]. Therefore, the symmetric displacement and

traction wave-fields at the virtual cylinder’s surface are

ũn1,sc(n,ξ ,ω) = Ũp1

∣∣∣
r=rto

ẽ1 , (C.77)

−p̃n1,sc(n,ξ ,ω) = T̃p1

∣∣∣
r=rto

ẽ1 , (C.78)

where the 3× 3 matrices Ũp1(r,n,ξ ,ω) and T̃p1(r,n,ξ ,ω) contain the first, third and fifth

columns of the matrices Ũ1(r,n,ξ ,ω) and T̃r1(r,n,ξ ,ω), and the vector ẽ1 contains the three

coefficients. Matrix equations, which are similar to Eqs. (C.77) and (C.78), also exist for the

anti-symmetric wave-fields.

At the soil-tunnel interface, the internal source can be expressed as p̃in = p̃sc + p̃st due

to equilibrium, and the displacement wave-fields must satisfy ũst = ũsc due to compatibility.

After some manipulation of Eqs. (C.77) and (C.78), using the compatibility and equilibrium

conditions, the symmetric components of the internal source can be expressed as

p̃n1,in(n,ξ ,ω) = p̃n1,st− T̃p1

∣∣∣
r=rto

Ũp1

∣∣∣−1

r=rto
ũn1,st . (C.79)

Likewise, the anti-symmetric components of the internal source can be expressed as

p̃n2,in(n,ξ ,ω) = p̃n2,st− T̃p2

∣∣∣
r=rto

Ũp2

∣∣∣−1

r=rto
ũn2,st . (C.80)

The internal source p̃in in the (ξ ,ω)-domain is found by taking the Fourier series summation

of Eqs. (C.79) and (C.80):

p̃in(ξ ,ω) =
∞

∑
n=0

S1p̃n1,in +S2p̃n2,in . (C.81)

The internal source is converted into an equivalent set of M equidistant fictitious line-loads,

which are located around the soil-tunnel interface in a homogeneous half-space, as shown in

Fig. C.10. After applying the inverse of the coordinate transformation in Eq. (C.67) to transform

the wave-fields from the cylindrical coordinate system to the Cartesian coordinate system, each

fictitious line-load can be expressed in the (ξ ,ω)-domain as

303



APPENDIX C. THE ITERATIVE PIPE-IN-PIPE (PIP) MODEL

rto

z

θl

f̃(l)(ξ ,ω)

xy

Fig. C.10 The internal source is converted into an equivalent set of fictitious line-loads at M = 12
equidistant points around the soil-tunnel interface in a homogeneous half-space.

f̃(l)(ξ ,ω) =
{

f̃x, f̃y, f̃z

}T
for l = 1,2, . . . ,M . (C.82)

To find the displacement and traction wave-fields in a half-space due to p̃in, the fictitious

line-loads need to be expressed in the double-wavenumber-frequency (ξ ,γ,ω)-domain, where

γ is the wavenumber with respect to the space y-domain. Each line-load can be rewritten in the

(ξ ,y,z,ω)-domain:

f̃(l)(ξ ,y,z,ω) = f̃(l)(ξ ,ω) ·δ (y− rto sinθl) ·δ (z+ rto cosθl) . (C.83)

The y-domain is transformed into the γ-domain by applying the Fourier transform:

f̂(l)(ξ ,γ,z,ω) =
∫

∞

−∞

f̃(l)(ξ ,y,z,ω) · e−iγydy ,

=
∫

∞

−∞

f̃(l)(ξ ,ω) ·δ (y− rto sinθl) ·δ (z+ rto cosθl) · e−iγydy ,

= f̃(l)(ξ ,ω) · e−iγrto sinθl ·δ (z+ rto cosθl) .

(C.84)

C.7 The Far-Field Displacements and Tractions in the Soil

The far-field displacements induced by the fictitious line-loads in a half-space can be calculated

using the two-and-a-half-dimensional (2.5D) Green’s functions derived by Tadeu et al. [218]

for a homogeneous, isotropic half-space. The half-space Green’s functions can be expressed as
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Ĝhalf
u(l)(ξ ,γ,ω) =


Ĝhalf

uxx
Ĝhalf

uxy
Ĝhalf

uxz

Ĝhalf
uyx

Ĝhalf
uyy

Ĝhalf
uyz

Ĝhalf
uzx

Ĝhalf
uzy

Ĝhalf
uzz

 , (C.85)

where Ĝhalf
u(l) denotes the 3× 3 displacement Green’s function matrix for a half-space. Each

Ĝhalf
ui j

component in Ĝhalf
u(l) is a transfer function that relates the displacement ûi induced in the

soil by each fictitious line-load component f̂ j . By taking the sum of all M fictitious line loads

around the soil-tunnel interface, the displacement wave-field û in the soil can be expressed as

û(ξ ,γ,z,ω) =
{

ûx, ûy, ûz
}T

=
M

∑
l=1

Ĝhalf
u(l) f̂(l) . (C.86)

In their current form, the half-space Green’s functions can only compute the displacement

wave-fields in the soil. In order to compute the traction wave-fields, the linear-elastic kinematic

relationship and the generalised Hooke’s Law, for an isotropic continuum, are used to relate the

displacements, strains and stresses together. These respective relationships can be written in

index notation:

ε̂i j =
1
2
(
ûi, j + û j,i

)
, (C.87)

σ̂i j = λ ε̂kkδi j +2µε̂i j , (C.88)

where δi j is the Kronecker delta, ε̂i j is the infinitesimal strain tensor, σ̂i j is the Cauchy stress

tensor, ε̂kk = ε̂xx+ ε̂yy+ ε̂zz is the volumetric strain, and λ and µ are the elastic Lamé constants.

Therefore, the half-space Green’s functions for the stress wave-field can be derived. Similar to

Eq. (C.85), these Green’s functions can be expressed as

Ĝhalf
σ(l)(ξ ,γ,ω) =



Ĝhalf
σxx,x

Ĝhalf
σxx,y

Ĝhalf
σxx,z

Ĝhalf
σxy,x

Ĝhalf
σxy,y

Ĝhalf
σxy,z

Ĝhalf
σxz,x

Ĝhalf
σxz,y

Ĝhalf
σxz,z

Ĝhalf
σyy,x

Ĝhalf
σyy,y

Ĝσyy,z

Ĝhalf
σyz,x

Ĝhalf
σyz,y

Ĝhalf
σyz,z

Ĝhalf
σzz,x

Ĝhalf
σzz,y

Ĝhalf
σzz,z


, (C.89)
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where Ĝhalf
σ(l) denotes the 6× 3 stress Green’s function matrix for a half-space. Each Ĝhalf

σi j,k

component in Ĝhalf
σ(l) is a transfer function that relates the stress σ̂i j induced in the soil by each

fictitious line-load component f̂ j . Thus, the stress wave-fields in the soil can be expressed as

{
σ̂xx, σ̂xy, σ̂xz, σ̂yy, σ̂yz, σ̂zz

}T
=

M

∑
l=1

Ĝhalf
σ(l) f̂(l) . (C.90)

Only the six stress wave-fields in Eq. (C.90) are required to populate the Cauchy stress tensor

σ̂ because it is reasonable to assume that there is no net moment acting on the soil. This makes

the tensor symmetric (σ̂ij = σ̂ ji) due to conservation of angular momentum:

σ̂(ξ ,γ,z,ω) =


σ̂xx σ̂xy σ̂xz

σ̂xy σ̂yy σ̂yz

σ̂xz σ̂yz σ̂zz

 . (C.91)

The traction wave-field p̂ in the soil can then be evaluated by applying Cauchy’s formula:

p̂(ξ ,γ,z,ω) =
{

p̂x, p̂y, p̂z
}T

= σ̂n(x) , (C.92)

where n denotes the normal unit-vector to a surface centred at position vector x = {x,y,z}T in

the half-space.

In order to calculate the wave-fields in the space-frequency (x,ω)-domain, the inverse

Fourier transform is performed twice with respect to each wavenumber domain. For example,

the following integrals are used to compute the displacement wave-field:

ũ(ξ ,y,z,ω) =
1

2π

∫
∞

−∞

û(ξ ,γ,z,ω) · eiγydγ , (C.93)

u(x,ω) =
1

2π

∫
∞

−∞

ũ(ξ ,y,z,ω) · eiξ xdξ . (C.94)

A similar set of integrals to Eqs. (C.93) and (C.94) are used to compute the traction wave-field

p(x,ω). These integrals can be used in either the iterative or standard PiP models.

In particular for the standard PiP model, the integrals can be simplified if each j component

of u and p, denoted as u j and p j, has specific properties, such as being odd or even functions.

By applying Euler’s formula, Eqs. (C.93) and (C.94) can be rewritten as the following integrals:
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ũ j(ξ ,y,z,ω) =
1

2π

∫
∞

0

(
û j(ξ ,γ,z,ω)+ û j(ξ ,−γ,z,ω)

)
· cos(γy)dγ

+
i

2π

∫
∞

0

(
û j(ξ ,γ,z,ω)+ û j(ξ ,−γ,z,ω)

)
· sin(γy)dγ ,

(C.95)

u j(x,ω) =
1

2π

∫
∞

0

(
ũ j(ξ ,y,z,ω)+ ũ j(−ξ ,y,z,ω)

)
· cos(ξ x)dξ

+
i

2π

∫
∞

0

(
ũ j(ξ ,y,z,ω)+ ũ j(−ξ ,y,z,ω)

)
· sin(ξ x)dξ .

(C.96)

Table C.1 summarises the (anti-)symmetry arguments of the function u j(x,ω) on the xy-plane;

the same arguments also apply for the function p j(x,ω). If the functions u j(x,ω) and p j(x,ω)

are even with respect to the space x- and y-domains, the sine terms in Eqs. (C.95) and (C.96)

must be zero. Conversely, if the functions are odd, the cosine terms will be zero. It is important

to note that these (anti-)symmetric arguments are only true for the standard PiP model because,

in this case, the tunnel is excited by a symmetric traction distribution at the tunnel invert. By

applying the arguments in Table C.1, each displacement wave-field component u j(x,ω) can be

reduced to the following integrals:

ux(x,ω) =
1

π2

∫
∞

0

∫
∞

0
ûx(ξ ,γ,z,ω) · isin(ξ x) · cos(γy)dξ dγ , (C.97)

uy(x,ω) =
1

π2

∫
∞

0

∫
∞

0
ûy(ξ ,γ,z,ω) · cos(ξ x) · isin(γy)dξ dγ , (C.98)

uz(x,ω) =
1

π2

∫
∞

0

∫
∞

0
ûz(ξ ,γ,z,ω) · cos(ξ x) · cos(γy)dξ dγ . (C.99)

A similar set of integrals can be used to compute each traction wave-field component p j(x,ω).

Note that only the positive ξ and γ wavenumbers are used in these integrals, which improves

the computational efficiency of the standard PiP formulation.

(x,y,z) (−x,y,z) (x,−y,z) (−x,−y,z)

ux + − + −
uy + + − −
uz + + + +

Table C.1 (Anti-)symmetry arguments for each displacement wave-field component u j(x,ω) in the soil.
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Appendix D

Matrices for an Elastic Continuum

The closed-form, analytical expressions of the matrices that determine the displacement and

traction components for an elastic continuum are outlined in this appendix. In the equations

below, α2 = ξ 2− ω2

c2
P

, β 2 = ξ 2− ω2

c2
S

, and In and Kn are modified nth order Bessel functions of

the first and second kinds, respectively. The first and second elastic Lamé constants are λ and

µ , respectively. The phase speeds of P-waves and S-waves in the elastic medium are cP and cS,

respectively. The angular frequency is ω , and ξ is the longitudinal wavenumber.

The elements of the matrices Ũ1 and Ũ2, which determine the displacement components of

an elastic continuum with cylindrical geometry, are

u11 =
n
r

In(αr)+αIn+1(αr) ,

u12 =
n
r

Kn(αr)−αKn+1(αr) ,

u13 = iξ In+1(β r) ,

u14 = iξ Kn+1(β r) ,

u15 =
n
r

In(β r) ,

u16 =
n
r

Kn(β r) ,

u21 =−
n
r

In(αr) ,

u22 =−
n
r

Kn(αr) ,

u23 = iξ In+1(β r) ,

u24 = iξ Kn+1(β r) ,
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u25 =−
n
r

In(β r)−β In+1(β r) ,

u26 =−
n
r

Kn(β r)+βKn+1(β r) ,

u31 = iξ In(αr) ,

u32 = iξ Kn(αr) ,

u33 =−β In(β r) ,

u34 = βKn(β r) ,

u35 = 0 ,

u36 = 0 .

For symmetric loading, the matrix Ũ1 is given by

Ũ1(r,n,ξ ,ω) =


u11 u12 u13 u14 u15 u16

u21 u22 u23 u24 u25 u26

u31 u32 u33 u34 u35 u36

 . (D.1)

For anti-symmetric loading, the matrix Ũ2 is given by

Ũ2(r,n,ξ ,ω) =


u11 u12 −u13 −u14 −u15 −u16

−u21 −u22 u23 u24 u25 u26

u31 u32 −u33 −u34 −u35 −u36

 . (D.2)

The elements of the matrices T̃r1 and T̃r2, which determine the traction components of an

elastic continuum with cylindrical geometry, are

t11 =

(
2µ

(n2−n)
r2 −λξ

2 +(λ +2µ)α
2

)
In(αr)−2µ

α

r
In+1(αr) ,

t12 =

(
2µ

(n2−n)
r2 −λξ

2 +(λ +2µ)α
2

)
Kn(αr)+2µ

α

r
Kn+1(αr) ,

t13 = 2µiξ β In(β r)−2µiξ
(n+1)

r
In+1(β r) ,

t14 =−2µiξ βKn(β r)−2µiξ
(n+1)

r
Kn+1(β r) ,

t15 = 2µ
(n2−n)

r2 In(β r)+2µ
n
r

β In+1(β r) ,
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t16 = 2µ
(n2−n)

r2 Kn(β r)−2µ
n
r

βKn+1(β r) ,

t21 =−2µ
(n2−n)

r2 In(αr)−2µ
n
r

αIn+1(αr) ,

t22 =−2µ
(n2−n)

r2 Kn(αr)+2µ
n
r

αKn+1(αr) ,

t23 = µiξ β In(β r)−2µiξ
(n+1)

r
In+1(β r) ,

t24 =−µiξ βKn(β r)−2µiξ
(n+1)

r
Kn+1(β r) ,

t25 =

(
−2µ

(n2−n)
r2 −µβ

2

)
In(β r)+2µ

β

r
In+1(β r) ,

t26 =

(
−2µ

(n2−n)
r2 −µβ

2

)
Kn(β r)−2µ

β

r
Kn+1(β r) ,

t31 = 2µiξ In(αr)+2µiξ αIn+1(αr) ,

t32 = 2µiξ Kn(αr)−2µiξ αKn+1(αr) ,

t33 =−µ
n
r

β In(β r)−µ(ξ 2 +β
2)In+1(β r) ,

t34 = µ
n
r

βKn(β r)−µ(ξ 2 +β
2)Kn+1(β r) ,

t35 = µiξ
n
r

In(β r) ,

t36 = µiξ
n
r

Kn(β r) .

For symmetric loading, the matrix T̃r1 is given by

T̃r1(r,n,ξ ,ω) =


t11 t12 t13 t14 t15 t16

t21 t22 t23 t24 t25 t26

t31 t32 t33 t34 t35 t36

 . (D.3)

For anti-symmetric loading, the matrix T̃r2 is given by

T̃r2(r,n,ξ ,ω) =


t11 t12 −t13 −t14 −t15 −t16

−t21 −t22 t23 t24 t25 t26

t31 t32 −t33 −t34 −t35 −t36

 . (D.4)
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