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Abstract 
 
The aggregation of intrinsically disordered peptides and proteins is associated with a 

wide range of highly debilitating neurological and systemic disorders. In this work we 

explored the potential of a structure-based drug discovery procedure to target one 

such system, the soluble monomeric form of the Aβ42 peptide. We utilised for this 

purpose a set of structures of the Aβ42 peptide selected from clusters of 

conformations within an ensemble generated by molecular dynamics simulations. 

Using these structures we carried out fragment mapping calculations to identify 

binding ‘hot spots’ on the monomeric form of the Aβ42 peptide. This procedure 

provided a set of hot spots with ligand efficiencies comparable to those observed for 

structured proteins, and that are clustered into binding pockets. We verified that such 

pockets exhibit a propensity to bind small molecules known to interact with the Aβ42 

peptide. Taken together these results provide an initial indication that fragment-based 

drug discovery may represent a potential therapeutic strategy for diseases associated 

with the aggregation of intrinsically disordered proteins. 
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Introduction 

 

The aggregation of intrinsically disordered peptides and proteins is associated with a 

wide range of human disorders, including Alzheimer's and Parkinson's diseases1, 2. 

These diseases, for which at present there are no effective treatments, are increasingly 

common in our ageing society3, prompting a variety of therapeutic strategies to be 

proposed and pursued4, 5. Among such strategies, increasing attention has been 

devoted to finding drug-like small molecules capable of interfering with the 

aggregation process of intrinsically disordered proteins, and of promoting their 

normal behaviour6-10. In this context, stabilizing the soluble monomeric form of these 

proteins is appealing because it can influence downstream aggregation events7, 11, 

including the formation of small oligomeric species that are increasingly recognised 

as the origin of neuronal damage2, 12, 13. It has indeed been suggested that intrinsically 

disordered proteins may be targeted by identifying specific sequence regions that 

exhibit specific “molecular recognition features” (MoRFs)9, 14, 15. 

In this work we investigate an alternative approach to this problem, which is based on 

the structure-based search of potential binding pockets in intrinsically disordered 

proteins. Although structure-based drug discovery is a strategy that has been effective 

in identifying small-molecule ligands that bind to the native states of globular 

proteins16, 17, there are two major challenges in the extension of this approach to 

intrinsically disordered proteins. The first is the existence of very substantial technical 

difficulties in acquiring accurate information about the structure and dynamics of 

disordered proteins by experimental methods18-20 and the second is that the binding 

pockets in these molecules are likely to be present only transiently. Despite these 
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problems, recent evidence indicates that disordered binding interfaces can be 

effectively targeted by small molecules8-10.  

In order to explore the potential of this structure-based approach for disordered 

monomeric polypeptide chains, we have considered the 42-residue Aβ peptide 

(Aβ42), whose aggregation process is associated with the pathogenesis of Alzheimer's 

disease1, 2. This peptide is highly disordered in solution, populating a heterogeneous 

ensemble of conformations21, 22, a situation in sharp contrast to that of the fibrillar 

state of the peptide, which is ordered and has been characterised in general terms, 

notably by X-ray fibre diffraction23, electron microscopy and solid-state NMR24 

studies.  

Here, we have adopted a strategy for identifying small-molecule binding sites in the 

Aβ42 peptide in which molecular dynamics simulations are combined with fragment-

based drug design25-28. Given the challenges in obtaining atomistic descriptions of the 

conformational ensembles populated by intrinsically disordered regions18-20, 

molecular dynamics simulations represent a vital tool in elucidating the structures and 

dynamics of these systems29-40. In this view, the approach that we describe extends to 

intrinsically disordered proteins a type of strategy that, from the relaxed complex 

method41 to subsequent methods42-48, has been aimed at introducing flexibility in 

docking. In fragment-based drug design a library of small-molecule fragments is 

screened to find those that have a propensity to bind to specific “hot spot” regions in a 

given conformation of a protein25-28. By using this approach we present evidence that 

in the case of the Aβ42 peptide it is possible to identify clusters of binding hot spots 

that could serve as binding sites for drug-like small molecules assembled from 

fragments. 
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Methods 

Replica-exchange molecular dynamics simulations 

There are several different procedures that can be used to generate structural 

ensembles representing the conformational space of intrinsically disordered peptides 

and proteins, including molecular modelling49, 50, molecular dynamics simulations29-

38, and molecular simulations with NMR restraints18-20, 51, 52. In the present case the 

ensemble was obtained by performing replica-exchange molecular dynamics (REMD) 

simulations53 using the GROMACS molecular dynamics simulations package54, 

following a protocol similar to that used previously55. The REMD method enhances 

the sampling of the conformational space of polypeptide chains by overcoming 

energy barriers that could otherwise trap the simulations in local minima53. The 

duration of the simulation was 100ns, using an integration step of 2fs, at 48 

temperatures ranging from 276.1-376.9K with the AMBER99SB force field56 and the 

TIP3P water model57; this force field has been shown to reproduce with rather good 

accuracy NMR parameters in molecular dynamics simulations of other peptides and 

proteins58, 59. The monomeric form of the Aβ42 peptide with charged termini was 

placed in a box of 7x7x7 nm3 in periodic boundary conditions, with about 10,000 

water molecules and three Na+ counterions to neutralize the net charge of the peptide. 

The protonation state of titratable groups is know to affect molecular interactions60-62; 

here in all the simulations Glu and Asp residues were assumed to be protonated, while 

His residues were assumed to be not protonated, as detected experimentally at neutral 

pH63. The system was equilibrated for 500ps before the production run. Replica 

exchange attempts were made every 250ps resulting in a success rate of about 13%. 

We verified the structures obtained at 278K with NMR results reported in the 
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literature at similar temperatures21, 36, 64; chemical shifts were back-calculated from 

the structures using the CamShift method65.  

 

Cluster analysis 

20,000 structures were taken from a 60-100 ns portion of the trajectory at 309.4 K at 2 

ps intervals, and clustered by means of the GROMACS g_cluster tool using the single 

linkage algorithm, by which a structure is added to a cluster when its RMSD on all 

Cα atoms to any member of the cluster is less than cut-off of 2 Å. We thus identified 

45 clusters with populations ranging from 0.05% to 2%, which were included in the 

docking analysis. Side-chain contacts were calculated as the pairwise average distance 

between all the atoms (other than Cα) of a side-chain with that of another.  

 

Fragment-based mapping of binding hot spots 

A wide range of approaches are available to perform fragment-based computational 

mapping of potentially druggable binding hot spots66-70, including the GRID 

method71, the multiple copy simultaneous search (MCSS) method72, the 

ROSETTALIGAND method73 and the mixed-solvent molecular dynamics (MixMD) 

method74. In this work we identified binding hotspots of small molecular fragments 

by combining the FTMap66 and FRED75 methods. The FTMap method, which is 

based on a Fast Fourier Transform (FFT) correlation approach, was used as an initial 

screen of the 45 structures representative of the corresponding clusters that we 

identified, and the top ten structures were selected for a further fragment-based 

docking analysis. In order to perform the docking, among possible alternatives42, 43, 

including GLIDE44, DOCK45, MolDock46, and GOLD76, we used here FRED75, which 

is a protein structure-based docking program that performs an exhaustive search that 
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systematically samples multiple possible poses to a given resolution, and is thus more 

computationally expensive than FTMap. 

 

We used a library of ten small organic molecular fragments (benzene, cyclohexane, 

cyclopropyl, dymethyl ketone, furan, imidazole, methanol, methylamide, oxazole and 

pyrazole), which commonly appears in fragment libraries26, 77 and have the 

hydrophobic character expected to favour the binding to the hydrophobic regions of 

the Aβ42 peptide. For each fragment, exhaustive docking was performed on the 

surface of the Aβ42 peptide with a rotation step of 1.25 Å and translation step of 1 Å, 

and the 10,000 top ranked poses were retained and optimized based on a shape-based 

Gaussian scoring function78. The top 300 poses were then selected based on a 

consensus score of four scoring functions: Shapegauss, PLP (Piecewise Linear 

Potential), OEChemscore and Screenscore, which are implemented in FRED75. In 

order to further optimise the structures, among a wide range of possible alternative 

methods79-84, we used SZYBKI (OpenEye Scientific, www.eyesopen.com) and the 

Merck Molecular Force Field MMFF94s85, 86, where the partial charges of ligands 

were first calculated by Molcharge using the AM1BCC charges (OpenEye Scientific, 

www.eyesopen.com). 

 

A binding hot spot is defined in this study as a small surface area capable of binding 

multiple ligand fragments. In order to estimate the quality of a given hot spot we 

considered the potential ligand efficiency of the fragments that bind to it. The ligand 

efficiency is defined as87 Fp/Np, where Np is the number of heavy atoms in a ligand 

probe p, and Fp (in kcal/mol) is the binding free energy of the probe. In our 

calculations we considered the potential energy Ep in the MMFF94s force field85, 
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rather than the binding free energy Fp of the probe. This approach represents an 

approximation, as the binding free energy could not generally be expected to be very 

accurately approximated by the potential energy of binding88. This type strategy is 

primarily adopted because of its computational efficiency with the aim of generating a 

small number of candidate fragments and small molecules to facilitate subsequent 

experimental studies of binding. The validity of this approximation has been 

discussed in the case of folded proteins, where enthalpic contributions were found to 

be larger than entropic ones in the binding of small fragments of the type considered 

here89. We should emphasise, however, that the role of entropic contributions in the 

case of disordered proteins may be greater and will require further studies to be fully 

clarified.  

 

The normalisation of the binding free energy by the number of heavy atoms has been 

suggested to be a useful means of evaluating the quality of hot spots because larger 

fragments tend to have better binding energy just because of their larger sizes87. We 

then defined the average potential ligand efficiency of a given hot spot as Le= ∑p 

Lep/N, where Lep = Ep/Np is the potential ligand efficiency and N is the total number of 

ligand probes that bind to the hot spot. More negative potential ligand efficiency 

values are thus indicative of better binding hot spots. For comparison, we considered 

the cases of structured proteins, the ATP binding site of p38 MAP kinase and the 

active site of β-secretase, finding similar potential ligand efficiency values (see 

Tables S1 and S2 in the Supplementary Information90). Structural representations of 

structures of the Aβ42 peptide and its ligands were created using PyMOL91. 
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Identification of binding pockets 

As is common in fragment-based drug design procedures25-28, we identified potential 

small-molecule binding pockets as clusters of neighbouring binding hot spots. 

 

Docking and molecular dynamics studies of possible binding modes between Aβ42 

and curcumin, and Aβ42 and Congo red 

Conformers of curcumin and Congo red were first generated by Omega v2.4.3, a 

multi-conformer structure database generation program by OpenEye Scientific92, 

using a 0.5 Å RMSD cut-off between conformers. Docking at the binding sites of 

Aβ42 of the two compounds were performed by FRED, using the scoring functions 

and method mentioned above. For each compound the most highly ranked binding 

mode was then used as the starting structure in molecular dynamics simulations 

performed using GROMACS with settings similar to those of the REMD method 

described above, but in this case at constant temperature (298K) for 80 ns. We used 

force field parameters and topologies based on General Amber Force Field (GAFF) 

and AMBER99SB as prepared by ACPYPE/Antechamber for GROMACS 

(http://www.ccpn.ac.uk/software/ACPYPE-folder). The system was first energy 

minimized in vacuo and then in TIP3P water, equilibrated by slowly heating from 

272K to 298 over a 500 ps period, before a production run of 80 ns was carried out. In 

total, we ran 20 trajectories of 80 ns, one for each of the 10 binding pockets and the 2 

small molecules. 
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Results 

Generation and validation of an ensemble of conformations of the Aβ42 peptide 

The first step of the procedure that we discuss in this work is the generation of an 

ensemble of conformations that represents the soluble monomeric form of the Aβ42 

peptide (Figure 1a), which was carried out by replica-exchange molecular dynamics 

(REMD) simulations53 in explicit solvent (see Methods). In order to establish whether 

the Aβ42 structural ensemble generated by the procedure described above provides a 

good representation of the conformations that this peptide populates in solution, we 

investigated the agreement between various experimental and back-calculated 

structural parameters, where the latter were obtained from the ensemble of structures. 

A good correlation was found between experimental and calculated chemical shifts of 

the Cα atoms21 (Figure 2a), as well as the evolution of radius of gyration (Figure 2b) 

and solvent accessible surface area (Figure 2c). This analysis was performed for the 

conformations determined at 278K, the temperature at which the experimental 

chemical shifts that we considered were measured21 (Figure 3a-c). We found good 

correlations between experimental and back-calculated chemical shifts (the 

coefficients of correlation were 0.987 for Cα, 0.822 for Hα and 0.796 for N). We also 

compared experimental and back-calculated 3J-couplings36, as well as residual dipolar 

couplings (RDCs)64, finding a good agreement also in these cases (Figure 3d-e). In 

particular, the level of such an agreement was found to be higher than that provided 

by the statistical coil model (SCM, Figure 3d-e), which has been found to describe 

accurately the dimension and structures populated by highly disordered states of 

proteins49; for the SCM ensemble and the present ensemble the RMSD values were, 

respectively, 1.22Hz and 0.82Hz for the 3J-couplings, and 2.91Hz and 2.07Hz for the 

RDCs.  
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Structural analysis of the Aβ42 ensemble 

The simulations indicate that, under the conditions that we have investigated, Aβ42 

populates a restricted but highly dynamical ensemble of conformations that is 

significantly more compact than that expected for a random coil49, in agreement with 

previous conclusions on this system21, 93. In addition, the average value of the radius 

of gyration of the Aβ42 peptide in our simulations is of about 13 Å, compared to the 

SCM value of about 20 Å. The presence of transient structural motifs in Aβ42 is also 

indicated by the differences between the present results and those obtained by SCM 

(Figure 3d-e).  

 

Analysis of the inter-residue distances in the ensemble of conformations that we have 

generated here (Figure 3f) suggests that the overall structure and dynamics of the 

Aβ42 peptide are particularly strongly affected by the behaviour of a few specific 

regions of the amino acid sequence that have a high tendency to form turns, in 

particular Asp7-Tyr10, Asp23-Ser26 and Gly37-Val40, as well as by the interactions 

between the two main hydrophobic regions (residues Leu17-Ala21 and Ile31-Val36) 

of the polypeptide chain. In particular, the combination of this latter tertiary contact, 

which is observed in several clusters, with the transient formation of a turn in the 

Asp23-Ser26 region appears to be the main driving factors for the quasi-hairpin-like 

structures often reported for the Aβ42 peptide, where the turn formation could be 

assisted by electrostatic interactions between Glu22, Asp23 and Lys28. These 

findings are in good agreement with structural insights drawn previous from nuclear 

Overhauser enhancement (NOE) data21 as well as from molecular dynamics 

simulations35, 37. 
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We next used a cluster analysis to find families of similar structures in the Aβ42 

ensemble (see Methods). This procedure resulted in 396 clusters, the 45 most 

populated of which were selected for further analysis. Taken together, these 45 

clusters include about 67% of the members of the structural ensemble, illustrating its 

heterogeneity; the most populated clusters are shown in Figure 4 on a free energy 

landscape plotted as a function of the number of hydrogen bonds (backbone-

backbone, backbone-sidechain and sidechain-sidechain) and of the solvent-exposed 

surface area of hydrophobic residues. The secondary structure elements, side-chain 

distance maps and long-range contacts most frequently observed in eight of the most 

populated clusters are shown as examples in Figure 5.  

 

The features in these individual distance maps of clusters resemble in part the overall 

features exhibited in the average distance map (Figure 3f). For example, in cluster 1 

the turns around Ser8-Gly9 and Gly25-Asn27 are very close to the corresponding 

regions of the first two turns identified in the general distance map, whereas cluster 2 

exhibits the very prominent turn around residues Asp7-Try10 in the N-terminal 

region. Further, the characteristic contacts between the two hydrophobic regions 

(residues Leu17-Ala21 and Ile31-Val36) are also noticeable in all the distance maps 

shown in Figure 5. The identification of geometrically similar families of 

conformations of the Aβ42 peptide suggests that distinct sets of structurally related 

conformations exist in the ensemble. 

 

Fragment-based hot spot mapping 

Individual representative structures were selected from the top 45 clusters and used to 

identify binding hot spots using FTMap calculations66 (see Methods). The ten 
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structures found to contain multiple binding hot spots in close proximity to each other 

were selected for further analysis (Table 1 and Figure 6) and used in an exhaustive 

rigid-body docking procedure using FRED75 (see Methods). Two representative 

structures are shown in Figure 7, where key residues forming the hot spots and the 

corresponding potential ligand efficiency values87 (Le, see Methods) are listed. 

 

We then examined those hot spots that were found to bind three or more different 

fragments. These hot spots exhibited potential ligand efficiency values (Le) ranging 

from -0.8 to -1.5 kcal/mol, which are comparable to the ones that we observed for the 

model globular proteins that we studied (-1.3 to -1.5 kcal/mol, see Methods and 

Tables S1 and S2 in the Supplementary Information90), and to those reported in the 

literature94. Consistent with previous observations89, we also found the number of 

hydrogen bonds formed by the fragments to be comparable to the number typically 

found in folded proteins, thus providing insight into the origin of the enthalpic 

contributions to binding (Figure 8). On average, we found a value of slightly less than 

1 hydrogen bond per fragment per hot spot for the Aβ42 peptide, which is similar to 

that observed for fragments of the same size extracted from high resolution structures 

in the PDB89. 

 

Further examination of these results revealed that the Aβ42 peptide exhibits regions 

of the amino acid sequence with different propensity to bind small molecular 

fragments (Figure 9). In particular, the central hydrophobic cluster (CHC) region 

(residues Leu17-Ala21) has a high propensity to form binding hot spots and to bind 

small molecular fragments. We found that residues Phe4, Tyr10, Leu17, Phe19, Ile31 

and Met35 are involved in many of the hot spots identified in the mapping. A list of 
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the binding sites, corresponding hot spots and key residues involved is provided in 

Table 1. It is interesting to note that the type of residues (in particular Phe, Tyr, Leu, 

Ile and Met) involved in forming binding sites identified here for an intrinsically 

disordered peptide correspond quite closely with those that have been described for 

structured proteins95, 96. 

 

Small-molecule interactions with potential binding pockets 

We identified potential binding pockets by clustering neighbouring binding hot spots. 

To examine the significance of these potential binding pockets, we performed 

docking studies of two compounds, curcumin and Congo red, that have been shown to 

inhibit the aggregation of the Aβ peptide97, 98. Although the mechanism of action of 

these compounds on the behaviour of the Aβ peptide is still unclear, there is evidence 

suggesting that the peptide may bind to them either individually or in small 

oligomeric assemblies formed through detergent-like interactions97-99.  

 

We performed docking calculations for the two compounds for possible binding 

modes in a systematic manner within the binding pockets that we identified in this 

work (Table 1 and Figure 6). The resulting top binding modes exhibit peptide-ligand 

interaction energies comparable with those seen in studies of globular proteins (see 

Methods). Two examples of such top binding modes are illustrated in Figure 10. We 

found that the aromatic rings of these compounds play an important role in binding to 

the hot spots, in particular through ring stacking interactions with the side-chains of 

residues in the hot spots themselves (e.g. Phe4, His6, Tyr10, Phe19 and Phe20). These 

interactions have been suggested as being an important feature in other small 
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molecules capable of binding the Aβ peptide, such as polyphenols100, catechins101 and 

ketones102. 

 

We then carried out molecular dynamics simulations in order to probe the tendency of 

the small molecules to remain bound to the identified binding pockets (see Methods). 

These simulations revealed that at least in some of these complexes the ligands 

remain bound to the Aβ42 peptide over a period of 80 ns at room temperature. The 

results of these simulations indicate that the interactions of the ligands with many of 

the residues identified in the hot spots are key to strong binding.  

 

 

Discussion and Conclusions 

 

The drug discovery approach that we have described in this work is based on the idea 

of extending to intrinsically disordered proteins the well-established observation that 

a significant proportion of the free energy of binding in conventional protein-ligand 

complexes derives from relatively small regions of the protein surface, known as hot 

spots103. Ligands that bind simultaneously to multiple hot spots could result in higher 

binding affinities and better specificity. In the case of intrinsically disordered peptides 

and proteins, such as the Aβ42 peptide considered here, the additional complication is 

that these systems do not populate a small number of specific conformations, but 

rather experience conformational fluctuations of large amplitude. In these cases, the 

existence of hot spots requires careful examination, and so the aim of this work has 

been to explore this idea and identify compounds capable of binding to specific 

pockets in particular conformations. We have therefore carried out screens of small 
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molecules by identifying a series of representative highly-populated clusters of 

conformations within the Aβ42 structural ensemble.  

 

The concept that intrinsically disordered proteins are potentially druggable is 

relatively recent6-10. Our results indicate that the conformational space populated by 

the Aβ42 peptide may contain specific structures with significant statistical weights, 

and that such conformations may contain binding pockets that can be targeted by 

small molecules. The overall dimension of the Aβ42 peptide in its monomeric form in 

solution is rather more compact than a random coil, and transient hydrophobic 

pockets exist most likely as a result of the high propensity of certain regions to form 

turns and of interactions between hydrophobic regions in the amino acid sequence of 

the peptide. The compactness and long-range contacts are important for forming 

potential binding pockets because they provide the environment for favourable 

hydrogen bond, electrostatic, hydrophobic or van der Waals interactions as well as 

shape complementarity with a ligand. One could also expect the type of binding 

pockets that we have identified here for the monomeric form of the Aβ42 peptide to 

appear in more structured assemblies formed by this peptide, including oligomeric, 

membrane-bound and fibrillar conformations. It is possible that small molecules 

designed to bind the monomeric form would also, and less transiently, bind such 

assemblies, as their more ordered nature could reduce the entropic penalty of binding. 

 

We found that hot spot formation is assisted particularly by the N-terminal and CHC 

regions, as illustrated in Figure 9. Phe4 and Tyr10 are closely involved in hot spot 

formation, together with Leu17, Phe19, Ile31 and Met35, which interact with each 

other to form favourable pockets that could be suitable for binding small molecules. 
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Two of the residues that we identified as involved in hot spots formation, Phe19 and 

Met35, are known to be particularly important in the aggregation process of the Aβ42 

peptide, as mutation of either of the two residues has been shown to inhibit oligomer 

and fibril formation104, 105. It is intriguing to speculate that finding brain-penetrable 

small molecules that could bind to a pocket formed by these residues may have a 

significant effect in inhibiting the aggregation of the Aβ42 peptide.  

 

From a methodological point of view, the identification of clusters of conformations 

populated by the Aβ42 peptide in its monomeric form in solution allows the number 

of structures to be searched to find potential binding sites to be significantly reduced. 

Such reduction in search space is crucial since the screening procedure is 

computationally costly. The application of this strategy to identify of binding pockets 

in the case of the Aβ42 peptide (Table 1 and Figure 6) has enabled us to provide a list 

of candidate binding pockets, which will in turn make it possible to perform virtual 

screening of large numbers of drug-like molecules that are likely to bind better at 

these sites.  

 

The work presented here represents an initial step toward targeting the Aβ42 peptide 

in its monomeric form, by demonstrating that it exhibits potential small molecule 

binding sites. One development of this approach will be to improve the accuracy of 

the Aβ42 structural ensemble by incorporating experimental data in the molecular 

dynamics simulations in a way similar to that used for example for α-synuclein18, 19, 

51. Using the potential binding sites identified on different representative structures, 

the next step of this drug design strategy will be to conduct a structure based high-
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throughput docking screening of small-molecules to these, and verification of in silico 

hits by in vitro and in vivo studies.  
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Cluster Pocket ID Hot Spot ID Key Residues Involved 
Cluster 1  I 1 Leu17, Val18,  Phe20 
Cluster 1  I 2 Ala30,  Gly33,  Lys16,  Gly33 
Cluster 2 II 1 His6, His13, Leu17, Phe19 
Cluster 2 II 2 His13, Leu17, Val36 
Cluster 2 II 3 Tyr10, His13, Met35 

Cluster  10 II 1 Leu17, Phe19, Phe20, Ile41, Val40 
Cluster  10 II 2 His6, Phe20, Val39, Val40,  Val18 
Cluster  16 IV 1 Glu11, His13, Lys16, Leu17 
Cluster  16 IV 2 Arg5, Asp7, Glu11, Lys16, Val24, Val36 
Cluster  16 IV 3 Ala21, Asp23, Val24 
Cluster  18 V 1 Leu17, His6, Ile3, Tyr10, Gly25, Asn27 
Cluster  18 V 2 Lys16, Leu17, Phe19, Val24, Gly25 
Cluster  18 V 3 Phe19, Glu22, Asp23, Val24 
Cluster  18 V 4 His6, Try10, Ile31, Arg5 
Cluster  18 V 5 Val24, Ile31, Gly33 
Cluster  24 VI 1 His13, His14, Val18, Val24, Val39 
Cluster  24 VI 2 His14 , Met35, Val39, Val40 
Cluster  24 VI 3 Val18, Phe19, Asp23 
Cluster  24 VI 4 Val18, Asp23, Met35 
Cluster  27 VI 1 Lys28, Val39, Ile31, Met35 
Cluster  27 VI 2 Val13, His13, Val18, Asp23, Ser26, Lys28, Val39 
Cluster  27 VI 3 His14, Leu17, Val39, Val40 
Cluster  27 VI 4 Tyr10, Val12, Phe20 
Cluster  31 VII 1 Lys16, Val18, Ile32, Leu34,  Gln15 
Cluster  31 VII 2 His14, Gln15, Lys16 
Cluster  31 VII 3 His14,  Ile41,  Gln15 
Cluster  33 IX 1 Gln15, Leu17, Gly33 
Cluster  33 IX 2 Gln15, Leu17,  Ser8, Gly9 
Cluster  33 IX 3 Asp7, Ser8, Val18, Leu34 
Cluster  35 X 1 Ala2, Leu17, Asn27, Met3, Val36 
Cluster  35 X 2 Leu17, Phe19, Phe20 
Cluster  35 X 3 Ile31, Val36, Val40 

 

 

Table 1. List of the ten binding pockets (in Roman numerals, column 2) and 

corresponding binding hot spots (in Arabic numerals, column 3) identified within ten 

clusters of conformations (column 1) in the Aβ42 structural ensemble described in 

this work. Each of these ten clusters exhibits one binding pocket comprising between 

two and five binding hot spots; for example the binding pocket VI is found in cluster 

24 and comprises four hot spots. The remaining 35 clusters did not exhibit binding 

pockets. The specific residues in the hot spots are also reported (column 4). The 

structures of the ten binding pockets are shown in Figure 6. 
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Figure Captions 

 

Figure 1. Scheme illustrating the strategy discussed in this work in which molecular 

dynamics simulations are combined with computer-based fragment-based hot spot 

mapping to identify potential binding sites on the soluble monomeric form of the 

Aβ42 peptide. (a) Representative examples are selected by a clustering procedure 

within an ensemble of conformations representing the natively unfolded state of the 

Aβ42 peptide; (b) Hot spot regions are mapped on these structures using a set of small 

molecule fragments; (c) Neighbouring hot spot regions are identified as potential 

small-molecule binding sites. 

 

Figure 2. Analysis of the convergence of the molecular dynamics simulations used in 

this work to generate an ensemble of structures representing the soluble monomeric 

form of the Aβ42 peptide: (a) Time series of the correlation between experimental 

and calculated Cα chemical shifts, which indicate that after about 40 ns (out of a total 

of 100 ns) a good correlation is reached between experimental and calculated 

chemical shifts. (b) Time series of the radius of gyration. (c) Time series of the 

solvent accessible surface area (SASA). 

 

Figure 3. Validation of the ensemble of conformations representing the soluble 

monomeric form of the Aβ42 peptide used in this work. (a-c) Correlation between 

experimental21 and back-calculated chemical shifts: Cα (a), Hα (b) and N (c). (d) 

Comparison between experimental36(black) and back-calculated (red) 3J couplings 

(Hz). (e) Comparison between experimental64 (black) and back-calculated (red) 
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residual dipolar couplings (RDCs, Hz). For reference, 3J couplings and RDCs are also 

shown as predicted by the statistical coil model49 (grey). (f) Inter-residue distance 

map (Å). 

 

Figure 4. Free energy landscape of the Aβ42 peptide as a function of the number of 

hydrogen bonds (backbone-backbone, backbone-sidechain and sidechain-sidechain) 

and of the solvent-exposed surface area of hydrophobic residues. Hydrogen bonds 

were defined using the GROMACS g_hbond function, when hydrogen donors and 

acceptors are within 3.5 Å and the hydrogen-donor-acceptor angles are within 30 

degrees. The most populated clusters are found in different regions of the free energy 

landscape.  

 

Figure 5. Characterisation of eight representative clusters of structures within the 

ensemble of conformations of the soluble monomeric form of the Aβ42 peptide used 

in this work. We present here the five most populated clusters (cluster 1-5) and five 

examples of clusters found to contain binding pockets (clusters 1, 2, 10, 27 and 35). 

Highly populated clusters may (as clusters 1 and 2) or may not (as clusters 3, 4 and 5) 

exhibit binding pockets. For each cluster we report the secondary structure elements 

determined by DSSP106 (yellow: turns; blue: α-helices; red: β-sheets) and the side-

chain distance maps. The five shortest long-range side-chain contacts (i.e. more than 

three residues apart along the amino acid sequence) are indicated by red lines. 

 

Figure 6. Illustration of the ten binding pockets identified by fragment-probe 

mapping in the ten most populated clusters (see Table 1) within the Aβ42 structural 

ensemble used in this work. 
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Figure 7. Examples of adjacent binding pockets in the soluble monomeric form of the 

Aβ42 peptide identified through the approach described in this work. Results for 

clusters 2 and 35 (see Fig. 4) are shown together with a characterisation of the 

corresponding hot spots, the potential ligand efficiency (Le) (in kcal/mol, see 

Methods). 

 

Figure 8. Comparison between the potential ligand efficiency (Le) (x-axis, in 

kcal/mol, see Methods) and the number of hydrogen bonds (y axis) for all the poses of 

the fragments in the binding hot spots identified in this work within the Aβ42 

structural ensemble and those in model globular proteins (see Methods and Tables S1 

and S2 in the Supplementary Information90); the red circles and numbers correspond 

to the hot-spot IDs listed in Table 1. 

 

Figure 9. Residue-specific probability of binding small molecular fragments in hot 

spots of the Aβ42 peptide, calculated by FTMap (see Methods). Non-bonded (black 

bars) and hydrogen bond (red bars) interactions are shown separately. The central 

hydrophobic region (CHC, horizontal red bar, residues Leu17-Ala21) is particular 

involved in hot spot formation. 

 

Figure 10. Top binding modes of curcumin (left) and Congo red (right) with the 

Aβ42 peptide, which were identified through the analysis of the fragment-based 

mapping of the binding hot spots; hot spot labels refer to Table 1 and Figure 6 (pocket 

II in cluster 2 for curcumin and pocket V in cluster 18 for Congo red). Molecular 

dynamics simulations of the complexes show that the ligands remain bound over a 80 

ns period. 
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Cluster ID Cluster Pocket ID Hot-spot ID Key Residues Involved

wt42-cl1-no11 Cluster 1 I 1 Leu17, Val18, Phe20

wt42-cl1-no11 Cluster 1 I 2 Ala30, Gly33 bb: Lys16, Gly33

wt42-cl2-no9 Cluster 2 II 1 His6, His13, Leu17, Phe19

wt42-cl2-no9 Cluster 2 II 2 His13, Leu17, Val36

wt42-cl2-no9 Cluster 2 II 3 Tyr10, His13, Met35

wt42-cl10-no103 Cluster 10 III 1 Leu17, Phe19, Phe20, Ile41 bb: Val40

wt42-cl10-no103 Cluster 10 III 2 His6, Phe20, Val39, Val40 bb: Val18

wt42-cl16-no21 Cluster 16 IV 1 Glu11, His13, Lys16, Leu17

wt42-cl16-no21 Cluster 16 IV 2 Arg5, Asp7, Glu11, Lys16, Val24, Val36

wt42-cl16-no21 Cluster 16 IV 3 Ala21, Asp23, Val24

wt42-cl18-no189 Cluster 18 V 1 Leu17, His6, Ile31 bb: Try10, Gly25, Asn27

wt42-cl18-no189 Cluster 18 V 2 Lys16, Leu17, Phe19, Val24 bb: Gly25

wt42-cl18-no189 Cluster 18 V 3 Phe19, Glu22, Asp23, Val24

wt42-cl18-no189 Cluster 18 V 4 His6, Try10, Ile31 bb: Arg5

wt42-cl18-no189 Cluster 18 V 5 Val24, Ile31, Gly33

wt42-cl24-no71 Cluster 24 VI 1 His13, His14, Val18, Val24, Val39

wt42-cl24-no71 Cluster 24 VI 2 His14, Met35, Val39, Val40

wt42-cl24-no71 Cluster 24 VI 3 Val18, Phe19, Asp23

wt42-cl24-no71 Cluster 24 VI 4 Val18, Asp23, Met35

wt42-cl27-no169 Cluster 27 VII 1 Lys28, Val39, Ile31, Met35

wt42-cl27-no169 Cluster 27 VII 2 Val13, His13, Val18, Asp23, Ser26, Lys28, Val39

wt42-cl27-no169 Cluster 27 VII 3 His14, Leu17, Val39, Val40

wt42-cl27-no169 Cluster 27 VII 4 Tyr10, Val12, Phe20

wt42-cl31-no61 Cluster 31 VIII 1 Lys16, Val18, Ile32, Leu34 bb: Gln15

wt42-cl31-no61 Cluster 31 VIII 2 His14, Gln15, Lys16

wt42-cl31-no61 Cluster 31 VIII 3 His14, Ile41 bb: Gln15

wt42-cl33-no309 Cluster 33 IX 1 Gln15, Leu17, Gly33

wt42-cl33-no309 Cluster 33 IX 2 Gln15, Leu17 bb: Ser8, Gly9

wt42-cl33-no309 Cluster 33 IX 3 Asp7, Ser8, Val18, Leu34

wt42-cl35-no190 Cluster 35 X 1 Ala2, Leu17, Asn27, Met35, Val36

wt42-cl35-no190 Cluster 35 X 2 Leu17, Phe19, Phe20

wt42-cl35-no190 Cluster 35 X 3 Ile31, Val36, Val40  
 
 
Table 1. List of the ten binding pockets (in Roman numerals, column 2) and 
corresponding binding hot spots (in Arabic numerals, column 3) identified within ten 
clusters of conformations (column 1) in the Aβ42 structural ensemble described in 
this work. Each of these ten clusters exhibits one binding pocket comprising between 
two and five binding hot spots; for example the binding pocket VI is found in cluster 
24 and comprises four hot spots. The remaining 35 clusters did not exhibit binding 
pockets. The specific residues in the hot spots are also reported (column 4). The 
structures of the ten binding pockets are shown in Figure 6. 
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Figure 1. Scheme illustrating the strategy discussed in this work in which molecular 
dynamics simulations are combined with computer-based fragment-based hot spot 
mapping to identify potential binding sites on the soluble monomeric form of the 
Aβ42 peptide. (a) Representative examples are selected by a clustering procedure 
within an ensemble of conformations representing the natively unfolded state of the 
Aβ42 peptide; (b) Hot spot regions are mapped on these structures using a set of small 
molecule fragments; (c) Neighbouring hot spot regions are identified as potential 
small-molecule binding sites. 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. Analysis of the convergence of the molecular dynamics simulations used in 
this work to generate an ensemble of structures representing the soluble monomeric 
form of the Aβ42 peptide: (a) Time series of the correlation between experimental 
and calculated Cα chemical shifts, which indicate that after about 40 ns (out of a total 
of 100 ns) a good correlation is reached between experimental and calculated 
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chemical shifts. (b) Time series of the radius of gyration. (c) Time series of the 
solvent accessible surface area (SASA). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. Validation of the ensemble of conformations representing the soluble 
monomeric form of the Aβ42 peptide used in this work. (a-c) Correlation between 
experimental21 and back-calculated chemical shifts: Cα (a), Hα (b) and N (c). (d) 
Comparison between experimental32(black) and back-calculated (red) 3J couplings 
(Hz). (e) Comparison between experimental49 (black) and back-calculated (red) 
residual dipolar couplings (RDCs, Hz). For reference, 3J couplings and RDCs are also 
shown as predicted by the statistical coil model62 (grey). (f) Inter-residue distance 
map (Å). 
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Figure 4. Free energy landscape of the A!42 peptide as a function of the number of 
hydrogen bonds (backbone-backbone, backbone-sidechain and sidechain-sidechain) 
and of the solvent-exposed surface area of hydrophobic residues. Hydrogen bonds 
were defined using the GROMACS g_hbond function, when hydrogen donors and 
acceptors are within 3.5 Å and the hydrogen-donor-acceptor angles are within 30 
degrees. The most populated clusters are found in different regions of the free energy 
landscape.  
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Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 10

Cluster 27

Cluster 10

Cluster 35

 
 
Figure 5. Characterisation of eight representative clusters of structures within the 
ensemble of conformations of the soluble monomeric form of the Aβ42 peptide used 
in this work. We present here the five most populated clusters (cluster 1-5) and five 
examples of clusters found to contain binding pockets (clusters 1, 2, 10, 27 and 35). 
Highly populated clusters may (as clusters 1 and 2) or may not (as clusters 3, 4 and 5) 
exhibit binding pockets. For each cluster we report the secondary structure elements 
determined by DSSP78 (yellow: turns; blue: α-helices; red: β-sheets) and the side-
chain distance maps. The five shortest long-range side-chain contacts (i.e. more than 
three residues apart along the amino acid sequence) are indicated by red lines. 
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Cluster 1 Cluster 2 Cluster 10

Cluster 24

Cluster 16

Cluster 27 Cluster 31 Cluster 33 Cluster 35

Cluster 18

Pocket I Pocket II Pocket III Pocket IV Pocket V

Pocket VI Pocket VII Pocket VIII Pocket IX Pocket X

 
 
 
Figure 6. Illustration of the ten binding pockets identified by fragment-probe 
mapping in the ten most populated clusters (see Table 1) within the A!42 structural 
ensemble used in this work. 
 
 
 
 
 
 

Cluster ID
(Population) 2 (5%) 35 (0.6%)

Binding pocket
with hot-spot
details: key

residues involved
and average ligand

efficiency (Le)

(1) His6, His13, Leu17,
Phe19

Le: -1.02
(1) Ala2, Leu17, Asn27,

Met35, Val36
Le: -1.23

(2) His13, Leu17, Val36 Le: -1.08 (2) Leu17, Phe19, Phe20 Le: -0.88

(3) TYR10, His13, Met35 Le: -0.91 (3) Ile31, Val36, Val40 Le: -1.32

(1) (3)

(2)

(2)

(1)

(3)
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Figure 7. Examples of adjacent binding pockets in the soluble monomeric form of the 
Aβ42 peptide identified through the approach described in this work. Results for 
clusters 2 and 35 (see Fig. 4) are shown together with a characterisation of the 
corresponding hot spots, the potential ligand efficiency (Le) (in kcal/mol, see 
Methods). 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 8. Comparison between the potential ligand efficiency (Le) (x-axis, in 
kcal/mol, see Methods) and the number of hydrogen bonds (y axis) for all the poses of 
the fragments in the binding hot spots identified in this work within the Aβ42 
structural ensemble and those in model globular proteins (see Methods and 
Supplementary Information59); the red circles and numbers correspond to the hot-spot 
IDs listed in Table 1. 
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Figure 9. Residue-specific probability of binding small molecular fragments in hot 
spots of the Aβ42 peptide, calculated by FTMap (see Methods). Non-bonded (black 
bars) and hydrogen bond (red bars) interactions are shown separately. The central 
hydrophobic region (CHC, horizontal red bar, residues Leu17-Ala21) is particular 
involved in hot spot formation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 10. Top binding modes of curcumin (left) and Congo red (right) with the 
Aβ42 peptide, which were identified through the analysis of the fragment-based 
mapping of the binding hot spots; hot spot labels refer to Table 1 and Figure 6 (pocket 
II in cluster 2 for curcumin and pocket V in cluster 18 for Congo red). Molecular 
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dynamics simulations of the complexes show that the ligands remain bound over a 80 
ns period. 
 
 
 
 
 
 
 




