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This article introduces RELPRON, a large data set of subject and object relative clauses, for
the evaluation of methods in compositional distributional semantics. RELPRON targets an
intermediate level of grammatical complexity between content-word pairs and full sentences.
The task involves matching terms, such as “wisdom,” with representative properties, such as
“quality that experience teaches.” A unique feature of RELPRON is that it is built from attested
properties, but without the need for them to appear in relative clause format in the source corpus.
The article also presents some initial experiments on RELPRON, using a variety of composition
methods including simple baselines, arithmetic operators on vectors, and finally, more complex
methods in which argument-taking words are represented as tensors. The latter methods are
based on the Categorial framework, which is described in detail. The results show that vector
addition is difficult to beat—in line with the existing literature—but that an implementation
of the Categorial framework based on the Practical Lexical Function model is able to match the
performance of vector addition. The article finishes with an in-depth analysis of RELPRON,
showing how results vary across subject and object relative clauses, across different head
nouns, and how the methods perform on the subtasks necessary for capturing relative clause
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semantics, as well as providing a qualitative analysis highlighting some of the more common
errors. Our hope is that the competitive results presented here, in which the best systems are
on average ranking one out of every two properties correctly for a given term, will inspire new
approaches to the RELPRON ranking task and other tasks based on linguistically interesting
constructions.

1. Introduction

The field of compositional distributional semantics (Mitchell and Lapata 2008; Clark,
Coecke, and Sadrzadeh 2008; Baroni, Bernardi, and Zamparelli 2014) integrates
distributional semantic representations of words (Schütze 1998; Turney and Pantel
2010; Clark 2015) with formal methods for composing word representations into larger
phrases and sentences (Montague 1970; Dowty, Wall, and Peters 1981). In recent years
a number of composition methods have been proposed, including simple arithmetic
operations on distributional word vectors (Mitchell and Lapata 2008, 2010), multi-linear
operations involving higher-order representations of argument-taking words such as
verbs and adjectives (Baroni and Zamparelli 2010; Coecke, Sadrzadeh, and Clark
2010), and composition of distributed word vectors learned with neural networks
(Socher, Manning, and Ng 2010; Mikolov, Yih, and Zweig 2013). To compare such
approaches it is important to have high-quality data sets for evaluating composed
phrase representations at different levels of granularity and complexity.

Existing evaluation data sets fall largely into two categories. Some data sets
focus on two to three word phrases consisting of content words only (i.e., no closed-
class function words), including subject–verb, verb–object, subject–verb–object, and
adjective–noun combinations (Mitchell and Lapata 2008, 2010; Baroni and Zamparelli
2010; Vecchi, Baroni, and Zamparelli 2011; Grefenstette and Sadrzadeh 2011; Boleda
et al. 2012; Boleda et al. 2013; Lazaridou, Vecchi, and Baroni 2013). Such data sets
have been essential for evaluating the first generation of compositional distributional
models, but the relative grammatical simplicity of the phrases—in particular, the
absence of function words—leaves open a wide range of compositional phenomena in
natural language against which models must be evaluated.1

Other data sets, including those used in recent SemEval and *SEM Shared Tasks
(Agirre et al. 2012, 2013; Marelli et al. 2014; Agirre 2015), focus on pairs of full sentences,
some as long as 20 words or more. The evaluation is based on a numeric similarity
measure for each sentence pair. These data sets represent a more realistic task for lan-
guage technology applications, but reducing sentence similarity to a single value makes
it difficult to identify how a model performs on subparts of a sentence, or on specific
grammatical constructions, masking the areas where models need improvement.2

In the domain of syntactic parsing, a call has been made for “grammatical
construction-focused” parser evaluation (Rimell, Clark, and Steedman 2009; Bender
et al. 2011), focusing on individual, often challenging syntactic structures, in order to
tease out parser performance in these areas from overall accuracy scores. We make an
analogous call here, for a wider range of compositional phenomena to be investigated
in compositional distributional semantics in the near future.

1 Exceptions are the data sets of Bernardi et al. (2013) and Pham et al. (2013), which include determiners
such as two, most, and no in the phrases to be composed; see Section 2.1.

2 The pilot subtask on interpretable Semantic Textual Similarity (Agirre 2015) begins to address this
problem.

662



Rimell et al. A Relative Clause Evaluation Data Set

This article begins to answer that call by presenting RELPRON, a data set of noun
phrases consisting of a noun modified by a relative clause. For example, building that
hosts premieres is a noun phrase containing a subject relative clause (a relative clause
with an extracted subject), and in our data set describes a theater; while person that
helicopter saves contains an object relative clause, and in our data set describes a sur-
vivor. The RELPRON data set is primarily concerned with the analysis of a particular
type of closed-class function word, namely, relative pronouns (that, in our examples);
function words have traditionally been of greater concern than content words for
formal semantics, and we address how this focus can be extended to distributional
semantics.

Relative clauses, although still fairly short and therefore more manageable than
full sentences, are nevertheless more grammatically complex than the short phrases in
previous data sets, because of the relative pronoun and the long-distance relationship
between the verb and the extracted argument—known as the head noun of the relative
clause (building, person). The aim of RELPRON is to expand the variety of phrase types
on which compositional distributional semantic methods can be evaluated, thus help-
ing to build these methods up step-by-step to the full task of compositional sentence
representations.

RELPRON is a large (1,087 relative clauses), corpus-based, naturalistic data set, in-
cluding both subject and object relative clauses that modify a variety of concrete and
abstract nouns. The relative clauses are matched with terms and represent distinctive
properties of those terms, such as wisdom: quality that experience teaches, and bowler: player
that dominates batsman. A unique feature of RELPRON is that it is built from attested
properties of terms, but without the properties needing to appear in relative clause form
in the source corpus.

This article also presents some initial experiments on RELPRON, using a variety
of composition methods. We find that a simple arithmetic vector operation provides
a challenging baseline, in line with existing literature evaluating such methods, but we
are able to match this baseline using a more sophisticated method similar to the Practical
Lexical Function (PLF) model of Paperno, Pham, and Baroni (2014). We hope that the
compositional methods presented here will inspire new approaches.

The remainder of the article is organized as follows. Section 2 provides some
motivation for the RELPRON data set and the canonical ranking task that we imagine
RELPRON being used for, as well as a description of existing data sets designed to test
compositional distributional models. Section 3 describes the data set itself, and provides
a detailed description of how it was built. Section 4 surveys some of the existing
compositional methods that have been applied in distributional semantics, including
a short historical section describing work from cognitive science in the 1980s and 1990s.
Section 4.2 provides a fairly detailed description of the Categorial framework, which
provides the basis for the more complex composition methods that we have tested, as
well as a description of existing implementations of the framework. Section 5 provides
further details of the composition methods, including lower-level details of how the
vectors and tensors were built. Section 6 presents our results on the development
and test portions of RELPRON, comparing different composition methods and different
methods of building the vectors and tensors (including count-based vectors vs. neural
embeddings). Finally, Section 7 provides an in-depth analysis of RELPRON, showing
how results vary across subject and object relative clauses, across the different head
nouns, and how the methods perform on the subtasks necessary for capturing relative
pronoun semantics, as well as providing a qualitative analysis highlighting some of the
more common errors. Section 8 concludes.
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2. Motivation for RELPRON

Relative clauses have been suggested as an interesting test case for compositional
distributional semantic methods by Sadrzadeh, Clark, and Coecke (2013) and Baroni,
Bernardi, and Zamparelli (2014). One of the main inspirations for RELPRON is the pilot
experiment of Sadrzadeh, Clark, and Coecke, in which terms such as carnivore are
matched with descriptions such as animal who eats meat. However, the data set is small
and all examples are manually constructed. RELPRON aims to provide a larger, more
realistic, and more challenging testing ground for relative clause composition methods.

RELPRON falls into the general category of cross-level semantic similarity tasks
(Jurgens, Pilehvar, and Navigli 2014), which involve comparing phrases of different
lengths; in this case, a single word with a short phrase. The task of matching a
phrase with a single word can be thought of as a special case of paraphrase recogni-
tion. However, restricting one of the phrases to a word means that the experiment is
better controlled with regard to composition methods; because we know that we have
available high-quality, state-of-the-art distributional representations of single words, the
only unknown is the composed phrase representation, whereas a comparison of two
composed phrases can be more difficult to interpret.

The RELPRON task is similar to the definition classification task of Kartsaklis,
Sadrzadeh, and Pulman (2012), which targeted verb phrase composition. In that task,
methods were tested on their ability to match a term (in this case a verb) with its defini-
tion (usually of the form verb–object), such as embark: enter boat or vessel. However, the
definitions of Kartsaklis, Sadrzadeh, and Pulman were mined from a set of dictionaries,
whereas the RELPRON relative clauses are not limited to dictionary definitions.

Because there is an intuitive definition-like “flavor” to some relative clauses, we
considered using dictionary definitions as a source of relative clauses for the data
set. However, in practice we found that short, natural definitions in relative clause
format are rare in dictionaries. For example, definitions for the word telescope from three
different dictionaries, two of them learner dictionaries, are shown in Example (1).

telescope a monocular optical instrument possessing magnification for ob-
serving distant objects (Wiktionary)

telescope an important tool for astronomy that gathers and focuses light
(Simple Wikipedia)

telescope a cylinder-shaped device for making objects that are far away look
nearer and larger, using lenses and curved mirrors (Cambridge
Advanced Learner’s Dictionary)

(1)

Only the Simple Wikipedia definition uses a relative clause to define the term, and
would still require significant editing to shorten the phrase. Instead, we collect relative
clauses that express representative properties, not necessarily definitions, of the term,
as seen in Example (2).

telescope device that astronomers use
telescope device that detects planets
telescope device that observatory has

(2)
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Figure 1
Terminology used to describe the terms and properties in RELPRON: subject relative clause
above, object relative clause below.

Collecting properties rather than definitions allows for several phrases to be associated
with each term, and substantially broadens the number and type of corpora that can be
used as sources for the relative clauses.

Figure 1 introduces some terminology for describing the terms and properties in
the data set.3 A term is a single word which is associated with a set of descriptive
phrases. Semantically, each descriptive phrase is a property of the term. Syntactically,
each descriptive phrase is a noun phrase containing a relative clause. For the sake
of brevity, we often refer to the whole noun phrase containing the relative clause as a
relative clause, when we believe this will not lead to confusion. We say subject relative
clause or object relative clause (or subject property or object property) to indicate
which argument of the verb has been extracted. The head noun of the relative clause is
the extracted noun, and is a hypernym of the term; for example, device is a hypernym of
telescope. The subject or object that remains in situ in the clause we call the argument of
the verb, and the general term for the subject or object role is grammatical function. The
relative clauses in RELPRON are restrictive relative clauses, because they narrow down
the meaning of the head noun. In contrast, a non-restrictive relative clause provides
incidental situational information; for example, a device, which was in the room yesterday.

Our goal was to construct a data set containing at least 1,000 properties in the form
of relative clauses. To make the ranking task more challenging, we chose groups of terms
that share a head noun. For example, telescope, watch, button, and pipe are all subclasses
of device, so their relative clauses will all begin device that.... Because the relative clauses
are not definitions, each term can be associated with multiple properties; we selected
between four and ten properties per term.

The construction of RELPRON also takes a novel approach to producing evaluation
data sets that target a particular grammatical construction. Rather than mining exam-
ples of the construction directly from a corpus, which may be difficult because of data
sparsity, the properties in RELPRON did not have to occur in relative clause format
in our source corpus. Instead, the properties were obtained from subject–verb–object
(SVO) triples such as astronomer uses telescope, and joined with head nouns such as device.
The head nouns are also attested in the corpus as heads of relative clauses in general,
though not necessarily with these specific properties. The relative clauses in RELPRON
are therefore naturalistic, plausible, and corpus-based, without having to be attested in the
exact relative clause form in which they ultimately appear in the data set.

3 For readability, we sometimes present verbs and nouns in their inflected form in relative clauses in this
article, e.g., detects planets rather than detect planet. In the data set, all words are lemmatized.
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The canonical task on the RELPRON data set is conceived as a ranking task. Given a
term, a system must rank all properties by their similarity to the term. The ideal system
will rank all properties corresponding to that term above all other properties. This is
analogous to an Information Retrieval task (Manning, Raghavan, and Schütze 2008),
where the term is the query and the properties are the documents, with the identifying
properties for a given term as the relevant documents. Evaluation can make use of
standard Information Retrieval measures; in this article we use Mean Average Precision
(MAP).

2.1 Existing Evaluation Data Sets

Most existing evaluation data sets for compositional distributional semantics have
been based on small, fixed syntactic contexts, typically adjective–noun or subject–verb–
object. Mitchell and Lapata (2008) introduce an evaluation that has been adopted by
a number of other researchers. The task is to predict human similarity judgments on
subject–verb phrases, where the similarity rating depends on word sense disambigua-
tion in context. For example, horse run is more similar to horse gallop than to horse dissolve,
whereas colors run is more similar to colors dissolve than to colors gallop. Compositional
models are evaluated on how well their similarity judgments correlate with the human
judgments. Mitchell and Lapata (2010) introduce a phrase similarity data set consisting
of adjective–noun, verb–object, and noun–noun combinations, where the task again is
to produce similarity ratings that correlate well with human judgments. For example,
large number and great majority have high similarity in the gold-standard data, whereas
further evidence and low cost have low similarity. This data set formed the basis of a
shared task at the GEMS 2011 workshop (Padó and Peirsman 2011). Grefenstette and
Sadrzadeh (2011) and Kartsaklis and Sadrzadeh (2014) introduce analogous tasks for
subject–verb–object triples. In the disambiguation task, people try door is more similar
to people test door than to people judge door. In the similarity task, medication achieve result
and drug produce effect have high similarity ratings, whereas author write book and delegate
buy land have low ratings. Sentence pairs with mid-similarity ratings tend to have high
relatedness but are not mutually substitutable, such as team win match and people play
game.

Other evaluations have made use of the contrast between compositional and non-
compositional phrases, based on the intuition that a successful compositional model
should produce phrase vectors similar to the observed context vectors for composi-
tional phrases, but diverge from the observed context vectors for phrases known to be
non-compositional. Reddy, McCarthy, and Manandhar (2011) introduce an evaluation
based on compound nouns like climate change (compositional) and gravy train (non-
compositional). Boleda et al. (2012, 2013) evaluate models on a data set involving
intersective adjectives in phrases like white towel (compositional) and non-intersective
adjectives in phrases like black hole and false floor (non-compositional). The data from
the shared task of the ACL 2011 Distributional Semantics and Compositionality work-
shop (Biemann and Giesbrecht 2011) are also relevant in this context.

Also relevant for compositional distributional semantics are larger data sets for
full sentence similarity and entailment, including those from recent SemEval and
*SEM Shared Tasks (Agirre et al. 2012, 2013; Marelli et al. 2014; Agirre 2015). The
SemEval Semantic Textual Similarity tasks make use of a number of paraphrase
corpora that include text from news articles, headlines, tweets, image captions,
video descriptions, student work, online discussion forums, and statistical machine
translation. These corpora include sentences of widely varying length and quality. The
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SICK data set (Marelli et al. 2014) is based on image and video description corpora,
with named entities removed and other normalization steps applied, in order to
remove phenomena outside the scope of compositional distributional semantic models.
Additional sentences are added based on linguistic transformations that vary the
meaning of the original sentence in a controlled fashion. However, this data set is
not designed for targeted evaluation of models on specific compositional linguistic
phenomena, especially because many of the sentence pairs exhibit significant lexical
overlap; for example, An airplane is in the air, An airplane is flying in the air.

Some recent data sets have extended the range of linguistic phenomena that may be
evaluated. Cheung and Penn (2012) test the ability of compositional models to detect
semantic similarity in the presence of lexical and syntactic variation, for example,
among the sentences Pfizer buys Rinat, Pfizer paid several hundred million dollars for Rinat,
and Pfizer’s acquisition of Rinat. Bernardi et al. (2013) introduce a data set comparing
nouns to noun phrases, including determiners as function words; for example, duel is
compared to two opponents (similar), various opponents (dissimilar), and two engineers
(dissimilar). Pham et al. (2013) introduce a data set involving full sentences from a
limited grammar, where determiners and word order vary; for example, A man plays
a guitar is compared to A guitar plays a man and The man plays a guitar.

3. The RELPRON Data Set

One challenge in targeting specific grammatical constructions for evaluation is that
the more linguistically interesting constructions can be relatively rare in text corpora.
The development of RELPRON takes a novel approach, using a syntactic transformation
to assemble properties in relative clause form without the properties needing to appear
in this syntactic form in the source corpus. The properties were obtained from SVO
triples such as astronomer uses telescope, and joined with head nouns such as device, a
hypernym of telescope, to create the relative clause device that astronomer uses. The source
corpus used for constructing the data set was the union of a 2010 Wikipedia download
and the British National Corpus (BNC) (Burnard 2007). Here we describe the steps in
the construction of RELPRON.

3.1 Selection of Candidate Head Nouns

To make the data set maximally challenging, we designed it with multiple terms (hy-
ponyms) per head noun (hypernym). This ensures that the composition method cannot
rely solely on the similarity between the term and the head noun—say, traveler and
person—and fail to consider the verb and argument in the relative clause.

We began by selecting a set of candidate head nouns, each of which would need to
have a number of good candidate terms. To improve the naturalness of the examples,
we chose candidate head nouns from among nouns frequently used as heads of relative
clauses in the source corpus. We used a simple regular expression search for nouns
occurring in the pattern “a[n] NOUN that|who|which,” considering as candidates the
200 most frequent results. We manually excluded nouns where the that-clause could be
an argument of the noun, for example statement, decision, and belief.

One author (Rimell) used WordNet (Miller 1995) as a guide to manually narrow
down the candidates, with the following two requirements. First, the head nouns
should have a large number of WordNet hyponyms, to maximize the chances of finding
appropriate terms. The hyponyms were required to be direct children or grandchildren,
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because we wanted to avoid extremely abstract nouns like entity, which has many
distant hyponyms but few direct ones. Second, the hyponyms should be mostly
unigrams, because we wanted to avoid multiword terms such as remote control. For
simplicity, we considered only the first WordNet sense of each candidate head noun.4

Occasionally, we utilized the WordNet level one down from the frequent head noun
in the corpus; for example, the corpus search yielded substance, but we used its di-
rect hyponym material as a head noun, because it had more direct hyponyms of its
own.

3.2 Selection of Candidate Terms

Following the selection of candidate head nouns, we chose candidate terms. For each
candidate head noun, one author (Rimell) manually selected candidate terms from
among the full list of WordNet hyponyms. Only one word was chosen from each
WordNet synset, on the grounds that members of the same synset would not be suf-
ficiently distinguishable from one another by their properties. Generally this was the
first unigram member of the synset. For example, the WordNet hyponyms for building
include the synset in Example (3).

dormitory, dorm, residence hall, hall, student residence (3)

From this synset dormitory was kept as a candidate term. On the other hand, the
WordNet hyponyms for quality include the synset in Example (4).

economy, thriftiness (4)

Here economy was discarded on the basis that its primary sense is not relevant, and
thriftiness was kept as a candidate term. Entire synsets were discarded when they
seemed to be a poor example of the head noun, seemed to be too ambiguous, or
consisted only of multi-word or proper noun entries. A multi-word term was very
occasionally edited to make a unigram.

Next, potential terms were filtered by frequency. Based on initial exploration of
the data, we passed along for manual annotation only those candidate terms that
occurred at least 5,000 times in the source corpus, to maximize the chances that there
would be enough SVO triples for annotation (see Section 3.3). Finally, candidate terms
that appeared in WordNet as hyponyms of more than one candidate head noun were
removed. For example, surgery could be an activity or a room; school could be a building
or an organization. We believed that the inclusion of such terms would complicate the
data set and the evaluation unnecessarily.

3.3 Extraction of SVO Triples

For each candidate term, candidate properties were obtained from the source corpus by
extraction of all triples in which the term occurred in either subject or object position.
We used a version of the corpus lemmatized with Morpha (Minnen, Carroll, and Pearce

4 For example, for person the WordNet command for viewing the hyponym hierarchy was: wn person
-n1 -treen.
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Table 1
Sample SVO triples extracted from the source corpus for the candidate term traveler.

Object Subject

it allow traveler traveler make decision
website allow traveler traveler make journey
inn serve traveler traveler take road
business serve traveler traveler take advantage
she become traveler traveler have option
student become traveler traveler have luggage

2001) and parsed with the C&C Tools (Clark and Curran 2007) to obtain the subject and
object relations. A minimum frequency cutoff of six occurrences per verb, per grammat-
ical function (subject/object), per candidate term was applied. Properties containing
proper noun arguments were removed. Table 1 shows some sample triples extracted
from the corpus prior to manual annotation.

3.4 Conversion to Relative Clause Form

The candidate properties were converted to relative clause form prior to annotation, by
joining the head noun with the relevant part of the SVO triple, using the template term:
headnoun that V O for a subject property, or term: headnoun that S V for an object property.
Using the examples from Table 1, inn serve traveler thus became traveler: person that inn
serve; and traveler make journey became traveler: person that make journey. For simplicity,
that was used as the relative pronoun throughout the data set, although some head
nouns are more likely to appear with who or which.

3.5 Manual Annotation of Properties

The manual annotation step was the stage at which candidate head nouns, terms, and
properties were filtered for the final data set. Only terms with at least four good proper-
ties, and head nouns with at least four terms, were retained after this step. Annotation
was continued until the data set reached the desired size.

Most of the SVO triples extracted from the corpus did not make good identi-
fying properties for their terms. In many cases the SVO triple represented a prop-
erty which, although it could be true of the term, did not distinguish it from other
terms, especially from other hyponyms of the same head noun. Thus player that wins
tournament is not a good property for golfer: many golfers do win tournaments, but
so do other sports players. Similarly, organization that money helps is an accurate de-
scription of a charity, but does not distinguish it from other types of organizations.
In other cases, the extracted triple contained a light verb and/or a pronoun in ar-
gument position, such as golfer: player that he become, or charity: organization that these
include. These candidates were too vague to be meaningful properties. Some candi-
date properties were unsuitable because they were not generic. Among the candidates
for killer were person that win lottery and person that actor play, because some specific
killer in the corpus experienced these events. However, they are not descriptive of
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killers in general. Lexical ambiguity and parser errors contributed other unsuitable
candidates.

Two of the authors (Rimell and Clark) selected good properties from among the
candidates for each term, looking for what we called identifying properties. Such
a property should distinguish a term from other hyponyms of its head noun, both
those in RELPRON, and ideally other examples of the head noun as well (barring near-
synonyms such as traveler and voyager). As a further guideline for annotation, we
defined an identifying property as one that distinguishes a term because it mainly or
canonically applies to the term in question, compared with other examples of the head
noun. For example, person that tavern serves was not judged to be a good property for
traveler. It does not distinguish a traveler from other examples of people, because serving
travelers is not the main or canonical purpose of a tavern (since the majority of people
who eat and drink in a tavern are not traveling). On the other hand, person that hotel
accommodates is a good property, because, although hotels might accommodate other
people (e.g., for meetings or in a restaurant), their main and canonical purpose is to
accommodate travelers. A more subtle example is the property device that bomb has, a
candidate property for timer. This property does not uniquely distinguish timer from
among other devices, because bombs contain multiple (sub-)devices, but we felt that a
timer was such a canonical part of a bomb that this could be considered a good property
for timer.

For a given head noun (hypernym), the annotator began with a random selection
of ten candidate terms (hyponyms) from the candidates selected as in Section 3.2. For
each candidate term, the annotator chose up to ten good properties. Once ten had been
found, annotation stopped on that term, even if more good properties might have been
available, because the aim was a broad and balanced data set rather than recall of all
good properties. Not all terms had ten good properties. We required a minimum of
four, otherwise the candidate term was discarded and another candidate randomly
selected from the list of candidates. We also required a minimum of four terms per
head noun, otherwise the entire head noun was discarded and another chosen from the
list of candidates.

The two annotators originally worked together on a small set of data. After the
annotation guidelines were refined, the head nouns were divided between the an-
notators. As a final check, all properties were reviewed and discussed; any property
on which the annotators could not agree was discarded. We aimed for a balance of
subject and object relative clauses for each term, but this was not always possible. Some
head nouns were very unbalanced in this respect: person terms tended to have better
subject properties thanks to their agentivity, such as philosopher: person that interprets
world; whereas quality terms tended to have better object properties because of their
lack of agentivity, such as popularity: quality that artist achieves. We also tried to make the
data set more challenging by choosing properties with lexical confounders when we
noticed them. For example, team: organization that loses match and division: organization
that team joins share the lemma team, which means a ranking method cannot rely on
lexical overlap between the term and the property as an indicator of similarity. Table 2
shows the full list of selected properties for two terms in the development set, navy and
expert.

Finding terms with enough good properties was a challenging task. Overall, we
had to examine candidate properties for 284 candidate terms to yield the 138 terms
in the final data set. Most head nouns in the final data set have ten terms, but
two (player and woman) have only five terms, and one (scientist) has eight terms. The
final list of head nouns, in alphabetical order, is: activity, building, device, document,

670



Rimell et al. A Relative Clause Evaluation Data Set

Table 2
Full list of selected properties for the terms navy and expert from the development set.

OBJ navy: organization that sailor join OBJ expert: person that novice become
OBJ navy: organization that fleet destroy OBJ expert: person that panel include
OBJ navy: organization that vessel serve OBJ expert: person that lawyer consult
OBJ navy: organization that battleship fight OBJ expert: person that report cite
SBJ navy: organization that use submarine SBJ expert: person that have knowledge
SBJ navy: organization that maintain blockade SBJ expert: person that give tutorial
SBJ navy: organization that defeat fleet SBJ expert: person that describe model
SBJ navy: organization that protect waters SBJ expert: person that write treatise
SBJ navy: organization that establish blockade SBJ expert: person that develop curriculum
SBJ navy: organization that blockade port SBJ expert: person that author monograph

mammal, material, organization, person, phenomenon, player, quality, room, scientist, vehicle,
woman.5

3.6 Final Data Set

After annotation was complete, the data were divided into test and development
sets. The division was made by head noun (hypernym), with all terms (and therefore
properties) for a given head noun appearing in either the test or the development set.
Assuming that terms with the same head noun are good mutual confounders, this split
was chosen to maximize the difficulty of the task. We arranged the split so that both sets
contained a range of concrete and abstract head nouns. We also ensured that both sets
contained the maximum possible number of lexical confounders.

The final data set consists of 1,087 properties, comprising 15 head nouns and
138 terms. This is divided into a test set of 569 properties, comprising 8 head nouns
and 73 terms; and a development set of 518 properties, comprising 7 head nouns and
65 terms. The total number of terms and properties by head noun is given in Table 3.
Overall, the data set includes 565 subject and 522 object properties, with the distribution
across test and development sets as shown in Table 4.

4. Composition Methods: Background

This section surveys some of the composition methods that have been proposed in the
distributional semantics literature, focusing on the methods applied in this article. We
also include a short section giving more of a historical perspective, contrasting current
work in computational linguistics with that from cognitive science in the 1980s and
1990s. Although in our experiments we do use neural embeddings (Mikolov, Yih, and
Zweig 2013) as input vectors to the composition, we leave the application of neural
networks to the modeling of the relative pronoun itself as important future work.
Hence in this section we leave out work using recurrent or recursive neural networks

5 Readers may wonder why woman and not man was included in the data set. This was a simple matter of
statistics: man did not have enough WordNet hyponyms with sufficient corpus frequency, according to
the criteria in Section 3.2.
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Table 3
Total number of terms and properties by head noun in RELPRON.

Test Set Development Set
Head noun Terms Props Head noun Terms Props

phenomenon 10 80 quality 10 81
activity 10 83 organization 10 99
material 10 82 device 10 76
room 10 80 building 10 69
vehicle 10 79 document 10 69
mammal 10 70 person 10 86
woman 5 37 player 5 38
scientist 8 58

TOTAL 73 569 TOTAL 65 518

specifically designed for composition, such as Socher, Manning, and Ng (2010), Socher
et al. (2013), and Hermann, Grefenstette, and Blunsom (2013).

In this section, we are agnostic about how the vector representations are built.
Many of the composition techniques we describe can be equally applied to “classical”
distributional vectors built using count methods (Turney and Pantel 2010; Clark 2015)
and vectors built using neural embedding techniques. It may be that some composition
techniques work better with one type of vector or the other—for example, there is evi-
dence that elementwise multiplication performs better with count methods—although
research comparing the two vector-building methods is still in its infancy (Baroni, Dinu,
and Kruszewski 2014; Levy and Goldberg 2014; Milajevs et al. 2014; Levy et al. 2015).
Section 5 provides details of how our vector representations are built in practice.

4.1 Simple Operators on Vectors

The simplest method of combining two distributional representations, for example,
vectors for fast and car, is to perform some elementwise combination, such as vector

Table 4
Total number of subject and object properties by head noun in RELPRON.

Test Set Development Set
Head noun Sbj Obj Head noun Sbj Obj

phenomenon 38 42 quality 16 65
activity 46 37 organization 54 45
material 30 52 device 40 36
room 38 42 building 37 32
vehicle 38 41 document 21 48
mammal 41 29 person 59 27
woman 20 17 player 29 9
scientist 58 0

TOTAL 309 260 TOTAL 256 262
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addition or elementwise multiplication. As a method of integrating formal and distri-
butional semantics, these operators appear to be clearly inadequate a priori, not least
because they are commutative, and so do not respect word order. Despite this fact, there
is a large literature investigating how such operators can be used for phrasal composi-
tion, starting with the work of Mitchell and Lapata (2008, 2010) (M&L subsequently).

The additive model from M&L has the general form:

p = Au + Bv (5)

where u and v are word (column) vectors in Rn (e.g.,
−→
fast and−→car), p ∈ Rn is the vector for

the phrase resulting from composition of u and v (
−−−−→
fast car), and A ∈ Rn×n and B ∈ Rn×n

are matrices that determine the contribution of u and v to p. However, M&L make the
simplifying assumption that only the ith components of u and v contribute to the ith
component of p, which yields the form:

p = αu + βv (6)

The parameters α,β ∈ R allow the contributions of u and v to be weighted differently,
providing a minimal level of syntax-awareness to the model. For example, if u is the
vector representation for an adjective, and v the vector representation for a noun, v may
be given a higher weight because it provides the linguistic head for the resulting noun
phrase; whereas if u is an intransitive verb and v a noun, u may be weighted more
highly.

The multiplicative model presented by M&L has the general form:

p = C (u⊗ v) (7)

where u⊗ v is the tensor, or outer, product of u and v, and C is a tensor of order 3, which
projects the tensor product of u and v onto the space of p (which is assumed to be the
same space as that containing u and v). Under similar simplifying assumptions to the
additive model, the multiplicative model has the form:

p = u� v (8)

where � represents elementwise multiplication, that is, pi = ui · vi, where pi is the ith
coefficient of p. In this simpler model, C simply picks out the diagonal in the u⊗ v
tensor.

One obvious question to consider is how well such simple operators scale when
applied to phrases or sentences longer than a few words. Polajnar, Rimell, and Clark
(2014) and Polajnar and Clark (2014) suggest that elementwise multiplication performs
badly in this respect, with the quality of the composed representation degrading quickly
as the number of composition operations increases. Vector addition is more stable, but
Polajnar, Rimell, and Clark suggest that the quality of the composed representation
degrades after around 10 binary composition operations, even with addition.

M&L also introduce a method that aims to interpret one of the constituent vectors
as an operator, despite its lying in the same semantic space as the argument. A dilation
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operation decomposes v (the argument) into two components, one parallel to u and the
other perpendicular, and dilates v in the direction of u:

p = (u · u)v + (λ− 1)(u · v)u (9)

M&L also consider the tensor product, which is an instance of the general multi-
plicative model described above (when C is the identity operator), and described in
Section 4.4, but find that it performs poorly on their phrasal composition tasks and data
sets, using classical count vectors. One of the potential problems with the tensor product
is that the resulting phrase vector lives in a different vector space from the argument
vectors, so that

−→
fast⊗−→car, for example, lives in a different space from −→car. Hence M&L

also discuss circular convolution, a technique for projecting a vector in a tensor product
space onto the original vector space components (Plate 1991).

4.2 The Categorial Framework

Because the majority of the methods used in our experiments are variants of the
Categorial framework, this section provides a fairly detailed description of that
framework.

In an attempt to unite a formal, Montague-style semantics (Montague 1970; Dowty,
Wall, and Peters 1981) with a distributional semantics, Coecke, Sadrzadeh, and Clark
(2010) and Baroni, Bernardi, and Zamparelli (2014) both make the observation that the
semantics of argument-taking words such as verbs and adjectives can be represented
using multi-linear algebraic objects.6 This is the basis for the Categorial framework
(Coecke, Sadrzadeh, and Clark 2010), which uses higher-order tensors—a generaliza-
tion of matrices—for words which take more than one argument. The Categorial frame-
work has vectors and their multi-linear analogues as native elements, and provides
a natural operation for composition, namely, tensor contraction (see Section 4.2.2). It
therefore stands in contrast to frameworks for compositional distributional semantics
that effectively take the logic of formal semantics as a starting point, and use distribu-
tional semantics to enrich the logical representations (Garrette, Erk, and Mooney 2011;
Lewis and Steedman 2013; Herbelot and Copestake 2015).

It is important to note that the Categorial framework makes no commitment to
how the multi-linear algebraic objects are realized, only a commitment to their shape
and how they are combined. In particular, the vector spaces corresponding to atomic
categories, such as noun and sentence, do not have to be distributional in the classical
sense; they could be distributed in the connectionist sense (Smolensky 1990), where the
basis vectors themselves are not readily interpretable (the neural embeddings that we
use in this article fall into this category).

4.2.1 Composition as Matrix Multiplication. A useful starting point in describing the
framework is adjectival modification. In fact, the proposal in Baroni and Zamparelli
(2010) (B&Z hereafter) to model the meanings of adjectives as matrices can be seen as

6 Another way to motivate this idea is that some words naturally have more of an “operator semantics,”
whereas others have more of a “content semantics.” Socher et al. (2012, 2013) realize this distinction in the
context of a recursive neural network, using matrices for the operator semantics and vectors for the
content semantics. Every word has both associated types, but the network may learn to put more weight
on one type or the other for a given word.
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red −→car
−−−→
red car

R11 R12 R13 R14 R15
R21 R22 R23 R24 R25
R31 R32 R33 R34 R35
R41 R42 R43 R44 R45
R51 R52 R53 R54 R55




c1
c2
c3
c4
c5

 =


rc1
rc2
rc3
rc4
rc5


Figure 2
Matrix mulitiplication for adjective–noun combinations.

an instance of the Categorial framework (and also an instance of the general framework
described in Baroni, Bernardi, and Zamparelli [2014]). The insight in B&Z is that, in
theoretical linguistics, adjectives are typically thought of as having a functional role,
mapping noun denotations to noun denotations. B&Z make the transition to vector
spaces by arguing that, in linear algebra, functions are represented as matrices (the
linear maps). This insight provides an obvious answer to the question of what the com-
position operator should be in this framework, namely, matrix multiplication. Figure 2
shows how the context vector for car is multiplied by the matrix for red to produce the
vector for red car. In this simple example, the noun space containing −→car = (c1, . . . , c5)T

and
−−−→
red car = (rc1, . . . , rc5)T has five basis vectors, which means that a 5× 5 matrix, red,

is required for the adjective.
The second contribution of B&Z is to propose a method for learning the red matrix

from supervised training data. What should the gold-standard representation for
−−−→
red car

be? B&Z argue that, given large enough corpora, it should ideally be the context vector
for the compound red car; in other words, the vector for red car should be built in exactly
the same way as the vector for car. These context vectors for phrases are generally
known as holistic vectors. The reason for the adjective matrix is that it allows the
generalization of adjective–noun combinations beyond those seen in the training data.
The details of the B&Z training process will not be covered in this section, but briefly,
the process is to find all examples of adjective–noun pairs in a large training corpus,
and then use standard linear regression techniques to obtain matrices for each adjective
in the training data. These learned matrices can then be used to generalize beyond
the seen adjective–noun pairs. So if tasty artichoke, for example, has not been seen
in the training data (or perhaps seen infrequently), the prediction for the con-
text vector

−−−−−−−−−→
tasty artichoke can be obtained, as long as there are enough examples of

tasty X in the data to obtain the tasty matrix (via linear regression), and enough oc-
currences of artichoke to obtain the

−−−−−→
artichoke vector.

Testing is performed by using held-out context vectors for some of the adjective–
noun pairs in the data, and seeing how close—according to the cosine measure—the
predicted context vector is to the actual context vector for each adjective–noun pair in
the test set. The learning method using linear regression was compared against various
methods of combining the context vectors of the adjective and noun, such as vector
addition and elementwise multiplication, and was found to perform significantly better
at this prediction task.

4.2.2 An Extension Using Multi-Linear Algebra: Tensor-Based CCG Semantics. The gram-
matical formalism assumed in this section will be a variant of Categorial Grammar,
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which was also the grammar formalism used by Montague (1970). The original papers
setting out the tensor-based compositional framework (Clark, Coecke, and Sadrzadeh
2008; Coecke, Sadrzadeh, and Clark 2010) used pregroup categorial grammars (Lambek
2008), largely because they share an abstract mathematical structure with vector spaces.
However, other forms of categorial grammar can be used equally as well in practice,
and here we use Combinatory Categorial Grammar (CCG; Steedman 2000), which has
been shown to fit seamlessly with the tensor-based semantic framework (Grefenstette
2013; Maillard, Clark, and Grefenstette 2014). With a computational linguistics audience
in mind, we also present the framework entirely in terms of multi-linear algebra, rather
than the category theory of the original papers.

A matrix is a second-order tensor; for example, the red matrix mentioned earlier
lives in the N⊗ N space, meaning that two indices—each corresponding to a basis
vector in the noun space N—are needed to specify an entry in the matrix.7 Noting
that N⊗ N is structurally similar to the CCG syntactic type for an adjective (N/N)—
both specify functions from nouns to nouns—a recipe for translating a syntactic type
into a semantic type suggests itself: Replace all slash operators in the syntactic type
with tensor product operators. With this translation, the combinators used by CCG to
combine syntactic categories carry over seamlessly to the meaning spaces, maintaining
what is often described as CCG’s “transparent interface” between syntax and semantics.
The seamless integration with CCG arises from the (somewhat trivial) observation that
tensors are linear maps—a particular kind of function—and hence can be manipulated
using CCG’s combinatory rules.

Here are some example syntactic types, and the corresponding tensor spaces in
which words with those types are semantically represented (using the notation syntactic
type : semantic type). We first assume that all atomic types have meanings living in
distinct vector spaces:8

r noun phrases, NP : Nr sentences, S : S

Replacing each slash in a complex syntactic type with a tensor product operator results
in the following meaning spaces, following the CCG result-leftmost convention for both
the syntactic and semantic types:

r Intransitive verb, S\NP : S⊗ Nr Transitive verb, (S\NP)/NP : S⊗ N⊗ Nr Ditransitive verb, ((S\NP)/NP)/NP : S⊗ N⊗ N⊗ Nr Adverbial modifier, (S\NP)\(S\NP) : S⊗ N⊗ S⊗ Nr Preposition modifying NP, (NP\NP)/NP : N⊗ N⊗ N

7 The tensor product V ⊗W of two vector spaces V ∈ Rn and W ∈ Rm is an nm-dimensional space spanned
by elements of the form −→v ⊗−→w ; that is, pairs of basis vectors of V and W. An element a ∈ V ⊗W can be
written as

∑
aij
−→vi ⊗−→wj where aij is a scalar.

8 We make no distinction in this section between nouns and noun phrases, as far as the corresponding
semantic space is concerned.
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Hence the meaning of an intransitive verb, for example, is a particular matrix, or
second-order tensor, in the tensor product space S⊗ N. The meaning of a transitive verb
is a “cuboid,” or third-order tensor, in the tensor product space S⊗ N⊗ N. In the same
way that the syntactic type of an intransitive verb can be thought of as a function—
taking an NP and returning an S—the meaning of an intransitive verb is also a function
(linear map)—taking a vector in N and returning a vector in S. Another way to think
of this function is that each element of the matrix specifies, for a pair of basis vectors
(one from N and one from S), how a value on the given N basis vector contributes to the
result for the given S basis vector.

In order to see how the tensors combine with their arguments, consider the follow-
ing CCG derivation involving an intransitive verb, with the corresponding semantic
type under its syntactic type:

Basil sleeps

NP S\NP
N S⊗ N

<
S
S

(10)

Let the meaning of Basil be
−−→
Basil ∈ N and sleeps be sleeps ∈ S⊗ N; then applying the

sleeps operator (matrix) to its argument
−−→
Basil is an example of the more general ten-

sor contraction operation from multi-linear algebra. We refer readers to Maillard,
Clark, and Grefenstette (2014) for details of how the additional combinators of CCG—
such as forward and backward composition, backward-crossed composition, and type-
raising—naturally apply to the tensor-based semantic representations, and how tensor
contraction applies in this more general setting.

4.2.3 Existing Implementations of the Categorial Framework. There are a few existing imple-
mentations of the Categorial framework, focusing mostly on adjectives and transitive
verbs. The adjective implementation is that of B&Z as described in Section 4.2.1, where
linear regression is used to learn each adjective as a mapping from noun contexts to
adjective–noun contexts, with the observed context vectors for the noun and adjective–
noun instances as training data. Because an adjective–noun combination has noun
phrase meaning, the noun space is the obvious choice for the space in which the
composed meanings should live. Maillard and Clark (2015) extend this idea by showing
how the skip-gram model of Mikolov, Yih, and Zweig (2013) can be adapted to learn
adjective matrices as part of a neural embedding objective.

For verb–argument composition, the question of sentence spaces arises.9 A transi-
tive verb such as chase lives in S⊗N ⊗N, and can therefore be represented as

∑
ijk

Cijk(−→si ⊗−→nj ⊗−→nk ) (11)

9 We consider a verb with all of its argument positions saturated—for example, an SVO triple—to be a
sentence, although real-world sentences are much longer and contain determiners and other function
words.
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for some choice of coefficients Cijk. Grefenstette et al. (2011) choose S = N ⊗N, using
the tensor product of the noun space with itself as the sentence space. Their concrete
implementation learns the verb by counting observed n(s), n(o) pairs where n(s) is the
subject and n(o) the object of V. The final representation for V is then

V =

NV∑
i=1

−→
n(s)

i ⊗
−→
n(o)

i (12)

where NV is the number of instances of V in the corpus, and (n(s)
i , n(o)

i ) are the subject
and object nouns for the ith instance of V. This method of learning the verb tensor
is known as the relational method, because it captures relations between subject and
object features. Composition with a particular subject and object reduces to taking the
tensor product of the subject and object, and performing elementwise multiplication
with the verb matrix, yielding a sentence meaning in N ⊗N. Sentence meanings can be
compared with one another by taking the cosine of their angle in sentence space. One
problem with this approach is that sentences with transitive verbs live in a different
space than sentences with intransitive verbs, so sentences with different grammatical
structures cannot be directly compared.

Kartsaklis, Sadrzadeh, and Pulman (2012) introduce another sentence space, by
setting S = N. To achieve this, while training the verb in the same way as the relational
method, they embed the N ⊗N tensor into N ⊗N ⊗N space, by copying the subject
or object slices of the original tensor; for example, in the copy-object method the repre-
sentation for V is

V =

NV∑
i=1

−→
n(s)

i ⊗
−→
n(o)

i ⊗
−→
n(o)

i (13)

Representing sentence meaning in the noun space confers the advantage that words,
phrases, and sentences of any grammatical structure can be compared with one another,
but it is an open question whether the features in the noun space, whether distributional
or not, are appropriate or adequate for representing sentence meaning.

An alternative way of learning the transitive verb tensor parameters is presented
in Grefenstette et al. (2013), using a process analogous to B&Z’s process for learning
adjectives. Two linear regression steps are performed. In the first step, a matrix is
learned representing verb–object phrases, that is, a verb that has already been paired
with its object. For example, the matrix for eat meat is learned as a mapping from corpus
instances such as dogs and dogs eat meat. The full tensor for eat is then learned with meat
as input and the eat meat matrix as output. Essentially, the subject mapping is learned in
the first step, and the object mapping in the second.

Polajnar, Fagarasan, and Clark (2014), following Krishnamurthy and Mitchell
(2013), investigate a non-distributional sentence space, the “plausibility space” de-
scribed by Clark (2013, 2015). Here the sentence space is one- or two-dimensional, with
sentence meaning either a real number between 0 and 1, or a probability distribution
over the classes plausible and implausible. A verb tensor is learned using single-step
linear regression, with the training data consisting of positive (plausible) and negative
(implausible) SVO examples. Positive examples are attested in the corpus, and negative
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examples for a given verb have frequency-matched random nouns substituted in the
argument positions. One tensor investigated has dimensions K× K× S, where K is
the number of noun dimensions and S has two dimensions, each ranging from 0 to
1. The parameters of the tensor are learned so that when combined with a subject
and object, a plausibility judgment is produced. Polajnar, Rimell, and Clark (2015)
investigate a distributional sentence space based on the wider discourse context, in
which the meaning of a sentence is represented as a distributional vector based on
context words in the surrounding discourse, making the sentence space completely
distinct from the noun space.10

Existing implementations of the Categorial framework have investigated learning
up to third-order tensors (for transitive verbs). However, in practice, syntactic categories
such as ((N/N)/(N/N))/((N/N)/(N/N)) are not uncommon in the wide-coverage CCG
grammar of Hockenmaier and Steedman (2007); such a category would require an
eighth-order tensor. The combination of many word–category pairs and higher-order
tensors results in a huge number of parameters to be learned in any implementation. As
a solution to this problem, various ways of reducing the number of parameters are being
investigated, for example, using tensor decomposition techniques (Kolda and Bader
2009; Fried, Polajnar, and Clark 2015), and removing some of the interactions encoded
in the tensor by using only matrices to encode each predicate–argument combination
(Paperno, Pham, and Baroni 2014; Polajnar, Fagarasan, and Clark 2014).

For this article, the problem of large numbers of parameters arises in the modeling
of the relative pronoun, because its CCG type is (NP\NP)/(S\NP) for subject relative
clauses or (NP\NP)/(S/NP) for object relative clauses, resulting in a fourth-order tensor,
N ⊗N ⊗ S⊗N. Given the limited amount of training data available (see Section 5.5.1),
we do not attempt to model the full tensor, but investigate two approximations, based
on the methods of Paperno, Pham, and Baroni (2014). First, by modeling the transitive
verb with two matrices—one for the subject interaction and the other for the object—we
are able to model the verb as a pair of matrices with semantic type S⊗N. This approx-
imation is described in Section 5.2.2, and allows us to reduce the relative pronoun to a
third-order tensor, N ⊗N ⊗ S (Section 5.5.1). Second, we apply the same “decoupling”
approximation to the relative pronoun, in order to represent the relative pronoun as a
pair of matrices (Section 5.5.4), which can be learned independently of one another.

4.3 Relative Clause Composition

Two approaches to modeling relative clauses have been proposed in the compositional
distributional semantics literature, both within the Categorial framework, although
neither one has received a large-scale implementation. Both approaches are based on the
fact that the relative clause (interpreted strictly, without the head noun) is a noun mod-
ifier, so the relative pronoun must map the meaning of the composed verb–argument
phrase to a modifier of the head noun. In set theoretic terms, the relative pronoun signals
the intersection between the set of individuals denoted by the head noun, and those
denoted by the verb–argument phrase. For example, in accuracy: quality that correction
improves, accuracy is both a quality and a thing that is improved by correction.

Clark, Coecke, and Sadrzadeh (2013) and Sadrzadeh, Clark, and Coecke (2013)
propose an interpretation of relative clauses based on Frobenius algebra. The transitive
verb is represented by a third-order tensor that combines with its argument by tensor

10 Kiros et al. (2015) investigate a similar sentence space within the context of recurrent neural networks.
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contraction. The relative pronoun introduces a Frobenius operator that “discards” the
third dimension of the verb tensor, allowing information to flow from the composed
verb and argument to the head noun. In practice, this operator allows the verb to be
represented as a matrix. The relative clause therefore takes the form of a vector, which
is then composed with the head noun (−→n ) by elementwise multiplication:11

−→n � (V −→o ) (subject relative clause, with verb V and object o) (14)

−→n � (V
T −→s ) (object relative clause, with verb V and subject s) (15)

This method corresponds to an intuition that elementwise multiplication represents
intersection, emphasizing those features that are shared by the head noun and the
composed verb–argument phrase. As described in Section 2, this method has been
tested on a toy data set by Sadrzadeh, Clark, and Coecke (2013), using relational verb
matrices; we test it on RELPRON in this article.

Baroni, Bernardi, and Zamparelli (2014) propose a method for learning a relative
pronoun as a fourth-order tensor that maps verb–argument phrases to noun modifiers.
The proposed method would use multi-step linear regression to learn: (1) in the first
step, verb–argument matrices, such as a chase cats matrix from training data such as
〈dogs, dogs chase cats〉; (2) in the second step, noun modifier matrices, such as a that chase
cats matrix from training data such as 〈animal, animal that chases cats〉; and (3) in the
third step, a tensor for the relative pronoun that, using the matrices from steps 1 and 2
with matched predicates. The final tensor would thus be learned from paired matrices
such as chases cats, that chases cats. Under this approach, the intersective semantics of the
relative pronoun must be captured within the tensor. Although the necessary training
data might be relatively sparse, particularly for holistic relative clause vectors, Baroni,
Bernardi, and Zamparelli (2014) hypothesize that they are sufficiently common to learn
a general representation for the relative pronoun. We test a similar approach in this
article, using holistic relative clause vectors to learn a tensor representing the relative
pronoun (Section 5.5.1), though with single-step linear regression and a simplification
of the verb representation that allows the tensor to be third- rather than fourth-order.
We also learn a variant that represents the relative pronoun as a pair of matrices
(Section 5.5.4) and requires learning fewer parameters.

4.4 Historical Perspective

The general question of how to combine vector-based meaning representations in a
compositional framework is a relatively new question for computational linguistics, but
one that has been actively researched in cognitive science since the 1980s. The question
arose because of the perceived failure of distributed models in general, and connection-
ist models in particular, to provide a suitable account of compositionality in language
(Fodor and Pylyshyn 1988). The question is also relevant to the broad enterprise of

11 In practice, the formulae work out equivalently to the copy-subject and copy-object methods used by
Kartsaklis, Sadrzadeh, and Pulman (2012) for composed SVO triples, although they are arrived at in a
different way. The formulation for the object relative clause also glosses over the fact that the CCG
derivation requires type-raising and function composition, but it can easily be shown that the resulting
semantic interpretation is equivalent based on the type-raising implementation in Maillard, Clark, and
Grefenstette (2014).
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artificial intelligence (AI) in that connectionist or distributed representations may seem
to be in opposition to the more traditional symbolic systems often used in AI.

Smolensky argues for the tensor product as the operation that binds a predicate
to an argument in the distributed meaning space (Smolensky 1990; Smolensky and
Legendre 2006). Smolensky represents a structure as possessing a set of roles, ri, which,
for a particular instance of the structure, also has a set of fillers, fi (the roles are bound
to fillers). The vector representation of a role–filler pair is obtained using the tensor
product, and the representation for a complete structure, s, of role–filler pairs is the sum
of the tensor products for each pair:

s =
∑

i

fi ⊗ ri (16)

A dependency tree, for example, is naturally represented this way, with the roles
being predicates paired with grammatical relations, such as object of eat, and the fillers
being heads of arguments, such as hotdog. The vector representation of eat hotdog is
−−−→
hotdog⊗−−−−→eat dobj. The vector representation of a whole dependency tree is the sum of
the tensor products over all the dependency edges in the tree.

Smolensky and Legendre (2006) argue at length for why the tensor product is appro-
priate for combining connectionist and symbolic structures. A number of other propos-
als for realizing symbolic structures in vector representations are described, including
Plate (2000) and Pollack (1990). Smolensky’s claim is that, despite perhaps appearances
to the contrary, all are special cases of a generalized tensor product representation.

Clark and Pulman (2007) suggest that a similar scheme to Smolensky’s could be
applied to parse trees for NLP applications, perhaps with the use of a convolution
kernel (Haussler 1999) to calculate similarity between two parse trees with distributed
representations at each node. A similar idea has been fleshed out in Zanzotto, Ferrone,
and Baroni (2015), showing how kernel functions can be defined for a variety of compo-
sition operations (including most of the operations discussed in this article), allowing
the similarity between two parse trees to be computed based on the distributional
representations at the leaves and the composed representations on the internal nodes.

There are similarities between Smolensky’s approach and the Categorial frame-
work from Section 4.2, in that tensor representations are central to both. However, in
Smolensky’s approach, the tensor product is the operation used for composition of the
predicate and its argument, whereas tensor contraction is the composition operation in
the Categorial framework.

5. Composition Methods: Implementation

This section provides a more detailed description of the methods we have tested on
RELPRON, ranging from some trivial lexical baselines, through to the simple arithmetic
operators, and finally more sophisticated methods based on the Categorial framework.
Both count-based vectors and neural embeddings have been investigated.

5.1 Word Vectors

In this section we describe how we built the word and holistic phrase vectors used by
the various composition methods.
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5.1.1 Count-Based Vectors (Count). For historical completeness we include classical count-
based vectors in this article, although these large vectors are impractical for more
sophisticated tensor learning. These vectors are used only for the baseline results
(Section 6, Table 5), including the Frobenius algebra composition method of Sadrzadeh,
Clark, and Coecke (2013).

Count-based word vectors were built from a 2013 download of Wikipedia, using
the settings from Grefenstette and Sadrzadeh (2011). The top 2,000 words in the corpus
(excluding stopwords) were used as features, with a co-occurrence window of three
content words on either side of the target word (i.e., with stopwords removed before
applying the window), and co-occurrence counts weighted as the probability of a
context word given the target word divided by the overall probability of the context
word (Mitchell and Lapata 2008). We found that these settings achieved the best result
on the transitive verb composition task of Grefenstette and Sadrzadeh (2011).

5.1.2 Reduced Count-Based Vectors (Count-SVD). As a variant on the classical count-based
vectors, we also present baseline results (Section 6, Table 5) on a count-based space
reduced with Singular Value Decomposition (SVD), which produces dense vectors
more comparable to neural embeddings.

Word vectors were built from the same 2013 Wikipedia download, using the settings
of Polajnar, Fagarasan, and Clark (2014). The top 10,000 words in the corpus (excluding
stopwords) were used as features, with sentence boundaries defining the co-occurrence
window, and co-occurrence counts weighted with the t-test statistic (Curran 2004). SVD
was used to reduce the number of dimensions to 300. Following Polajnar and Clark
(2014), context selection (with n = 140) and row normalization were performed prior
to SVD.

5.1.3 Neural Embeddings (Skip-Gram). Our main results in Section 6 are produced using
neural embeddings. These types of vectors have proven useful for a wide variety of
tasks in recent literature, and in our early experiments with tensor, learning provided
the best results on the RELPRON development data and other composition tasks. For our
methods, in addition to the word vectors, we required holistic vectors to use as targets
for training the verb and relative pronoun matrices and tensors. The holistic vectors
were also obtained using neural embeddings.

Word vectors were built using a re-implementation of skip-gram with negative
sampling (Mikolov et al. 2013) on a lemmatized 2015 download of Wikpedia. We used
a window of ten words on either side of the target, with ten negative samples per
word occurrence, and 100-dimensional target and context vectors. All lemmas occurring
fewer than 100 times in the corpus were ignored.12 The context vectors produced during
word vector learning were retained for use during training of the holistic vectors for
phrases.

Verb matrices and relative pronoun matrices and tensors require holistic vectors
to serve as training targets for linear regression. These vectors represent the observed
contexts in which instances of verbs or relative pronouns with their arguments are
found in the Wikipedia corpus. We tagged and parsed the corpus with the Stanford
Parser (Chen and Manning 2014). For learning of verb matrices, we extracted verb–
subject and verb–object pairs, ensuring that each pair occurred within a transitive verb

12 The word slipping, which occurs once in the RELPRON test set, was missing from the resulting corpus. We
substituted the vector for slip at test time.

682



Rimell et al. A Relative Clause Evaluation Data Set

construction. For learning of relative pronoun matrices and tensors, we extracted 〈head
noun, verb, argument〉 tuples that occurred within relative clause constructions. To
identify relative clauses, we looked for characteristic dependency subtrees containing
the Stanford Universal Dependency labels RELCL and PRONTYPE=REL. The gram-
matical role of the relative pronoun argument of the verb, and of the verb’s in situ
argument, determined whether it was a subject or object relative clause. We used a small
number of manually defined heuristics to help limit the results to true relative clauses,
for example, to exclude cases of clausal complementation on the verb, as in an incident
that left one government embarrassed.

The contexts of our extracted verb–argument pairs and relative clause tuples were
used to train holistic vectors using our implementation of skip-gram, only retaining
phrases that occurred at least twice in the corpus. For holistic vectors, we followed
Paperno, Pham, and Baroni (2014) and used a wider window of 15 words on either
side of the target. Skip-gram has a random component in the initialization of vectors.
In order to ensure that the learned holistic and word vectors were in the same vector
space, we trained both using the same context vectors.

5.2 Verb Matrices

In this section we describe two methods used for constructing verb matrices for the
composition methods based on the Categorial framework.

5.2.1 Relational Verb Matrices. Using the relational method of Grefenstette and Sadrzadeh
(2011), as described in Section 4.2.3, verb matrices were built as a sum of outer products
of their subject–object pairs. Pairs were subject to a minimum per-verb count of 2 and
a minimum frequency of 100 for both nouns in the 2013 Wikipedia download, and not
weighted by frequency.

5.2.2 Decoupled Verb Matrices with Linear Regression. All of the Categorial methods require
a representation for the transitive verb in the relative clause. Based on the CCG category
(S\NP)/NP of a transitive verb, this is a third-order tensor, S⊗N ⊗N. The relative
pronoun has a CCG type of (NP\NP)/(S\NP) or (NP\NP)/(S/NP), resulting in a fourth-
order tensor, N ⊗N ⊗ S⊗N. In order to make the learning of a relative pronoun tensor
tractable, we make use of the method introduced by Paperno, Pham, and Baroni (2014)
and Polajnar, Fagarasan, and Clark (2014) in order to reduce the semantic type of the
transitive verb to S⊗N. This method models a transitive verb as two second-order
tensors (matrices), one governing the interaction of the verb with its subject and the
other with its object, and has been shown to reproduce sentence semantics without loss
of accuracy. This “decoupling” approximation for the transitive verb allows the relative
pronoun to be modeled as a third-order tensor, N ⊗N ⊗ S.

Specifically, we adopt the approach of Paperno, Pham, and Baroni (2014). For each
verb V we learn a pair of matrices V S, V O . These matrices are used by Paperno, Pham,
and Baroni to calculate the vector for an SVO triple (s, V, o) as in Equation (17), which
also gives a lexicalized example.

V S−→s + V O−→o +−→v ex. eat S−→cat + eat O−−−−→mouse +
−→
eat (17)
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We also adopt the modification of Gupta, Utt, and Padó (2015), in which the word
vector for the verb is not added to the composition result, because this formulation
was found to yield more accurate results. With this modification, we calculate the
vector for an SVO triple (s, V, o) as in Equation (18).

V S−→s + V O−→o ex. eat S−→cat + eat O−−−−→mouse (18)

Verb matrices were learned using L2 ridge regression (Hoerl and Kennard 1970),
also known as L2-regularized regression. For a given verb V, the training data for
V S consisted of (subject vector, holistic subject–verb vector) pairs, and the training
data for V O consisted of (object vector, holistic verb–object vector) pairs. In addition,
each pair was weighted by the logarithm of its number of occurrences in the corpus,
which we found improved performance on the RELPRON development set. Regression
was implemented in Python using standard NumPy operations, and we optimized the
regularization parameter on the RELPRON development set, using MAP scores and the
SPLF composition method described in Section 5.5.3. A single regularization parameter
was used globally for all verbs and set to 75 after tuning.

5.3 Simple Composition Methods

In this section we describe our relative clause composition methods. We first present the
baseline methods, consisting of lexical comparisons, simple arithmetic operators, and
the Frobenius algebra method of Clark, Coecke, and Sadrzadeh (2013) and Sadrzadeh,
Clark, and Coecke (2013). We then introduce our main methods, all of which, like the
Frobenius algebra method, are based on the Categorial framework, but which differ
according to whether and how the relative pronoun is modeled. All of our main
methods are implemented using neural embedding vectors.

5.3.1 Lexical Baselines. Two simple lexical similarity baselines (Lexical) set the vector
representation of the property equal to the verb vector or the argument vector. No
composition is involved. These baselines check whether a system can predict the simi-
larity between, for example, traveler and person that hotel serves by the similarity between
traveler and hotel (argument) or traveler and serve (verb). We do not have a lexical baseline
consisting of the head noun, because this would not produce a well-defined ranking
of properties, given that many properties share the same head noun (person in this
example).

5.3.2 Arithmetic Operators. Arithmetic composition methods (Arithmetic) are the vector
addition and elementwise vector product (Mitchell and Lapata 2008, 2010) of the vectors
for the three lexical items in the property: head noun, verb, and argument. For vector
addition, we also perform ablation to determine the contribution of each lexical item.
The relative pronoun itself is not modeled in the composed representation for the
arithmetic operators. Although the arithmetic operators are simple, vector addition has
proven a difficult baseline to beat in many composition tasks.

5.4 Frobenius Algebra Baseline

The Frobenius algebra method of Clark, Coecke, and Sadrzadeh (2013) and Sadrzadeh,
Clark, and Coecke (2013) is a previously existing implementation of the Categorial
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framework for relative clauses, and was described in detail in Section 4.3. The composi-
tion of the relative clause vector is shown in Equations (19)–(20), for subject and object
relative clauses, respectively, where � represents elementwise multiplication; note that
unlike the other Categorial methods, there is a single verb matrix, which is learned as a
relational matrix.

−→n � (V −→o ) ex.
−−−−→
device� (detect

−−−−→
planet) (subject) (19)

−→n � (V
T −→s ) ex.

−−−−→
device� (play

T −−−−−−→
shepherd) (object) (20)

5.5 Composition Methods within the Categorial Framework

In the next sections we describe the main composition methods evaluated in this article.
These methods are based on the Categorial framework, as is the Frobenius algebra base-
line; however, the methods described here are all implemented with Skip-Gram vectors,
and matrices and tensors learned by linear regression. Figure 3 gives a schematic view
of these composition methods.

5.5.1 Tensor Composition Method (RPTensor). The RPTensor method models the relative
pronoun as a third-order tensor R. Learning a relative pronoun tensor from holistic
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Figure 3
Schematic view of the major composition methods investigated in this article: (a) Addition,
(b) RPTensor, (c) PLF, (d) SPLF, (e) FPLF. Figures are agnostic as to subject or object grammatical
function for the relative clause.
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vectors for relative clauses was suggested by Baroni, Bernardi, and Zamparelli (2014),
but to our knowledge this is the first implementation of a function word tensor. We learn
two separate tensors R S and R O for subject and object relative clauses, respectively,
because we assume that the relative pronoun may have a different semantics in each
case.

The relative pronoun tensors have the type N ⊗N ⊗ S, and combine via tensor
contraction with the head noun vector and the vector resulting from verb–argument
composition. Here and in subsequent sections, −→n is the head noun vector, and −→a is
the argument vector, which may be the object (in a subject relative clause) or the subject
(in an object relative clause). The composition of the relative clause vector is shown in
Equations (21)–(22), for subject and object relative clauses, respectively.

−→n R S (V O −→a ) ex.
−−−−→
device that S (detect O −−−−→planet) (subject) (21)

−→n R O (V S −→a ) ex.
−−−−→
device that O (play S −−−−−−→shepherd) (object) (22)

Note that the appropriate verb matrix, subject or object, is first contracted with its
argument, so that the relative pronoun is composing the head noun with the verb–
argument phrase (a vector).

As with the verb matrices, the relative pronoun tensors R S and R O are learned
by weighted L2 ridge regression, where the training data consist of (head noun vector,
holistic verb–argument vector, holistic relative clause vector) tuples. The regularization
parameter was optimized on the RELPRON development set using MAP scores and set
to 80 for both tensors.

The power of the tensor comes from the fact that it captures the interaction between
the head noun and the composed verb–argument phrase, and hence models the relative
pronoun in a meaningful way that composition methods such as vector addition, which
omits the pronoun entirely, do not. However, capturing these interactions leads to a
large number of parameters, and the sparsity of training data is therefore a challenge
in training the full tensor model. Our corpus of 72M sentences contained only around
800K occurrences of relative clauses, compared with over 80M verb–subject and verb–
object occurrences (4M types); and this was heavily unbalanced across subject and object
relative clauses, with 771K subject relative clause occurrences (222K types) compared
with 21K object relative clause occurrences (only 8K types).

5.5.2 PLF Composition Method (PLF). The PLF method implements the Practical Lexical
Function model of Paperno, Pham, and Baroni (2014). As described in Section 5.2.2, this
is one of the models that decouples the subject and object interaction of the transitive
verb. In PLF, function words such as relative pronouns are explicitly treated as empty
elements. A noun phrase containing a relative clause is not modeled as a noun phrase,
but rather an SVO sentence. For example, device that detects planets is equivalent to device
detects planets, and device that shepherd plays is equivalent to shepherd plays device. The
subject and object verb matrices combine with their arguments by tensor contraction (in
this case, matrix multiplication), and the resulting vectors are added. The composition of
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the relative clause vector is shown in Equations (23)–(24), for subject and object relative
clauses, respectively.

V S−→n + V O−→a ex. detect S −−−−→device + detect O −−−−→planet (subject) (23)

V S−→a + V O−→n ex. play S −−−−−−→shepherd + play O −−−−→device (object) (24)

As noted in Section 5.2.2, in this and all other PLF variants we use the modification of
Gupta, Utt, and Padó (2015) to the original PLF, so the word vector for the verb is not
included in the composition.

5.5.3 Simplified PLF Composition Method (SPLF). The SPLF method is a simplification
of PLF, where the verb and argument are combined by tensor contraction as in PLF,
but the resulting verb–argument vector is combined with the head noun by vector
addition. The relative pronoun is not explicitly modeled, although we might think
of the vector addition as a crude representation of relative pronoun semantics that
“distinguishes” the roles played by the extracted head noun and the in situ argument.
SPLF is also similar to Addition, except that the verb and argument are combined by
tensor contraction (in this case, matrix multiplication). The composition of the relative
clause vector is shown in Equations (25)–(26), for subject and object relative clauses,
respectively.

−→n + V O−→a ex.
−−−−→
device + detect O −−−−→planet (subject) (25)

−→n + V S−→a ex.
−−−−→
device + play S −−−−−−→shepherd (object) (26)

5.5.4 Full PLF Composition Method (FPLF). The FPLF method offers a way to mitigate
the sparsity of the training data for RPTensor, while retaining explicit modeling of the
relative pronoun. Here we extend the intuition about modeling higher order tensors
with matries to the relative pronoun itself, by decoupling the interaction of the pronoun
with the head noun from its interaction with the composed verb–argument phrase. We
had already reduced the relative pronoun to a third-order tensor, and we now represent
it by two matrices, one for head noun interaction and one for verb–argument inter-
action. We further separate subject and object relative clauses, and thus end up with two
pairs of matrices (R S

n, R S
va) and (R O

n , R O
va). We call this a “full” variant of PLF because it

extends the PLF intuition to function words, a suggestion made by Paperno, Pham, and
Baroni (2014) but which to our knowledge has not been previously implemented. The
composition of the relative clause vector is shown in Equations (27)–(28), for subject and
object relative clauses, respectively.

R S
n
−→n + R S

va (V O −→a ) ex. that S
n
−−−−→
device + that S

va (detect O −−−−→planet) (subject) (27)

R O
n
−→n + R O

va (V S −→a ) ex. that O
n
−−−−→
device + that O

va (play S −−−−−−→shepherd) (object) (28)

The relative pronoun matrices (R S
n, R S

va) and (R O
n , R O

va) are learned by weighted
L2 ridge regression, where the training data consists of (noun vector, holistic relative
clause vector) pairs for (R S

n, R O
n ), and (holistic verb–argument vector, holistic relative

clause vector) pairs for (R S
va, R O

va). The regularization parameter was optimized on the
RELPRON development set and set to 75 for all four matrices.
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5.5.5 Categorial Baselines. We also investigate two Categorial baselines. VArg is the verb
matrix (subject or object, as appropriate) multiplied by the in situ argument, without
the head noun. For example, person that rescuer assists is rescuer assists, and device that
detects planets is detects planets. The composition of the relative clause vector is shown in
Equations (29)–(30), for subject and object relative clauses, respectively.

V O −→a ex. detect O −−−−→planet (subject) (29)

V S −→a ex. play S −−−−−−→shepherd (object) (30)

Vhn is the verb matrix (subject or object, as appropriate) multipled by the head
noun. In this case, person that rescuer assists is assists person, and device that detects
planets is device detects. The composition of the relative clause vector is shown in Equa-
tions (31–32), for subject and object relative clauses, respectively.

V S −→n ex. detect S −−−−→device (subject) (31)

V O −→n ex. play O −−−−→device (object) (32)

6. Evaluation and Results

This section describes the evaluation of the ranking task on RELPRON and presents the
results of the various composition methods.

6.1 Evaluation

To evaluate a composition method, composed vectors are produced for all properties in
the data set. For each term, the properties are ranked according to cosine similarity with
the term vector. Evaluation is based on MAP, which is defined as:

MAP = 1
N

N∑
i=1

AP(ti) (33)

where N is the number of terms in the data set, and AP(t) is the Average Precision (AP)
for term t, defined as:

AP(t) = 1
Pt

M∑
k=1

Prec(k)× rel(k) (34)

where Pt is the number of correct properties for term t in the data set, M is the total
number of properties in the data set, Prec(k) is the precision at rank k, and rel(k) is an
indicator function equal to one if the property at rank k is a correct property for t, and
zero otherwise.
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6.2 Results

Table 5 shows the results for the baseline methods, using Count, Count-SVD, and Skip-
Gram vectors. The highest MAP score for all three types of vectors is achieved with
vector addition, adding the vectors for head noun, verb, and argument, and the Skip-
Gram vectors achieve the best result overall, with a MAP of 0.496. This is already
a challenging score to beat, because it represents a system that on average places a
correct property at every second position in the top-ranked properties for each term.
Elementwise multiplication performs almost as well for Count vectors, but very poorly
for Count-SVD and Skip-Gram vectors, which is consistent with previous findings on
elementwise multiplication in dense vector spaces (Vecchi, Baroni, and Zamparelli 2011;
Utsumi 2012; Milajevs et al. 2014; Polajnar and Clark 2014). We will therefore use vector
addition as our primary arithmetic vector operation for the rest of the article. Moreover,
we will use Skip-Gram vectors for our main Categorial framework-based experiments.

Turning to the lexical baselines and the ablation tests for vector addition, we may
assess the relative contribution to the vector addition result of the three lexical items in
the relative clause. We look first at the lexical baselines. Similarity between the term and
argument achieves a MAP of 0.347 for Skip-Gram vectors, although similarity between
the term and the verb produces a much worse ranking. Looking at the arithmetic
operators, the ablation tests show that the head noun, verb, and argument all contribute
to the correct ranking of properties. However, the argument is the most important, as the
sum of head noun and verb vectors achieves a lower MAP (0.264 for Skip-Gram vectors)
than the other two combinations (0.401 and 0.450, respectively). The importance of the
argument is fairly intuitive; for example, in family: organization that claims ancestry, the
words family and ancestry are clearly the most closely related. However, Table 5 shows
that the argument alone is insufficient to rank properties and a method must perform
some composition to achieve a respectable MAP score.

In Table 5 we also see that the Frobenius method, which uses a relational matrix for
the verb, is not competitive with vector addition. It achieves a MAP of only 0.277 using
Count vectors, and in the other two vector spaces, the MAP is almost zero, presumably
because of the elementwise multiplication that is part of the method. Based on this
result, we do not pursue the Frobenius algebra method further.

Table 5
MAP scores of Lexical, Arithmetic, and Frobenius algebra methods on the RELPRON
development set using Count, Count-SVD, and Skip-Gram vectors, and relational verb matrices.

Method Count Count-SVD Skip-Gram

Lexical −→arg 0.272 0.386 0.347−−→
verb 0.138 0.179 0.176

Arithmetic
−→
hn�−→arg�

−−→
verb 0.364 0.123 0.181−→

hn +−→arg +
−−→
verb 0.386 0.442 0.496

−→arg +
−−→
verb 0.331 0.407 0.401−→

hn +−→arg 0.339 0.425 0.450−→
hn +

−−→
verb 0.231 0.229 0.264

Categorial Frobenius 0.277 0.023 0.030
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Table 6
MAP scores of composition methods on the RELPRON development and test sets using
Skip-Gram vectors.

Method Development Test

SPLF 0.496 0.497
Addition 0.496* 0.472*
PLF 0.444 0.433*
FPLF 0.405 0.387*
RPTensor 0.380 0.354

VArg 0.448 0.397
Vhn 0.219 0.204

* Significantly higher than next lowest result (p < 0.05).

Table 6 shows the results of the composition methods and Categorial baselines on
the RELPRON development and test data. The relative performance of the methods is
very similar across the development and test portions of the data set. In both cases,
SPLF and Addition are the top two performers, with SPLF having a higher MAP than
Addition on the test data, although the difference is not significant. Both methods
achieve a MAP of nearly 0.50, which corresponds to putting a correct property in every
second place on average.

The next highest MAP is achieved by PLF. It is instructive to compare PLF with
the Categorial baselines, VArg and Vhn, since PLF sums these two components. Vhn
performs very badly, in line with the sum of the verb and head noun vectors in Table 5.
However, the head noun does contribute to the composition of relative clause meaning,
as we can see from the fact that on the test data, PLF achieves a significantly higher MAP
than VArg. It is also relevant to compare PLF with SPLF. PLF learns a verb matrix for the
interaction with the head noun, whereas SPLF approximates the head noun interaction
as addition. SPLF significantly outperforms PLF on the development and test data, a
difference that suggests that modeling the relative clause as an SVO sentence may not
be the optimal approach for relative clause composition.

FPLF and RPTensor are the two methods that learn a relative pronoun function by
regression. FPLF achieves a lower MAP than SPLF, Addition, and PLF, but a higher
MAP than RPTensor, supporting the hypothesis that the available training data in the
form of holistic vectors for relative clauses is insufficient for the number of parameters
in the full tensor method. Both methods underperform the VArg functional baseline and
some of the arithmetic baselines.

7. Error Analysis

In this section we examine in detail the performance of some of the main composition
methods on the RELPRON development data. We are interested in four main points.
First, we investigate whether the grammatical function (subject or object) of the relative
clause plays a role in the MAP score. We find that most of the methods are relatively
well-balanced across grammatical functions, but FPLF shows a lower MAP on object
properties, where the amount of training data is substantially lower.
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Second, we investigate whether the different head nouns in the data set have any
effect on MAP score. We find that the scores are relatively well-balanced across head
nouns, but that more concrete terms and their properties may be easier to model.
However, based on qualitative observations, a more important factor seems to be term
polysemy.

Third, we look at how well the composition methods capture the intersective se-
mantics of the relative clause construction. We break down the evaluation into two
independent components: how often the methods are able to identify the correct head
noun, and how often they are able to pick out correct properties when the head noun is
known. We find that all methods do very well at identifying the correct head noun, but
FPLF lags behind the others at picking the correct property.

Finally, we look at some common errors on the RELPRON development data. One
source of errors is lexical overlap in terms and properties. We also observe that some
of the systems assign high ranks to plausible but unannotated properties, and address
this issue with an evaluation scenario where the property is the query and the task is to
rank the correct term highest. We find that on average all the methods rank the correct
term at approximately position two.

We focus in this section on four methods: SPLF and Addition, the two methods with
the highest overall MAP score; FPLF, the better-performing method of the two which
explicitly learn a relative pronoun representation; and VArg, as a high-performing
Categorial baseline.

7.1 Accuracy by Grammatical Function

An obvious first step in understanding the RELPRON results is to break them down by
grammatical function. Because subjects and objects are asymmetric in their interaction
with the verb—in particular, verbs show stronger selectional preferences for objects
than for subjects (Marantz 1984; Kratzer 1996, 2002)—we might expect that relative
clauses with different extraction sites are not equally easy to compose. In addition,
for the methods that learn an explicit representation of the relative pronoun (FPLF in
this analysis), the substantial difference in the amount of training data might affect the
result.

The MAP scores for each grammatical function are shown in Table 7. The first row
shows the subject results, in which only the subject properties from the development
data are ranked by similarity for each term. The AP is calculated for each term, and MAP
is calculated as the mean AP over the set of all terms.13 The object results are calculated
analogously, although note that the MAP scores in Table 7 are not directly comparable
to the scores on the full development set because the number of confounders is lower
for each term.

For SPLF and Addition, Table 7 shows that the MAP scores are well balanced. For
FPLF, on the other hand, the MAP scores are unbalanced: 0.570 for subject properties,
in line with SPLF and Addition; and only 0.428 for object properties. This difference
provides support for the hypothesis that the amount of training data available for
subject vs. object relative clauses makes a difference to the resulting accuracy.14 The term
navy provides an an example of the differential performance between subject and object

13 Any term that has no properties with the relevant grammatical function is omitted from the calculation;
for example, accuracy has no subject properties, so it is not included in the MAP for Subject.

14 As further support for this hypothesis, the RPTensor method (not in the table) showed the same
discrepancy, with a MAP of 0.520 on subject properties, and 0.400 on object properties.
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Table 7
MAP scores by grammatical function of extracted element in relative clause, on development set.

SPLF Addition FPLF VArg

Subject 0.585 0.571 0.570 0.530
Object 0.541 0.574 0.428 0.489

properties. SPLF ranks four correct subject and three correct object properties within its
top ten ranked properties, whereas FPLF ranks five correct subject properties and only
one correct object property within its top ten.15

The MAP scores for VArg are also unbalanced in favor of subject relative clauses,
though the effect is not as pronounced. We attribute this difference to the strength of the
selectional preference of a verb for its object compared to its subject, since verb–object
combinations (for subject properties) may have greater semantic content, enabling a
more accurate ranking of properties.

7.2 Accuracy by Head Noun

Breaking down the results on RELPRON by head noun—for example, device vs. quality—
is another obvious place to look for differential performance in the composition meth-
ods. Table 8 shows the MAP scores by head noun on the development set. The head
nouns are ordered from left to right according to the average concreteness rating of their
terms, based on the ratings of Brysbaert, Warriner, and Kuperman (2014). In Table 8, the
AP for each term is based on a ranking of all properties in the development set, and the
MAP for a head noun is the mean AP over all its terms.16

Table 8 shows that the MAP scores are relatively well-balanced across head nouns
for all methods, suggesting that there are no real outliers among head nouns in the
ability of the methods to compose relative clauses. The general distribution of scores
across head nouns for the four methods is also roughly similar. Building and player
are consistently high, with building in particular having a MAP of at least 0.5 for all
methods. These head nouns have some of the most concrete terms, which might suggest
that concrete terms have properties that are easier to model, or at least that concrete
terms have better-quality word vectors that make the ranking easier. This is not a clear
effect, however, because the methods mostly have average-to-high MAPs for quality
and organization, which have terms with low concreteness, and average-to-low MAPs
for device, which has the most concrete terms in the development set.

A factor that appears to play a role in MAP scores is term polysemy. All of the
methods score low on document, and SPLF in particular achieves its lowest MAP for this

15 The correct properties for SPLF are, in order, organization that uses submarine (S), organization that blockades
port (S), organization that fleet destroys (O), organization that battleship fights (O), organization that maintains
blockade (S), organization that vessel serves (O), organization that defeats fleet (S). The correct properties for
FPLF are, in order, organization that uses submarine (S), organization that blockades port (S), organization that
maintains blockade (S), organization that fleet destroys (O), organization that establishes blockade (S), organization
that defeats fleet (S).

16 Unlike in Section 7.1, these MAP scores are directly comparable to those on the full development set,
since the number of confounders is the same.

692



Rimell et al. A Relative Clause Evaluation Data Set

Table 8
MAP scores by head noun on development set. AP is calculated over all properties for each
term, and mean AP calculated for each head noun. Head nouns are ordered from left to right by
increasing concreteness.

Head Noun
quality organization person document building player device

SPLF 0.490 0.500 0.490 0.393 0.592 0.595 0.462
Addition 0.464 0.485 0.394 0.463 0.632 0.546 0.512
FPLF 0.279 0.471 0.415 0.360 0.502 0.448 0.378
VArg 0.398 0.563 0.413 0.390 0.542 0.443 0.384

head noun. Several document terms (lease, form, assignment, bond) exhibit very low AP.
The term form provides an example; it has an extremely low AP of 0.01. Although form
was chosen by the annotators in its document sense, with correct properties including
document that parent signs and document that applicant completes, other senses may be more
dominant in the source corpus, confusing the similarity ranking.17 Prior disambiguation
of words in the data set, as in Kartsaklis and Sadrzadeh (2013), might improve perfor-
mance.

We believe that polysemy may come into play with device terms as well, though
the terms have high concreteness. One term with a very low AP is watch. Among the
properties that SPLF ranks high for watch are person that police hunt (killer) and device that
views stars (telescope), both of which are related to different senses of watch.

7.3 Capturing the Semantics of Relative Clauses

A system that successfully captures the semantics of relative clauses must integrate
the semantic contribution of the head noun with the contributions of the verb and
argument; for example, identifying that a saw is a device, and that among devices, it
is the one that cuts wood. In this section we break down the results on the RELPRON
development set into two measures that demonstrate performance on these subtasks
independently.

We look first at how often the methods are able to identify the correct head noun. We
consider the top ten ranked properties for each term from the full development set, and
calculate the percentage of them that have the correct head noun, regardless of whether
the whole property is correct. The results are shown in Table 9, where we omit the VArg
method because it does not take the head noun into account. Table 9 shows that overall,
nearly eight out of the top ten properties have the correct head noun. FPLF matches
the performance of the other two methods, although it is the only one of the three that
incorporates the head noun by an operation other than addition.

We next look at the MAP scores when the ranking of properties for each term is
restricted to properties with the correct head noun. For example, given a building term
such as ruin, the methods must rank only the building properties. The task here is to

17 The top four properties for form as ranked by SPLF are: organization that undergoes merger (division),
organization that siblings form (family), organization that infantry reinforces (army), organization that
restructuring creates (division).
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Table 9
Average proportion of top ten ranked properties that have the correct head noun, on
development set.

Head Noun Overall
quality organization person document building player device

SPLF 0.87 0.71 0.69 0.68 0.86 1.00 0.83 0.79
Addition 0.84 0.75 0.60 0.64 0.88 1.00 0.78 0.77
FPLF 0.84 0.71 0.62 0.72 0.88 0.98 0.91 0.79

Table 10
MAP scores within head nouns on development set. Only the properties with the correct head
noun are ranked for each term.

Head Noun
quality organization person document building player device

SPLF 0.638 0.738 0.616 0.511 0.666 0.596 0.564
Addition 0.587 0.686 0.563 0.602 0.711 0.551 0.580
FPLF 0.421 0.683 0.579 0.466 0.569 0.467 0.424

distinguish ruin from cinema, pub, observatory, house, mosque, and so forth. The results are
shown in Table 10.18 We again omit VArg, because SPLF is equivalent to VArg when the
head noun is held fixed.

Table 10 shows that SPLF and Addition perform similarly on distinguishing prop-
erties of terms that share a head noun, while FPLF lags behind. Combined with Table 9,
this result shows that FPLF’s overall lower MAP on the full development set is due to
difficulty distinguishing terms from one another when the head noun is known, not to
difficulty in identifying the correct head noun.

Comparing Tables 9 and 10 highlights cases where the methods struggle with one
relative clause composition subtask or the other, an effect that appears to vary by head
noun. For example, all methods demonstrate perfect or near-perfect ability to rank player
properties at the top for player terms, but average-to-low ability to distinguish players
from one another. This may be a feature of the topic domain, in that the activities
undertaken by different kinds of sports players—golfer, batter, pitcher, quarterback, and
so forth—are distributionally similar. On the other hand, all methods exhibit only
average ability to identify the correct head noun for organization terms, but relatively
high ability to select the correct organization properties when the head noun is known.
For example, the SPLF ranking for religion shows a large amount of confusion with

18 One question that might be asked is whether the ranking task within head nouns would be more difficult
than the full ranking task, since all buildings (for example) share certain characteristics that might make
their properties particularly good mutual confounders. In practice, this is difficult to measure, since the
MAP scores in Table 10 are higher than the MAPs on the full development set because there are fewer
confounders.
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person properties, such as person that defends rationalism (philosopher).19 However, when
restricted to ranking organization properties, as in Table 10, SPLF achieves a perfect MAP
of 1.0 for religion.

7.4 Common Errors and Evaluation with Properties as Queries

In addition to poor performance on polysemous terms (Section 7.2), we observed
two common sources of error on RELPRON. The first is lexical overlap between terms
and properties, a type of confounder that we deliberately included in the data set
(see Section 3.5). For example, the top two ranked properties for batter for all three
methods are player that walks batter (pitcher) and player that strikes batter (pitcher); and
the top ranked property for balance for all three methods is document that has balance
(account). FPLF, despite its more sophisticated modeling of the relative pronoun, suffers
from lexical overlap about as much as SPLF and Addition. However, we note that the
RPTensor method is able to overcome this problem to a small extent, with the lexically
confounding properties ranked a few positions below the top.

The second source of error is that the methods often assign high similarity to
properties that are plausible descriptions for a term, but not annotated as gold positives.
For example, the top-ranked property for lease for the RPTensor method is document that
government sells (bond). The highest-ranked properties for intellectual for SPLF include
person that promotes idea (advocate) and person that analyzes ontology (philosopher).20 This
phenomenon speaks to the difficulty of collecting distinctive properties during the
manual annotation phase; future work may involve re-annotation of the data set for
additional positives. At present, the effect is to artificially lower the MAP ceiling, which
affects all methods equally.

To address this issue, we performed another type of evaluation, this time treating
properties as queries and ranking terms by their similarity to a property. We used Mean
Reciprocal Rank (MRR) as the evaluation measure, because there is only one correct
term per property. MRR is given by the formula:

MRR = 1
M

M∑
p=1

1
rank(p) (35)

where M is the number of properties in the data set and rank(p) is the rank at which
the correct term t is found for property p. The reasoning behind the MRR evaluation is
that even if a property is applicable to more than one term, there is always a single term
which is most similar to it. The results are shown in Table 11. For all three methods, the
correct term appears on average at approximately rank 2. The MRR evaluation is also
another use of RELPRON that can be exploited in future work.

19 The top five properties in the SPLF ranking are person that defends rationalism (philosopher), person that
religion has (follower), person that questions theology (philosopher), person that teaches epistemology (philosopher),
and person that accepts philosophy (follower).

20 Some of the highly-ranked but incorrect properties are surprisingly plausible, although clearly not
identifying properties for the term in question: SPLF ranks building that sells popcorn (theater) in second
position for pub.

695



Computational Linguistics Volume 42, Number 4

Table 11
Mean Reciprocal Rank of correct term when property is used as query, on development set.

Head Noun Overall
quality organization person document building player device

SPLF 0.531 0.615 0.559 0.525 0.535 0.506 0.458 0.539
Addition 0.589 0.591 0.461 0.613 0.692 0.535 0.575 0.579
FPLF 0.462 0.498 0.457 0.434 0.518 0.427 0.409 0.461
VArg 0.606 0.662 0.547 0.567 0.619 0.556 0.545 0.591

8. Conclusions

RELPRON was designed to test compositional distributional semantic methods on a
phrase type of intermediate size and complexity: more complex than two-word combi-
nations, and involving a function word, but less complex than full sentences. The data
set is challenging, but results are promising with current techniques; a MAP score of
0.5 corresponds to every other property being ranked correctly, given a term. Again,
in line with a growing body of literature, we observe that vector addition performs
extremely well, but we are able to match its performance with a more complex method
based on the Practical Lexical Function model.

Based on the qualitative analysis, our contention is that, in order to improve sub-
stantially on the results presented in this article, methods more linguistically sophisti-
cated than vector addition will be required. We base this contention on a few factors.
First, vector addition has little room for improvement, with potential gains limited to
those that come from improving the overall quality of the vectors. It seems unlikely
that vector addition can achieve a MAP much higher than its current one of around
0.5. We also note that the relative clauses used in this article are well below the ten-
word length at which the quality of composed representations with vector addition has
been suggested to degrade, so future data sets focusing on more complex linguistic
constructions may require alternative methods.

For the more complex methods, on the other hand, there are likely to be readily
achievable gains on RELPRON from increasing or changing the training data. This article
represents the first large-scale implementation of methods that learn explicit categorial
representations for relative pronouns, but the training data in the form of holistic vectors
for relative clauses was still observed to be relatively small compared with the number
of parameters learned by the methods, especially for object relative clauses. Larger
corpora or different sources of data—for example, including dictionary definitions or
paraphrase data sets in the training data—may improve the models.

Beyond the issue of training data, the qualitative analysis showed that the various
methods were sometimes unable to integrate the semantic contributions of the head
noun and the remainder of the relative clause. Vector addition will not be able to
capture this relationship any better than it already does, but other learning methods
(e.g., involving non-linear models) may be able to do so.

It is also possible that a learning method designed more specifically for the
RELPRON ranking task would perform better, especially because many of the training
examples in our existing data are non-restrictive relative clauses—although this would
require an alternative data source, and RELPRON itself is too small to provide training
data. We expect RELPRON and similar data sets to be important evaluation tools for

696



Rimell et al. A Relative Clause Evaluation Data Set

future methods that combine formal and distributional semantics, and hope that the
insights provided by RELPRON inspire new work focused on linguistically challenging
grammatical constructions.

Data Access
The RELPRON data set is available from
the University of Cambridge data repository
at http://dx.doi.org/10.17863/CAM.298.
Source code related to this article is
available at http://dx.doi.org/10.5281/
zenodo.56288.
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