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Summary

The morphogenesis of branched organs remains a subject of abiding interest. Although much

is known about the underlying signaling pathways, it remains unclear how macroscopic features

of branched organs, including their size, network topology and spatial patterning, are encoded.

Here we show that, in mouse mammary gland, kidney and human prostate, these features can be

explained quantitatively within a single unifying framework of branching and annihilating ran-

dom walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation

kinetics measurements, we propose that morphogenesis follows from the proliferative activity of

equipotent tips that stochastically branch and randomly explore their environment, but compete

neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts.

These results show that complex branched epithelial structures in mammalian tissues develop

as a self-organized process, reliant upon a strikingly simple, but generic, rule, without recourse

to a rigid and deterministic sequence of genetically programmed events.
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Introduction

Branching morphogenesis has fascinated biologists and mathematicians for centuries, both be-

cause of its complexity and ubiquity (Hogan, 1999; Lu and Werb, 2008; Metzger et al., 2008;

Iber and Menshykau, 2013). In higher organisms, many organs are organized into ductal tree-

like structures comprising tens of thousands of branches, which typically function to maximize

the surface of exchange between the epithelium and its lumen. Examples include lung, kidney,

prostate, liver, pancreas, the circulatory system and the mammary gland epithelium. Alongside
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metazoa, tree crowns and root systems as well as coral reefs often display a similar branched

organization (Harrison, 2010) raising the question of whether common mechanisms could un-

derlie their formation. Extensive investigations have identified features shared by all branched

organs, which are formed by repeated cycles of branching (either through side-branching or

tip-splitting), together with phases of ductal elongation (Iber and Menshykau, 2013).

Attempts to resolve the regulatory basis of branching morphogenesis have been targeted at

different length scales, offering contrasting perspectives: First, at the molecular scale, key regu-

latory signaling pathways, for instance controlling proliferation, have been resolved in multiple

organs (Iber and Menshykau, 2013). Second, at the cellular and mesoscopic scale, measure-

ments of gene expression patterns and branching shape have implicated Turing-like mechanisms

in the regulation of the first rounds of repetitive branching in the lung (Miura, 2008) and kidney

(Menshykau and Iber, 2013), as well as explaining the relative importance of side-branching

and tip-splitting in different organs (Guo et al., 2014). Alternative, potentially overlapping,

explanations based on mechanical (Gjorevski and Nelson, 2011) or viscous (Lubkin and Murray,

1995) models have been proposed, although direct in vivo confirmation is still lacking. However,

oriented cell divisions (Yu et al., 2009), collective cell migration (Huebner et al., 2016; Riccio

et al., 2016) and cytoskeleton-driven cell shape changes (Elliott et al., 2015; Kim et al., 2015)

have all been shown to play a role. Yet, even a perfect understanding of how single branching

events occur would not explain how thousands of tips and branches become coordinated at the

organ scale, to specify a complex ductal network.

Therefore, here, we adopt an alternative “non-reductionist” approach, and test whether the

statistical properties of branched networks can be predicted without extensively addressing the

detailed underlying molecular and cellular regulatory processes. Historically, the development of

such statistical approaches has been limited by the lack of high resolution biological data on the

complete organ structure. However, this problem is becoming alleviated by advances in imaging

techniques (Metzger et al., 2008; Sampogna et al., 2015; Short et al., 2014), which provide an
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ideal platform to question how a complex 3D organ structure is encoded. Does it form from

the unfolding of an intrinsic deterministic program or is it shaped by extrinsic influences and

stochastic processes?

In the following, we use detailed whole-organ imaging and 3D reconstructions of the mouse

mammary gland epithelium, mouse kidney and human prostate to address the spatiotemporal

dynamics of branching morphogenesis. We show that the detailed statistical properties of these

organs share key underlying features, which can be explained quantitatively through a remark-

ably simple and conserved design principle, based on the theory of branching and annihilating

random walks (BARWs). In this model, growing ductal tips follow the same, time-invariant,

statistical rules based on stochastic ductal branching and random exploration of space. How-

ever, when an active tip comes into proximity with a neighboring duct, it becomes irreversibly

inactive (differentiating and exiting cell cycle), leading to the termination of the duct. We show

that, together, these simple local rules are enough to allow the epithelium to grow in a self-

organized manner, into a complex ductal network with conserved statistical properties that are

quantitatively predicted by the model. Notably, these isotropic rules predict the emergence of

directional bias in the expansion of the ductal network, in the absence of any external guiding

signaling gradients. Finally, to challenge the model, we predict, and discover experimentally,

novel signatures of the inferred dynamics, which are consistent with an out-of-equilibrium “phase

transition”. Moreover, by adjusting experimentally the microenvironment of the branching tips

through local or systemic perturbations, we further test the predictive capacity of the model,

and gain insight into the molecular regulatory basis of the inferred collective cell dynamics.
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Results

Defining the ductal network structure of the mouse mammary gland epithe-

lium

To develop a model of tip-driven ductal morphogenesis, we began by considering the mammary

gland epithelium. At birth, the mouse mammary gland is specified as a small rudimentary tree-

like structure (Figure S1A). During puberty, precursors localized at ductal tips (termed terminal

end-buds) drive the expansion of a complex network through multiple rounds of tip bifurcation

and ductal elongation (Sternlicht, 2005) (Figure S1A). These networks are characterized by their

non-stereotypicity and structural heterogeneity of their subtrees (which we defined formally as

the parts of the ductal tree sharing a common branch ancestor at branch level le = 6 - which

reflects the approximate extent of the rudimentary structure prior to pubertal morphogenesis).

Indeed, some ductal subtrees become extremely large, containing as many as 30 generations of

consecutive branching events, while neighboring subtrees may terminate precipitously (Scheele

et al., 2017).

Recently, we showed through quantitative genetic lineage tracing methods that the complex-

ity of the mammary epithelium does not derive from intrinsic heterogeneity of tip precursor

populations, but from the stochastic fate decisions of equipotent tips, which either branch (bi-

furcate) or terminate (through cell cycle exit) with near equal-probability (Scheele et al., 2017),

suggestive of a local control of tip fate. However, such a focus on spatially-averaged models of

branching morphogenesis (Zubkov et al., 2015) cannot resolve the spatio-temporal dynamics and

mechanistic basis of the underlying regulatory program, nor its potential conservation in other

organs.

How can such a balance between tip termination and branching be regulated at the popu-

lation level? One possibility is that tip branching and termination rates are dependent on the

local epithelial density. Indeed, an increase in the termination rate, and/or a decrease in the
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branching rate, with local density can ensure that the system reaches a robust steady-state,

characterized by a balance between tip branching and termination (Supplemental Text, Section

1.1). Interestingly, such behavior generically produces glands of uniform spatial density (Supple-

mental Text, Section 1.3), a feature that we verified experimentally by reconstructions of whole

adult mammary glands (n = 14 glands, Figure 1A,B). However, to understand whether it is

branching or termination events that are actively regulated, we turned to quantitative measure-

ments. In particular, parameterization of the distribution of mammary branch lengths (defined

as the distance between consecutive branching points) revealed a strikingly exponential depen-

dence, with an average branch length that remains approximately constant over time (Scheele

et al., 2017). This observation suggests that the timing between consecutive branching events is

random and statistically uncorrelated, pointing to a stochastic and time-invariant program of tip

branching. This behavior stands in stark contrast with the early stages of lung morphogenesis,

where branch lengths for a given branching level are tightly controlled (Iber and Menshykau,

2013).

We then examined the spatial organization of the ductal network. As the mammary fat

pad constrains growth to a thin pancake-like geometry, ductal morphogenesis of the mammary

epithelium takes place in a near 2D setting. Against this background, inspection of whole gland

reconstructions revealed a strikingly low frequency of ductal crossovers (Figure 1A,C,D and

Figure S1) with terminated tips often residing close to an existing duct or the fat pad boundary

(Silberstein, 2001). This observation suggests that ductal elongation and branching may proceed

as a “default state”, with tip termination occurring only when tips come into proximity with

existing ducts. Such behavior is consistent with in vitro measurements (Nelson et al., 2006),

which show that ductal branching only occurs when remote from the other ducts, with tips that

remain close to neighbors remaining inactive.
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Mammary morphogenesis proceeds as a branching and annihilating random

walk

Interestingly, such a model of branching morphogenesis maps directly onto the theory of “branch-

ing and annihilating random walks”, a class of models studied extensively by physicists (Cardy

and Täuber, 1996), and showing that the dynamics of binary tip-splitting models converge over

time onto a common statistical behavior belonging to the universality class of “directed perco-

lation”. Here, we implemented a minimal model of branching morphogenesis, inspired by the

theory of BARWs, where tip dynamics involves only three processes (depicted in Figure 2A):

1. ducts elongate from active tips in a random direction with a speed v - “a persistent random

walk” - leaving behind a trail of static, non-proliferative ducts; 2. at any instant, ducts can

branch through stochastic tip bifurcation with a constant probability rb; and 3. ducts terminate

through tip inactivation when tips come within an annihilation radius Ra of an existing duct.

Significantly, numerical simulations of the model dynamics in the absence of physical bound-

ary constraints shows that the system reaches robustly a non-equilibrium steady-state in which

the frequency of branching and termination events becomes naturally balanced (Figure S2A,B

and Supplemental Text, Section 1.3). As tips are not observed to cross the boundary of the

fat pad, and frequently terminate in their proximity (Figure 1A), we further implemented sim-

ulations of branching morphogenesis in a rectangular box of length Lx and width Lz to mimic

these geometric constraints. Thus, the only key parameter of the model is the ratio between the

dimensions of the fat pad and the average branch length ld (the latter fixed by by the ratio v/rb,

Figure 1D). Indeed, this geometrical parameter was fitted to its measured value (Figure S2 and

Supplemental Text, Section 1.3.2 and 2.1.2 for details), so that all subsequent comparisons with

experiment represent the result of model predictions that do not involve the adjustment of any

free parameter.

While a visual inspection of a typical simulation output revealed good qualitative agreement

between the experiment and the theoretical predictions of the spatial organization (Figure 2B)

7



and topology (Figure 2C) of the mammary ductal network, can such a simple model dynamics

also provide quantitative insights? To address this question, we first quantified how the predicted

frequency of tip bifurcation versus termination events evolves with branch level (i.e. the number

of generations since the origin). Interestingly, as well as recapitulating long-term balance in the

frequency of tip bifurcation and termination, we found that the model faithfully reproduced the

dynamics of convergence towards balance, from an initial stage of symmetric branching early

in pubertal development, where the ductal density is low (Figure 2D, R2 = 0.73). Strikingly,

the model also predicted with high precision the heterogeneity of subtrees in mammary glands

(defined in Figure 2C), quantified both by the subtree size distribution (Figure 2E, R2 = 0.96)

and the subtree persistence to a given level (Figure 2F, R2 = 0.99).

Importantly, the spatial model accounted more accurately for the abundance of very large

subtrees, which appear due to spatial “priming” in low density regions, than the previously

published “zero-dimensional” model (Scheele et al., 2017) in which tip branching and termination

events are defined intrinsically and probabilistically (Supplemental Text, Section 3.4). More

generally, to explore the specificity of the model, we also considered the quantitative predictions

made by eight further classes of models, corresponding to various alternative proposals from the

literature. In each case, their applicability to the experimental data was found to be limited

(see Figure S3,S4A-D and Supplemental Text, Section 3 for a detailed discussion).

Branching and annihilating random walks reproduce the dynamics of mam-

mary morphogenesis

Having established how the final state of the mammary epithelium is specified, we turned to

examine whether the full dynamics of growth could also be predicted quantitatively. To gain

insight into the nature and parametric dependences of the growth dynamics, we considered

the hydrodynamic limit of the model in which the kinetics is captured by a mean-field theory, a

manifestation of a “two-species Fisher-KPP equation” (Fisher, 1937) (Supplemental Text, Section
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1.3): 
∂ta = D∇2a+ rba(1− a+i

n0
)

∂ti = rei+ rb
n0
a(a+ i)

(1)

where a(x, t) and i(x, t) denote, respectively, the local concentration of active (tip) and inactive

(duct) segments or “particles”. Referring to the description of the model dynamics above, active

particles diffuse with diffusion constantD while producing inactive segments at rate re (reflecting

the process of ductal elongation), branch at rate rb, and annihilate when they meet another

particle (reflecting the process of tip inactivation), giving rise to a logistic growth term saturating

at a total steady-state density, n0. (For details of how Eq. (1) emerges from the stochastic model,

and can be related to biological signaling pathways, see Supplemental Text, Sections 1.2 and 1.3).

Within this framework, both theory and numerical simulations predict that, during expansion,

active tips become self-organized into a narrow pulse at the growing front of the developing

epithelium, traveling at constant speed as a solitary wave, and leaving in its wake an inactive

ductal network of constant density (Figure 3A,B, Figure S4D-I and Movie S1).

From a biological perspective, this behavior provides a natural explanation for the constant

speed of invasion, a robust feature of mammary morphogenesis (Paine et al., 2016). At the same

time, the theory predicts that ducts should be patterned at a constant density (Figure 1A,B),

while active tips should localize in a predictable pulse-shape distribution at the edge of the invad-

ing front. To test these predictions quantitatively, we performed EdU-pulse labeling of mice at 5

weeks-of-age, approximately the mid-point of branching morphogenesis of the mammary gland,

and used whole gland reconstruction to both quantify the morphology of the network (Figure 3C

and Figure S4J) and define the regional localization of active tips (defined as proliferative tips

with > 50% of EdU+ cells, Figure S4J,K). Importantly, we found good qualitative agreement

between experiment and theory, with active tips present at the edge of the growing front and a

remarkably constant density of trailing ducts (Figure 3D). Quantitatively, analysis of the spatial

profile at the growing front showed that the density of active tips decayed exponentially both
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ahead and behind the front, with the decay length of the former larger than the latter by a

factor of (
√

2−1), all key and non-trivial predictions of the Fisher-KPP dynamics (Figure S4F-I

and Supplemental Text, Section 1.3.1).

Together, these results suggest that the global spatio-temporal dynamics of mammary ductal

morphogenesis can be understood as a process of self-organization following from a program of

stochastic tip bifurcation arrested by tip termination at the intersection with neighboring ducts.

Giant density fluctuations and self-organized directional invasion during mam-

mary morphogenesis

Although the proposed mechanism of branching morphogenesis can ensure a uniform density of

ducts, statistical fluctuations during growth generate large spatial variations in the distribution

of active EdU+ tips (Figure 3C). Indeed, the EdU-pulse assay reveals duct-depleted regions

formed either by chance mass termination of tips (Figure S5A) or locally “divergent” flows of

active tips randomly exploring other regions (Figure S5B), both behaviors being well-reproduced

in the numerical simulations of the model dynamics. Importantly, according to the rules of the

model dynamics, the trailing distribution of newly-formed ducts is frozen or “quenched” in the fat

pad. Therefore, we expect that the statistical fluctuations of epithelial density should persist in

the mature network. Thus, in addition to the prediction of the average density profiles of active

tips and mature ducts, the model makes further key quantitative predictions on the statistical

properties of spatial density fluctuations.

We thus quantified these fluctuations by defining the spatial average, 〈n〉L, and standard

deviation, (∆n)L, of duct volume in boxes of viable size L (see Figure 4A for a schematic).

For systems at equilibrium (in which each elemental process is equilibrated by its reverse, the

property of detailed balance), the central limit theorem requires that (∆n)L = 〈n〉αL with the

exponent α = 1/2. By contrast, in systems characterized by non-equilibrium fluctuations, α

takes values larger than 1/2 (Ramaswamy et al., 2003; Narayan et al., 2007) - the phenomenon
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of giant number fluctuations. Indeed, using the same parameter set as before, model simulations

revealed a robust power law dependence of (∆n)L (Figure 4B, green line), with an exponent

αtheory ' 0.66, that increased with decreasing branching rate (Figure S5C).

Turning to previous mammary gland reconstructions at 8 weeks-of-age, we found many

instances of large spatial density fluctuations that could not be accounted for by boundary effects,

or by the presence of obstacles such as lymph nodes. We therefore applied the same statistical

approach to determine experimentally the quantitative dependence of (∆n)L and 〈n〉L (n = 14

glands from 7 mice). Strikingly, this analysis revealed a robust power law dependence over more

than three orders of magnitude (black dots, Figure 4B), with an exponent of αexp. = 0.65± 0.02

(mean ± s.e.m), consistent with giant number fluctuations in vivo. Moreover, the experimental

data collapsed on the theoretical curve with extremely high precision (Figure 4B and Figure

S5D), emphasizing the robustness of the model prediction (R2 = 0.90, R2
log = 0.99). Overall,

this analysis uncovers an unexpected out-of-equilibrium feature of branching morphogenesis in

vivo, and serves as a strong test of the validity and predictive power of the BARW model. In

particular, this shows that, while the proposed mechanism enforces (in a self-organized manner),

a robust and constant averaged epithelial density, the local density is, as a result, only weakly

regulated.

A further ubiquitous feature of mammary gland morphogenesis is the appearance of direc-

tional biases in the growth of the ductal network, suggestive of a mechanism that guides tips

distally (Figure S5E-J). Indeed, quantification of the distribution of angles θ between a given

branch and the horizontal proximal-distal axis (Figure 4C and Figure S5K) revealed a two-fold

bias towards a proximal-to-distal orientation (Figure 4D). A puzzle in the field has been the

lack of identification of any large-scale gradient which could cause this anisotropy (Gjorevski

and Nelson, 2011). However, we reasoned that such a directional bias could derive naturally

from the BARW model, even in the absence of global chemical cues or gradients, since branches

growing towards the proximal region are more likely to terminate against existing ducts (i.e. less
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likely to give rise to progeny), resulting in an “effective” and self-organized bias emerging from

isotropic short-range interactions. To test this hypothesis, we computed the theoretical predic-

tion from the same model as above. Strikingly, the model was able to predict quantitatively the

experimental profile (R2 = 0.95, Figure 4D), suggesting that directional bias may simply emerge

as a natural consequence of the BARW model.

Molecular basis of tip termination and branching

Finally, given the importance of tip annihilation in our framework, we sought to test in a more

direct way its underlying molecular basis. Ectopic delivery of TGF-β by large pellets has been

shown to reversibly inhibit mammary ductal growth (Silberstein and Daniel, 1987). Therefore,

to test the local action of TGF-β signaling, we implanted small TGF-β1 soaked agarose beads

into the mammary fat pads of 4w-old mice, and waited for two weeks before sacrificing the mice

(Figure 5A and Supplemental Text, Section 4). Importantly, as predicted by the theoretical

simulations (Figure 5A, Figure S5L,M and Supplemental Text, Section 4 for details) and as

opposed to experiments with control beads soaked in PBS with 0.1% BSA (Figure 5B and Figure

S5N,O), we found that mammary ducts never colonized regions rich in TGF-β1 beads, while we

could observe numerous events of tips having stopped in their close proximity (100 − 200µm,

blue asterisks on Figure 5A). By contrast, the branching pattern was unaffected in regions

devoid of beads (Figure 5A and Figure S5P). These observations support the hypothesis that

chemical signaling from maturing ducts regulate the termination of active terminal end-buds

and implicate a role for TGF-β1 in providing the cue in a very local manner.

Next, we wished to assess quantitatively the effect of known positive regulators of branching

morphogenesis. We thus performed a similar assay using FGF10-soaked beads (Figure 5C), as

FGF10 has been identified as the predominant stromal FGF ligand expressed during pubertal

mammary morphogenesis (Zhang et al., 2014). Notably, we found that FGF10 induced a two-

fold increase in branching, consistent with its proposed role in driving branch initiation in in
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vitro studies (Zhang et al., 2014), with a corresponding densification of the network close to

beads, which was well-reproduced in model simulations (see Figure 5C and Supplemental Text,

Section 4.3 for details).

Together, these two sets of experiments provide both an additional test of the branching and

annihilating random walk framework, and a molecular basis for the regulatory program.

Kidney morphogenesis as a 3D branching-annihilating random walk

So far, we have restricted our analysis to the quasi 2D geometry of the mouse mammary gland.

Therefore, to address the potential generality of the model to other organs, we considered the

3D incarnation of the BARW model using the development of kidney as a 3D system. During

kidney morphogenesis, the ureteric bud, a single outgrowth that arises around embryonic day

11 (E11) from the nephric duct, arborizes to form the collecting system through a repeating

process of mainly dichotomous branching. During the course of this iterative branching process,

tips induce an aggregate of adjacent cap mesenchyme to undergo a mesenchymal to epithelial

transition, thereby initiating the first steps of nephrogenesis, i.e. the formation of nephrons, the

kidney’s filtration unit. These aggregates continue to mature while the renal connecting tubule

concomitantly forms and joins these nascent nephrons with branching collecting ducts (Short

et al., 2014; Sampogna et al., 2015; Cebrián et al., 2004). Crucially, as kidney development

progresses, a growing subset of older ureteric tips continue to fuse with adjacent maturing

nephrons. Once occupied, these tips are thought to no longer contribute to further branching

(Sampogna et al., 2015; Costantini and Kopan, 2010), so that they can be considered to have

undergone branching termination (Figure 6A).

Motivated by these findings, we thus considered whether the BARW model could predict

kidney morphogenesis. Indeed, the convergence of the BARW model towards balanced duc-

tal bifurcation and termination described above is quite general, applying in all dimensions.

However, simulating the model dynamics in 3D (Figure 6B,C and Figure S6) revealed that this
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convergence, for the same annihilation radius, occurs on much longer time scale (around 3 versus

10 generations, on average, Figure 6D). This behavior can be explained intuitively through dif-

ferences in the frequency of random collisions between ducts and tips, which become much rarer

in 3D as compared to 2D. From a biological perspective, this would mean that the topology

of 3D branched organs should appear to be predominantly geometric (deterministic) early in

development, displaying serial rounds of symmetric branching events without termination, and

only later becoming stochastic in character. Interestingly, such behavior is qualitatively consis-

tent with recent reports by several groups using detailed 3D reconstructions (Short et al., 2014;

Sampogna et al., 2015), showing structural heterogeneity and non-stereotypicity only at higher

branch levels. We therefore analyzed original and more recent data from (Sampogna et al.,

2015), involving kidney reconstructions from E12 to E19, to test whether the same framework

could apply during the seemingly non-stereotypical later phase of morphogenesis (Figure 6C and

Figure S6).

To develop a more precise quantitative comparison, we considered a numerical simulation of

the branching dynamics in an unconfined 3D geometry (Figure S6A-C and Movie S2). In this

case, the dynamics depends only on the ratio of the annihilation radius to the characteristic

duct length, R′
a = Ra/ld (Figure S6D-F). In contrast to the 2D setting, this parameter becomes

crucial in 3D, where the probability of two branches to cross becomes of measure zero. Moreover,

as kidney expands anisotropically, we renormalized all rate constants with respect to growth

orientation to match the experimental aspect ratio (Figure S6C and Supplemental Text, Section

5.1).

Interestingly, with R′
a = 0.25, a value close to that found for mouse mammary gland, we

could reproduce with high precision the growth characteristics of the E19 mouse kidney, as

exemplified by the evolution of the tip branching versus termination probability as a function of

branch level (Figure 6D). As mentioned above, ductal evolution is characterized by a protracted

early phase of symmetric branching, converging slowly towards balanced fate. R′
a is thus the
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key and only fitting parameter, and all subsequent comparisons to experiments do not involve

the adjustment of any additional parameter.

We then compared the experimental and theoretical topologies of kidneys (Figure 6F), as

well as the distributions of branch number as a function of branch level across a wide range of

developmental time points (Figure 7A and Figure S6H,I). Given the simplicity of the model,

these results showed remarkably good correspondence, revealing an initial phase of geometric

ductal expansion (with the number of branches at level n growing as 2n), followed by a plateauing

and widening of the distributions, a manifestation of increasing ductal termination (R2 = 0.93 at

E13, R2 = 0.95 at E15, R2 = 0.94 at E17 and R2 = 0.93 at E19, Figure S6I-L). Importantly, this

behavior does not arise from purely geometric anisotropies, as can be seen in the same simulation

without termination events (R′
a = 0) (Figure S6J), or with termination in an isotropic geometry

(Figure S7A,B).

Stochasticity in kidney morphogenesis and nephron number specification

In common with the mammary epithelium, growing tips were also predicted to become self-

organized into a pulse of activity at the periphery of the developing kidney, while newly-formed

nephrons were predicted to form as a secondary pulse behind this front (Figure 6E). Such

behavior matched the known organization of the kidney into a nephrogenic zone positioned at

the growing periphery of the tissue (Figure S7C) (Sampogna et al., 2015; Short et al., 2014).

Moreover, although the time evolution of both the active tip and nephron density can depend

on time variations in branching rate, plotting one versus the other provided a robust, time-

independent, test of model.

Using glomeruli, the capsule of capillaries located at the beginning of a nephron (Sampogna

et al., 2015), as a proxy for the number of maturing nephrons, we found that, after an initial

phase of pure tip production without any nephrons, both quantities robustly scaled experimen-

tally, with the relationship well-fit by a power law (Figure 7B and Figure S6K,L). Such scaling
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argues for simple time-invariant rules underlying nephron specification, since deviations from

this time-invariance would cause deviations from the observed scaling (as simulated in Figure

S7D). Crucially, we then compared this observation to our model, using the same parameter

set as that used above, and found a good prediction for the scaling relationship throughout the

entire time course of embryonic development (R2 = 0.78, R2
log = 0.97).

To determine whether the model could also predict the detailed heterogeneity of branch-

ing structures as well as the averages, we examined the size distributions and persistence of

subtrees at each time point (defined as in mammary gland). These were consistently broadly

distributed, indicative of large-scale heterogeneity, and adopted similar functional dependences

to their mammary counterparts, indicative of conserved (or universal) underlying properties.

Crucially, subtree persistences were consistently very well-fit by the model at all developmental

time points (Figure 7C, R2 = 0.95 at E13, R2 = 0.99 at E15, R2 = 0.97 at E17 and R2 = 0.97

at E19) as were subtree size distributions (Figure 7D, R2 = 0.89 at E13, R2 = 0.99 at E15,

R2 = 0.99 at E17 and R2 = 0.93 at E19).

Finally, although the model captures successfully several non-trivial features of the experi-

mental data, arguing for conserved rules underlying both mammary gland and kidney morpho-

genesis, we noted that kidney reconstructions were characterized by a rather regular spacing

between tips, which was consistently more ordered than the numerical simulations of the model

(Figure S6H,I). Indeed, although we found again evidence of giant number fluctuations (Figure

7E), the model slightly overestimated the amplitude of fluctuations (Figure 7E), hinting that

tips may be partially self-avoiding, as proposed by (Davies et al., 2014). To incorporate this

effect into the model, we proposed that tips, in addition to their persistent random motion, are

repulsed by neighboring tips and ducts when within a radius Rr. With vr defining the charac-

teristic speed change induced by this repulsion, the ratio fr = vr/v provides a measure of the

strength of the repulsion (Supplemental Text, Section 5.2.5). For large values of fr, termination

becomes extremely rare, yielding a behavior inconsistent with the observed degree of kidney
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heterogeneity and nephrogenesis kinetics. However, for small values of fr = 0.2 and a corre-

spondingly larger value of the annihilation radius Ra (Supplemental Text, Section 5.2.5), we

could still obtain a satisfactory fit to the data (Figure S6J,L), while obtaining a more ordered

kidney structure (Figure S6I). Interestingly, without further adjustment, this improved the fit

to the observed density fluctuations (R2 = 0.75, R2
log = 0.98 Figure 7E).

These findings argue that, although self-avoidance is not the dominant characteristic of

kidney morphogenesis (Figure S6M-O), it may cooperate with termination, i.e. nephron matu-

ration, to produce a partially ordered structure. Notably, both elements of the model arise from

purely local rules, maintaining the self-organizing character of branching morphogenesis. Indeed,

this might explain why it can proceed robustly in vitro in the absence of external chemical or

morphogen gradients (Davies et al., 2014).

Branching defects as a route to premature termination of branch-

ing morphogenesis

Based on these findings, we then questioned their implications for pathologies of branched organs,

such as kidney, which have been linked to defects in branching morphogenesis. For instance,

hypertension has been proposed to be at least partially explained by insufficient nephron number

(Brenner et al., 1988), whereas renal agenesis is a relatively frequent congenital defect in humans,

mirroring the GDNF knock-out in mice, that results in the formation of tiny rudimentary ductal

trees in the kidney (Pichel et al., 1996).

Interestingly, by the stochastic nature of the BARW, chance events may also lead to the pre-

mature extinction of active tips, which annihilate against the existing ductal network, inhibiting

kidney growth. Although the frequency of such events is negligibly small for the parameters

of wild-type tissue (Figure 7F and Figure S7E), higher values of the annihilation radius cause

the extinction probability to increase dramatically (Figure 7F, Figure S7F,G and Movie S3).
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Numerical simulations reveal a critical point above which early extinction always occurs (Fig-

ure 7F and Supplemental Text, Section 5.3), as well as a continuous transition to a non-zero

extinction probability below this critical value, which could explain the variable nature of small

ductal trees observed in GDNF knock-out mice.

Based on this insight, we examined branching morphogenesis on E15.5 littermate kidneys

that developed under the condition of mild maternal-fetal Vitamin A-deficiency as described

previously (Sampogna et al., 2015). These kidneys are nearly two-times smaller than wild-type

(Figure S7H-I), and display larger subtree size heterogeneity (n = 4 mice, P < 0.05), although

the total number of branches remains normal (Sampogna et al., 2015). Noting that Vitamin A

deficient kidneys were markedly smaller, we tested whether this measured decrease in branch

length was enough to reproduce the enhanced heterogeneity, by producing earlier crowding-

induced tip termination (Supplemental Text, Section 6). We found that a uniformly decreased

branch length was indeed sufficient to reproduce quantitatively the changes in branch generation

distribution in Vitamin A-deficient mice (Figure S7J). Further studies will be needed to address

more generically whether such mutant conditions can be understood in terms of ratio between

branch length and termination radius, i.e. of their proximity to the annihilating critical point.

Balance between tip termination and branching is also observed

in human prostate

Finally, to further explore the generality of the proposed mechanism of branching morphogenesis

we turned to consider the human prostate, which consists of independent subunits branching

independently from the urethra (McNeal, 1968). Organogenesis of the prostate shares key fea-

tures of tip driven morphogenesis as described above in breast and kidney formation: The adult

branching structure derives from epithelial ductal outgrowths into surrounding urogenital mes-

enchyme during embryogenesis and the immediate postnatal period (Powers and Marker, 2013).
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From the tracing studies of ductal subtrees, based on large-scale 3D reconstructions of adult

human prostates (n = 5 from 5 patients), some of which extended to 70 generations of branching,

we found that some regions terminate early, with tips forming differentiated acini structures,

while others grow extensively (Figure S7K). From a plot of the relative probability of tip termi-

nation versus branching, we found again that the overwhelming majority of subtrees displayed a

striking degree of balance between ductal termination and branching (Figure S7L). Additionally,

we found that the functional shape of the distribution was again similar to the other organs,

with a few subtrees growing to up to 10 times the average subtree size (Figure S7M). These

findings suggest that the paradigm uncovered for mammary gland and kidney morphogenesis

may be translated to a priori different biological settings.

Discussion

In this study, we have investigated how the branching pattern of the mouse mammary gland

epithelium and kidney emerge throughout development. Using a combination of whole-organ

3D reconstruction, proliferation kinetics and biophysical modeling, we have provided evidence

that branching morphogenesis proceeds from the spatial competition of equipotent tips, which

randomly explore space through a process of ductal elongation and stochastic branching. If this

process occurred without competition between growing tips, branched organs would be char-

acterized by stereotypical rounds of purely symmetric branching, with the number of branches

increasing with branch level n as 2n. Indeed, such behavior would serve to minimize the time

required to build a branched structure while filling space efficiently. However, reconstructions

of mouse mammary gland, kidney and human prostate reveal a different scenario, where tip

terminations occur even at the earliest stages of branching morphogenesis, and rapidly balance

tip bifurcations at the population level.

Based on the scarcity of ductal crossovers in mammary gland, we propose that the dominant

source of tip termination is the presence of neighboring ducts inhibiting growth. This provides a
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density-dependent feedback that naturally balances ductal branching and tip termination. This

hypothesis challenges the concept of branching morphogenesis occurring through a rigid and

deterministic sequence of genetically programmed events, and replaces it by a stochastic self-

organizing model of development. After deducing the branching rate from in vivo measurements,

our model predicts nearly perfectly and without adjustable parameters the network topology and

spatial structures of adult mammary glands, while also making a number of additional non-trivial

quantitative predictions.

In particular, it predicts the self-organization of active tips into a spatial domain or pulse,

localized at the growing front of the network, which invades into the fat pad at constant speed,

leaving behind a constant density of mature ducts. As a consequence, our model suggests that

the directional invasion of the mammary gland towards the distal end of the fat pad does not

need to be guided by a global chemotactic gradient, but instead can be explained quantitatively

in a self-organized manner from the short-range annihilating properties of tips and ducts. As

a non-equilibrium process, the BARW model predicts quantitatively the existence and scaling

dependence of hallmark giant density fluctuations, which we verify experimentally.

Finally, we have shown that the model applies equally well in the 3D setting of the de-

veloping mouse kidney, reproducing accurately the network heterogeneity, with some subtrees

colonizing large parts of the kidney while others terminate precipitously, as well as the spatio-

temporal pattern of nephrogenesis. Such behavior suggests that this self-organized pattern of

growth, consistent with the in vitro growth capability of kidney trees, may constitute a con-

served (universal) mechanism of branching morphogenesis across different tissues, shifting the

focus of future studies to the collective spatio-temporal fate control of branching and termination

of entire tips, rather than on individual cells.

From a molecular mechanistic perspective, some of the processes underlying tip termination

have been studied individually in several organs. In particular, inhibition of tip growth through

TGF-β signaling has been demonstrated in both mammary and prostate glands (Silberstein,
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2001; Powers and Marker, 2013). TGFβ is also a good candidate to provide crowding-induced

feedback (Silberstein, 2001), as it is known to be diffusible in the stroma, is secreted by mature

ducts, and has been shown both in vitro and in vivo to regulate the branching pattern of

pubertal morphogenesis (Silberstein and Daniel, 1987), as confirmed here. Moreover, it was

recently reported from in vitro culture experiments that the TGF-β superfamily, in particular

Bmp7, was also implicated in crossover avoidance in kidney (Davies et al., 2014).

Finally, these findings question the underlying molecular basis of the BARW model. Given

the diffusible nature of key underlying regulators, we investigated whether generic reaction-

diffusion models could explain the BARW phenomenology. Interestingly, we found that such

branching and annihilating dynamics can indeed emerge naturally and robustly from simple

Turing-Meinhardt type models (Meinhardt, 1982; Guo et al., 2014) involving only spatial inter-

actions of an activator, an inhibitor and a consumed substrate (Figure S7N and Supplemental

Text, Section 7). Taken as a whole, our study demonstrates that the morphogenesis of com-

plex ductal tissues can be understood and predicted quantitatively on the basis of a remarkably

simple set of local rules that direct the robust self-organization of a large-scale network structure.

Supplemental information

Supplemental Information includes seven figures and three movies.
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K14

Figure 1: Geometry and characteristics of murine mammary glands revealed by

quantitative reconstructions. (A) Quantitative reconstruction (top) and outline (bottom)

of a fourth mammary gland based on K14 staining (white), reproduced from (Scheele et al., 2017)

along with measurements of the fat pad dimensions Lx and Lz (red). (B) Density profile of ducts

along the rescaled antero-posterior axis. (C) Counting of ductal crossovers (normalized by total

number of ductal branches) reveal a low crossing probability. (D) Experimentally measured

ratio between the dimensions of the mammary fat pad (long axis Lx and short axis Ly) and

the average length of a branch ld, used for the simulations of the mammary gland. Error bars

represent mean and s.e.m. Scale bar 5 mm. See also Figure S1.
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Figure 2: A model based on branching and annihilating random walks predict quan-

titatively mammary branching morphogenesis. (A) Schematic of the model: Active ductal

tips choose between ductal elongation, stochastic branching through tip bifurcation or termi-

nation when in proximity to a neighboring duct. (B) Comparison between the experimental

and theoretical structure of mammary glands. (C) Comparison between the experimental and

theoretical topology of the trees, displaying large heterogeneity, with different subtrees (defined

as parts of the tree starting at level 6, delineated as dashed line, with a black box showing an

example of a subtree) growing to widely different sizes. (D-F) The BARW model predicts quan-

titatively the evolution of the probability for tips to terminate (D), the cumulative distribution

of subtree size (E), and the subtree persistence to a given branch generation number (F). Data

from (Scheele et al., 2017). Shaded area and error bars in (E,F) represent mean ± one s.d.

confidence intervals. Error bars in (D) represent mean and s.e.m. Black represents experiments

and green theoretical predictions from simulations. See also Figure S2.
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Figure 3: Branching and annihilating random walks reproduce the kinetics of mam-

mary invasion. (A) Numerical simulation of the model at different developmental time points

with ducts shown in black and active tips in red. (B) Theory predicts a self-organized solitary

pulse of active tips positioned at the growing edge of the network, leaving behind a trail of inac-

tive ducts of constant density. (C) 3D reconstruction of the fourth mammary gland following an

EdU pulse at 5w showing the position active tips. Active tips are localized preferentially at the

invasion front, mirroring qualitatively the prediction of the model. (D) Density profiles of ducts

(black) and fully proliferative tips (red), averaged over n = 4 glands, alongside theory (red and

black lines, respectively) revealing good quantitative agreement. Error bars represent mean and

s.e.m. Scale bar 5 mm. See also Figure S3.
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Figure 4: Self-organized properties of BARWs predict both giant density fluctua-

tions and emergent directional bias of ducts. (A,B) Experimental variance (y-axis) versus

average (x-axis) of duct volume in boxes of increasing size L (A). The variance in density of the

gland at different length scales grows as a power law (B, black bars), with an exponent larger

than 0.5 (B, thin and dashed black lines represent exponents of 0.5 and 1, respectively), in-

dicative of giant number fluctuations, and quantitatively predicted by the BARW model (green

line). (C,D) Self-organized directional invasion proceeds from local negative interactions: (C)

Representative example of the outline of an 8w fourth mammary gland (same as Figure 2B),

where the angle θ of each branch segment is calculated relative to the AP-axis; (D) experimental

(black bars) and theoretical (green line) distributions showing probabilities of finding a branch

growing with a given angle θ. The experimental distribution is predicted quantitatively by the

model even in the absence of a large-scale directional gradient. Error bars indicate mean and

s.e.m. See also Figure S4 and S5.
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Figure 5: Perturbation experiments reveal the molecular basis of termination and

branching. (A) Comparison between a representative reconstructed fourth mammary gland

(right) in the presence of TGF-β1 soaked beads (blue spheres), and a simulated theoretical

counter-part (left). This confirms tip termination in proximity (light blue asterisks) to TGF-β

soaked beads. (B) Comparison between a representative reconstructed fourth mammary gland

(right) in the presence of control inactive beads soaked in PBS with 0.1% BSA (blue spheres),

and a simulated theoretical counter-part (left). Contrary to TGF-β1 soaked beads, one observes

numerous bead-duct overlay. (C) Comparison between a representative reconstructed third

mammary gland (left) in the presence of FGF10 soaked beads (blue spheres), and a simulated

theoretical counter-part with local two-fold increase in branching rate (right). Active TEBs are

marked by red arrowheads. Scale bar 2 mm. See also Figure S5.
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Figure 6: Branching and annihilating random walks can reproduce quantitatively

the 3D kidney topology. (A) Schematic of kidney morphogenesis as a stochastic branching

process where active tips (red) either elongate, branch or stop contributing to branching via

nephron differentiation (yellow). (B) Reconstructions of murine kidney at E13, E15, E16 and

E18 (left to right) with generation number of segments color coded in blue. (C) Typical output of

numerical simulations of BARW model at corresponding time points. (D) Experimental versus

theoretical tip termination probability as a function of generation for mammary gland (purple)

and kidney (green), using the radius of termination R′
a = 0.25 as the only fitting parameter. (E)

The model predicts a self-organized zone of active tips growing at the periphery of the kidney,

followed spatially by a domain of tip termination, reminiscent of the nephrogenic zone observed

in vivo. (F) Tree representation of a E17 kidney branching topology (top, green) and the output

of the theory at the corresponding time point (bottom, black). Error bars represent mean and

s.e.m. See also Figure S6.
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Figure 7: Branching and annihilating random walks can reproduce quantitatively

the detailed properties of kidney. (A) Using the radius of termination R′
a as the only

free parameter, the model predicts well the number of segments per generation at different

time points of embryo development (E13, E15, E17 and E19 in, respectively, purple, green,

blue and orange). (B) Inactive tip number (assessed indirectly via glomeruli staining from

(Sampogna et al., 2015) in black, or glomeruli counting via a method of acid maturation from

(Cebrian et al., 2014) in blue) versus total number of tips, displaying a power law after a

phase of purely symmetric branching, predicted by the model (green). (C,D) Experimental

distributions of subtree persistence and size at different time points, showing consistently broad

distributions which are well-fit by the model. (E) Variance (y-axis) versus the average (x-axis)

duct volume in a box of size L (experiments in black) in kidney, showing an exponent larger

than 0.5 (thin and dashed black line represent exponents of 0.5 and 1 respectively), indicative

of giant number fluctuations. The green and blue lines indicate the prediction from the default

model (no repulsion, R′
a = 0.25), and a modified model with repulsion (fr = 0.33, R′

a = 0.5).

(F) Predicted survival probability of kidney morphogenesis vs. termination radius, showing a

phase transition above which kidney systematically become fully annihilated. Red dashed line

shows the best-fit value of Ra used in A-D. Shaded areas represent 95% confidence intervals and

error bars mean and s.e.m. See also Figure S7.
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