
Center for Turbulence Research
Proceedings of the Summer Program 2016

385

Toward a chaotic adjoint for LES

By P. J. Blonigan†, P. Fernandez‡, S. M. Murman¶, Q. Wang‡, G. Rigas‖,
AND L. Magri

Adjoint-based sensitivity analysis methods are powerful tools for engineers who use
flow simulations for design. However, the conventional adjoint method breaks down for
scale-resolving simulations like large-eddy simulation (LES) or direct numerical simula-
tion (DNS), which exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity
analysis based on least-squares shadowing (LSS) avoids the issues encountered by con-
ventional methods, but has a high computational cost. The following report outlines a
new, more computationally efficient formulation of LSS, non-intrusive LSS, and estimates
its cost for several canonical flows using Lyapunov analysis.

1. Introduction

Scale-resolving simulations such as LES are necessary for engineering design and flow
analysis, most notably flows in which jets, wakes, and separation dominate. In these
cases, the Reynolds-averaged Navier-Stokes (RANS) solvers typically used by today’s
engineers often fail to accurately capture the relevant flow physics (Leonard et al. 2015).
At the same time, engineers are interested in gradient-based design optimization, error
estimation, and uncertainty quantification with flow simulations. All of these require effi-
cient approaches for sensitivity analysis. Unfortunately, conventional sensitivity analysis
approaches such as the adjoint method do not compute accurate sensitivities for statis-
tically stationary quantities of interest in scale-resolving turbulent flow simulations like
LES or DNS (Blonigan et al. 2016). This is because unlike RANS, LES and DNS resolve
the chaotic dynamics of turbulent fluid flows (Keefe et al. 1992) and the adjoint method
computes unusable sensitivities for chaotic systems (Lea et al. 2000).

The recently proposed least-squares shadowing (LSS) method has shown great promise
for computing accurate sensitivities of statistically stationary quantities in chaotic dy-
namical systems (Wang et al. 2014). Most recently, LSS was successfully applied to
chaotic flow around a two-dimensional airfoil by Blonigan et al. (2016). This study showed
that LSS can compute accurate gradients, albeit at the cost of requiring large amounts of
memory and wall-clock time for a case with only around 10K degrees of freedom (DoF).

The following report analyzes a new formulation of LSS, called non-intrusive LSS
(NILSS), that seeks to reduce the computational cost of LSS (Ni et al. 2016). Specifically,
the cost of NILSS is estimated for several flow simulations using Lyapunov analysis, as
the cost of NILSS scales with the number of positive Lyapunov exponents. Section 2
introduces Lyapunov analysis. Section 3 provides an overview of the issues with chaotic
sensitivity analysis and presents NILSS. Section 4 presents Lyapunov analyses of several
flow simulations. Section 5 concludes this report.
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Figure 1. Schematic of Lyapunov exponents and covariant vectors in phase space.

2. Lyapunov analysis

To explain Lyapunov analysis the following dynamical system is considered

du

dt
= f(u; s), u(0) = u0, (2.1)

where u is a length n vector of state variables and s is some system parameter. For a
three-dimensional compressible flow simulation, u contains the five conserved quantities
at all DoF (grid points). The parameter s could be a flow parameter like the freestream
Mach number or a geometric parameter such as chord length.

For the system in Eq. (2.1), there exist Lyapunov covariant vectors ψ1(u), ψ2(u), ..., ψn(u)
corresponding to each Lyapunov exponent Λi, which satisfy the evolution equation (Ginelli
et al. 2007)

d

dt
ψi[u(t)] =

∂f

∂u

∣∣∣∣
u(t)

ψi[u(t)]− Λiψi[u(t)]. (2.2)

Note that Eq. (2.2) is a linearization of Eq. (2.1) with an additional term −Λiψi(u(t)).

To understand what Λi and ψi represent, consider a sphere composed of infinitesimal
perturbations δu in phase space to the system du

dt = f(u; s) at some time, as shown in
the far left of Figure 1. As this system evolves in time, this sphere expands in some
directions, contracts in some, and remains unchanged in others. The average rate at
which the sphere expands or contracts is determined by the Lyapunov exponent Λi, and
the corresponding direction of expansion or contraction is the Lyapunov covariant vector
ψi.

The magnitude and sign of the Lyapunov exponents depend on the dynamical behavior
of the system being studied. If the system eventually converges to a steady state, such as
any steady and laminar flow, all Lyapunov exponents are negative. This means that all
perturbations to the system will decay exponentially to zero as t → ∞. Different types
of perturbations will decay at different rates. Specifically, an infinitesimal perturbation
δu(t = 0) = εψi(u(t = 0)) with ε << 1 will decay at the rate Λi.

An inspection of Eq. (2.2) reveals that Lyapunov exponents and covariant vectors are
simply the eigenvalues and eigenvectors of the linearized equation for a steady state
problem (i.e., d/dt · ψi[u(t)] = 0).

For systems with a limit cycle, the Lyapunov exponents are the real part of the Floquet
exponents. These systems have one Lyapunov exponent equal to zero. The zero exponent
corresponds to perturbations along the cycle, or phase shifts. To see this, consider Eq.
(2.2) with ψi = f [u(t); s]

d

dt
f [u(t); s] =

∂f

∂u

∣∣∣∣
u(t)

f [u(t); s]− Λif [u(t); s]. (2.3)
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By the chain rule and Eq. (2.1)

d

dt
f [u(t); s] =

∂f

∂u

∣∣∣∣
u(t)

du

dt
=
∂f

∂u

∣∣∣∣
u(t)

f [u(t); s].

Therefore, Eq. (2.3) simplifies to Λi = 0. This shows that f [u(t); s] is a covariant vector
corresponding to Λ = 0. Since du/dt = f [u(t); s], this covariant vector is tangent to the
limit cycle.

A strange attractor is similar to a limit cycle, but it has at least one positive Lyapunov
exponent (Ginelli et al. 2007). The positive exponents are responsible for the butterfly
effect, a colloquial term for the large sensitivity to initial conditions exhibited by chaotic
systems. A similar phenomenon occurs if a trajectory with a slightly perturbed parameter
s+ δs has the same initial condition as an unperturbed trajectory with parameter s: the
two trajectories are initially close but eventually grow apart. This results in very different
instantaneous states after some time. In Figure 1, this is represented by the stretching
of the sphere. The positive exponents present in chaotic systems are responsible for the
issues encountered by conventional sensitivity analysis, as will be shown in Section 3.

Lyapunov exponents and covariant vectors can be computed for numerical simulations.
For the results presented in this report, Lyapunov exponents are computed using the
algorithm presented in Benettin et al. (1980).

3. Chaotic sensitivity analysis

3.1. Breakdown of conventional sensitivity analysis

When designing a system with unsteady flow, engineers are often interested in a time-
averaged quantity J̄ ,

J̄(s) =
1

T

∫ t0+T

t0

J [u(t; s); s] dt, (3.1)

where J [u(t; s); s] is some instantaneous quantity of interest, which could be the lift or
drag on an airfoil. In many cases, including applications with turbulent flow, engineers
are interested in infinite time averages, J̄ as T → ∞. Since the exact evaluation of this
is not computationally feasible, the infinite time average is approximated with a choice
of T that ensures J̄(s) is nearly stationary (does not vary with T ) (Oliver et al. 2014).

Sensitivities with respect to the parameter s can be computed using the following
equation obtained by differentiating Eq. (3.1)

dJ̄

ds
=

1

T

∫ t0+T

t0

(〈
∂J

∂u
, v

〉
+
∂J

∂s

)
dt, v ≡ ∂u

∂s
, (3.2)

where 〈·, ·〉 is the inner product and all variables on the right hand side are time depen-
dent.

Conventionally, the tangent solution, v, is obtained from the linearization of Eq. (2.1),
referred to as the tangent equation

dv

dt
=
∂f

∂u
v +

∂f

∂s
, v(t0) =

∂u0
∂s

= 0. (3.3)

The conventional approach using Eqs. (3.3) and (3.2) to compute sensitivities works
for steady and periodic systems if the time horizon is an integer number of periods or
if windowing is used. However, it fails for chaotic dynamical systems because chaotic
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systems have at least one positive Lyapunov exponent. Although the initial condition
for the tangent equation (Eq. (3.3)) is zero, the term ∂f/∂s acts like a forcing term.
Consider the case where ∂f/∂s = δ(t− t0)ψ1(t0), where δ(t) is the Dirac-delta function
and ψ1(t0) is the first Lyapunov covariant vector. For this case, v(t) will start growing
exponentially at t = t0 at the rate Λ1. In the general case, ∂f/∂s will almost always have
a component in the direction of ψ1, and that suffices for v(t) to diverge exponentially at
the rate Λ1.

The exponential growth of v(t) means that as the time horizon length T is increased,
the gradient computed using Eq. (3.2) grows exponentially as well. This means that
conventional sensitivity analysis will compute very large, unusable sensitivities for chaotic
dynamical systems like scale-resolving flow simulations including LES. This result was
explained using forward sensitivity analysis, but conventional adjoint-based sensitivity
analysis encounters the same exponentially growth backward in time.

3.2. Non-intrusive least-squares shadowing

One approach to avoid the breakdown discussed in the previous section is LSS (Wang
et al. 2014). LSS has been shown to compute accurate sensitivities for a number of
chaotic dynamical systems, including chaotic vortex shedding from a two-dimensional
airfoil (Blonigan et al. 2016).

Although LSS can compute accurate sensitivities, these sensitivities come at a relatively
high cost. This is because the Karush-Kuhn-Tucker (KKT) system for LSS is nm×mn,
where m is the number of time steps and n is the number of system states. For the
chaotic vortex shedding flow studied by Blonigan et al. (2016), this KKT system is
22.18M ×22.18M for a 2,218-node mesh. Furthermore, it is difficult to solve this system,
up to around 300k iterations of GMRES were required to compute sensitivities accurate
to three decimal places.

To improve the computational efficiency of LSS, we explore a reformulation of the least-
squares minimization problem presented in Wang et al. (2014). We use forward sensitivity
analysis to present these ideas, but these ideas also apply for adjoint sensitivity analysis.

To reduce the size of the KKT system corresponding to LSS, the following alternative
minimization problem is used

min
v(ti)

K∑
i=0

‖v(ti)‖22, s.t.
dv

dt
=
∂f

∂u
v +

∂f

∂s
+ ηf, t ∈ [t0, tK ], (3.4)

where η is chosen so that 〈v(t), f [u(t); s]〉 = 0. Now the tangent solution v(t) is minimized
at K + 1 checkpoints ti instead of at all time steps between t0 and tK . In this case, the
minimization problem (Eq. (3.4)) can be solved with a Kn×Kn KKT system.

The size of the minimization problem can be further reduced by decomposing the tan-
gent solution v(t) into one forced and p unforced components, v̂(t) and V j(t), respectively,
namely

v(t) = v̂(t) +

p∑
j=1

αjV j(t) (3.5)

dv̂

dt
=
∂f

∂u
v̂ +

∂f

∂s
+ ηf (3.6)

dV j

dt
=
∂f

∂u
V j . (3.7)
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This decomposition allows the minimization statement (Eq. (3.4)) to be written as a
minimization over the weights αj at each checkpoint ti rather than the entire tangent
solution v(ti). For some choices of the V j(t+i ), a relatively small number of unforced
components p << n are required and the size of the KKT system can be reduced to
Kp ×Kp. One choice of unforced tangents V j(t+i ) that has worked well is presented in
the following NILSS algorithm outline, similar to the one consider by Ni et al. (2016)

1. Set v̂(t0) = 0 and V j(t0) = rand(n), where rand(n) is a length n vector of random
numbers and j = 1, .., p. Set counter i = 1 and ensure that the V j are unitary and
orthogonal to one another.

2. Make the V j orthogonal to du/dt at t0 for j = 1, .., p.
3. Time-integrate Eqs. (3.6) and (3.7) to t = ti from the initial conditions v̂(ti−1) and

V j(ti−1), respectively. Compute and save the following integrals on the fly

gji =
1

ti − ti−1

∫ ti

ti−1

∂J

∂u
V j(t) dt, ĝi =

1

ti − ti−1

∫ ti

ti−1

∂J

∂u
v̂(t) +

∂J

∂s
dt.

4. Take the QR decomposition of the matrix Vi, a n × p matrix whose jth column is
V j(ti). Save Qi, Ri, and bi = −QTi v̂(ti), where QiRi = Vi.

5. Set V j(ti) = Qji and v̂(ti) = v̂(ti) +Qibi, where Qji is the jth column of Qi.
6. Compute and save the scalars

hji =
(du/dt)T

(du/dt)T du/dt

∣∣∣∣
ti

V j(ti), ĥi =
(du/dt)T

(du/dt)T du/dt

∣∣∣∣
ti

v̂(ti).

7. Set V j(ti) = V j(ti)− hji dudt |ti and v̂(ti) = v̂(ti)− ĥi dudt |ti .
8. Set i = i+ 1.
9. Repeat steps 3 through 8 until i = K + 1.
10. Construct and solve the following linear system from the saved matrices and vectors

Ri and bi.

−I RT
1

−I −I RT
2

. . .
. . .

. . .

−I −I RT
K

−I −I

R1 −I
R2 −I

. . .
. . .
RK −I





α1

α2

...
αK−1

αK

β1
β2
...
βK


=



0
0
...
0
0

b1
b2
...
bK

,


(3.8)

where αi = [α1
i , α

2
i , ..., α

p
i ]
T is a length p vector. Note that the Schur complement of Eq.

(3.8), which is Kp×Kp instead of 2Kp× 2Kp, could be solved instead.
11. Compute sensitivities from αji using the expression

dJ̄

ds
=

1

K

K∑
i=1

ĝi + ∆Jiĥi +

p∑
j=1

(gji + ∆Jih
j
i )α

j
i

 , (3.9)

where ∆Ji = J̄ − J(ti).
Note that the above algorithm is similar in structure to the algorithm presented in
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Benettin et al. (1980) to compute Lyapunov exponents. In fact, if steps 2 and 7 are
omitted, the Ri matrices computed can be used to compute Lyapunov exponents as in
Benettin et al. (1980),

Λj =
1

T

K∑
i=1

log |[Ri]jj |.

Lyapunov analysis can be used to explain how the number of unforced tangents p can
be much smaller than the number of states n. To minimize Eq. (3.4), exponentially
growing components of v(t) must be made negligible. The number of growing components
is equal to the dimension of the unstable subspace. This subspace is spanned by the
Lyapunov covariant vectors corresponding to positive exponents. Therefore, to eliminate
exponential growth, the columns of Vi must span the unstable subspace at ti. If this
is accomplished, then αi can be chosen such that the solutions of Eq. (3.7) can cancel
out the exponential growth in the solution v̂(t) of Eq. (3.6), resulting in no exponential
growth in v(t). Therefore, the number of unforced tangents p should be at least the
number of positive Lyapunov exponents, n+. Past studies, including those by Pulliam &
Vastano (1993), Keefe et al. (1992), and Sirovich & Deane (1991), have found n+ to be
a small fraction of n for a range of different flows.

To form the NILSS KKT linear system in Eq. (3.8), at least n++1 tangent solutions are
required over the time horizon of interest, along with K QR-decompositions of a n× n+
matrix. Assuming that solving the KKT system and computing the QR decompositions
are negligible in cost compared to steps 1 through 9, the cost of NILSS scales with the
number of positive Lyapunov exponents n+. Therefore, the cost of NILSS for a given flow
simulation can be estimated by determining how many positive exponents there are.

4. Lyapunov analyses for flow simulations

The following sections present Lyapunov exponent spectra and some Lyapunov co-
variant vectors for several flow simulations. The number of positive exponents shows
approximately how expensive NILSS will be for these flow simulations.

Since not all of the flow simulations considered have linearized flow solvers, the tangent
equation was approximated by a finite difference.

4.1. Two-dimensional flow around a NACA 0012 airfoil at a high angle of attack

The two-dimensional turbulent flow around a NACA 0012 airfoil is considered first. The
flow is at Reynolds number Rec = 2400, freestream Mach number M∞ = 0.2, and the
angle of attack is α = 20 deg., where c denotes the airfoil chord, and a∞ is the freestream
speed of sound. While two-dimensional turbulence is fundamentally different from three-
dimensional turbulence, this case has been chosen due to the extensive analysis of the
chaotic behavior of this flow in Pulliam & Vastano (1993).

The high-order hybridized discontinuous Galerkin solver by Fernandez et al. (2016)
is used with a 4th-order discretization in space and 3rd-order discretization in time.
The computational domain is partitioned using isoparametric triangular elements, and
the outer boundary is located 10 chords away from the airfoil. A run-up time of 10,000
nondimensional time units t∗ = t · a∞/c = 0.05 is used first to drive the system to the
attractor, and the Lyapunov exponent algorithm by Benettin et al. (1980) is then applied
for 2,000 time units. Also, the time step is ∆t∗ = 0.05 and the time segment length is
t∗ = 1.0.
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Figure 2. Left: Lyapunov exponent spectra for the NACA 0012 airfoil coarse (blue circles),
medium (red diamonds), and fine meshes (green squares). Right: Snapshot of the Mach number
field for the NACA 0012 airfoil.

The Lyapunov spectrum is computed on three successively finer meshes to investigate
the effect of the numerical resolution on the number and magnitude of positive Lyapunov
exponents. These meshes correspond to uniform refinement (x2) in both spatial dimen-
sions, and consist of 71,680 (coarse mesh), 286,720 (medium mesh), and 1,146,880 (fine
mesh) DoFs. The left panel of figure 2 shows the 14 leading Lyapunov exponents for the
three meshes considered. The right panel shows a snapshot of the Mach number field.

First, as the grid is refined, both the number and magnitude of positive Lyapunov
exponents increase. This trend is also observed for the turbulent channel flow in Section
4.3. Second, a zero Lyapunov exponent seems to be present in all discretizations. This
is consistent with theoretical results and corresponds to perturbations in the ∂f/∂u|u(t)
direction, as discussed in Section 2 for a limit cycle. Finally, the value of the leading
Lyapunov exponent significantly differs from that in Pulliam & Vastano (1993). Pulliam
& Vastano (1993) postulated that the value of the Lyapunov exponents may largely
depend on the numerical scheme used, and this seems to reinforce that observation.

4.2. Wake of an axisymmetric bluff body

The geometry employed is an axisymmetric bluff body with a blunt trailing edge. The
length-to-diameter ratio, L/D, is 6.48 and the nose employs a modified super-ellipse
profile with an aspect ratio of 2.5 (Rigas et al. 2015). Incompressible simulations were
performed with the low-Mach solver Vida (Cascade Technologies, Inc.), an edge-based
unstructured finite volume solver (see Rigas et al. (2016) for more details). Results for a
fine mesh consisting of 5M elements are presented hereafter.

En route to chaos, the axisymmetric bluff body wake undergoes a finite number of
spatiotemporal symmetry breaking bifurcations, as shown in Rigas et al. (2016). For
higher values of Re, such as ReD = U∞D/ν∞ = 900 shown on the left in Figure 3, the
wake becomes chaotic. At ReD = 900 the dynamic behavior of the near wake is dominated
by chaotic shedding of streamwise hairpin vortices, at a Strouhal frequency St = 0.13.
A low-frequency energetic region is identified also at St ≈ 0.02, and corresponds to
irregular bursts of vorticity, indicative of the chaotic behavior of the near wake at this
regime. These irregular bursts, occurring approximately every five vortex shedding cycles,
manifest in Figure 3 as isolated peaks in finite-time Lyapunov exponents with positive
values. Figure 3 also shows there are at least two positive exponents, so NILSS requires
at least three forward simulations for this flow.
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Figure 3. Left: Streamwise vorticity for Re = 900. Isocontours of ω+ = ±0.03 are shown
up to 10D downstream of the base for top and side views. CENTER: finite-time Lyapunov
exponents j = 0 (blue circles), j = 1 (red diamonds), and j = 2 (green squares) for Re = 900.
Right: time-averaged Lyapunov exponents, computed by averaging the finite time exponents
from segment 20 to segment 55.
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Figure 4. Left: Velocity fluctuation profiles for all three channel flows compared with the results
of Lee & Moser (2015) (solid black line). u, v, and w fluctuations are shown by the solid, dashed,
and dotted lines, respectively. Right: Lyapunov exponent spectra for DNS with ∆y+ = 2.0 (blue
circles), DNS with ∆y+ = 5.0 (red diamonds), and wall-modeled (green squares). All three
spectra were computed with 200 time segments of length t+ = 0.273.

4.3. Turbulent channel flow

The third case considered is a turbulent channel flow with Reτ = 180, where Reτ = uτδ
ν

is the Reynolds number based on friction velocity uτ =
√
τw/ρ and δ is the channel half-

width. The channel flow is simulated with the same space-time discontinuous Galerkin
spectral-element solver used in Diosady & Murman (2014), with elements that are 8th
order in space and 4th order in time. The domain size considered is 4πδ×2δ×2πδ in the
streamwise, wall-normal, and spanwise directions, respectively. All results presented in
this report are for a mean-flow Mach number of 0.3 and a channel half-width of δ = 1.0.
Results for fine and coarse grids are presented, with 96 × 64 × 80 and 96 × 32 × 80
DoFs in the streamwise, wall-normal, and spanwise directions, respectively. These grids
correspond to an average spacing of ∆x+ ≈ 24 and ∆z+ ≈ 14 per DoF. The DoFs are
arranged in the wall-normal direction so that the average spacing is ∆y+ ≈ 2 and ∆y+ ≈
5 for the two grids. Despite the relatively large grid spacings, the velocity fluctuation
profiles of both grids match the results from Lee & Moser (2015) well, as shown in
Figure 4.

The coarse DNS case was also run with the equilibrium wall model of Carton de Wiart
et al. (2014). Figure 4 shows Lyapunov exponent spectra for all three cases. All 118
exponents are positive for all cases. A rough estimate of the total number of positive
exponents n+ for each case is obtained by assuming the spectrum will remain continuous
and fitting a linear curve to the last 60 exponents of each spectrum, which appear to vary
linearly, as done by Sirovich & Deane (1991). This extrapolation estimates n+ = 1200
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for the ∆y+ = 2 case, n+ = 1400 exponents for the ∆y+ = 5 DNS case, and n+ = 1500
for the wall-modeled case.

The exponents in Figure 4 are larger in magnitude than those computed by Keefe
et al. (1992). This is because the results presented here use a greater value of Reτ . A
larger Reynolds number means that smaller length and time scales are present in the
flow. Since Lyapunov exponents are inverse time scales, larger Reynolds numbers should
lead to larger Lyapunov exponent magnitudes.

The larger Reynolds number might also explain the why the estimated number of
exponents is larger than the number observed by Keefe et al. (1992) (1200 versus roughly
160 positive exponents in the finest simulation). The increase in the number of exponents
is also likely due to the larger domain size in the present study (4πδ × 2δ × 2πδ versus
1.6πδ× 2δ× 1.6πδ). Even if the same Reynolds number was used, using a larger domain
for the channel flow is similar to running multiple simulations because of the periodic
boundary conditions. Therefore, doubling the domain size would double the number of
positive exponents.

The smaller relative magnitude of the exponents computed on the ∆y+ = 5 DNS grid
is also consistent with the findings by Keefe et al. (1992), but the larger overall number of
positive exponents n+ estimated for this case is not. This might indicate that the linear
extrapolation used to estimate n+ is inaccurate for this case.

The fact that the exponents computed for the wall-modeled case are the largest in
magnitude in Figure 4 might be related to the larger velocity fluctuations near the wall.
These larger fluctuations could be due to faster time scales in the near-wall layer caused
by the absence of the no-slip boundary condition. Further study is needed to verify this
idea.

5. Conclusions

Although conventional sensitivity analysis approaches fail for chaotic simulations like
LES, LSS-based approaches are successful. The original LSS formulation is costly, but the
recent NILSS approach looks to be more cost-effective. Overall, NILSS is well suited for
studying low-Reynolds-number flows around bluff bodies, which appear to have relatively
few positive Lyapunov exponents. The NACA 0012 and axisymmetric bluff body cases
have n+ ∼ O(1), so only O(1) additional simulations are required to compute sensitivities
with NILSS. Unfortunately, it seems that wall-bounded flows like the channel flow will
be considerably more expensive, requiring at least O(1000) simulations even for low Reτ
cases like the ones presented in this study. Also, it seems that using a wall model does
not decrease n+; it increases it despite the lower mesh resolution.

There are a large number of directions for future work, including computing more
exponents for all three flows presented in this report, perhaps with higher grid resolution.
Lyapunov analyzes of other flows of interest to engineers would also be valuable to give
an idea of how expensive NILSS or other shadowing-based methods will cost.
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