
Functional Pearl: A SQL to C Compiler in 500 Lines of Code

Tiark Rompf ∗ Nada Amin‡
∗Purdue University, USA: {first}@purdue.edu
‡EPFL, Switzerland: {first.last}@epfl.ch

Abstract
We present the design and implementation of a SQL query proces-
sor that outperforms existing database systems and is written in just
about 500 lines of Scala code – a convincing case study that high-
level functional programming can handily beat C for systems-level
programming where the last drop of performance matters.

The key enabler is a shift in perspective towards generative
programming. The core of the query engine is an interpreter for
relational algebra operations, written in Scala. Using the open-
source LMS Framework (Lightweight Modular Staging), we turn
this interpreter into a query compiler with very low effort. To
do so, we capitalize on an old and widely known result from
partial evaluation known as Futamura projections, which state that
a program that can specialize an interpreter to any given input
program is equivalent to a compiler.

In this pearl, we discuss LMS programming patterns such as
mixed-stage data structures (e.g. data records with static schema
and dynamic field components) and techniques to generate low-
level C code, including specialized data structures and data loading
primitives.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Code Generation, Optimization, Compilers;
H.2.4 [Database Management]: Systems–Query Processing

Keywords SQL, Query Compilation, Staging, Generative Pro-
gramming, Futamura Projections

1. Introduction
Let’s assume we want to implement a serious, performance critical
piece of system software, like a database engine that processes SQL
queries. Would it be a good idea to pick a high-level language, and
a mostly functional style? Most people would answer something in
the range of “probably not” to “you gotta be kidding”: for systems
level programming, C remains the language of choice.

But let us do a quick experiment. We download a dataset from
the Google Books NGram Viewer project: a 1.7 GB file in CSV
format that contains book statistics of words starting with the letter

[Copyright notice will appear here once ’preprint’ option is removed.]

‘a’. As a first step to perform further data analysis, we load this file
into a database system, for example MySQL:

mysqlimport --local mydb 1gram_a.csv

When we run this command we can safely take a coffee break,
as the import will take a good five minutes on a decently modern
laptop. Once our data has loaded, and we have returned from the
break, we would like to run a simple SQL query, perhaps to find all
entries that match a given keyword:

select * from 1gram_a where phrase = ’Auswanderung’

Unfortunately, we will have to wait another 50 seconds for an
answer. While we’re waiting, we may start to look for alternative
ways to analyze our data file. We can write an AWK script to
process the CSV file directly, which will take 45 seconds to run.
Implementing the same query as a Scala program will get us to
13 seconds. If we are still not satisfied and rewrite it in C using
memory-mapped IO, we can get down to 3.2 seconds.

Of course, this comparison may not seem entirely fair. The
database system is generic. It can run many kinds of queries, possi-
bly in parallel, and with transaction isolation. Hand-written queries
run faster but they are one-off, specialized solutions, unsuited to
rapid exploration. In fact, this gap between general-purpose sys-
tems and specialized solutions has been noted many times in the
database community [20, 24], with prominent researchers arguing
that “one size fits all” is an idea whose time has come and gone
[19]. While specialization is clearly necessary for performance,
wouldn’t it be nice to have the best of both worlds: being able to
write generic high-level code while programmatically deriving the
specialized, low-level, code that is executed?

In this pearl, we show the following:

• Despite common database systems consisting of millions of
lines of code, the essence of a SQL engine is nice, clean and
elegantly expressed as a functional interpreter for relational
algebra – at the expense of performance compared to hand
written queries. We present the pieces step by step in Section 2.
• While the straightforward interpreted engine is rather slow, we

show how we can turn it into a query compiler that generates
fast code with very little modifications to the code. The key
technique is to stage the interpreter using LMS (Lightweight
Modular Staging [17]), which enables specializing the inter-
preter for any given query (Section 3).
• Implementing a fast database engine requires techniques be-

yond simple code generation. Efficient data structures are a key
concern, and we show how we can use staging to support spe-
cialized hash tables, efficient data layouts (e.g. column storage),
as well as specialized type representations and IO handling to
eliminate data copying (Section 4).

1 2015/7/20

tid,time,title,room
1,09:00 AM,Erlang 101 - Actor and Multi-Core Programming,New York Central
2,09:00 AM,Program Synthesis Using miniKanren,Illinois Central
3,09:00 AM,Make a game from scratch in JavaScript,Frisco/Burlington
4,09:00 AM,Intro to Cryptol and High-Assurance Crypto Engineering,Missouri
5,09:00 AM,Working With Java Virtual Machine Bytecode,Jeffersonian
6,09:00 AM,Let’s build a shell!,Grand Ballroom E
7,12:00 PM,Golang Workshop,Illinois Central
8,12:00 PM,Getting Started with Elasticsearch,Frisco/Burlington
9,12:00 PM,Functional programming with Facebook React,Missouri
10,12:00 PM,Hands-on Arduino Workshop,Jeffersonian
11,12:00 PM,Intro to Modeling Worlds in Text with Inform 7,Grand Ballroom E
12,03:00 PM,Mode to Joy - Diving Deep Into Vim,Illinois Central
13,03:00 PM,Get ’go’ing with core.async,Frisco/Burlington
14,03:00 PM,What is a Reactive Architecture,Missouri
15,03:00 PM,Teaching Kids Programming with the Intentional Method,Jeffersonian
16,03:00 PM,Welcome to the wonderful world of Sound!,Grand Ballroom E

Figure 1. Input file talks.csv for running example.

The SQL engine presented here is decidedly simple. A more
complete engine, able to run the full TPCH benchmark and imple-
mented in about 3000 lines of Scala using essentially the same tech-
niques has won a best paper award at VLDB’14 [10]. This pearl is a
condensed version of a tutorial given at CUFP’14, and an attempt to
distill the essence of the VLDB work. The full code accompanying
this article is available online at:

scala-lms.github.io/tutorials/query.html

2. A SQL Interpreter, Step by Step
We start with a small data file for illustration purposes (see Fig-
ure 1). This file, talks.csv contains a list of talks from a recent
conference, with id, time, title of the talk, and room where it takes
place.

It is not hard to write a short program in Scala that processes
the file and computes a simple query result. As a running example,
we want to find all talks at 9am, and print out their room and title.
Here is the code:

printf("room,title")
val in = new Scanner("talks.csv")
in.next(’\n’)
while (in.hasNext) {
val tid = in.next(’,’)
val time = in.next(’,’)
val title = in.next(’,’)
val room = in.next(’\n’)
if (time == "09:00 AM")
printf("%s,%s\n",room,title)

}
in.close

We use a Scanner object from the standard library to tokenize the
file into individual data fields, and print out only the records and
fields we are interested in.

Running this little program produces the following result, just
as expected:

room,title
New York Central,Erlang 101 - Actor and Multi-Core Programming
Illinois Central,Program Synthesis Using miniKanren
Frisco/Burlington,Make a game from scratch in JavaScript
Missouri,Intro to Cryptol and High-Assurance Crypto Engineering
Jeffersonian,Working With Java Virtual Machine Bytecode
Grand Ballroom E,Let’s build a shell!

While it is relatively easy to implement very simple queries
in such a way, and the resulting program will run very fast, the
complexity gets out of hand very quickly. So let us go ahead and
add some abstractions to make the code more general.

The first thing we add is a class to encapsulate data records:
case class Record(fields: Fields, schema: Schema) {
def apply(name: String) = fields(schema indexOf name)
def apply(names: Schema) = names map (apply _)

}

And some auxiliary type definitions:
type Fields = Vector[String]
type Schema = Vector[String]

Each records contains a list of field values and a schema, a list of
field names. With that, it provides a method to look up field values,
given a field name, and another version of this method that return
a list of values, given a list of names. This will make our code
independent of the order of fields in the file. Another thing that is
bothersome about the initial code is that I/O boilerplate such as the
scanner logic is intermingled with the actual data processing. To fix
this, we introduce a method processCSV that encapsulates the input
handling:
def processCSV(file: String)(yld: Record => Unit): Unit = {
val in = new Scanner(file)
val schema = in.next(’\n’).split(",").toVector
while (in.hasNext) {
val fields = schema.map(n=>in.next(if(n==schema.last)’\n’else’,’))
yld(Record(fields, schema))

}
}

This method fully abstracts over all file handling and tokenization.
It takes a file name as input, along with a callback that it invokes
for each line in the file with a freshly created record object. The
schema is read from the first line of the file.

With these abstractions in place, we can express our data pro-
cessing logic in a much nicer way:
printf("room,title")
processCSV("talks.csv") { rec =>
if (rec("time") == "09:00 AM")
printf("%s,%s\n",rec("room"),rec("title"))

}

The output will be exactly the same as before.

Parsing SQL Queries While the programming experience has
much improved, the query logic is still essentially hardcoded. What
if we want to implement a system that can itself answer queries
from the outside world, say, respond to SQL queries it receives over
a network connection?

We will build a SQL interpreter on top of the existing abstrac-
tions next. But first we need to understand what SQL queries mean.
We follow the standard approach in database systems of translating
SQL statements to an internal query execution plan representation–
a tree of relational algebra operators. The Operator data type is de-
fined in Figure 2, and we will implement a function parseSql that
produces instances of that type.

Here are a few examples. For a query that returns its whole
input, we get a single table scan operator:
parseSql("select * from talks.csv")
↪→ Scan("talks.csv")

If we select specific fields, with possible renaming, we obtain a
projection operator with the table scan as parent:
parseSql("select room as where, title as what from talks.csv")
↪→ Project(Vector("where","what"),Vector("room","title"),

Scan("talks.csv"))

And if we add a condition, we obtain an additional filter operator:
parseSql("select room, title from talks.csv where time=’09:00 AM’")
↪→ Project(Vector("room","title"),Vector("room","title"),

Filter(Eq(Field("time"),Value("09:00 AM")),
Scan("talks.csv")))

2 2015/7/20

// relational algebra ops
sealed abstract class Operator
case class Scan(name: Table) extends Operator
case class Print(parent: Operator) extends Operator
case class Project(out: Schema, in: Schema, parent: Operator) extends Operator
case class Filter(pred: Predicate, parent: Operator) extends Operator
case class Join(parent1: Operator, parent2: Operator) extends Operator
case class HashJoin(parent1: Operator, parent2: Operator) extends Operator
case class Group(keys: Schema, agg: Schema, parent: Operator) extends Operator

// filter predicates
sealed abstract class Predicate
case class Eq(a: Ref, b: Ref) extends Predicate
case class Ne(a: Ref, b: Ref) extends Predicate

sealed abstract class Ref
case class Field(name: String) extends Ref
case class Value(x: Any) extends Ref

Figure 2. Query plan language (relational algebra operators)

def stm: Parser[Operator] =
selectClause ~ fromClause ~ whereClause ~ groupClause ^^ {
case p ~ s ~ f ~ g => g(p(f(s))) }

def selectClause: Parser[Operator=>Operator] =
"select" ~> ("*" ^^^ idOp | fieldList ^^ {
case (fs,fs1) => Project(fs,fs1,_:Operator) })

def fromClause: Parser[Operator] =
"from" ~> joinClause

def whereClause: Parser[Operator=>Operator] =
opt("where" ~> predicate ^^ { p => Filter(p, _:Operator) })

def joinClause: Parser[Operator] =
repsep(tableClause, "join") ^^ { _.reduce((a,b) => Join(a,b)) }

def tableClause: Parser[Operator] =
tableIdent ^^ { case table => Scan(table, schema, delim) } |
("(" ~> stm <~ ")")

// 30 lines elided

Figure 3. Combinator parsers for SQL grammar

Finally, we can use joins, aggregations (groupBy) and nested
queries. Here is a more complex query that finds all different talks
that happen at the same time in the same room (hopefully there are
none!):

parseSql("select *
from (select time, room, title as title1 from talks.csv)
join (select time, room, title as title2 from talks.csv)
where title1 <> title2")

↪→ Filter(Ne(Field("title1"),Field("title2")),
Join(
Project(Vector("time","room","title1"),Vector(...),
Scan("talks.csv")),

Project(Vector("time","room","title2"),Vector(...),
Scan("talks.csv")))

In good functional programming style, we use Scala’s combi-
nator parser library to define our SQL parser. The details are not
overly illuminating, but we show an excerpt in Figure 3. While the
code may look dense on first glance, it is rather straightforward
when read top to bottom. The important bit is that the result of
parsing a SQL query is an Operator object, which we will focus on
next.

Interpreting Relational Algebra Operators Given that the result
of parsing a SQL statement is a query execution plan, we need to
specify how to turn such a plan into actual query execution. The
classical database model would be to define a stateful iterator in-
terface with open, next, and close functions for each type of oper-
ator (also known as volcano model [7]). In contrast to this tradi-
tional pull-driven execution model, recent database work proposes
a push-driven model to reduce indirection [13].

Working in a functional language, and coming from a back-
ground informed by PL theory, a push model is a more natural fit
from the start: we would like to give a compositional account of
what an operator does, and it is easy to describe the semantics of
each operator in terms of what records it pushes to its caller. This
means that we can define a semantic domain as type

type Semant = (Record => Unit) => Unit

with the idea that the argument is a callback that is invoked for each
emitted record. With that, we describe the meaning of each operator
through a function execOp with the following signature:

def execOp: Operator => Semant

Even without these considerations, we might pick the push-
mode of implementation for completely pragmatic reasons: the ex-
ecutable code corresponds almost directly to a textbook definition
of the query operators, and it would be hard to imagine an im-
plementation that is clearer or more concise. The following code
might therefore serve as a definitional interpreter in the spirit of
Reynolds [14]:

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {
case Scan(filename) =>
processCSV(filename)(yld)

case Print(parent) =>
execOp(parent) { rec =>
printFields(rec.fields) }

case Filter(pred, parent) =>
execOp(parent) { rec =>
if (evalPred(pred)(rec)) yld(rec) }

case Project(newSchema, parentSchema, parent) =>
execOp(parent) { rec =>
yld(Record(rec(parentSchema), newSchema)) }

case Join(left, right) =>
execOp(left) { rec1 =>
execOp(right) { rec2 =>
val keys = rec1.schema intersect rec2.schema
if (rec1(keys) == rec2(keys))
yld(Record(rec1.fields ++ rec2.fields,

rec1.schema ++ rec2.schema)) }}

}

So what does each operator do? A table scan just means that we
are reading an input file through our previously defined processCSV
method. A print operator prints all the fields of every record that
its parent emits. A filter operator evaluates the predicate, for each
record its parents produces, and if the predicate holds it passes the
record on to its own caller. A projection rearranges the fields in a
record before passing it on. A join, finally, matches every single
record it receives from the left against all records from the right,
and if the fields with a common name also agree on the values, it
emits a combined record. Of course this is not the most efficient
way to implement a join, and adding an efficient hash join operator
is straightforward. The same holds for the group-by operator, which
we have omitted so far. We will come back to this in Section 4.

To complete this section, we show the auxiliary functions used
by execOp:

def evalRef(p: Ref)(rec: Record) = p match {
case Value(a: String) => a
case Field(name) => rec(name)

}

def evalPred(p: Predicate)(rec: Record) = p match {
case Eq(a,b) => evalRef(a)(rec) == evalRef(b)(rec)
case Ne(a,b) => evalRef(a)(rec) != evalRef(b)(rec)

}

def printFields(fields: Fields) =
printf(fields.map(_ => "%s").mkString("",",","\n"), fields: _*)

3 2015/7/20

Finally, to put everything together, we provide a main object that
integrates parsing and execution, and that can be used to run queries
against CSV files from the command line:

object Engine {
def main(args: Array[String]) {
if (args.length != 1)
return println("usage: engine <sql>")

val ops = parseSql(args(0))
execOp(Print(ops)) { _ => }

}
}

With the code in this section, which is about 100 lines combined,
we have a fully functional query engine that can execute a practi-
cally relevant subset of SQL.

But what about performance? We can run the Google Books
query on the 1.7 GB data file from Section 1 for comparison, and
the engine we have built will take about 45 seconds. This is about
the same as an AWK script, which is also an interpreted language.
Compared to our starting point, handwritten scripts that ran in 10s,
the interpretive overhead we have added is clearly visible.

3. From Interpreter to Compiler
We will now show how we can turn our rather slow query inter-
preter into a query compiler that produces Scala or C code that is
practically identical to the handwritten queries that were the start-
ing point of our development in Section 2.

Futamura Projections The key idea behind our approach goes
back to early work on partial evaluation in the 1970’ies, namely
the notion of Futamura Projections [6]. The setting is to consider
programs with two inputs, one designated as static and one as
dynamic. A program specializer or partial evaluator mix is then able
to specialize a program p with respect to a given static input. The
key use case is if the program is an interpreter:

result = interpreter(source, input)

Then specializing the interpreter with respect to the source pro-
gram yields a program that performs the same computation on the
dynamic input, but faster:

target = mix(interpreter, source)
result = target(input)

This application of a specialization process to an interpreter is
called the first Futamura projection. In total there are three of them:

target = mix(interpreter, source) (1)
compiler = mix(mix, interpreter) (2)
cogen = mix(mix, mix) (3)

The second one says that if we can automate the process of special-
izing an interpreter to any static input, we obtain a program equiva-
lent to a compiler. Finally the third projection says that specializing
a specializer with respect to itself yields a system that can generate
a compiler from any interpreter given as input [3].

In our case, we do not rely on a fully automatic program special-
izer, but we delegate some work to the programmer to change our
query interpreter into a program that specializes itself by treating
queries as static data and data files as dynamic input. In particular,
we use the following variant of the first Futamura projection:

target = staged-interpreter(source)

Here, staged-interpreter is a version of the interpreter that has
been annotated by the programmer. This idea was also used in
bootstrapping the first implementation of the Futamura projections

by Neil Jones and others in Copenhagen [8]. The role of the pro-
grammer can be understood as being part of the mix system, but we
will see that the job of converting a straightforward interpreter into
a staged interpreter is relatively easy.

Lightweight Modular Staging Staging or multi-stage program-
ming describes the idea of making different computation stages
explicit in a program, where the present stage program generates
code to run in a future stage. The concept goes back at least to
Jørring and Scherlis [9], who observed that many programs can be
separated into stages, distinguished by frequency of execution or
by availability of data. Taha and Sheard [22] introduced the lan-
guage MetaML and made the case for making such stages explicit
in the programming model through the use of quotation operators,
as known from LISP and Scheme macros.

Lightweight modular staging (LMS) [17] is a staging technique
based on types: instead of syntactic quotations, we use the Scala
type system to designate future stage expressions. Where any regu-
lar Scala expression of type Int, String, or in general T is executed
normally, we introduce a special type constructor Rep[T] with the
property that all operations on Rep[Int], Rep[String], or Rep[T] ob-
jects will generate code to perform the operation later.

Here is a simple example of using LMS:

val driver = new LMS_Driver[Int,Int] {

def power(b: Rep[Int], x: Int): Rep[Int] =
if (x == 0) 1 else b * power(b, x - 1)

def snippet(x: Rep[Int]): Rep[Int] = {
power(x,4)

}
}
driver(3)
↪→ 81

We create a new LMS_Driver object. Inside its scope, we can use
Rep types and corresponding operations. Method snippet is the
‘main’ method of this object. The driver will execute snippetwith a
symbolic input. This will completely evaluate the recursive power
invocations (since it is a present-stage function) and record the
individual expression in the IR as they are encountered. On exit
of snippet, the driver will compile the generated source code and
load it as executable into the running program. Here, the generated
code corresponds to:

class Anon12 extends ((Int)=>(Int)) {
def apply(x0:Int): Int = {
val x1 = x0*x0
val x2 = x0*x1
val x3 = x0*x2
x3

}
}

The performed specializations are immediately clear from the
types: in the definition of power, only the base b is dynamic (type
Rep[Int]), everything else will be evaluated statically, at code gen-
eration time. The expression driver(3) will then execute the gener-
ate code, and return the result 81.

Some LMS Internals While not strictly needed to understand the
rest of this paper, it is useful to familiarize oneself with some of the
internals.

LMS is called lightweight because it is implemented as a li-
brary instead of baked-in into a language, and it is called modular
because there is complete freedom to define the available opera-
tions on Rep[T] values. To user code, LMS provides just an abstract
interface that lifts (selected) functionality of types T to Rep[T]:

4 2015/7/20

trait Base {
type Rep[T]

}
trait IntOps extends Base {
implicit def unit(x: Int): Rep[Int]
def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]
def infix_*(x: Rep[Int], y: Rep[Int]): Rep[Int]

}

Internally, this API is wired to create an intermediate represen-
tation (IR) which can be further transformed and finally unparsed
to target code:

trait BaseExp {
// IR base classes: Exp[T], Def[T]
type Rep[T] = Exp[T]
def reflectPure[T](x:Def[T]): Exp[T] = .. // insert x into IR graph

}
trait IntOpsExp extends BaseExp {
case class Plus(x: Exp[Int], y: Exp[Int]) extends Def[Int]
case class Times(x: Exp[Int], y: Exp[Int]) extends Def[Int]
implicit def unit(x: Int): Rep[Int] = Const(x)
def infix_+(x: Rep[Int], y: Rep[Int]) = reflectPure(Plus(x,y))
def infix_*(x: Rep[Int], y: Rep[Int]) = reflectPure(Times(x,y))

}

Another way to look at this structure is as combining a shallow and
a deep embedding for an IR object language [21]. Methods like
infix_+ can serve as smart constructors that perform optimizations
on the fly while building the IR [18]. With some tweaks to the
Scala compiler (or alternatively using Scala macros) we can extend
this approach to lift language built-ins like conditionals or variable
assignments into the IR, by redefining them as method calls [15].

Mixed-Stage Data Structures We have seen above that LMS
can be used to unfold functions and generate specialized code
based on static values. One key design pattern that will drive the
specialization of our query engine is the notion of mixed-stage data
structures, which have both static and dynamic components.

Looking again at our earlier Record abstraction:

case class Record(fields: Vector[String], schema: Vector[String]) {
def apply(name: String): String = fields(schema indexOf name)

}

We would like to treat the schema as static data, and treat only the
field values as dynamic. The field values are read from the input and
vary per row, whereas the schema is fixed per file and per query. We
thus go ahead and change the definition of Records like this:

case class Record(fields: Vector[Rep[String]], schema: Vector[String]) {
def apply(name: String): Rep[String] = fields(schema indexOf name)

}

Now the individual fields have type Rep[String] instead of String
which means that all operations that touch any of the fields will
need to become dynamic as well. On the other hand, all computa-
tions that only touch the schema will be computed at code genera-
tion time. Moreover, Record objects are static as well. This means
that the generated code will manipulate the field values as individ-
ual local variables, instead of through a record indirection. This is a
strong guarantee: records cannot exist in the generated code, unless
we provide an API for Rep[Record] objects.

Staged Interpreter As it turns out, this simple change to the
definition of records is the only significant one we need to make
to obtain a query compiler from our previous interpreter. All other
modifications follow by fixing the type errors that arise from this
change. We show the full code again in Figure 4. Note that we are
now using a staged version of the Scanner implementation, which
needs to be provided as an LMS module.

val driver = new LMS_Driver[Unit,Unit] {
type Fields = Vector[Rep[String]]
type Schema = Vector[String]

case class Record(fields: Fields, schema: Schema) {
def apply(name: String): Rep[String] = fields(schema indexOf name)
def apply(names: Schema): Fields = names map (this apply _)

}

def processCSV(file: String)(yld: Record => Unit): Unit = {
val in = new Scanner(file)
val schema = in.next(’\n’).split(",").toVector
while (in.hasNext) {
val fields = schema.map(n=>in.next(if(n==schema.last)’\n’else’,’))
yld(Record(fields, schema))

}
}

def evalRef(p: Ref)(rec: Record): Rep[String] = p match {
case Value(a: String) => a
case Field(name) => rec(name)

}

def evalPred(p: Predicate)(rec: Record): Rep[Boolean] = p match {
case Eq(a,b) => evalRef(a)(rec) == evalRef(b)(rec)
case Ne(a,b) => evalRef(a)(rec) != evalRef(b)(rec)

}

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {
case Scan(filename) =>
processCSV(filename)(yld)

case Print(parent) =>
execOp(parent) { rec =>
printFields(rec.fields) }

case Filter(pred, parent) =>
execOp(parent) { rec =>
if (evalPred(pred)(rec)) yld(rec) }

case Project(newSchema, parentSchema, parent) =>
execOp(parent) { rec =>
yld(Record(rec(parentSchema), newSchema)) }

case Join(left, right) =>
execOp(left) { rec1 =>
execOp(right) { rec2 =>
val keys = rec1.schema intersect rec2.schema
if (rec1(keys) == rec2(keys))
yld(Record(rec1.fields ++ rec2.fields, rec1.schema ++ rec2.schema)) }}

}

def printFields(fields: Fields) =
printf(fields.map(_ => "%s").mkString("",",","\n"), fields: _*)

def snippet(x: Rep[Unit]): Rep[Unit] = {
val ops = parseSql("select room,title from talks.csv where time = ’09:00 AM’")
execOp(PrintCSV(ops)) { _ => }

}
}

Figure 4. Staged query interpreter = compiler. Changes are under-
lined.

.

Results Let us compare the generated code to the one that was
our starting point in Section 2. Our example query was:

select room, title from talks.csv where time = ’09:00 AM’

And here is the handwritten code again:

printf("room,title")
val in = new Scanner("talks.csv")
in.next(’\n’)
while (in.hasNext) {
val tid = in.next(’,’)
val time = in.next(’,’)
val title = in.next(’,’)
val room = in.next(’\n’)
if (time == "09:00 AM")
printf("%s,%s\n",room,title)

}
in.close

5 2015/7/20

The generated code from the compiling engine is this:

val x1 = new scala.lms.tutorial.Scanner("talks.csv")
val x2 = x1.next(’\n’)
val x14 = while ({
val x3 = x1.hasNext
x3

}) {
val x5 = x1.next(’,’)
val x6 = x1.next(’,’)
val x7 = x1.next(’,’)
val x8 = x1.next(’\n’)
val x9 = x6 == "09:00 AM"
val x12 = if (x9) {
val x10 = printf("%s,%s\n",x8,x7)

} else {
}
x1.close

}

So, modulo syntactic differences, we have generated exactly the
same code! And, of course, this code will run just as fast. Looking
again at the Google Books query, where the interpreted engine
tooks 45s to run the query, we are down again to 10s but this time
without giving up on generality!

4. Beyond Simple Compilation
While we have seen impressive speedups just through compilation
of queries, let us recall from Section 1 that we can still go faster.
By writing our query by hand in C instead of Scala we were able to
run it in 3s instead of 10s. The technique there was to use the mmap
system call to map the input file into memory, so that we could treat
it as a simple array instead of copying data from read buffers into
string objects.

We have also not yet looked at efficient join algorithms that
require auxiliary data structures, and in this section we will show
how we can leverage generative techniques for this purpose as well.

Hash Joins We consider extending our query engine with hash
joins and aggregates first. The required additions to execOp are
straightforward:

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {
// ... pre-existing operators elided
case Group(keys, agg, parent) =>
val hm = new HashMapAgg(keys, agg)
execOp(parent) { rec =>
hm(rec(keys)) += rec(agg)

}
hm foreach { (k,a) =>
yld(Record(k ++ a, keys ++ agg))

}
case HashJoin(left, right) =>
val keys = resultSchema(left) intersect resultSchema(right)
val hm = new HashMapBuffer(keys, resultSchema(left))
execOp(left) { rec1 =>
hm(rec1(keys)) += rec1.fields

}
execOp(right) { rec2 =>
hm(rec2(keys)) foreach { rec1 =>
yld(Record(rec1.fields ++ rec2.fields,

rec1.schema ++ rec2.schema))
}

}
}

An aggregation will collect all records from the parent operator into
buckets, and accumulate sums in a hash table. Once all records are
processed, all key-value pairs from the hash map will be emitted as
records. A hash join will insert all records from the left parent into
a hash map, indexed by the join key. Afterwards, all the records
from the right will be used to lookup matching left records from
the hash table, and the operator will pass combined records on to

its callback. This approach is much more efficient for larger data
sets than the naive nested loops join from Section 2.

Data Structure Specialization What are the implementations
of hash tables that we are using here? We could have opted
to just use lifted versions of the regular Scala hash tables, i.e.
Rep[HashMap[K,V]] objects. However, these are not the most effi-
cient for our case, since they have to support a very generic pro-
gramming interface. Morever, recall our staged Record definition:

case class Record(fields: Vector[Rep[String]], schema: Vector[String]) {
def apply(name: String): Rep[String] = fields(schema indexOf name)

}

A key design choice was to treat records as a purely staging-
time abstraction. If we were to use Rep[HashMap[K,V]] objects,
we would have to use Rep[Record] objects as well, or at least
Rep[Vector[String]]. The choice of using Vector[Rep[String]]
means that all field values will be mapped to individual entities
in the generated code. This property naturally leads to a design for
data structures in column-oriented instead of row-oriented order.
Instead of working with:

Collection[{ Field1, Field2, Field3 }]

We work with:

{ Collection[Field1], Collection[Field2], Collection[Field3] }

This layout has other important benefits, for example in terms
of memory bandwidth utilization and is becoming increasingly
popular in contemporary in-memory database systems.

Usually, programming in a columnar style is more cumbersome
than in a record oriented manner. But fortunately, we can com-
pletely hide the column oriented nature of our internal data struc-
tures behind a high-level record oriented interface. Let us go ahead
and implement a growable ArrayBuffer, which will serve as the ba-
sis for our HashMaps:

abstract class ColBuffer
case class IntColBuffer(data: Rep[Array[Int]]) extends ColBuffer
case class StringColBuffer(data: Rep[Array[String]],

len: Rep[Array[Int]]) extends ColBuffer

class ArrayBuffer(dataSize: Int, schema: Schema) {
val buf = schema.map {
case hd if isNumericCol(hd) =>
IntColBuffer(NewArray[Int](dataSize))

case _ =>
StringColBuffer(NewArray[String](dataSize),

NewArray[Int](dataSize))
}
var len = 0
def +=(x: Fields) = {
this(len) = x
len += 1

}
def update(i: Rep[Int], x: Fields) = (buf,x).zipped.foreach {
case (IntColBuffer(b), RInt(x)) => b(i) = x
case (StringColBuffer(b,l), RString(x,y)) => b(i) = x; l(i) = y

}
def apply(i: Rep[Int]): Fields = buf.map {
case IntColBuffer(b) => RInt(b(i))
case StringColBuffer(b,l) => RString(b(i),l(i))

}
}

The array buffer is passed a schema on creation, and it sets up one
ColBuffer object for each of the columns. In this version of our
query engine we also introduce typed columns, treating columns
whose name starts with “#” as numeric. This enables us to use
primitive integer arrays for storage of numeric columns instead of
a generic binary format. It would be very easy to introduce fur-
ther specialization, for example sparse or compressed columns for

6 2015/7/20

cases where we know that most values will be zero. The update
and apply methods of ArrayBuffer still provide a row-oriented in-
terface, working on a set of Fields together, but internally access
the distinct column buffers.

With this definition of array buffers at hand, we can define a
class hierarchy of hash maps, with a common base class and then
derived classes for aggregations (storing scalar values) and joins
(storing collections of objects):

class HashMapBase(keySchema: Schema, schema: Schema) {
val keys = new ArrayBuffer(keysSize, keySchema)
val htable = NewArray[Int](hashSize)
def lookup(k: Fields) =
def lookupOrUpdate(k: Fields)(init: Rep[Int]=>Rep[Unit]) = ...

}
// hash table for groupBy, storing scalar sums
class HashMapAgg(keySchema: Schema, schema: Schema) extends

HashMapBase(keySchema: Schema, schema: Schema) {
val values = new ArrayBuffer(keysSize, schema)

def apply(k: Fields) = new {
def +=(v: Fields) = {
val keyPos = lookupOrUpdate(k) { keyPos =>
values(keyPos) = schema.map(_ => RInt(0))

}
values(keyPos) = (values(keyPos) zip v) map {
case (RInt(x), RInt(y)) => RInt(x + y)

}}}
def foreach(f: (Fields,Fields) => Rep[Unit]): Rep[Unit] =
for (i <- 0 until keyCount)
f(keys(i),values(i))

}
// hash table for joins, storing lists of records
class HashMapBuffer(keySchema: Schema, schema: Schema) extends

HashMapBase(keySchema: Schema, schema: Schema) {
// ... details elided

}

Note that the hash table implementation is oblivious of the storage
format used by the array buffers. Furthermore, we’re freely using
object oriented techniques like inheritance without the usually as-
sociated overheads because all these abstractions exist only at code
generation time.

Memory-Mapped IO and Data Representations Finally, we con-
sider our handling of memory mapped IO. One key benefit will be
to eliminate data copies and represent strings just as pointers into
the memory mapped file, instead of first copying data into another
buffer. But there is a problem: the standard C API assumes that
strings are 0-terminated, but in our memory mapped file, strings
will be delimited by commas or line breaks. To this end, we intro-
duce our own operations and data types for data fields. Instead of
the previous definition of Fields as Vector[Rep[String]], we intro-
duce a small class hierarchy RField with the necessary operations:

type Fields = Vector[RField]
abstract class RField {
def print()
def compare(o: RField): Rep[Boolean]
def hash: Rep[Long]

}
case class RString(data: Rep[String], len: Rep[Int]) extends RField {
def print() = ...
def compare(o: RField) = ...
def hash = ...

}
case class RInt(value: Rep[Int]) extends RField {
def print() = printf("%d",value)
def compare(o: RField) = o match { case RInt(v2) => value == v2 }
def hash = value.asInstanceOf[Rep[Long]]

}

Note that this change is again completely orthogonal to the actual
query interpreter logic.

As the final piece in the puzzle, we provide our own specialized
Scanner class that generates mmap calls (supported by a correspond-
ing LMS IR node), and creates RField instances when reading the
data:

class Scanner(name: Rep[String]) {
val fd = open(name)
val fl = filelen(fd)
val data = mmap[Char](fd,fl)
var pos = 0
def next(d: Rep[Char]) = {
//...
RString(stringFromCharArray(data,start,len), len)

}
def nextInt(d: Rep[Char]) = {
//...
RInt(num)

}
}

With this, we are able to generate tight C code that executes the
Google Books query in 3s, just like the hand written optimized C
code. The total size of the code is just under 500 (non-blank, non-
comment) lines.

The crucial point here is that while we cannot hope to beat
hand-written specialized C code for a particular query–after all,
anything we generate could also be written by hand–we are beat-
ing, by a large margin, the highly optimized generic C code that
makes up the bulk of MySQL and other traditional database sys-
tems. By changing the perspective to embrace a generative ap-
proach we are able to raise the level of abstraction, and to leverage
high-level functional programming techniques to achieve excellent
performance with very concise code.

5. Perspectives
This paper is a case study in “abstraction without regret”: achieving
high performance from very high level code. More generally, we
argue for a radical rethinking of the role of high-level languages
in performance critical code [16]. While our work demonstrates
that Scala is a good choice, other expressive modern languages
can be used just as well, as demonstrated by Racket macros [23],
DSLs Accelerate [12], Feldspar [1], Nikola [11] (Haskell), Copper-
head [2] (Python), Terra [4, 5] (Lua).

Our case study illustrates a few common generative design pat-
terns: higher-order functions for composition of code fragments,
objects and classes for mixed-staged data structures and for modu-
larity at code generation time. While these patterns have emerged
and proven useful in several projects, the field of practical genera-
tive programming is still in its infancy and is lacking an established
canon of programming techniques. Thus, our plea to language de-
signers and to the wider PL community is to ask, for each language
feature or programming model: “how can it be used to good effect
in a generative style?”

References
[1] E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal,

and A. Persson. The design and implementation of feldspar: An
embedded language for digital signal processing. IFL’10, 2011.

[2] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling an
embedded data parallel language. PPoPP, 2011.

[3] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In POPL,
1993.

[4] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: a
multi-stage language for high-performance computing. In PLDI, 2013.

[5] Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan. First-
class runtime generation of high-performance types using exotypes. In
PLDI, 2014.

7 2015/7/20

[6] Y. Futamura. Partial evaluation of computation process, revisited.
Higher-Order and Symbolic Computation, 12(4):377–380, 1999.

[7] G. Graefe. Volcano - an extensible and parallel query evaluation
system. IEEE Trans. Knowl. Data Eng., 6(1):120–135, 1994.

[8] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and
automatic program generation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[9] U. Jørring and W. L. Scherlis. Compilers and staging transformations.
In POPL, 1986.

[10] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query
engines in a high-level language. PVLDB, 7(10):853–864, 2014.

[11] G. Mainland and G. Morrisett. Nikola: embedding compiled GPU
functions in Haskell. Haskell, 2010.

[12] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier.
Optimising purely functional GPU programs. ICFP, 2013.

[13] T. Neumann. Efficiently compiling efficient query plans for modern
hardware. PVLDB, 4(9):539–550, 2011.

[14] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397,
1998.

[15] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Odersky. Scala-
virtualized: Linguistic reuse for deep embeddings. Higher-Order and
Symbolic Computation (Special issue for PEPM’12).

[16] T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda,
N. Amin, G. Ofenbeck, A. Stojanov, Y. Klonatos, M. Dashti, C. Koch,

M. Püschel, and K. Olukotun. Go meta! A case for generative pro-
gramming and dsls in performance critical systems. In SNAPL, 2015.

[17] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. Commun.
ACM, 55(6):121–130, 2012.

[18] T. Rompf, A. K. Sujeeth, N. Amin, K. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs. POPL, 2013.

[19] M. Stonebraker and U. Çetintemel. "One Size Fits All": An idea whose
time has come and gone (abstract). In ICDE, pages 2–11, 2005.

[20] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The end of an architectural era (it’s time for a complete
rewrite). In VLDB, pages 1150–1160, 2007.

[21] J. Svenningsson and E. Axelsson. Combining deep and shallow
embedding for EDSL. In TFP, 2012.

[22] W. Taha and T. Sheard. Metaml and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

[23] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. PLDI, 2011.

[24] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. MonetDB/X100
- A DBMS In The CPU Cache. IEEE Data Eng. Bull., 28(2):17–22,
2005.

8 2015/7/20

