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Abstract

Background: Multi-arm designs provide an effective means of evaluating several treatments within the same clinical
trial. Given the large number of treatments now available for testing in many disease areas, it has been argued that
their utilisation should increase. However, for any given clinical trial there are numerous possible multi-arm designs
that could be used, and choosing between them can be a difficult task. This task is complicated further by a lack of
available easy-to-use software for designing multi-arm trials.

Results: To aid the wider implementation of multi-arm clinical trial designs, we have developed a web application for
sample size calculation when using a variety of popular multiple comparison corrections. Furthermore, the application
supports sample size calculation to control several varieties of power, as well as the determination of optimised
arm-wise allocation ratios. It is built using the Shiny package in the R programming language, is free to access on any
device with an internet browser, and requires no programming knowledge to use. It incorporates a variety of features
to make it easier to use, including help boxes and warning messages. Using design parameters motivated by a
recently completed phase II oncology trial, we demonstrate that the application can effectively determine and
evaluate complex multi-arm trial designs.

Conclusions: The application provides the core information required by statisticians and clinicians to review the
operating characteristics of a chosen multi-arm clinical trial design. The range of designs supported by the application
is broader than other currently available software solutions. Its primary limitation, particularly from a regulatory agency
point of view, is its lack of validation. However, we present an approach to efficiently confirming its results via
simulation.
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Background
Drug development is becoming an increasingly expensive
process, with the estimated average cost per approved
new compound now standing at over $1 bn [1]. In no
small part this is due to the high failure rate of clinical
trials, in particular in phases II and III. This is particu-
larly true in the field of oncology, where the likelihood
of approval from phase I is only 5.1% [2]. Consequently,
the clinical research community is constantly seeking new
methods that may improve the efficiency of the drug
development process.
One possible method, which has received substan-

tial attention in recent years, is the idea to make use
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of multi-arm designs that compare several experimental
treatments to a shared control group. Several desir-
able, inter-related, features of such designs have now
been described. For example, the number of patients on
the control treatment is typically reduced compared to
conducting separate two-arm trials, and simultaneously
patients are more likely to be randomized to an experi-
mental treatment, which may help with recruitment [3,
4]. Furthermore, the overall required sample size, for the
same level of power, will typically be smaller than that
which would be required if multiple two-arm trials were
conducted [5]. Finally, multi-arm designs offer a fair head-
to-head comparison of experimental treatments in the
same study [3, 4], and the cost of assessing a treatment in
a multi-arm trial is often around half of that for a separate
two-arm trial [3].
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Based upon these advantages, and their experiences
of utilising such designs in several oncology trials, Par-
mar et al. [3] make a compelling case for the need for
more multi-arm designs to be used in clinical research.
We are not aware of any systematic evidence on whether
this has now permeated through to practice, but a sim-
ple search of PubMed Central suggests it may be the case:
859 articles have included the phrases “multi-arm" and
“clinical trial” since 2015, as opposed to just 273 in all
years prior to this. Considering this result in combina-
tion with the findings of Baron et al. [6], who determined
17.9% of trials published in 2009 were multi-arm, as well
as the recent publication of a key guidance document on
reporting results from multi-arm trials [7], it is clear that
there is now much interest within the trials community in
such designs.
However, whilst there are numerous advantages of

multi-arm trials, it is important to recognise that deter-
mining a suitable design for a multi-arm clinical trial
can be a substantially more complex process than for a
two-arm trial. In particular, a decision must be made on
how to account for the multiple comparisons that will be
made. Indeed, whether the final analysis should adjust for
multiplicity has been a topic of much debate within the
literature. In brief, presented arguments primarily revolve
around the fact that failing to account for multiplicity
can substantially increase the probability of committing
a type-I error. Yet, if a series of two-arm trials were con-
ducted, no adjustment would be made to the significance
level used in each trial. For brevity, we will not repeat all
further arguments on this issue here, and instead refer the
reader to several key discussions on multiplicity [5, 8–18].
For the purposes of what follows in this article, the more

important consideration is that when a multiple com-
parison correction (MCC) is to be used, one of a wide
selection must actually be chosen (see, e.g., [19–21] for
an overview). MCCs vary widely in their complexity, with
Bonferroni’s correction often recommended because of its
simplicity [7]. However, other MCCs often perform bet-
ter in terms of the operating characteristics they impart,
as Bonferroni’s correction is known to be conservative
[10, 18, 20, 22]. A recent review found that amongst those
multi-arm trials that did adjust for multiplicity, 50% used
one of the comparatively simple Bonferroni or Dunnett
corrections [5]. Thus, there arguably remains the poten-
tial for increased efficiency gains to be made in multi-arm
trials, if more advanced MCCs can be employed.
Furthermore, regardless of whether a MCC is utilised,

there are other complications that must also be addressed
inmulti-arm trial design, including how to power the trial,
and what the allocation ratio to each experimental arm
relative to the control arm will be. Indeed, power is not
a simple quantity in a multi-arm trial, whilst the litera-
ture on how to choose the allocation ratios in an optimal

manner is extensive (see, e.g., [23] for an overview), and
deciding whether to specify allocation ratios absolutely, or
whether they can be optimised to improve trial efficiency
may not be an easy decision.
These considerations imply that user-friendly software

for designing multi-arm clinical trials would be a valuable
tool in the trials community. It is unfortunate therefore
that, as we discuss further later, little software is available
to assist with such studies. For this reason, we have devel-
oped a web application for multi-arm clinical trial design.
We hope that the availability of this application will assist
with the utilization of more advanced multi-arm designs
in future clinical trials.

Implementation
The web application is written using the Shiny package
[24] in the R programming language [25]. It is available as
a function in (for off-line local use), and is built using other
functions from, the R package multiarm [26]. A vignette
is provided for multiarm that gives great detail on its for-
mal statistical specifications. A less technical summary is
provided here.

Design setting
It is assumed that outcomes Xik will be accrued from
patients i ∈ {1, . . . , nk} on treatment arms k ∈ {0, . . . ,K},
with arm k = 0 corresponding to a shared control arm,
and arms k ∈ {1, . . . ,K} to several experimental arms.
Later, we provide more information on the precise types
of outcome that are currently supported by the web appli-
cation. The hypotheses of interest are assumed to be Hk :
τk ≤ 0 for k ∈ {1, . . . ,K}. Here, τk corresponds to a treat-
ment effect for experimental arm k ∈ {1, . . . ,K} relative
to the control arm. Thus, we assume one-sided tests for
superiority. Note that in the app, reference is also made to
the global null hypothesis, HG, which we define to be the
scenario with τ1 = · · · = τK = 0.
To test hypothesis Hk , we assume that a Wald test

statistic, zk , is computed

zk = τ̂k√
Var(τ̂k)

= τ̂kI
1/2
k , k ∈ {1, . . . ,K}.

In what follows, we use the notation zk = (z1, . . . , zk)� ∈
R
k . With this, note that our app supports design in partic-

ular scenarios where Zk , the random pre-trial value of zk ,
has (at least asymptotically) a k-dimensional multivariate
normal (MVN) distribution, with

E(Zl) = τlI
1/2
l , l = 1, . . . , k,

Cov(Zl ,Zl) = 1, l ∈ {1, . . . , k},
Cov(Zl1 ,Zl2 ) = I1/2l1 I1/2l2 Cov(τl1 , τl2 ), l1 �= l2, l1, l2 ∈ {1, . . . , k}.

As is discussed further later, this includes normally dis-
tributed outcome variable scenarios and, for large sample
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sizes, other parametric distributions such as Bernoulli
outcome data.
Ultimately, to test the hypotheses, zK is converted

to a vector of p-values, p = (p1, . . . , pK )� ∈[ 0, 1]K ,
via pk = 1 − �1(zk , 0, 1), for k ∈ {1, . . . ,K}. Here,
�n{(a1, . . . , an)�,λ,�} is the cumulative distribution
function of an n-dimensional MVN distribution, with
mean λ and covariance matrix �. Precisely

�n{(a1, . . . , an)�,λ,�} =
∫ a1

−∞
. . .

∫ an

−∞
φn{x,λ,�}dxn . . . dx1,

where φn{x,λ,�} is the probability density function of an
n-dimensionalMVN distribution with mean λ and covari-
ance matrix �, evaluated at vector x = (x1, . . . , xn)�.
Then, which null hypotheses are rejected is determined

by comparing the pk to a set of significance thresh-
olds specified based on a chosen MCC, in combination
with a nominated significance level α ∈ (0, 1). Before
we describe the currently supported MCCs however, we
will first describe the operating characteristics that are
currently evaluated by the app.

Operating characteristics
Our app returns a wide selection of statistical operating
characteristics that may be of interest when choosing a
multi-arm trial design. Specifically, it can compute the fol-
lowing quantities for any nominatedmulti-arm design and
true set of treatment effects

• The conjunctive power (Pcon): The probability that all
of the null hypotheses are rejected, irrespective of
whether they are true or false.

• The disjunctive power (Pdis): The probability that at
least one of the null hypotheses is rejected,
irrespective of whether they are true or false.

• The marginal power for arm k ∈ {1, . . . ,K} (Pk): The
probability that Hk is rejected, irrespective of whether
it is true or false.

• The per-hypothesis error-rate (PHER): The expected
value of the number of type-I errors divided by the
number of hypotheses.

• The a-generalised type-I familywise error-rate
(FWERIa): The probability that at least a ∈ {1, . . . ,K}
type-I errors are made. Note that FWERI1 is the
conventional familywise error-rate (FWER); the
probability of making at least one type-I error.

• The a-generalised type-II familywise error-rate
(FWERIIa): The probability that at least
a ∈ {1, . . . ,K} type-II errors are made.

• The false discovery rate (FDR): The expected
proportion of type-I errors amongst the rejected
hypotheses.

• The false non-discovery rate (FNDR): The expected
proportion of type-II errors amongst the hypotheses
that are not rejected.

• The positive false discovery rate (pFDR): The rate
that rejections are type-I errors.

• The sensitivity (Sensitivity): The expected proportion
of the number of correct rejections of the hypotheses
to the number of false null hypotheses.

• The specificity (Specificity): The expected proportion
of the number of correctly not rejected hypotheses to
the number of true null hypotheses.

Multiple comparison corrections
Per-hypothesis error-rate control
The most simple method for selecting the significance
thresholds against which to compare the pk , is to compare
each to the chosen significance level α. That is, to reject
Hk for k ∈ {1, . . . ,K} if pk ≤ α. This controls the PHER to
α.
A potential problem with this, however, can be that the

statistical operating characteristics of the resulting design
may not be desirable (e.g., in terms of FWERI1). As dis-
cussed earlier, it is for this reason that we may wish to
make use of a MCC. Currently, the web application sup-
ports the use of a variety of such MCCs, which aim to
control either (a) the conventional familywise error-rate,
FWERI1 (with these techniques sub-divided into single-
step, step-down, and step-up corrections) or (b) the FDR.

Single-step familywise error-rate control
These MCCs test each of the Hk against a common sig-
nificance level, γ ∈ (0, 1) say, rejecting Hk if pk ≤ γ . The
currently supported single-step corrections are

• Bonferroni’s correction: This sets γ = α/K [27].
• Sidak’s correction: This sets γ = 1 − (1 − α)1/K [28].
• Dunnett’s correction: This sets γ = 1 − �1{zD, 0, 1},

where zD is the solution of the following equation

α = 1 − �K {(zD, . . . , zD)�, 0K ,Cov(ZK )},
with 0n = (0, . . . , 0)� ∈ R

n an n-dimensional vector
of zeroes [29].

Note that each of the above specify a γ such that the
maximum probability of incorrectly rejecting at least one
of the null hypotheses Hk , k ∈ {1, . . . ,K}, over all possible
values of τ ∈ R

K is at most α. This is referred to as strong
control of FWERI1.

Step-down familywise error-rate control
Step-down MCCs work by ranking the p-values from
smallest to largest. We will refer to these ranked
p-values by p(1), . . . , p(K), with associated hypotheses
H(1), . . . ,H(K). The p(k) are compared to a vector of sig-
nificance levels γ = (γ1, . . . , γK ) ∈ (0, 1)K . Precisely, the
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maximal index k such that p(k) > γk is identified, and
then H(1), . . . ,H(k−1) are rejected and H(k), . . . ,H(K) are
not rejected. If k = 1 then we do not reject any of the null
hypotheses, and if no such k exists then we reject all of
the null hypotheses. The currently supported step-down
corrections are

• Holm-Bonferroni correction: This sets
γk = α/(K + 1 − k) [30].

• Holm-Sidak correction: This sets
γk = 1 − (1 − α)K+1−k .

• Step-down Dunnett correction: This can only
currently be used when the Cov(Zk1 ,Zk2) are equal
for all k1 �= k2, k1, k2 ∈ {1, . . . ,K}. In this case, it sets
γk = 1 − �1{zDk , 0, 1}, where zDk is the solution to

α = 1−�K+1−k{(zDk , . . . , zDk)�, 0K+1−k ,Cov(ZK+1−k)}.
Note that the above methods provide strong control of

FWERI1.

Step-up familywise error-rate control
Step-up MCCs also work by ranking the p-values from
smallest to largest, and similarly utilise a vector of sig-
nificance levels γ . However, here, the largest k such that
p(k) ≤ γk is identified. Then, the hypothesesH(1), . . . ,H(k)
are rejected, and H(k+1), . . . ,H(K) are not rejected. Cur-
rently, one such correction is supported: Hochberg’s cor-
rection [31], which sets γk = α/(K + 1− k). This method
also provides strong control of FWERI1.

False discovery rate control
It may be of interest to instead control the FDR, which
can offer a compromise between strict FWERI1 control
and PHER control, especially when we expect a large pro-
portion of the experimental treatments to be effective.
Currently, two methods that will control the FDR to at
most α over all possible τ ∈ R

K are supported. They func-
tion in the same way as the step-up corrections discussed
above, with

• Benjamini-Hochberg correction: This sets
γk = kα/K [32].

• Benjamini-Yekutieli correction: This sets [33]:

γk = kα
K

(
1 + 1

2 + · · · + 1
K

) .

Sample size determination
The sample size required by a design to control several
types of power to a specified level 1−β , under certain spe-
cific scenarios, can be computed. Precisely, following for
example [34], values for ‘interesting’ and ‘uninteresting’
treatment effects, δ1 ∈ R

+ and δ0 ∈ (−∞, δ1) respectively,
are specified and the following definitions are made

• The global alternative hypothesis, HA, is given by
τ1 = · · · = τK = δ1.

• The least favourable configuration for experimental
arm k ∈ {1, . . . ,K}, LFCk , is given by
τk = δ1, τ1 = · · · = τk−1 = τk+1 = · · · = τK = δ0.

Then, the following types of power can be controlled to
level 1 − β by design’s determined using the app

• The conjunctive power under HA.
• The disjunctive power under HA.
• The minimum marginal power under the respective

LFCk .

Allocation ratios
One of the primary goals of the app is to aid the choice
of values for n0, . . . , nK . The app specifically supports the
determination of values for these parameters by search-
ing for a suitable n0 via a one-dimensional root solving
algorithm, and then sets nk = rkn0, rk ∈ (0,∞), for k ∈
{1, . . . ,K}. Here, rk is the allocation ratio for experimental
arm k relative to the control arm.
For this reason, the app also allows the allocation ratios

to be specified in a variety of ways: they can be defined
explicitly, or alternatively can be determined in an opti-
mal manner. For this optimality problem, many possible
optimality criteria have been defined, each with their own
merits. Therefore, we refer the reader to Atkinson (2007)
[23] for further details of optimal allocation in multi-arm
designs. Instead, we simply note that in the web applica-
tion, the allocation ratios can currently be determined for
three such criteria

• A-optimality: Minimizes the trace of the inverse of
the information matrix of the design. This results in
the minimization of the average variance of the
treatment effect estimates.

• D-optimality: Maximizes the determinant of the
information matrix of the design. This results in the
minimization of the volume of the confidence
ellipsoid for the treatment effect estimates.

• E-optimality: Maximizes the minimum eigenvalue of
the information matrix. This results in the
minimization of the maximum variance of the
treatment effect estimates.

The optimal allocation ratios are identified in the
app using available closed-form solutions were possible
(see [35] for a summary of these), otherwise non-linear
programming is employed.

Other design specifications
Finally, the web application also supports the following
options
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• Plot production: Plots can be produced of (a) all of
the operating characteristics quantities listed earlier
when τ1 = · · · = τK = θ , as well as (b) the Pk when
τk = θ and τl = θ − (δ1 − δ0) for l �= k. If these are
selected for rendering, the quality of the plots, in
terms of the number of values of θ used for
line-graph production, can also be controlled.

• Require nk ∈ N for k ∈ {0, . . . ,K}: By default, the
sample size determined for each arm will only be
required to be a positive number. In practice, such
values need to be integers. This can thus be enforced
if desired, with the integer nk specified by rounding
up their determined continuous values.

Supported outcome variables
Normally distributed outcome variables
Currently, the app supports multi-arm trial design for sce-
narios in which the outcome variables are assumed to be
either normally or Bernoulli distributed.
Precisely, for the normal case, it assumes that Xik ∼

N(μk , σ 2
k ), and that σ 2

k is known for k ∈ {0, . . . ,K}. Then,
for each k ∈ {1, . . . ,K}

τk = μk − μ0,

τ̂k = 1
nk

nk∑

l=1
xik − 1

n0

n0∑

l=1
xi0,

Ik = 1
σ 2
0
n0 + σ 2

k
nk

,

where xik is the realised value of Xik .
Note that in this case, ZK has a MVN distribution,

and thus the operating characteristics can be computed
exactly and efficiently using MVN integration [36]. Fur-
thermore, the distribution of ZK does not depend upon
the values of the μk , k ∈ {0, . . . ,K}. Consequently, these
parameters play no part in the inputs or outputs of the
app.

Bernoulli distributed outcome variables
In this case, Xik ∼ Bern(πk) for response rates πk , and for
each k ∈ {1, . . . ,K}

τk = πk − π0,

τ̂k = 1
nk

nk∑

l=1
xik − 1

n0

n0∑

l=1
xi0,

Ik = 1
π0(1−π0)

n0 + πk(1−πk)
nk

.

Thus, a problem for design determination becomes that
the Ik are dependent on the unknown response rates. In
practice, this is handled at the analysis stage of a trial by

setting

Ik = 1
π̂0(1−π̂0)

n0 + π̂k(1−π̂k)
nk

,

for π̂k = ∑nk
i=1 xik/nk , k ∈ {0, . . . ,K}. This is the assump-

tion made where required in the app.With this, ZK is only
asymptotically MVN. Thus, in general it would be impor-
tant to validate operating characteristics evaluated using
MVN integration via simulation.
In addition, note that the above problem also means

that the operating characterstics under HG, HA, and the
LFCk are not unique without further restriction. Thus, to
achieve uniqueness, the app requires a value be specified
for π0 for use in the definition of these scenarios. More-
over, for this reason, the inputs and outputs of functions
supporting Bernoulli outcomes make no reference to the
τk , and work instead directly in terms of the πk . Finally,
note that this problem alsomeans that to determineA-,D-
, or E-optimised allocation ratios, a specific set of values
for the πk must be assumed.
In this case, we should also ensure that δ1 ∈ (0, 1) and

δ0 ∈ (−π0, δ1), for the assumed value of π0, since πk ∈
[ 0, 1] for k ∈ {1, . . . ,K}.

Results
Support
The web application is freely available from
https://mjgrayling.shinyapps.io/multiarm/. The R code
for the application can also be downloaded from
https://github.com/mjg211/multiarm. Furthermore, as
noted earlier, the app is built in to the package multiarm
[26], as the function gui(), for ease-of-use without
internet access. The application has a simple interface,
and has the capability to

• Determine the sample required in each arm in a
specified multi-arm clinical trial design scenario;

• Summarise and plot the operating characteristics of
the identified design;

• Produce a report describing the chosen design
scenario, the identified design, and a summary of its
operating characteristics.

Inputs
The outputs (i.e., the identified design and its operating
characteristics) are determined based upon the following
set of user specified inputs (Fig. 1)

1. The number of experimental treatment arms, K.
2. The chosen multiple comparison correction (e.g.,

Dunnett’s correction).
3. The significance level, α.
4. The type of power to control (e.g., the conjunctive

power under HA).

https://mjgrayling.shinyapps.io/multiarm/
https://github.com/mjg211/multiarm


Grayling and Wason BMC Cancer           (2020) 20:80 Page 6 of 12

Fig. 1 Design parameters box. The box in which input parameters are
specified is shown. The specific values that can be seen are those that
correspond to the trial described in [37]

5. The desired power, 1 − β .
6. For Bernoulli distributed data, the control arm

response rate π0.
7. The interesting treatment effect, δ1.
8. The uninteresting treatment effect, δ0.
9. For normally distributed data, the standard

deviations, σ0, . . . , σK . These are allocated by first
selecting the type of standard deviations (e.g., that
they are assumed to be equal across all arms), and
then the actual values for the parameters.

10. The allocation ratios (e.g., A-optimal).
11. For Bernoulli distributed data, when searching for

optimal allocation ratios, the response rates to
assume in the search.

12. Whether the sample size in each arm should be
required to be an integer;

13. Whether plots should be produced, and if so the plot
quality.

Note that a Reset inputs button is provided to sim-
plify returning the inputs to their default values. Once the
inputs have been specified as desired, the outputs can be
generated by clicking the Update outputs button.

Example
Here, we demonstrate specification of the input param-
eters (Fig. 1), and then subsequent output generation
(Figs. 2, 3, and 4), for parameters motivated by a three-
arm phase II randomized controlled trial of treatments
for myelodysplastic syndrome patients, described in [37].
This trial compared, via a binary primary outcome, two
experimental treatments with conventional azacitidine
treatment. The trial was designed with α = 0.15, β = 0.2,
δ1 = 0.15, and π0 = 0.3. For simplicity, we assume that the
familiar Dunnett correction will be used, that δ0 = 0, and
that allocation will be equal across the arms (r1 = · · · =
rK = 1). Finally, we assume it is the minimum marginal
power that should be controlled.
Each input widget in Fig. 1 can be seen to have been allo-

cated accordingly based on the description above, whilst
we have additionally elected to produce plots (of medium
quality), and to not require the arm-wise sample sizes to
be integers. Note that in Fig. 1 we can see that the input
widgets are supported by help boxes that can be opened
by clicking on the small question marks beside them.
Figure 2 then depicts the output to the Design summary

box once the user clicks on Update outputs. Specifically, a
summary of the chosen inputs and the identified design is
rendered. Furthermore, in Fig. 3 we can see the tables that
provide the various statistical quantities under HG, HA,
the LFCk , as well as the various treatment effect scenarios
that are considered for plot production.
Finally, in Fig. 4 the plots discussed earlier are shown.

Observe that horizontal and vertical lines are added at the
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Fig. 2 Design summary box. The box in which a summary of the input parameters and of the identified design is rendered is shown. The specific
output that can be seen corresponds to the inputs from Fig. 1

values α, 1 − β , δ1, and δ0 respectively. Note that these
plots are outputted in a manner to allow the user to zoom
in on a particular sub-component if desired.
In all, Figs. 2, 3, and 4 provide a set of outputs with

a variety of features that should be anticipated given the
chosen input parameters. Firstly, the specification that the
allocation to all arms should be equal means that n0 =
· · · = nK . In addition, FWERI1 is equal to 0.15 under HG,
and the minimum marginal power is 0.8, as was desired.
Moreover, the specification that r1 = · · · = rK means that
Pcon and Pdis are equal for each of the LFCk , and P1 = P2.
Finally, as noted above, and as can be seen in Fig. 1,

a Generate report button is provided that can produce a
copy of the outputs in either PDF (.pdf), HTML (.html),
or Word (.docx) format. The user can also nominate a
name for this file in the Report filename input widget.
This allows a record of designs to be stored, presented,
and compared to other designs if required. A copy of the
report, in PDF form, for the inputs shown in Fig. 1, is given
as Additional file 1.

Comparison to other software solutions
In this section we discuss solutions that are available
for designing multi-arm trials in a range of popular trial
design packages, using this to describe the advantages and
disadvantages of our web application.
Firstly, we note that we are unaware of any other code

for R that directly facilitates the design of a multi-arm
trial: in particular the CRAN Task View for Clinical Trial
Design, Monitoring, and Analysis does not list any poten-
tial solution [38]. Nonetheless, a multi-arm trial designed
to achieve a particular level of marginal power, that con-
trols either the PHER or the FWER via a single-step
MCC, could be identified using one of the many func-
tions available for designing two-arm trials (see, e.g.,
power.prop.test() from the stats package). How-
ever, one would not then be able to readily explore the
resultant design’s operating characteristics. Similar state-
ments hold for Stata [39] and SAS [40], with the power
command and the PROC POWER procedure respectively
enabling the determination and evaluation of two-arm
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Fig. 3 Operating characteristics summary. The boxes in which a summary of the identified designs operating characteristics is produced is shown.
The specific output that can be seen corresponds to the inputs from Fig. 1

trial designs, but neither directly supports multi-arm trial
design. Moreover, nQuery [41], to the best of our knowl-
edge does not appear to currently support the design of
multi-arm trials.
Direct solutions for certain types of multi-arm trial

are available in several other proprietary software pack-
ages: namely East [42], FACTS [43], and PASS [44].
Unfortunately, the cost of these packages may be pro-
hibitive to many working within academia. Indeed,

this was our primary motivation for developing the
presented web application, and we are only able to
comment precisely here on the available functional-
ity in PASS, as we do not have access to either East
or FACTS.
Firstly, we note that from the information provided

online, the MULTIARM module for East facilitates the
determination of a range of multi-arm trial designs. So to
does it support their comparison in terms of numerous
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Fig. 4 Operating characteristics plots. The boxes in which plots of the identified designs operating characteristics are produced is shown. The
specific output that can be seen corresponds to the inputs from Fig. 1

operating characteristics, including the FWER and sev-
eral varieties of power. It will also produce a selection
of insightful plots, handles both continuous and binary
outcome variables, and eleven MCCs. Less information
is available online about the precise support available
in FACTS, but it is stated that its ‘Core’ functionality
can handle scenarios with multiple treatment arms. In
PASS, support is provided to design a multi-arm trial with
Bernoulli outcomes via formula provided in Chow et al.
(2008) [45]. Specifically, the Bonferroni correction is used
to control the FWER to a specified level, and the sample
size required to achieve a particular level of the minimum
marginal power can be computed, under several alloca-
tion ratio scenarios. Furthermore, a report is ultimately
generated on the calculations performed. PASS also sup-
ports similar calculations, using either Dunnett’s or the
Kruskal-Wallis MCC, for a vast array of outcome types
via simulation (including both Bernoulli and normally dis-
tributed outcomes). These calculations explicitly address

the sample size required to control the conjunctive or dis-
junctive power, and allow for flexible assumptions about
the allocation ratios.
Thus, a variety of multi-arm trial designs can be deter-

mined using solutions other than our web application.
However the cost of these packages may render them
unsuitable, particularly in academic departments. This
reveals arguably the greatest advantage of our web appli-
cation: that it is provided under a license that makes it
completely free to utilise and modify as a user sees fit. In
addition, like the discussed proprietary solutions, our web
application allows for calculations via a GUI that contains
several features to make it easier to use, without com-
promising on the type of multi-arm designs that can be
determined. In fact, we would argue that our application
supports a broader range of multi-arm design scenarios
than any other currently available solution.
We feel that there are only two principal limitations

of our application. Firstly, MVN integration is utilised by
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the application in all instances to determine the statistical
operating characteristics of potential multi-arm designs.
This makes the execution time for returning outputs with
many possible input parameters fast. However, there is
an unavoidable complexity in certain multi-arm designs,
which may make execution time long. This is particu-
larly true of scenarios with K ≥ 5. It can also be true of
designs that utilise the more complex step-wise MCCs.
It is for this reason that the web application places an
upper cap in the inputs of K = 5, and also returns
a warning in scenarios for which a lengthy execution
time would be anticipated. Nonetheless, users may have
to wait several minutes in certain situations to identify
their desired design. In contrast, proprietary solutions
may exploit more efficient solutions to reduce execution
time, with FACTS in particular noting its use of efficient
low-level languages.
More significantly, it is crucial that all software for

clinical trial design be validated. Each of the discussed
proprietary solutions will almost certainly have gone
through more rigorous testing than we are able to
achieve. Specifically, it is challenging to validate our
results because of the limited freely available software
solutions for multi-arm trials. We have compared the
output of our application to that of PASS for a vari-
ety of supported input parameters, but output for many
possible inputs remains difficult to corroborate because
of a lack of equivalent available functionality. For this
reason, we have carefully followed recommended good-
programming practices and perform all statistical calcu-
lations within the application by calling functions from
the R package multiarm, in which the code has been
modularised [26].
Furthermore, in this package we have created a function

that simulates multi-arm clinical trials that use a given
design. This allows us to perform an additional check on
our analytical computations. As an example, we demon-
strate how to identify the example design discussed above,
but under the assumption of normally distributed data
with σ1 = · · · = σK = 1:
> set.seed(1)

> design <- multiarm::des_ma(K = 2,

+ alpha = 0.15,

+ beta = 0.2,

+ delta1 = 0.15,

+ delta0 = 0,

+ sigma = c(1, 1, 1),

+ ratio = c(1, 1),

+ correction = "dunnett",

+ power = "marginal",

+ integer = T)

Then, 100,000 replicate simulations of trials that utilise
this design, underHG,HA, and the LFCk , can be calculated
with:

> simulated <- multiarm::sim_ma(design)

Finally, the maximum absolute difference in the operat-
ing characteristics of this design, as determined analyti-
cally and via simulation can be evaluated as:
> max(abs(simulated$sim - design$opchar))

[1] 0.002166331

Thus, the maximal difference is within what would be
anticipated allowing for simulation error.
In Additional file 2, we demonstrate how we repeated

the above for 1000 randomly generated combinations of
possible input parameters, thus covering an extremely
wide range of supported design scenarios. As above,
the analytical operating characteristics returned by the
web application in the Operating characteristics summary
boxes were compared to those based on trial simula-
tion, using 100,000 replicate simulations in each instance.
Across all considered scenarios, the maximum absolute
difference between the analytical and simulated operating
characteristics was just 5 × 10−3, which is again within
what would be anticipated due to simulation error. Conse-
quently, it does appear that our application is functioning
as it should. However, it remains that the principal argu-
ment for not utilising our application would be to attain a
stronger guarantee on the results.

Conclusions
A possible barrier to previous calls for increased use of
multi-arm clinical trial designs is a lack of available easy-
to-access user-friendly software that facilitates associated
sample size calculations. For this reason, we have cre-
ated an online web application that supports multi-arm
trial design determination for a wide selection of possible
input parameters. Its use requires no knowledge of statis-
tical programming languages and is facilitated via a simple
user interface. Furthermore, we have made the application
available on the internet, so that it is readily accessible, and
have also made it freely available for download for remote
use without an internet connection. Like similar applica-
tions that have been released recently for phase I clinical
trial design [46, 47], we hope that the availability of this
application will assist with the design of future multi-arm
studies. As we have discussed, however, users should bear
in mind the primary limitation of our application: that it
is not validated. Therefore, alternative proprietary solu-
tions may be needed if certain guarantees on outputs are
required.
Finally, we note several possible avenues for future

development of the web application. Firstly, numerous
papers have now provided designs for adaptive multi-arm
trials (e.g., [48, 49]), and software for their determination
in certain settings [50, 51]. Given the evidential increased
interest in such designs [52], allowing for their determina-
tion would be a valuable extension to our application. In
addition, our web application currently focuses on design
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for normally and Bernoulli distributed outcomes. But,
time-to-event outcomes are also commonly used in oncol-
ogy. Permitting such calculations therefore likewise offers
a valuable avenue for subsequent versions of the app.

Availability and requirements
Project name: Multi-arm trial web application.
Project home page: https://mjgrayling.shinyapps.io/multiarm/.
Operating system(s): Platform independent.
Programming language: R.
Other requirements: Version 3.5.2 or later.
License: MIT.
Any restrictions to use by non-academics: None.
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https://doi.org/10.1186/s12885-020-6525-0.

Additional file 1: PDF report. A copy of the PDF report generated by
clicking the Generate report button in the web application, for the input
parameters shown in Fig. 1.
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comparison. R code to replicate our comparison of the analytical operating
characteristics returned by the web application against those based on
simulation.
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