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Abstract

Augmenting Wiring Diagrams of Neural Circuits with
Activity in Larval Drosophila

Andrew S. Champion

Neural circuit models explain an animal’s behavior as evoked activity of different cir-
cuit elements of its nervous system. Synaptic wiring diagrams mapped from structural
imaging of nervous systems guide modeling of neural circuits on the basis of connectivity.
However, connectivity alone may not sufficiently constrain the set of plausible circuit hy-
potheses for empirical study. Combining structural imaging of synaptic connectivity with
functional information from activity imaging can further constrain these hypotheses to create
unequivocal neural circuit models. This thesis develops computational methods and tools to
cross-reference structural and activity imaging of explant larval Drosophila central nervous
systems at cellular resolution. Augmenting synaptic wiring diagrams with activity maps via
these methods relates circuit structure and function at the neuronal level on a per-behavior
basis.

Neuronal activity of larval central nervous systems expressing pan-neuronal calcium
indicators is imaged in a light sheet microscope, which are then structurally imaged with
high throughput electron microscopy. Methods and tools are provided for the assembly of
these image volumes, spatial registration between imaging modalities, automated detection
of relevant tissue and cellular structures in each, extraction of activity time series, and
morphological identification of neurons in structural imaging using reference wiring diagrams
mapped from other larvae.

Using these methods, existing wiring diagrams mapped from a reference first instar
larva were identified with neurons in a larva augmented with activity information for a
neural circuit involved in peristaltic motor control. This demonstrates the feasibility of
the contributed methods to associate the wiring diagrams of arbitrary circuits of interest
with activity timeseries across multiple individuals, behaviors, and behavioral bouts. To
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demonstrate capability to augment wiring diagrams with information besides activity, these
methods are also applied to multiple larvae each expressing specific neurotransmitter labels
rather than calcium indicators in the light sheet microscopy.

This work scaffolds future modeling of circuits underlying behavior that can only be
mechanistically understood in the context of multi-modal observation of synaptic connectivity,
functional activity and molecular markers. The methods developed also enable comparative
connectomics between multiple individuals, which is necessary to study inter-individual
variability in circuits and to observe experimental intervention in the development, structure,
and function of neural circuits.
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Chapter 1

Introduction

Study of the mechanisms of neural systems has principally operated from two regimes of
observation: structure and function. When studying neural systems from a circuit perspective
at cellular resolution, these regimes most often correspond to observation of the structure
of neuronal morphologies and synaptic connectivity, and observation of the functional
dynamics of ions or transmitters via fluorescent indicators or electrophysiological recordings.
Much work has modeled the relationship of structure and function within neural circuits,
particularly the inference of one from the other, such as simulation of compartment or cellular
ion dynamics in neural circuit graphs, or statistical inference of structural connectivity on the
basis of observed activity. In contrast, the goal of this thesis is to contribute methods for the
joint observation of structure and function, so that rather than being only independently useful
to model one modality from the other, they are jointly useful to constrain, model, and explain
neural circuits as the mechanistic basis of behavior. Further aims of these methods are to
allow this joint observation at scales and scopes comparable to those of structural observation
of synaptic wiring diagrams. That is, these methods allow observation of entire systems,
namely the entire central nervous system of larval Drosophila melanogaster (henceforth
Drosophila), do so at the resolution of individual neurons, and do so with completeness
approaching pan-neuronal.

To perform these observations efficiently for many behaviors, behavioral bouts, and
individual animals to permit sufficient observation of the variable dynamics of function, this
is not a direct joint observation of activity and synaptic connectivity in a single animal. Rather,
the methods jointly observe activity and partial structural information in one animal to allow
the mapping of observed activity onto the complete synaptic wiring diagram of a reference
animal. I refer to this combination as an activity-augmented wiring diagram because it
augments the adjacency matrix of the wiring diagram with data of identical dimension with
respect to neuronal identity, but data of a different type and origin sample. This nomenclature
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emphasizes the central role of the wiring diagram in providing a common reference to index,
structure, and develop models integrating dense, multi-modal observation of neural circuits.

To motivate combining connectivity and activity constraints for neural circuits models,
consider the coordination of peristaltic motor control in larval Drosophila. Motor systems
must integrate control from disparate inputs – action selection, central pattern generation,
proprioception, somatosensation, and local dynamics – into coordinated behaviors. Motor
systems must also support a variety of behaviors while for each specific behavior efficiently
reusing control components, such as musculature, circuitry, and sensory afferents [1]. Though
the animal’s repertoire may include antagonistic behaviors – behaviors which are mutually
exclusive in time as they require incompatible dynamics or motion – this coordination and
modular reuse must produce decisive, efficacious behavior [2]. In larval Drosophila, many
neuronal motor control circuits triggering a specific locomotive behavior or modulating
specific actuations have been described, yet study of mechanisms and loci coordinating
these per-behavior circuits are generally limited to single pathways of competitive inhibition
for specific pairs of antagonistic behaviors. This is a consequence of the difficulty and
time required to functionally dissect the circuit via experiments which target only few or
single neurons. Thus these models incorporate only a sparse subset of the motor control
circuitry, while the functional role of most circuit elements and consequently the dynamic
regimes of motor circuitry as a whole remain unknown. A more exhaustive inventory of
mechanisms that selectively recruit and coordinate modulatory circuitry between distinct
motor behaviors would provide insight into how these circuits are reused. Such an inventory
would also establish what modulatory capabilities descending control exercises beyond
action selection. Activity-augmented wiring diagrams enable such analysis because they
provide observation of which circuit elements are active in each behavior, during behavioral
transitions, and the correlation of circuit dynamics with behavioral modulation. In contrast,
unaugmented wiring diagrams either require extensive theoretical analysis and speculative
modeling, incidental prior knowledge of functional correlates of specific circuit elements, or
numerous and resource intensive targeted experiments to produce a similar analysis of circuit
modularity and function.

To introduce the contributed methods, the remainder of this chapter elaborates the stated
problems in reverse order: the non-triviality of mechanisms for coordinating distinct motor
behaviors and modulatory control, the difficulty of disambiguating competing neural circuit
models of coordination mechanisms via single observation modalities, and the difficulty in
combined multi-modal imaging at the scope of whole organisms, systems, or circuits.
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1.1 Coordinating Motor Control in Larval Drosophila

The Drosophila larva is a good model for analyzing circuitry underlying motor behavior
selection and coordination because its biology and experimental tools developed around
it allow the study of systems-level questions through tractable cell-level manipulation and
observation. The nervous system of the larva is small in cell count and physical extent,
yet stereotyped for inter-individual study and homologous for inter-species comparison [3].
This reduced complexity makes system-spanning neural circuits tractable to image with
electron microscopy [4]. Cell-type specific genetic tools in Drosophila allow targeting few
or individual neurons for mutation or protein expression [5], and these interventions can be
screened with automated behavior observation and analysis [6]. The larva’s performance of
fictive locomotion in ex vivo preparations [7] makes the entirety of these circuits amenable
to activity imaging and electrophysiology.

To identify a circuit that coordinates other modulatory circuits between two motor
behaviors, a fruitful strategy is to choose a set of behaviors that are known to recruit an
intersecting set of musculature, yet the dynamics of the recruitment are incompatible between
behaviors. Antagonistic behaviors are a subset of these behavioral pairs. That is, if two motor
behaviors require related but conflicting motion, there must be some coordinating circuitry to
inhibit the pertinent modulatory circuitry of the conflicting behavior, but also the possibility
for partial or selective recruitment of that same modulatory circuit for the active behavior. By
this criterion, circuitry controlling the propagation of the peristaltic wave in the Drosophila
larva is a good candidate for studying coordination of modulatory control.

Larvae crawl forward by sequentially contracting their body segments in a peristaltic
wave from tail to head [8]. Backward crawling functions similarly with a contraction wave
from head to tail. The timing of the anterior wave propagation for forward peristalsis is
modulated by a segmentally repeating circuit which relaxes the body segment anterior of
the contraction wave front using premotor proprioception [9, 10]. This is necessary for fast
and robust forward crawling. The posterior wave for backward peristalsis is modulated by
an analogous circuit, which also inhibits the anterior wave propagation circuit to prohibit
forward crawling [11]. However, this does not establish an unequivocal mechanism of
coordination between forward and backward locomotion, as other pathways between the
putative backward command neurons and the anterior wave propagation circuitry are known
but functionally uncharacterized because they are not amenable to targeted genetics. The
unidirectional nature of the circuit model also lacks a mechanism preventing interference from
backward circuitry during forward crawling, and no mechanism by which other antagonistic
behaviors such as rolling participate in mutual exclusion has been identified. Further, in
backward peristalsis there is a phase offset between the dorsal and ventral contraction, unlike
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in forward peristalsis where they are synchronized [12]. A specific set of interneurons has
been identified as modulating the activity of premotor neurons to affect this phase offset [13],
but they are distinct from the wave propagation coordination pathway [14]. Therefore the
mechanisms coordinating recruitment of these multiple pathways and the control motif they
employ – whether via central pattern generation, distinct command pathways, local dynamics
among premotor neuron population, or other possibilities – remain elusive.

A neural circuit model accounting for peristaltic coordination is elusive not only because
multiple pathways modulating individual aspects of control have no known coordination
mechanism, but also because existing models only include a small portion of the motor
system. 118 hemisegmentally repeating premotor neurons have been identified [14], while
the models cited above account for approximately 19. While it is possible this majority
population of premotor neurons is vestigial or quiescent, recruited only during other behaviors
from the larva’s modest repertoire, functional only for behavioral modulation necessary
outside of laboratory experimental contexts, or simply functional adult neurons generally
irrelevant during the larval stage, these are all unlikely given the demonstrated inductive
heuristic of wiring and neuronal efficiency [15]. This incompleteness is evident not only from
populations, but also from control mechanisms for other aspects of motor execution yet to be
described. Circuit mechanisms known to control other aspects of forward peristalsis, such
as the proprioceptive lateral amplitude control circuit [16], are likely to have a analogous
functional role in backward peristalsis. Such mechanisms, their coordination path with other
modulatory circuits for backward peristalsis, and their coordination pathway with lateral
amplitude control for other behaviors have yet to be identified.

Motor control circuitry in larval Drosophila is surveyed in more detail in Section 2.1.

1.2 Disambiguating Competing Models of Neural Mecha-
nisms

Peristalsis in Drosophila larvae illustrates a recurring challenge to explaining behavior via
neural circuit models. While sub-circuits synaptically proximate to sensation and motor
output are amenable to experimental tools and modeling, and the models are both predictive
and explanatory, the same does not necessarily apply when the methods are applied to whole
systems. The above discussion of peristaltic motor control has shown existing circuit models
account only for a small percentage of the premotor neuron population. This suggests that
the mechanisms to simultaneously recruit the many described pathways for antagonistic
behavior coordination must in part be distributed among this larger premotor population
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or synaptically further removed in the circuit. That is, coordination of motor control for
antagonistic behaviors is achieved at the scale of the motor systems. Yet at the scale of
systems, models are often under-constrained. Many hypothetical circuit mechanisms could
underlie observed behavior because of the high dimensionality of the circuit hypothesis space
and limited information in the behavioral output and stimulus control. Consequently the
likelihood is greatly decreased that models’ predictions generalize or that their functional
interpretation corresponds with the modeled system in an explanatory manner.

The size of the space of plausible hypotheses when constrained only by behavioral output
and sparse observation of neuronal activity and structure may also make it infeasible to
empirically test an unequivocal neural circuit mechanism hypothesis. In the case of peristaltic
motor control, the circuit mechanism hypothesis space is large because coordination could
occur centrally for the whole organism, local to each body region, within the premotor neuron
population, or in multiple stages throughout any subset of these loci. Each source of descend-
ing control or proprioceptive sensory input may target subsets of these loci independently.
Likewise the mechanism of integration for each could be convergence, competitive inhibition,
or many other network motifs. Electrophysiology and genetic behavioral screens can inform
how individual circuit elements participate in a specific behavior, but the combinatorial
number of possible control circuits, loci for coordination, and interfering dynamics make it
intractable to functionally distinguish all plausible mechanisms for selection and coordination
across behaviors.

Imaging contributes information which constrains the space of plausible neural circuit
mechanism hypotheses. For example, activity imaging contributes functional information
that constrains dynamics, which is one projection of the space of possible circuit mech-
anisms. Thus functional information constrains the set of plausible mechanisms. As the
circuit models above have demonstrated, this is also the case for structural imaging which
contributes information about neuronal connectivity: while multiple hypothesized control
models may explain some motor behaviors and modulation [17], neuronal motor control
circuitry concretely establishes which are structurally plausible [18]. When imaging with
a single modality, however, the remaining space of plausible circuit mechanism may still
be intractably large because it is only constrained by one projective aspect. In the case
of structural imaging, a single neuronal circuit can underlie many regimes of functional
dynamics [19]. Dynamics are even less constrained when the neuronal circuit is abstracted
to a circuit wiring diagram. Likewise one functional activity observation can be realized
by many distinct circuits, especially when activity is observed via low temporal resolution
integrative indicators.
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While a single observation modality may not sufficiently constrain the mechanism
hypothesis space, the intersection of multiple modalities may. That is, constraints on plausible
mechanisms from the structural information of wiring diagrams can be combined with
constraints on dynamics from the functional information of activity maps. The intersection
of those two sets of constraints may yield a set of plausible hypotheses of mechanisms small
enough to be distinguished with a tractable number of experiments such as behavioral assays
or electrophysiology.

Constraining mechanism hypotheses via intersections of multi-modal imaging generalizes
to information besides ion activity indicators. Labeling neurons in wiring diagrams with
neurotransmitters, gene expression, and other molecular markers reduces the set of compat-
ible mechanism hypotheses. Methods to identify these properties for individual or sparse
subpopulations of neurons usually employ the same genetic tools and imaging techniques
as activity imaging, and therefore face the same time and resource constraints previously
described.

1.3 Combined Functional and Structural Imaging of Neu-
ral Circuits

When interest in electron microscopy based connectomics resurged in the last two decades,
early work included joint observation of connectivity and functional imaging [20]. However,
this was only done for sparse or specific neurons in order to demonstrate the correlation
of observed synaptic connections with evoked post synaptic activity – that is, to study the
correlated information of wiring diagrams and activity dynamics rather than their independent
components. Much of the power of connectomics to predict and explain previously opaque
systems, computations and behaviors is due to the density or completeness the wiring diagram,
which allows the data itself to guide circuit discovery and modeling when prior hypotheses
from other methods are incomplete, incorrect or unavailable. Expanding the explanatory and
predictive power of wiring diagrams by augmenting them with activity information should
strive for a similar degree of completeness and density in the joint observation of activity.

Directly combining activity and structural imaging is challenging because of conflicting
practical limitations of each modality. Activity imaging of fluorescent calcium indicators
throughout the central nervous system at single-cell resolution is feasible in explant prepara-
tions [21]. The viable time window for motor behaviors in such preparations, as well as the
need to induce motor behaviors via opto- or thermo-genetic stimulation of driver line targeted
sensory neurons that may evoke only a limited repertoire of behaviors, require imaging
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of multiple animals to acquire sufficient functional information. However, EM structural
imaging at resolution sufficient to reliably reconstruct synaptic connectivity, as well as the
reconstruction process, is time- and resource-intensive. Typically only one or few animals
are imaged and used to study multiple research questions over many years. While functional
and structural imaging could be performed in different larvae, cellular identity cannot be
reliably mapped between modalities because most observed fluorescence is somatic, which
are ambiguously localized between individuals.

Instead, following activity imaging larvae can be imaged with low-resolution, high-
throughput structural imaging which, while insufficient for synaptic reconstruction, is suf-
ficient to reconstruct morphology of primary, low-order neuronal processes. This data
acquisition process is shown in Figure 1.1, and was conducted by Nadine Randel via a
collaboration with the laboratories of Harold Hess, Philipp Keller, and Marta Zlatic. An
explant larval CNS expressing the pan-neuronal fluorescent calcium activity indicator (ei-
ther GCaMP6s [22] or jRGECO1a [23]) is imaged in a multi-view, multi-objective light
sheet microscope [24]. In addition to spontaneous activity observation, optogenetic acti-
vation with Chrimson or Chronos [25] of Basin neurons, which integrate nociception and
mechanosensation, can evoke fictive locomotion including peristalsis, bending, and hunching
[4]. Following activity imaging the CNS is fixed, stained, and imaged via focused ion
beam scanning electron microscopy (FIBSEM). FIBSEM of whole CNS samples of this
size is possible due to recent advances minimizing restarts or other artifact-inducing process
limitations [26]. Activity information acquired from each CNS can then be used to augment
the wiring diagram of a reference CNS acquired via serial section transmission electron
microscopy (ssTEM). This ssTEM dataset has proven sufficient for identification, mapping,
and analysis of neural circuits involved in proprioceptive modulation and motor program
selection [4, 9, 27, 28, 11, 13, 14].

Figure 1.2 overviews the methods and data flow of this process. Morphology of primary,
low-order processes is stereotyped for each neuronal cell type in Drosophila larva, allowing
identification of each neuron in the FIBSEM volumes with existing reconstructions from the
ssTEM reference animal. This reference dataset is imaged at resolution sufficient to identify
synaptic connectivity and reconstruct circuit wiring diagrams. On the basis of this cell type
identity mapping, per-behavior activity time series for each neuron can be cross-referenced
with mapped circuit wiring diagrams to intersect constraints from connectivity with those
from dynamics, limiting the space of plausible circuit mechanism hypotheses. Properties of
cellular identity relevant to circuit function are conserved across development and between
individual larvae [28], so although functional and connectivity information are acquired
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from different animals, they can be integrated in a way meaningful to understanding circuit
mechanisms. Further details of specific processes are elaborated in their respective chapters.

1.4 Structure of This Thesis

Chapter 2 surveys literature spanning all aspects of this thesis across two scopes. The first is
background pertinent to the problem domains of the developed methods but not specifically
employed in the chosen approach. The second is methods, analyses, and results employed
if they apply to the broad scope of the thesis rather than individual aspects covered in
later chapters. Background specific to the employed methods or topic of each chapter is
instead covered there. Alternative approaches to cross-reference connectivity and activity
information about neural circuits or multi-modal imaging are also discussed.

Chapter 3 introduces methods for establishing neuronal identity from high-throughput
electron microscopy. This includes tools for aligning, inspecting and annotating these
data; using segmentation to accelerate reconstruction of neuron morphology; registration
and algorithms for matching near-complete populations of neurons in multiple electron
microscopy volumes based on morphological stereotype; computer vision algorithms to
detect relevant tissue structures and nuclei; and computational techniques to automate
categorization of cell types. Challenges in the imaging and analysis related to the sample
condition following light sheet microscopy are identified, their impact on the viability of
the overall augmentation method are discussed, and future directions for refinement are
proposed.

Chapter 4 introduces techniques for matching neuronal somatic signals in light sheet
microscopy with morphological reconstruction in electron microscopy. Several methods
of multi-modal image registration are compared, including their impact on the accuracy of
somatic activity extraction from the activity imaging.

The developed methods are applied in Chapter 5 to circuits involved in peristaltic motor
control. To demonstrate capability to augment wiring diagrams with information besides
activity, these methods are also applied to larvae expressing fluorescent labels for specific
neurotransmitters rather than calcium indicators in the LSM.

Chapter 6 summarizes methods contributed by this thesis and results of their application
to motor control circuits and neuronal neurotransmitter identification in larval Drosophila.
Problems encountered and consequent recommendations for future work are discussed.
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Fig. 1.1 Data Acquisition Process for Augmenting Wiring Diagrams in Larval Droso-
phila. (a) Cartoon of the Drosophila larva showing the body profile and approximate location
of the CNS. In this and all other figures A, P indicate the anteroposterior axis while D, V
indicate the dorsoventral axis. (b) Cartoon of light sheet imaging of a CNS explant. An
illuminating laser light sheet sweeps the sample while an objective and camera image from an
orthogonal direction. Simultaneously the CNS may be optogenetically activated on another
light frequency. An example perspective rendering of a light sheet volume is shown in (c),
with (d) showing a timeseries of transient activation of a motor neuron (yellow arrow) during
fictive behavior. (e) Cartoon of FIBSEM imaging of the CNS. An electron beam scans the
block-face of the embedded sample while detectors collect reflected and scattered electrons.
Once finished, an ion beam mills material off of the block-face surface. An example image is
shown in (f), with full 12 nm planar resolution detail in (g). The imaging has few disruptive
artifacts and high whole-field consistency, but lower contrast and fine structure resolvability
compared to ssTEM. (h) Cartoon of ssTEM imaging of the CNS. A microtome cuts ultrathin
sections from the block-face of the embedded sample in series. Detectors in a transmission
electron microscope image an electron beam projected through each section. An example
montaged section image is shown in (i), with full 3.8 nm planar resolution detail in (j). Fine
structure and synapses (yellow arrow) are resolvable.



10 Introduction

Reference AnimalPer Activity-Imaged Animal

Light Sheet Microscopy

Tissue Type
Segmentation

Co-registration

High-throughput
Electron Microscopy

Tissue Type & Nuclear
Segmentation

Neuronal Morphology
Reconstruction

Neuronal Identity
Matching

Neuronal Activity
Map Timeseries

Activity-Augmented
Wiring Diagram

Neural Circuit
Wiring Diagram

LSM-EM
Somatic Identity Map

EM-EM
Neuronal Identity Map

Somatic Regions of
Interest

Primary Neurite
Morphologies Neuronal Morphologies

Synaptic Connections

Complete Neuronal
Arbor Reconstruction

High-fidelity
Electron Microscopy

Fig. 1.2 Data Flow Diagram of Wiring Diagram Augmentation. Rhomboid nodes are
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The left shaded area indicates the data flow process contributed by this thesis performed for
each animal used for wiring diagram augmentation, while the right shaded area indicates the
existing wiring diagram mapping process.



Chapter 2

Background

2.1 Neural Circuits Underlying Motor Control in Larval
Drosophila

The body of the Drosophila larva is segmented into three thoracic segments (T1-T3) at the
anterior and nine abdominal segments (A1-A9) at the posterior. This segmentation is reflected
in the structure of the ventral nerve cord (VNC), being similarly composed of neuromere
segments each attached by two peripheral nerves, one per side, to the corresponding body
segment [29]. Abdominal neuromeres also send a dorsomedially rooted transverse nerve to
the corresponding segment’s body wall. Peripheral and transverse nerves convey both sensory
input and motor neuron outputs. Each segment of the VNC is composed of two bilaterally
symmetric hemisegments, each containing a repeating complement of homologous neuronal
lineages. These lineages tile the superficial cell body rind surrounding the VNC neuropil
and project their primary neurites into the central neuropil via a bundled tract shared with
their lineage. The neuropil is spatially organized into motor and sensory domains along the
axial plane [30, 31]. Via these developmental mechanisms of segmentally repeating spatial
organization and stereotyped homologous neuronal fates, the VNC is principally composed
of overlapping, segmentally repeating circuits. However segmental circuitry is not identical;
different lineages and gene expressions take effect across segments, most notably between
thoracic and abdominal segments, in segment A1, and in the joined tail segment A8/9 [32].

31 motor neurons in each VNC abdominal hemisegment innervate a repeating set of
approximately 30 somatic muscles in the body wall of the corresponding body hemisegment
[33, 12]. Body wall musculature is organized into groups actuating independent longitudinal
contraction of the segment ventrally and dorsally, transverse contraction laterally, and oblique
and acute muscle groups between these [34]. The spatial arrangement of these muscle groups
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is myotopically mapped to the motor domain of the VNC neuropil by stereotyped dendritic
arborization of the motor neurons innervating them [35, 36]. Larvae’s locomotive behavioral
repertoire involving segmental somatic musculature includes forward and backward crawling,
rolling, head casting, hunching, bending, and burrowing. Locomotive behaviors participate
in the larva’s repertoire of complex behaviors including foraging [37], feeding, wandering
[37], predation escape (nocifense) [38], and conspecific grouping (sometimes described as
social behavior) [39, 40].

2.1.1 Behavior Selection

Motor control requires coordinated selection and initiation of behaviors over time at the scope
of the entire organism. In Drosophila larvae, motor circuits in the VNC receive input from
descending axons from neurons in the brain in addition to sensory input from nerves [41]. The
brain is connected at the anterior, dorsal end of the VNC, joined by the subesophageal zone
(SEZ), with the esophagus passing between the VNC and the brain’s symmetric hemispheres
via the foramen. Brain circuitry has been shown to perform sensory processing [42], sensory
integration [43, 44], and learning [45] for effective behavior selection. However, larvae will
autonomously and spontaneously perform many locomotive behaviors in the absence of brain
input [46]. This implies motor coordination circuitry sufficient for selection and initiation
must be distributed, decentralized, or hierarchical, with the VNC being independently capable
of some degree of selection and coordination between behaviors, rather than descending
control exclusively and exhaustively recruiting and inhibiting the appropriate circuit modules
based on descending behavioral selection.

VNC-local selection, initiation, and maintenance of behavior has been extensively studied
in the escape response of larvae to abdominal mechano-nociceptive stimuli. When stimulated
with a probe along the lateral surface of the abdomen, larvae will often interrupt their current
behavioral state to engage in one of fast crawling, backward crawling, rolling, hunching,
or bending. This response may be an evolved defense to attempt escape from parasitic
wasps or predators [38], or to prolong the encounter to reduce the opportunity to attack
other larvae. The response is mediated by a hemisegmental population of Basin neurons
[4] and down-and-back neurons (DnBs) [47], which locally integrate mechanosensory and
nociceptive information. Direct optogenetic or thermogenetic activation of Basin neurons is
sufficient to initiate response behaviors locally. Further, selection of the response behavior
and maintenance of that behavioral state is mediated by a local circuit involving the Basins,
rather than a centralized brain mechanism [27].

This model of Basin-mediated behavioral selection contributes a concrete circuit motif for
selection in reciprocal feedforward inhibition and for maintenance in locally recurrent mutual
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inhibition, while providing a mechanism for extrinsic modulation of selection by descending
control. Similar motifs may recur in other pathways coordinating pairs of responses to
particular stimuli. However, accounting only for selection between bending and hunching,
and being a parallel pathway to DnB, the limitations described in Section 1.1 also apply here:
how local sub-circuits interact to coordinate between not only pairs of behaviors but across
behavioral repertoires and how this is coordinated organism-wide remain unknown.

2.1.2 Peristalsis and Antagonistic Behaviors

Both forward and backward crawling activate overlapping but non-identical groups of body
wall muscles sequentially in each segment in phase with the peristaltic wave; both waves
predominantly recruit first longitudinal muscles to contract the segment, then transverse
muscles to increase the rigidity of the segment after longitudinal muscles have relaxed and
the contraction has moved to the next segment [12, 14]. Both directions recruit at least 25
of the 31 hemisegmental motor neurons [14]. This implies broad coordination of the 118
premotor neurons is necessary.

As mentioned in Section 1.1, the phase of these sequential contractions is differently
coordinated for each crawling direction. In forward peristalsis lateral contraction of the seg-
ment occurs earlier in the sequence to be concurrent with the ventral and dorsal longitudinal
contraction of the next anterior segment, while in backward peristalsis lateral contraction
occurs later and ventral longitudinal contraction earlier such that they are simulatenous be-
tween a segment and its posterior neighbor, respectively [12]. This phase offset is modulated
by premotor neurons A01d3 in forward peristalsis and A27k in backward peristalsis, which
excite an overlapping set of premotor targets in the next posterior or next anterior segment,
respectively [13].

Motifs for modulation of analogous aspects of wave propagation are not necessarily as
symmetric as for the phase offset circuit. Circuit mechanisms timing the initiating edge
of wave propagation have been described via repeating intersegmental, local circuits for
forward peristalsis, and via a shared descending neuron for backward peristalsis. In forward
peristalsis premotor neuron A27h, which excites motor neurons for longitudinal contraction,
projects into the next anterior segment and excites an interneuron that inhibits the A27h in that
segment, which prevents the peristaltic wave from propagating until the appropriate phase
sequence [9]. In backward peristalsis, putative backward crawling command moonwalker
descending neurons (MDNs) initiate the peristaltic wave via excitatory premotor neuron
A18b, while preventing forward propagation of the wave by inhibiting A27h via descending
neurons Pair1 [11]. The dynamics of this circuit are not fully known as MDN also excites
premotor neurons A27l via ThDN, and neither of these have genetic driver lines with specific
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expression [11]. While a specific driver line exists for A27k [13], which is also excited by
ThDN, single cell targeting driver lines do not allow for observing co-activity and relative
timing between multiple neurons. Therefore activity-augmented wiring diagrams could yield
more comprehensive understanding of backward wave initiation, propagation, and inhibition
of antagonistic behaviors.

2.2 Mapping Structural Wiring Diagrams of Neural Cir-
cuits

Neural circuit wiring diagrams are graph representations of a nervous system that encode
neuronal elements as nodes and their interactions – most typically chemical synapses, but
possibly gap junctions, ephaptic coupling, neuropeptide exchange, or other information
signals or ultrastructural markers – as edges. The predominant method of mapping circuit
wiring diagrams is by structural imaging of neuronal morphology, although methods besides
imaging such as combinatorial genetic sequencing are possible [48]. For the typical case of
mapping wiring at the resolution of individual synaptic connections and neurons or neuronal
compartments – micro-scale connectomics – either electron microscopy of fixed neural
tissue prepared with electron-dense membrane and synaptic stains, or light microscopy of
fluorescent protein markers is employed. Most light level methods can not densely express
markers while preserving the resolvability of individual structures, so are often used for
targeted mapping, generating unions of multiple sparse maps [49], with random labelings
of multiple fluorescent channels [50], or combinations of these. Electron microscopy is
inherently suited for dense mapping of wiring diagrams as it captures contrasting agents that
have been stained into the sample with high resolution and relative uniformity of signal to
noise throughout the volume [51].

Whole-system mapping of neural circuit wiring diagrams via electron microscopy began
with Caenorhabditis elegans [52] and has become an increasingly common method for
neural circuit study over the past 15 years, with whole nervous system or brain volumes
having been acquired for multiple Caenorhabditis elegans [53, 54], Ciona intestinalis [55],
the annelid Platynereis dumerilii [56], Drosophila larva, adult Drosophila [57, 58, 59], and
zebrafish [60]; incomplete but large regions have been acquired for zebra finch [61] and
mice [62]. Electron microscopy connectomics’ recent popularity is primarily due to two
areas of technological development: improved microscopy techniques for reliable and rapid
acquisition of large samples, and computational techniques for accurately reconstructing
neuronal ultrastructure from those volumes, most notably from machine learning based com-
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puter vision. In microscopy, the key developments are methods for mechanized, repeatable,
and eventually automated imaging of volumes in 2D sequences [63]. This branched into
approaches using serial sectioning techniques, eventually with tape or grid section handling
[64, 57, 65], many compatible with transmission electron microscopy, and approaches using
serial scanning electron microscopy and tissue removal of the face of the block containing
the remainder of the sample [66, 67, 26, 68, 69, 70].

In computer vision, the key developments have been driven by continuous improvement
of image and label data, machine learning algorithms, and computational hardware. For data,
improvement of the volume, image quality, registration quality, and ground-truth labeling size
of electron microscopy [71] have both simplified the task of automated or semi-automated de-
tection and segmentation of relevant morphological structures and refined the quality of labels
for supervised learning. Algorithms for segmentation of neuronal morphology began with
voxel-wise prediction of membranes with random forests or convolutional neural networks
(CNNs) [72], regression-based agglomeration of watershed supervoxels from membrane
predictions [73], or energy-minimizing propagation of membrane profile contours across
serial sections [74]. They have progressed mainly through contemporary improvements in
CNNs, representations of regions of intracellular affinity rather than boundary detection [75]
and related improvements in loss metrics [76] more robust to false merges, more sophisticated
agglomeration algorithms [77, 78, 79], and novel approaches with per-compartment recurrent
CNNs [80]. Finally, increased computational capacity, especially due to improvements in
graphics processing unit (GPU) hardware determining the performance of CNNs, has allowed
for application of more complex algorithms using larger image context to larger microscopy
volumes.

Background on software tools for mapping neural circuits is discussed in Chapter 3.

2.3 Activity Mapping of Neural Circuits

Proxies for membrane potential activity of large neuronal populations can be imaged using
fluorescent indicators of either ions binding proteins [81, 82] or voltage [83]. While confocal
or laser scanning microscopy is sufficient for imaging sparse neuron populations over large
planar or multi-planar fields of view in tissues such as mouse cortex [84], imaging whole
larval CNS samples or organisms at timescales comparable to fluorescent calcium ion
indicator dynamics while retaining the ability to distinguish signal from individual cell
bodies or processes often requires advanced volumetric microscopy. Light sheet microscopy
(LSM) (also referred to as selective plane illumination microscopy (SPIM) [85]) is a super-
resolution-capable imaging method that rapidly sweeps a thin laser "sheet" of illumination
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over a sample, exciting fluorophores whose emitted light is detected by objectives oriented
orthogonally to the sheet [86]. Two opposing objectives can image a single sheet or opposing
set of co-planar sheets for multi-view LSM [87]. Two orthogonal arrangements of multi-
view emitters and objectives can be temporally interleaved to image in a pseudo-isotropic
arrangement referred to as iso-view LSM [24]. LSM has been used to acquire whole-CNS
volumetric timeseries of neuronal activity for larval zebrafish [88] and larval Drosophila [21].
Illumination on a second channel can be used for optogenetic activation, either over broadly
or over targeted regions of interest, and in either an open-loop or closed-loop control [89].

2.4 Combined Function and Structural Observation of
Neural Circuits

This section surveys existing and alternative methods for either combining functional and
structural imaging or enhancing imaging techniques for augmenting wiring diagrams.

2.4.1 Augmentations to Electron Microscopy

Besides neuronal morphology and synaptic structures, electron microscopy can detect other
spatially-structured features of cell and biomolecular state. To aid this detection, methods
have been developed to augment electron microscopy with markers in addition to basic mem-
brane and synaptic staining. Markers can be genetically encoded, to tag specific structures or
proteins with electron-dense molecules [90, 91]. Alternatively, subsets of sections in a ssTEM
volume can be labeled with antibodies to mark proteins of interest with electron-dense gold,
effectively augmenting the electron microscopy with an independent channel of information
so long as the labeled target is sparsely expressed [92]. Both approaches can be enhanced
by depositing multiple markers with known, distinct spectra that can be energy filtered in
transmission electron microscopy, allowing for the independent identification of multiple
types of target structures in a single volume [93].

While potentially effective for augmenting wiring diagrams with information like neuro-
transmitters, these methods are not applicable to ion activity dynamics, other than perhaps
integrals over single time intervals via convertible markers akin to those used in fluorescent
imaging [94]. In comparison, the multi-modal methods presented in this thesis for similar
identification of biomarkers have the advantages of relying on fluorescent labeling and imag-
ing techniques that are already in the domain of many Drosophila labs’ expertise and do not
require time-intensive and error-prone section handling. Direct augmentations of electron
microscopy have the advantage of relying on a single, high-resolution imaging modality,
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obviating difficulties from ambiguous localization and identification of cellular signals in
LSM and registration between microscopy modalities.

A potential shared by direct electron microscopy augmentation techniques and those
presented in this thesis is that either may allow discovery of latent but detectable features in
unaugmented electron microscopy. Besides membranes, synaptic sites, and similar structures,
existing electron microscopy volumes contain extensive imaging of ultrastructure that is
not annotated or not analyzed in most wiring diagram mapping. These image features
may be difficult to detect or beyond reliable human interpretation (super-perceptual), but
statistically learnable from the data. For example, machine learning computer vision can
classify some synaptic neurotransmitters in adult Drosophila based on supervised learning
from synapse-local image data of neurons with known transmitters [95]. Augmentations
to electron microscopy directly or via this thesis’ methods could provide rapid, large-scale
ground truth for development of similar techniques to more fully exploit latent ultrastructural
features in existing and future electron microscopy volumes.

2.4.2 Light-Level Approaches

While the barrier to electron microscopy’s use for activity imaging is the necessity of fixing
and sectioning or otherwise destroying the tissue, thus limiting observation to a brief instant in
time, for light-level microscopy the barrier to structural imaging is spatial: resolution, signal
deep in tissues, and the resolvability of separate, neighboring structures. These limitations
can be addressed by either making the structural signal more sparse across channels [50]
or improving the effective imaging resolution. LSM achieves resolution of approximately
1x1x2.5µm in whole larval CNS [21]. If higher absolute spatial resolution is not optically
possible, tissue expansion [96] can achieve higher effective resolution for connectomics on
the order of 100 nm [97] or at lower resolution for much larger samples [98].

A common difficulty for light-level methods is the ability to resolve synapses. Synapses
can be inferred at process appositions, but for many neural circuits it is known synapse
distribution deviates from apposition surface area. Separate synaptic labels can be expressed,
but can complicate and interfere with other measures to improve process resolvability. For
the augmentation strategy proposed by this thesis, however, direct observation of synapses
is not needed, only primary neurite morphology. Future variations of this approach could
substitute light-level structural imaging for high-throughput electron microscopy to observe
neuron morphology and associate it with cell body signals.
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2.4.3 Multi-modal Imaging Approaches

Recent work has acquired whole-sample GCaMP activity imaging prior to electron mi-
croscopy for large volumes, enabling direct correlation of function and structure [60, 99, 62].
This demonstrates how functional information aids mechanistic interpretation of mapped
circuit wiring diagrams. While direct joint observations of function and structure in the same
sample are necessary in mammalian cortex and similar neural systems without stereotyped,
identifiable neurons, the relative advantage of this thesis’ proposed approach is the ability to
augment wiring diagrams with functional observation of multiple animals and incrementally
with new experimental interventions and aims.

Though not applied to neural tissue, recent work has also combined super-resolution light
microscopy of fluorescent markers with large-volume FIBSEM [100]. Cell tissue applications
demand similar methods development for registration, ultrastructural segmentation, and multi-
modal analyses [101].

Methods similar to those for augmenting electron microscopy can alternatively use a sepa-
rate modality, such as fluorescent imaging, to detect genetically-expressed or immunostained
markers, while also detecting the marker in electron microscopy for correlative interpretation
[102, 103, 104]. These methods are most useful when the entire system of interest can not
be imaged with electron microscopy due its size, therefore light-level imaging can observe
sparse large-scale structure or identify common neurons across distinct electron microscopy
regions of interest.

Recent work has applied synchrotron tomography to structural questions in connectomics
[105, 106, 107, 108]. Synchrotron tomography offers dense, low-artifact structural imaging of
tissue contrast similar to electron microscopy, but non-destructively and with high throughput.
While resolution is not the same order as electron microscopy, on the order of 100 nm,
targeted contrast can follow morphology of individual neurons and tracts across volumes
many times those possible with electron microscopy. This novel niche in the envelope of
imaging quality, resolution, and speed may allow for new multi-modal approaches building
on the function-structure augmentation of this work.



Chapter 3

High Throughput Structural
Neuroanatomy of Larval Drosophila

The purpose of electron microscopy in this project is to identify neurons on the basis of
their stereotyped arbor morphology in Drosophila. This structurally established identity
transitively identifies the cell-body-localized activity signal in the co-registered light sheet
microscopy (LSM) of the same sample and allows cross-referencing the neuron with its
correlates in synaptic wiring diagrams mapped from other electron microscopy volumes.
Neuroanatomical information that must be extracted from each LSM-imaged volume for the
overall activity augmentation workflow (Figure 1.2) includes:

• Detection of nuclei for localizing cell bodies of all neurons of interest, for association
with somatic activity signals in LSM.

• Tissue structure labeling for co-registration with LSM.

• Reconstruction of primary neurite morphologies for all neurons of interest, for mor-
phological identification.

• Registration with the reference electron microscopy volume, for morphological neuron
identification.

Imaging multiple animals to observe many behavioral repetitions and transitions is rate
limited by electron microscopy and subsequent neuroanatomical analysis, as those require
timescales of weeks in contrast to hours for LSM. Therefore improvement over existing
electron microscopy image analysis methods is required to adapt for two limitations of
the data: the requirement for high throughput imaging, and degradation of the sample and
interference with preparation processes caused by prior LSM.
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3.1 Background

Image analysis of electron microscopy volumes begins with registration, a process assembling
individual image tiles sequentially acquired from the microscope into a three-dimensional
volume that optimizes the alignment of tissue structures between tiles. Registration can be
performed as a transform optimization problem of point- or patch-wise matching via many
models of image transforms and interest point similarity [109, 110], or as a deformed image
or deformation field inference problem [111, 112]. In the case of FIBSEM, the acquired
image is of the whole block face surface, removing the need for aligning a mosaic of tiles for
each sample section, and the low inter-section distortion of the sample due to ion milling
rather than mechanical sectioning greatly simplifies registration.

Neuronal morphology can be reconstructed from electron microscopy volumes either by
manual annotation of neurite’s centerline geometry (skeletonization) or volume, or by semi-
automated assembly of the same representations from computer vision. Many tools exist for
both manual [113, 114] and semi-automated [115] reconstruction, but in Drosophila larva the
largest community is built around manual reconstruction using the Collaborative Annotation
Toolkit for Massive Amounts of Image Data (CATMAID) [116, 117]. CATMAID facilitates
distributed reconstruction by allowing neuroanatomists to work collaboratively on a shared
reconstruction via a web browser. Crucial to this thesis’ methods, CATMAID also integrates
analysis tools and cross-instance federation, which enable morphological matching and
guiding new reconstructions in one sample by existing reconstructions in another. Neurons
can be identified based on their stereotyped morphology using the morphological similarity
metric NBLAST [118].

3.2 Methods

Figure 3.1 outlines how information necessary for augmenting wiring diagrams is extracted
from each microscopy volume. Each process of these methods is described below.

3.2.1 Datasets

Imaged fluorescent calcium ion indicator expressing larvae for activity imaging are listed
in Table 3.1 and neurotransmitter label expressing larvae are listed in Table 3.2, with their
constructs in Table 3.3. Sample serial identifiers reflect approximate order of acquisition.
Volume sizes listed are for the bounding box volume of the imaged embedding block, not the
tissue-occupied region. In total 6 activity and 3 neurotransmitter larvae were acquired and
used for all subsequent methods.
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Fig. 3.1 Data Flow Diagram of Electron Microscopy Processing. This diagram details
the contributed methods for processing high-throughput electron microscopy to establish
transitive identity between cell body locations and neurons mapped in a reference animal.
See Figure 1.2 for an abstracted overview.

Sample Instar Acquisition Resolution Volume
(days) (nm) (TVox)

1019 1 12 16 1.28
1018 1 24 12 2.14
1038 3 30 12 4.75
1085 3 38 12 7.19
1097 1 26 12 3.06
1099 1 21 12 2.03

Table 3.1 List of FIBSEM Imaged Activity Indicator Larvae
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Sample Instar Neurotransmitter Acquisition Resolution Volume
(days) (nm) (TVox)

1123 1 Acetylcholine 9 12 3.23
1126 1 Glutamate 8 12 3.03
1128 1 GABA 9 12 2.79

Table 3.2 List of FIBSEM Imaged Neurotransmitter Larvae

Sample Construct
1019 LexAop-Chrimson (attP18)

+/Y ; 72F11-LexA (JK22)
HisAv-RFP ; 57C10-GAL4 (attP2)

UAS-GCaMP6s (VK0005)1018
1038

LexAop-Chronos (attP18)
+/Y ; 72F11-LexA (JK22)

+ ; UAS-RGECO1a (VK0005)
57C10-GAL4 (attP2)

1085
1097
1099

1123 w;UAS-nls.GFP (attP40)
+ ;LexAop-nls.tdTomato (VK00040), 57C10-LexA (attP2)

ChAT-GAL4 [MI04508]

1126 w; UAS-nls.GFP (attP40)
VGlut-GAL4 [MI04979] ;LexAop-nls.tdTomato (VK00040), 57C10-LexA (attP2)

+

1128 w
wy/Y ;UAS-nls.GFP (attP40), tub-DBD

+ ;LexAop-nls.tdTomato (VK00040), 57C10-LexA (attP2)
Gad1-AD[MI09277]

Table 3.3 Genetic Driver and Effector Line Constructs of Imaged Larvae
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Following LSM (Chapter 4), each larval CNS is removed from the embedding agarose and
prepared for FIBSEM according to the protocol in Table 3.4. All larva handling, dissection,
fixation, constrasting, and embedding was performed by Nadine Randel, along with creation
of genetic crosses for activity indicator larvae. Genetic crosses for neurotransmitter larvae
were created by Michael Winding.

Activity indicator samples Neurotransmitter samples
Fixation 4% Glutaraldehyde / 0.1 M

Sodium-cacodylate buffer (pH
7.4) for 1 h

Glutaraldehyde / 2.5
Formaldehyde / 0.1 M

Sodium-cacodylate buffer (pH
7.3) for 1 h

Post-Fixation (I) –
step 1

1% OsO4/1.25% Potassium
hexacyanoferrate (II) trihydrate,
in 0.1 M Na-cacodylate buffer
for 0.5 h

0.5% OsO4 in 0.1 M

Sodium-cacodylate for 40 min;
0.8% K4Fe(CN)6 in 0.1 M

NaCacodylate buffer for 2 h
Post-Fixation (I) –
step 2

1% Thiocarbohydrazide for
10 min

1% Thiocarbohydrazide for
10 min

Post-Fixation (II) 1% OsO4 in 0.1%
Sodium-cacodylate buffer for
30 min

2%OsO4 in ddH2O for 30 min

Contrast (I) 1% Uranyl acetate in water over
night

0.5% UA in ddH2O for 20 min

Contrast (II) Walton lead[119] @ 64 °C for
1 h

Walton lead[119] @ 64 °C for
0.5 h + 2 h room temperature

Contrast (III) 0.8% OsO4 in ddH2O -
Dehydration Acetone PLT-LTS[120]
Embedding Durcopan Durcopan

Table 3.4 Fixation, Constrasting, and Embedding for FIBSEM

3.2.2 Imaging and Alignment of Electron Microscopy Volumes

All FIBSEM imaging was acquired by Shan Xu and Song Pang through a collaboration with
the laboratory of Herald Hess at Janelia Research Campus. For all calcium ion indicator
datasets, imaging was performed at a beam rate of 2.5 MHz with a Zeiss Nvision 40 FIBSEM
capable of acquiring entire larval CNSs with minimal restarts or other artifact-inducing
process limitations [26]. Neurotransmitter datasets were imaged at a beam rate of 10 MHz
with a Zeiss Merlin FIBSEM capable of faster acquisition due to a much higher primary
electron current.
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All datasets other than samples 1018 and 1019 were registered using a cluster-distributed
pipeline I developed in collaboration with Albert Cardona. Point matches between pairs of
tiles with adjacency up to 5 sections away in the sequence are extracted using grid-sampled
image blocks in a local neighborhood [121]. If point matching fails, scale-invariant feature
transform (SIFT) feature matches [122] across the entirety of the further downsampled tile
pair are extracted. A second attempt of point match extraction is made after applying a rigid
alignment to the tile pair from the SIFT matches; if this also fails the SIFT matches are used
for the final alignment. Due to the low distortion of the imaged tiles, a translation transform
model is used for alignment [109].

Samples 1018 and 1019 were registered with TrakEM2 [113]. Sample 1018 was aligned
with a rigid-regularized affine model, except for regions surrounding two large FIBSEM
waves in the brain (see Figure 3.7a(ii)), which were elastically aligned [110]. FIBSEM waves
and other variations in milling depth can be more comprehensively detected, estimated, and
corrected [123], but as few were encountered this optimization has not been applied. A
103 µm3 cutout of sample 1019 was elastically aligned, as described below.

Registered volumes are normalized with contrast limited adaptive histogram equalization,
exported as N5 datasets [124], and downsampled into scale pyramids [125].

3.2.3 Cross-Environment Software for Volumetric Image Data

The size of FIBSEM image data acquired for this project presents challenges for existing
larval connectomics analysis workflows and tools such as those in [117]. While due to the
lower mean spatial resolution most individual FIBSEM samples are smaller image data than
the existing ssTEM first instar larva (4.3 TVox), the requirement for multiple samples to
observe sufficient behavioral bouts requires much larger data in total. It also requires tools
and a data processing pipeline that can be reproducibly applied to each sample with minimal
marginal effort. Further, while isotropic data has been used in many other connectomics tools
ecosystems [114, 126], and I had previously extended CATMAID and other larval tools for
rudimentary isotropic data support, the majority of tools were designed around anisotropic
data presuming tiled stacks of 2D images. Due to the reduced contrast of FIBSEM relative
to ssTEM, rapidly navigating image data to exploit optic flow and viewing locations from
multiple orientations is critical to resolving ambiguous ultrastructure.

To accommodate isotropic access to the acquired FIBSEM samples, the N5 N-dimensional
tensor storage format [124] is used for storage of all registered image volumes and subsequent
volumetric annotations and segmentation. The original Java implementation is sufficient for
many image processing tasks, but integration with the existing larval connectomics workflow
requires availability to additional environments: a systems-level language for cross-platform
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Fig. 3.2 Software for Processing and Visualization of Volumetric Image Data. (a)
Dependency diagram of libraries created for cross-environment volumetric data processing.
(b) Performance comparison of the contributed Rust N5 implementation with the reference
Java implementation for varying compression schemes. (c) Diagram of N5 access from
CATMAID. Arrows indicate image data flow direction. (d) Example of orthogonal views
into an N5 dataset of one of the acquired FIBSEM larvae from within CATMAID.
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data shepherding and high-throughput bulk processing, Python for compatibility with many
image analysis and machine learning tools, and the browser for access from the distributed,
collaborative reconstruction environment of CATMAID. To this end I created a suite of
libraries and tools based around a re-implementation of the N5 interface and format in the
Rust programming language. Rust provides a performance envelope similar to C/C++ while
also guaranteeing memory safety and enabling trivial binding to Python and use in web
browsers via web assembly. While interfaces exist for accessing N5 from Python [127, 128]
and JavaScript [129, 130], this new suite provides a bridge for volumetric data between the
extensive Java image processing ecosystem, CATMAID and future web assembly-based
browser applications, and the young Rust image processing and high-performance computing
communities. The constituent softwares’ dependency structure is shown in Figure 3.2a and
listed below:

rust-n5 [131] A high performance, memory- and concurrency-safe re-implementation of
the N5 N-dimensional tensor interface and filesystem format in the Rust programming
language. Throughput matches or exceeds the reference implementation in most
execution contexts, as shown in Figure 3.2b.

pyn5 [132] Python bindings and NumPy-compatible interfaces for rust-n5 that allow er-
gonomic, pip-installable access to N5 datasets. While having fewer features than
similar library z5py [128], this Python package avoids the need for Conda environ-
ments and provides the guarantee of a consistent backend with the browser libraries
below. This library was written in collaboration with William Patton and Christopher
Barnes.

n5gest [133] Command line utilities for parallel execution of common data shepherding
tasks such as import and export to image formats, filesystem usage and metadata
statistics, verification of file integrity, and empty data deletion.

H2N5 [134] An HTTP service that serves N5 datasets as tiled 2D slices of common image
formats such as JPEG and PNG. This allows a wide variety of existing tools including
CATMAID to access N5 data without the need for new development. H2N5’s features
include minimal allocations and least-recently used caching for data blocks and image
tiles to achieve latency for warm data access at the same millisecond order as pre-
rendered tiles.

n5-wasm [135] Web assembly (WASM) bindings for rust-n5 and JavaScript wrappers for a
HTTP browser request based backend. Web assembly is a binary instruction format
to which many languages including Rust can be compiled and is executable by most
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current web browsers. This provides web applications access to N5 datasets directly
served over HTTP.

n5-extensions Extension traits for N5 including access to scale pyramids via conventional
dataset group naming and content hash metadata for state checking for capable back-
ends. This library has been used for minor work in this thesis but is not yet publicly
available. Christopher Barnes contributed to this library.

WebND HTTP service exposing mutating interfaces for N5 datasets. The service optionally
performs state checking to prevent data inconsistency and provides atomic operations
across multiple data blocks. This library has been used for minor work in this thesis
but is not yet publicly available.

In addition to these libraries, a library abstracting interfaces for N-dimensional, chunk-
based tensor storage with both N5 and Zarr [136] backends has been created, but is un-
published pending the finalization of the Zarr version 3 specification. This will allow all
dependent tools such as n5gest and n5-wasm to access Zarr format datasets as well.

Figure 3.2c shows how CATMAID accesses N5 data via these libraries. Two pathways
serve different access patterns and networking contexts: as tiled 2D images via H2N5, and
as N-dimensional chunks via n5-wasm. Access as tiled images via H2N5 reduces per-field-
of-view bandwidth and latency, but requires separate transfers for orthogonal views onto
the data and does not make use of data locality or prefetching. This is most appropriate for
migrating legacy data to volumetric storage for consistency, while preserving a tiled access
for bandwidth constrained scenarios such as remote work, for sparse browsing when data
locality and orthogonal views are not critical for workflow efficiency, and for resource-limited
devices. In contrast, volumetric access via n5-wasm is implemented via a new set of image
data sources and stack visualization layers in CATMAID that allow for multiple views or
dimensional slicing into the same N5 dataset to share retrieved data blocks. This includes
a caching layer (in addition to existing GPU caching for sliced views) with capabilities for
write-back or write-through mutation to WebND or other services. Preemptable prefetching
of data blocks neighboring the view orthogonally, in the periphery, or at neighboring scale
levels is also supported. Data fetching is performed in parallel via browser web workers.
Volumetric access is suitable for high-bandwidth contexts such as when working with a
locally networked image mirror, and when focused, sustained visualization of local data
regions is critical, such as during reconstruction of fine-scale or ambiguous structures.

I developed many related extensions to CATMAID to accommodate these uses, including
support for multiple mirrors for image data sources (written with Tom Kazimiers) to enable
seamless switching between H2N5 and direct N5 mirrors based on context, interfaces for
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effortlessly importing N5 datasets, support for arbitrary anisotropy in data including between
viewing plane dimensions, support for arbitrary downsampling factors in image pyramids
(building on my work enabling multiple-resolution tracing [60]), support for 16-bit per
channel image data and rendering, support for 64-bit label data, and rendering optimizations
to allow for browsing and visualizing image data at 60 Hz or greater.

BigDataViewer [137] and 3Dscript [138] were additionally used for visualization and
analysis.

3.2.4 Segmentation of Tissue and Cellular Structures

To determine regions of interest for later processing and detect the surface of the CNS for
later registration with LSM, a tissue type classifier segments each volume into three regions:
non-tissue, cell body rind and other non-neuropil tissue, and neuropil. This classifier is based
on a convolutional neural network (CNN) using the U-Net architecture [139]. The classifier
is 2D so that it could be applied prior to registration if needed (such as for masking point
matches to tissue regions) and operates at 48 nm resolution. The network was implemented
in TensorFlow [140] and trained with Gunpowder [141].

Following tissue type classification, nuclei are detected in the predicted cell body rind
region using a similar classifier that predicts a binary nuclear label. The classifier CNN
uses a 3D U-Net architecture [142] to incorporate volumetric information and improve the
spatial consistency of prediction. Implementation and training are similar to the tissue type
classifier. Binary prediction of nuclei is sufficient in most cases as nuclei are well-separated
at 48 nm. Subsequent morphological erosion can easily separate false merges as the goal
is only to detect nuclei centroids as points and not to generate precise segmentation. Both
segmentations and post-processing are distributable across GPUs and clusters.

Ground truth training data was densely annotated in one first instar larva for three slabs
of the volume along the anteroposterior axis: one near the front of the CNS to have labeled
training data for the esophagus attached to many samples, one through the brain, and one in
the VNC. Label annotations were made by Rebecca Arruda and myself in TrakEM2 [113].

For filtering spurious, non-neuronal, and non-glial nuclei detections, such as musculature
in the esophagus, nuclei detections are classified with a simple support vector machine (SVM)
using morphological features of the detected connected components. Labeling of detections
for classification was performed in Napari [143].
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3.2.5 Landmarks for Comparative Drosophila VNC Connectomics

To register between electron microscopy volumes, segmentally repeating neuroanatomical
landmarks were annotated in each volume. These landmarks are based around the following
large scale anatomies from [29] and are placed in each hemisegment:

• The dorsal and ventral neuropil entries of dorsoventral channel of the neurohemal
organ separating the medial commissures in each segment neuropil. To be robust to
variation in the contour of the neuropil profile and the morphology of glia surrounding
the dorsoventral channel, the point location of the landmark is taken during annotation
to be the visualized center of mass of a cone with its vertex near the intersection of the
channel with the neuropil and its base on the tangent plane connecting the respective
dorsal or ventral extents of each hemisegment’s neuropil.

• The split point of the peripheral nerve into the segmental nerve and the intersegmental
nerve.

• The entry of the segmental nerve root (SNR) into the neuropil. For robust placement
this point location is where the center of the nerve bundle on its trajectory at entry
would intersect the interpolated surface of the neuropil were the nerve not present.
This criterion is necessary to disambiguate placement across variable entry orientations
of nerves between segments and the biases of placement between isotropic FIBSEM
and anisotropic ssTEM.

• The entry of the inter-segmental nerve root (ISNR) into the neuropil, at both the anterior
(ISNR-a) and posterior (ISNR-p) branches where applicable. The same criterion for
placement as SNR is used.

Shown in Figure 3.3, these landmarks were selected to optimize invariance to inter-
segmental and inter-animal variability in tissue structure in collaboration between Michael
Winding, who placed them in the ssTEM volume, and myself. For the FIBSEM larvae,
landmarks were placed by Nadine Randel and myself.

Building on cross-instance landmark registration in CATMAID created by Tom Kazimiers,
I allowed for constraining for proper transforms, preventing mirroring when registering
between differently oriented larval volumes, and choice of fit transform model from the
affine group [144]. Interfaces were created for rapidly mapping registrations for large sets of
landmark groups between commonly annotated CATMAID instances, which is necessary for
performing analysis across many whole-CNS volumes for comparative connectomics.
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a b c d e

100 μm

Fig. 3.3 Neuroanatomical Landmarks for Comparative Connectomics. (a) Neuroan-
otomical structures as described in subsection 3.2.5 reconstructed for illustration in a first
instar CNS (sample 1128). For all eleven segments, neuropil-transiting dorsoventral tracts
of the neurohemal organs along the midline and the peripheral nerves’ tracts through the
cell body rind, including SNR, ISNR-a, and ISNR-p are shown. (b) Point locations of the
described landmarks placed in the reference ssTEM first instar larva and (c) in a FIBSEM
first in larva (sample 1018). (d) Basin neurons (see subsection 2.1.1) reconstructed in the
reference larva in segment A1. (e) Basin neurons from (d) transformed into FIBSEM via
landmark registration.

3.2.6 Recursive Instance Segmentation of Neuronal Morphology

One limiting factor for combining functional and structural information using high-throughput
electron microscopy is the rate at which neuronal morphology can be reconstructed to es-
tablish neuron identity. Automating or semi-automating morphological reconstruction by
segmenting structural imaging with computer vision can increase reconstruction rate. A
prepublished approach to neuronal segmentation based on recursive instance segmentation,
flood-filling networks (FFNs), was potentially suited for the constraints of this project be-
cause its accuracy is comparable to or surpassing all published algorithms for isotropic
electron microscopy [145]. Further, the object-focused rather than region-focused nature
had potential for efficient application to sparse reconstruction targeting particular neurons.
FFNs have since been published and applied to multiple petascale volumes from FIBSEM
and ssTEM [80, 146, 59].

As no implementation was available (until December 2017), I replicated the algorithm
in a new implementation and made it publicly available under an open license [147]. This
implementation is based on the TensorFlow [140] and Keras [148] deep learning research
libraries. In addition to the ResNet network architecture used in the original flood-filling
algorithm [149], the implementation also supports the U-Net architecture [139, 142], which
more efficiently learns multi-scale image feature representations and can process larger fields
of view with fewer parameters. Data-parallel training and inference can be distributed over
multiple graphics processing units (GPUs) with high utilization due to parallelized work
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queues and data prefetching. Data augmentation of training data with axis permutation,
mirroring, additive and multiplicative Gaussian noise, contrast rescaling (to simulate low-
contrast sections), data masking (to simulate missing sections), and artifacts (to simulate
precipitate, tears, and support film folds) are integrated, as is regularizing dropout. Training
data is augmented with elastic deformation separately [79]. All volumetric data access and
storage is backed by block-sparse data structures to allow processing of arbitrarily large
out-of-memory volumes so long as the volume of the segmented structure and its local
neighborhood are within system memory constraints The implementation also supports FFN
algorithm variants such as alternative movement queue prioritizations and boundary distance
prediction. Integrated visualization is provided by Neuroglancer [129].

Segmented volumes are skeletonized for import into CATMAID and analysis. Skele-
tonization is based on the TEASAR algorithm [150, 151]. To allow efficient in-memory and
parallelized skeletonization, the adjacency graph of the block-sparse octree representation
of the segmented volume is partitioned to minimize inter-subgraph adjacencies between
partitions [152]. Each partition is skeletonized separately, and the resulting skeletonizations
are stitched to yield a single skeleton representation.

All flood-filling networks presented here were trained on ssTEM of adult Drosophila
neuropil from the CREMI challenge [71]. While ssTEM rather than FIBSEM, this dataset
was chosen for implementation and evaluation of FFNs because the FIBSEM samples had
not yet been imaged at the time of analysis, CREMI has the largest high quality ground
truth annotation for any available Drosophila dataset, and was a representative sample for
evaluating the applicability of FFNs to the reference ssTEM datasets. CREMI samples A
and B were used exclusively for training. As the most difficult neuropil volume, the lesser z
half of Sample C was used for training, while the greater z half was used for validation to
stop network training and select final models.

To assess rates of morphological reconstruction, the implementation was made available
as part of a semi-automated reconstruction tool that interfaces with CATMAID. The process
diagram of this tool, including the FFN algorithm, are shown in Figure 3.4. This approach
evolved into a tool written by William Patton for using seeded segmentation to proofread
existing neuronal skeletons rather than produce de novo reconstructions [153].

The potential increase in the rate of morphological reconstruction can be modeled as a
speedup versus fully manual tracing. Speedup depends on several parameters: the length
of cable returned by automated segmentation, lcable; the rate of fully manual tracing of
bare cable, rmanual; the context-switch time for expert attention when completing review of
one skeleton fragment and progressing to the next, tcs; and the ratio of the rate at which
skeleton cable can be reviewed versus manually traced de novo, creview. A model predicting
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Fig. 3.4 Workflow for Sparse, Semi-Automated Skeletonization. Within CATMAID
expert neuroanatomists annotate locations to seed reconstruction within neuronal processes
of interest. These seed locations are asynchronously flood-filled, skeletonized, and imported
into CATMAID. Once the skeletonization is imported, it is added to a queue of such skeletons
for the expert to review. As the expert reviews each skeletonized segmentation fragment,
she splits skeletons at locations where neuronal processes are falsely merged (similar to
fully manual tracing workflow [117]), and annotates locations where false splits were made,
i.e., the neuronal process continues but segmentation did not. These locations are added to
segmentation just as with seed locations, and when their skeletonized segmentation fragments
are imported they are stitched into the existing skeletons as morphological continuations.
These continuations are reviewed in the same workflow as newly seeded skeletons.
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approximate speedup St is given by:

St =
creview

1+ tcscreviewrmanual
E[lcable]

Based on existing reconstruction in adult Drosophila these parameters are estimated as
rmanual = 8 µm/min; tcs = 0.25min. Note that tcs may be highly skewed; the median context
switch is much shorter, but context switches into difficult processes are much longer. An
additional basis for the estimation of review to de novo manual tracing rate ratio is that
morphological reconstruction tools that allow experts to trace skeletons by flying through
spherical projections of isotropic data have demonstrated a cable reconstruction rate up to
four times as fast as manual tracing in CATMAID [114]. While this rate is not achievable
for de novo tracing in the reference ssTEM Drosophila larva due to different constraints
on image quality, alignment, and tortuosity of larval neuronal processes, those limitations
do not apply to review of existing skeletons where the skeleton geometry can be used to
dynamically prefetch and realign image data.

3.3 Results

3.3.1 Structural Imaging of Multiple Complete Central Nervous Sys-
tems

An aligned 10 µm per side cubic region of interest from VNC neuropil of the first acquired
pilot sample 1019 (imaged at 16 nm×16 nm×8 nm) was used for preliminary assessment
of imaging conditions and quality. Seed points for reconstruction were placed near the
center of the region of interest in two neurite tracts. Two neuroanatomical reconstruction
experts, Casey Schneider-Mizell and Katharina Eichler, and myself were unable to reliably
independently reconstruct neurites in these tracts to the boundary of the region, mostly
due to low contrast between membranes and intracellular space when processes narrow.
Consequently imaging resolution was adjusted to isotropic 12 nm for all subsequent samples.

All eight subsequent samples chosen for electron microscopy were imaged successfully
and without tissue loss or anomalies that prevented registration. As shown in Figure 3.5, in
some samples and regions ultrastructure critical to the proposed methods is resolvable: intact
cell bodies and rind, large neurites in neuropil, and the entry of primary neurite bundles into
the neuropil. Registration yields orthogonal views without major distortion or banding along
the imaging plane.
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Fig. 3.5 FIBSEM of a Complete Larval Drosophila CNS. (a) Cutaway rendering of the
registered volume of the CNS of a first instar larva (sample 1128). The right brain lobe
(image left) is shown in sagittal and frontal section, along with the subesophageal zone (SEZ).
A sagittal section extends from the SEZ through the thoracic segments and into the abdominal
segments. Finally a frontal section shows the cross section of an abdominal hemisegment.
Scale bars are 10 µm. (b) Detail of cell bodies in the brain bordering the brain neuropil in
the bottom right, with nuclei of varying contrast (blue stars). (c) Detail sagittal view of
ventral nerve cord neuropil orthogonal to the imaging plane showing imaging isotropy and
registration quality. (d) Detail of a primary neurite bundle entering the neuropil from cell
bodies (yellow arrow).
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To assess whether this imaging quality is consistent enough within and between samples
for morphological reconstruction, the peduncles of the mushroom body can be compared
(Figure 3.6). While the mushroom body is not a system of interest for this work, the peduncle
is useful as a representative, stereotyped, and easily identifiable non-branching parallel fiber
tract. As such it presents a minimal threshold case for the ability to reconstruct primary
neurite morphology. In many samples neurites within the peduncle can not be reconstructed,
due to apoptosis, low contrast, or other quality issues. These issues may effect some or all of
the peduncle neurites in each sample, and occur in samples from different developmental
stages and in both the activity and neurotransmitter samples, which underwent different LSM
protocols. While the peduncles for each sample are not necessarily representative of the
median image quality of that respective sample, in my observations they are representative of
the categories and frequency of image quality issues across all eight samples.

Structural imaging quality issues in these samples leading to unresolvable ultrastructure
are categorized in Figure 3.7, broadly in ascending order of severity. While FIBSEM creates
imaging artifacts, relative to artifacts in ssTEM including tears, folds, precipitate, and lost
sections, FIBSEM artifacts are of very low frequency and low severity and only rarely
obstruct reconstruction. As expected, the staining, imaging conditions, and resolution are not
sufficient to reliably resolve synapses, post-synaptic partners, or fine dendritic processes.

More importantly for primary neurite reconstruction, low and variable contrast and noise
can prevent neighboring processes from being distinguished. In many regions tissue has
been damaged or destroyed, preventing any reconstruction or even hypotheses about cell
body identity of primary neurites. This occurs most frequently and severely when apoptotic
sheathing glia at the interface of the cell body rind and neuropil delaminate the two, severing
lineage bundles. Separately from spatially localized regions of cell death, apoptosis and
neurite membrane tears occur sparsely throughout all samples with different per-sample
frequency. Cell death and tissue destruction may be due to phototoxicity from light sheet
illumination and optogenetic stimulation, sustained fictive activity following dissection, and
the time and handling required for sequential imaging in two modalities. Recommendations
to diagnose and ameliorate these issues are discussed at the end of the chapter.

3.3.2 Manual Reconstruction of Primary Neurite Morphology

To test whether primary neurites for large populations of neurons sufficient for this project’s
aims could be reconstructed, cell bodies and portions of primary neurites were manually
reconstructed for many neurons in first instar GCaMP sample 1018. Because contrast and
apoptosis issues often obstruct the entry of lineage bundles from the cell body rind into the
neuropil, these reconstructions aimed to map sufficient cable length from the cell body to pass
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Fig. 3.6 Inter-sample Comparison of Structural Imaging Quality. For each of four larva
across developmental stages and prior light imaging representative of the variability of
imaging quality (columns), a whole-sample overview in the imaging plane (top row) and
a full-resolution region in the peduncle of the mushroom body (second row) are shown.
The same are shown for an orthogonal view in the registered volume (fourth and third row,
respectively). The boundary of the peduncle is identifiable from glial sheathing (yellow
arrows), but integrity of the fibers due to apoptosis (blue stars) and membrane contrast varies
between samples.
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Fig. 3.7 Categories of Sources of Unresolvable Ultrastructure. (a) Artifacts and limi-
tations of FIBSEM imaging. (i) "Curtains" streaking imaging due to charge buildup. (ii)
A milling "wave" shown in XZ (transverse section) due to inhomogeneous milling of the
sample between each imaged plane. (iii) A synapse with presynaptic T-bar (yellow arrow).
(b) Ambiguous contrast issues from stain and imaging conditions impacting morphological
reconstruction. (i) Low and inconsistent contrast can create indistinct membrane boundaries,
such as here where four primary neurites are within the red circle, but cannot be reliably
tracked through this region. (ii) High variability in intracellular cytoplasmic contrast can aid
tracing in some bundles, but impedes it when dark contrast processes border each other, as
shown. Here two primary neurites within the red circle cannot be reliably tracked through this
bundle. (c) Degradation of tissues preventing morphological reconstruction. (i) Membranes
and organelles of an apoptotic cell. (ii) Cell bodies delaminated from the neuropil through
a combination of either apoptosis of the glia and mechanical stress between light sheet
microscopy and fixation for electron microscopy.
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the entry point for each neuron, so were done with a minimal target length of 25 µm. These
reconstructions also scaffold subsequent circuit-targeted work by annotating dense clusters
of cell bodies and lineage bundles, so that targeted reconstruction can quickly identify, locate,
and extend these. Reconstructions were localized to the right hemisegments of T3 and A1-3
for investigating motor circuitry questions of this thesis, and to two brain regions to assess
applicability of these methods to brain circuits for separate systems questions.

For the VNC, reconstruction began at lineage bundle entry points to the neuropil, traced
retrogradely to the cell body, then out from the entry point into the neuropil to complete
the target cable length. Rebecca Arruda and Nadine Randel also contributed to these
reconstructions that are overviewed in Figure 3.8.

71% of neurites could be reconstructed to the target cable length. This metric is a
lower bound on the proportion of neurites that can be traced into the neuropil, as review,
targeted reconstruction effort, consensus, or semiautomated methods could extend some
neurites. However, it is not a bound on the proportion of neurons that can be identified via
morphological matching, as 25 µm of cable is insufficient for reliable, accurate NBLAST
matching. While this bound limits the proportion of a wiring diagram than can be augmented
using the proposed methods (see Figure 5.1), the reconstructions still demonstrate the
feasibility of these methods if the ultrastructure and imaging quality present in regions of the
samples can be more consistently achieved throughout samples by refinement of the process.

3.3.3 Neuronal Populations of the Central Nervous System

Tissue classification (Figure 3.9) accurately segments cell body rind sufficient for subsequent
nuclei segmentation and for mesh generation for orientation in annotation tools. Spurious
detections are easily filtered with morphological opening. SVM classification of detected
nuclei was sufficient to filter most spurious detections from large organelles and esophageal
cells that the remaining detections can be used to check for missed cell bodies of manual
reconstructions. While spurious detections remain, they are infrequent enough to be manually
discarded.

3.3.4 Suitability of Flood-Filling Networks for Sparse Segmentation

One feature of FFNs that made them potentially relevant to the proposed methods is the
ability to segment specific neurons of interest individually. This would allow computational
costs of segmentation to be applied sparsely or iteratively to reconstructing particular neurons
of interest based upon evolving, circuit-analysis-guided understanding of which neurons’
activity augmentation would most clarify circuit model hypotheses. As shown in Figure 3.10,
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Fig. 3.8 Manual Reconstruction of Primary Neurite Morphology. (a) Orthogonal views
of the neurite tracing interface in CATMAID. (b) Transverse and sagittal views of recon-
structed neuron morphologies (sample 1018, N = 1061). (c) Histogram of cable lengths
of reconstructed neurons. The cumulative density (black line) shows that 29% of neurons
reconstructed in exploratory tracing could not be quickly traced to the minimum target length
of 25 µm.



40 High Throughput Structural Neuroanatomy of Larval Drosophila

a

c

b

Fig. 3.9 Tissue and Nuclei Segmentation of the CNS. (a) Example ground truth annotation
for tissue type classification (left) and nuclei detection (right). (b) Rendering of FIBSEM
of a first instar larva (sample 1018) masked with segmentation and nuclei labeling. The
cell body rind mask exposes the tissue from the embedding material, with the esophagus
and peripheral nerves visible, along with cell bodies tiling the CNS. In the foreground the
neuropil mask is exposed (blue). Posteriorly labeled nuclei detections are shown, and can
also be seen in the esophagus. (c) Histogram of volumes of nuclei in this sample classified as
neural or glial (blue, N = 13173) or other (yellow, N = 2077) by SVM. The volume of the
mean measured manually anotated neuronal nuclei radius of 1.5 µm is shown in gray.
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while dense segmentation of sub-volumes can produce segmentation with few merges when
the intersection of all process-seeded segmentations is taken, individually seeded segmen-
tations frequently falsely merge. Further, because false merges can introduce recurrent
object mask probabilities unlike the distribution from training, and because the network has
no means of resolving these (no local choice about which process is correct can be made
because it is a global consideration), once a false merge has been made it can lead to many
more. Fine processes like sheathing glia are especially susceptible. In the case of dense
segmentation with intersecting labels, these frequent false merges are still evident as false
split boundaries at axis-aligned planes corresponding with the edge of the output region of
interest for individual predictions of the network (Figure 3.10c). Such splits can be trivially
detected and merged before any more sophisticated agglomeration is applied.

To investigate network- or object-specific biases towards merging, two networks with the
same training procedure but identically, independently drawn initial parameters and training
data were repeatedly used to segment the same single objects in sub-volumes of varying
size (Figure 3.10e). For each trial, random seed points interior to the object were chosen to
initiate the segmentation, but the same sequence of random points is used for both networks.
The F1 metric of the final segmentation and the ground truth is then computed. There is little
consistency to when false merges occur, other than that as expected larger sub-volumes have
low F1 more frequently because there is more opportunity for false merging. This variability
of behavior, both within and between network segmentations, suggests that FFNs’ accuracy
may be due to ensemble consensus of segmentations and not only single-object accuracy.
One interpretation is that FFNs are modeling and repeatedly sampling from some posterior
distribution of segmentations, though other possibilities are listed in the discussion below.

To assess potential speedup versus manual reconstruction for the single-object, targeted
skeletonization case, the CATMAID-integrated FFN was used to segment randomly seeded
neurites in mushroom body calyx in an adult Drosophila ssTEM volume [57]. For narrow-
radius processes correct cable lengths are short, while for large processes correct cable
lengths are more variable. However, the mean correct cable length yields expected speedup
over manual de novo tracing. Since these results, semi-automated approaches based on
FFNs [146] and other segmentation methods [115] have achieved speedups over manual
reconstruction orders of magnitude greater.

3.4 Discussion

The ability to perform most steps of acquisition, processing, and analysis necessary for
augmenting wiring diagrams with high throughput has been demonstrated. With high-current
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Fig. 3.10 Flood-Filling Networks for Sparse Segmentation. (a) Example region of
adult Drosophila ssTEM densely segmented with the flood-filling implementation from
Section 3.2.6. (b) Flood-filling of a single object falsely merging into many objects, in this
case including a glia. (c) False splits in dense flood-filling with characteristic axis-aligned
boundaries due to region of interest effects. (d) Agglomeration of (c) via trivial merging of
checking-plane-aligned boundaries. (e) Analysis of single-object segmentation between two
similarly trained networks. For varying sizes of region of interest volumes, a single object is
selected and flood-filling is seeded at random interior locations. After exhausting the FFN’s
movement queue, F1 metric of the resulting segmentation with the ground truth is taken. (f)
Correct cable lengths versus neurite radius for sparse skeletonizations in adult Drosophila
mushroom body [57]. (g) Estimated speedup versus manual tracing for the results in (f)
based on a simple model accounting for a rate ratio of review versus de novo tracing.
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FIBSEM microscopes, first instar larval volumes can be acquired in less than two weeks.
A fully distributable processing pipeline allows registration, tissue segmentation, nuclei
detection, and import into analysis environments in under a day. Landmark placement for
morphological identification requires a similar scale of time for robust placement once per
sample. These capabilities all minimize the marginal time and cost required per augmentation
sample, which allows for collection of many samples representative of inter-individual
variability or diverse experimental conditions.

Damaged and ambiguous ultrastructure limits both the throughput of this process and
the proportion of the wiring diagram that can be augmented. Manual reconstructions found
up to 29% of neurons in one sample may not be identifiable. For a sample of neurons that
passed that threshold, a neuroanatomical reconstruction expert achieved a mean cable rate of
3.3 µm/min (Figure 5.3), demonstrating structural imaging quality issues limit reconstruction
rate in addition to feasibility.

Future work can address these issues in three ways: reducing tissue damage, improving
imaging, and automating reconstruction. Tissue damage can be reduced by limiting the
exposure of the sample during LSM. While acquiring functional imaging for long intervals
to observe many behavioral bouts is valuable for activity analysis, improvements in the
throughput of methods elsewhere have reduced the time and resources required for each
sample, thus reducing the need to maximize observed activity in each individual sample.
Observation of apoptosis onset [154] can inform reduction in functional imaging time.

For structural imaging, improvements in the acquisition rate of FIBSEM microscopes
allow for a larger envelope of imaging parameters to be considered. Relatively low resolutions
for Drosophila connectomics of 16 nm and 12 nm were chosen to allow acquisition of
several samples in a period of months and each in a sufficiently short window based on the
microscopes’ mean time between failures. With higher acquisition rates and more reliable
microscopy, higher resolution acquisition could prevent some ultrastructure ambiguities.

Computer vision-based semi-automated reconstruction can both improve the rate of
reconstruction of currently reconstructable neurites and aid in reconstructing challenging
cases. Segmentation-based semi-automation can yield expected correct cable lengths of
163 µm in 8 nm isotropic FIBSEM of partial adult Drosophila brain [59]. While the imaging
and tissue conditions are less ideal for the high-throughput context here, orders of magnitude
speedup versus manual reconstruction are likely. Complementary to this, the density of
reconstruction in the reference dataset can be exploited to create priors for agglomeration
of over-segmentations. Via the existing landmark registration, reconstructions in the refer-
ence dataset can be transformed into each augmentation sample. Where reconstruction is
spatially dense, segmentation fragments should merge in a way that maximizes the quality of
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bijective morphological matches with the reference reconstructions, which can be posed as a
constrained optimization problem for automation. Such neurite morphology priors can also
help resolve ambiguous cases when they occur sufficiently distal from the cell body.

3.4.1 Flood-Filling Networks

The potential factors behind FFNs’ accuracy and robustness at dense instance segmentation
can be broadly factored into four aspects of their operation:

1. Single-object focus

2. Multiple hypotheses

3. Recurrent context

4. Incremental improvement (recurrent attention)

While these factors are not independent, they do seem to be exhaustive, as other proposed
explanations for FFNs’ accuracy can be synthesized from them (e.g., the relative simplicity
of the network architectures required is principally due to 1 and 3, the anti-merge bias is
principally due to 2 and 4).

Another proposed factor, multi-scale context and operation, is in published FFN work
implemented identically to factor 2 [80]. The results here are evidence that factor 1, single-
object focus alone is not sufficient explanation. Future work could investigate alternative
algorithms that employ only subsets of these factors to disentangle their contributions and
inform design of more accurate or efficient approaches.

As FFNs’ low incidence of false merges was not preserved for single-object segmenta-
tion, they do not have particular suitability for the sparse, circuit-guided, semi-automated
reconstruction that originally motivated its investigation for this project. Dense segmentation
with FFNs requires computationally intensive consensus of many segmentations and merging
of the resulting over-segmentation [80]. However, the computational costs of this process are
less restrictive than they were at the time the above results were produced, due to improve-
ments in GPU performance for CNNs. Therefore dense segmentation with FFNs may still
accelerate high-throughput neuroanatomy for wiring diagram augmentation in the future.



Chapter 4

Correlation of Light Sheet and Electron
Microscopy

To associate activity or fluorescent markers from light sheet microscopy (LSM) with neuronal
identity established in subsequent focused ion beam scanning electron microscopy (FIBSEM)
of the sample via the methods in Chapter 3, somatic fluorescence loci in the LSM must be
matched with cell bodies in the FIBSEM. This is achieved by spatial co-registration between
the two modalities. Several inherent problems must be addressed for co-registration and
somatic identity mapping:

• LSM and FIBSEM capture distinct features of samples with complex and non-uniform
generative relationships.

• LSM’s spatial resolution is orders of magnitude lower than FIBSEM, and highly
anisotropic. Unlike FIBSEM it is subject to inhomogeneities across tissue depths and
distance from the objective.

• LSM’s axial spatial resolution is similar in scale to the somatic activity of interest.
As described below, light sheet thickness in the acquired data is approximately 2 µm,
similar to the radius of a cell body in first instar larvae. This can create difficulty in
distinguishing neighboring somatic signals especially when adjacent orthogonal to the
light sheet.

• Unlike some other types of neural tissue where cell bodies are distributed or layered
throughout, in larval Drosophila central nervous system (CNS) cell bodies are densely
packed in the rind. This complicates the matching problem as one or a group of somatic
signals to be matched may alias with many false matching sets neighboring the correct
match. Cell bodies and somatic activity signals are also relatively self-similar, so little



46 Correlation of Light Sheet and Electron Microscopy

information about correct matching is contributed by individual matching candidate
pairs and most processes must rely on group-wise match information. Likewise the
grouping structure of cell bodies in the CNS has dimensions of partial self-similarity,
most notably the axially repeating and locally rotationally similar structure of the
VNC,which makes aliasing along the anteroposterior axis possible.

• While larval CNS have on the order of 10,000 neurons (see Figure 3.9), functional
imaging of fictively moving explants have sparse activity on the order of 200 neurons
[21]. Matching between the sparsely detected somatic signals of LSM and the nearly
complete neuronal cell body detections in structural imaging exacerbates the aliasing
problem described above, as each detected somatic activity has many potential matches
with few constraints.

• The CNS must be handled after LSM to remove it from the agarose embedding and
prepare for FIBSEM imaging. Consequently the sample deforms and may be damaged.

As few manual processes are involved in the proposed methods, these problems are
not potential limitations to the throughput of augmenting wiring diagrams, but to their
completeness and accuracy (see also Figure 5.1).

4.1 Background

Before LSM can be co-registered to electron microscopy (EM), it must be registered to
itself to align images from multiple cameras and acquired at successive times, a similar
process as EM registration (Section 3.1) These times may be either within each sweep of
the illuminating light sheet, representing serial optical slices of the sample to be registered
into 3D, or across multiple sweeps of the light sheet, representing timepoints to be registered
into 4D. Registration between cameras is challenging because of the variation of the image
of a given sample location between cameras and between sheet-camera sets in iso-view
LSM (Section 2.3). This is caused by scattering, both absorption and refraction, of each
illuminating light sheet and the fluorophore-emitted light detected by each camera.

Many approaches to registration use similar point-matching strategies to those employed
in EM. Unlike the primarily 2D registration of EM, since the most difficult steps are the
between-camera and across-sweeps registrations, these strategies often exploit the 3D struc-
ture of the individual registered time-point-per-camera volumes and the sparsity of the data.
For example, constellation features representing the relative arrangement of fiducial markers
can augment traditional features based on local image statistics [155]. Sample points of
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interest can be extracted from tissue features such as cell body locations to perform similar
registration in the absence of fiducial markers [86].

Once registered, somatic signals, either of functional activity or other fluorescent markers,
can be detected in the volume. Methods may detect likely somatic signals with traditional,
designed computer vision features such as compositions or derivatives of Gaussian filters
and clustering across time, or with supervised machine learning based models [156].

Several possible strategies for multi-modal registration of LSM and EM are explained in
Figure 4.1. Problems in LSM-EM registration listed above affect each differently. Registra-
tion based on manually annotated neuroanatomical landmarks, such as those for registration
between EM datasets in subsection 3.2.5, are sparse, often ambiguous due to different imag-
ing characteristics of the modalities, and lack the spatial localization required to approach
cell-body-radius, single axial voxel accuracy necessary for establishing somatic identity.
Point-cloud registration of somatic detections with FIBSEM cell body segmentations, such as
by iterative closest points [157] or with soft pair assignment by robust point matching [158],
is under-constrained due to the sparsity of detections and aliasing problems. Mesh-based
registration of the surface of segmented tissue structures is often employed in biomedical
imaging applications for matching imaged tissues against templates [159, 160]. A similar ap-
proach can be employed here between the surface meshes of segmented CNSs. In Figure 4.1e
and the methods below, a point sampling is taken and registered with point-cloud algorithms.
Direct registration between meshes without point sampling is also possible [161].

Coherent point drift is a point-cloud registration algorithm used below that rather than
considering point-wise matches creates a kernel mixture model estimate of the deformable
point set’s distribution at each iteration [162]. The deformable points (as constituents of the
mixture model) are then transformed to maximize the expectation of the fixed point set as a
posterior of the model, constraining for coherent deformation. This approach is adaptable to
rigid and nonrigid transformation models.

A shortcoming of these approaches is that, other than feature-based point matching,
they do not exploit direct information of the multi-modal image data, only features and
segmentations derived from it. This limits the registration from being learned or optimized
end-to-end. Other approaches can learn generative models or similarity metrics between
image pairs, either unsupervised or supervised [163], to fit deformable transforms or infer
deformation fields.
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Fig. 4.1 Cartoon of Possible LSM-EM Registration Methods. In these cartoons a moving
LSM image (green) is registered to a fixed FIBSEM image (black), but either direction is
possible. (a) Landmark-based registration. (i) Along visible structures such as the contour
of the VNC profile in FIBSEM (black line) and LSM (green line), pairs of distinctive point
locations such as protusions or peripheral nerves in (ii) can be identified either manually or
with block matching and a generative cross-modality model. Transformation can align these
when sufficient landmarks are available. (b) Even when correlated structures are visible,
landmark-based registration can not be accurately applied if no distinctive feature locus is
present, such as for tissue surface boundaries. (c) Constrained point-cloud registration of
somatic detections. (i) Given a set of FIBSEM cell body detections (black circles) and LSM
somatic signal detections (green circles), coherent individual matching may not be possible
due to multiple candidates in a local neighborhood as in (ii). (iii) The matching assignment
can be formulated as a constraint satisfaction preventing multiple assignments to the same
match while maximizing local consistency of the resulting transform. (d) Due to density
of cell bodies in the CNS rind, sparse activity during functional imaging, and low LSM
localization, point-cloud registration of somatic detections is subject to ambiguous cases
and aliasing. (e) Mesh-based tissue registration. (i) From a segmented mesh of the tissue,
sampled point locations (ii) can undergo a similar point-cloud registration as (c), but with
soft assignment allowing points to transform to maximize fit to a distribution estimate of
their neighbors rather than to particular matches. (iii, iv) The process is applied iteratively.
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Sample Ca2
+ Indicator Optogenetic LSM Type Planar Res. Axial Res.

(µm) (µm)
1019 GCaMP6s Chrimson IsoView 0.40625 2.03125
1018 GCaMP6s Chrimson IsoView 0.40625 2.03125
1038 jRGECO1a Chronos MultiView 0.40625 2.5
1085 jRGECO1a Chronos MultiView 0.40625 2.3
1097 jRGECO1a Chronos MultiView 0.40625 2.3
1099 jRGECO1a Chronos MultiView 0.40625 1.7

Table 4.1 List of LSM Imaged Activity Indicator Larvae

Sample NT Reporter Pan-Nuclear LSM Type Planar Res. Axial Res.
(µm) (µm)

1123 GFP tdTomato MultiView 0.40625 1.7
1126 GFP tdTomato MultiView 0.40625 1.7
1128 GFP tdTomato MultiView 0.40625 1.7

Table 4.2 List of LSM Imaged Neurotransmitter Larvae

GFP is green fluorescent protein [164].

4.2 Methods

Figure 4.2 outlines the multi-modality co-registration process for each dataset, elaborated in
the subsections below. These methods employ a combination of the co-registration strategies
discussed in the background, pre-registering with manual landmark annotations, using
computer vision to segment large-scale tissue structure, registering with the FIBSEM tissue
segmentation, and iteratively correcting the result with further landmark-based registration.

4.2.1 Datasets and Acquisition

Dissection and embedding of each CNS was performed by Nadine Randel identically to the
methods in [21]. Embedded and mounted samples were imaged through a collaboration with
the laboratory of Philipp Keller at Janelia Research Campus. Corresponding with the use
of iso-view or multi-view LSM given in Table 4.1 and Table 4.2, samples 1018 and 1019
were imaged by Raghav Chhetri, while the remainder were imaged by Chen Wang. Refer to
Table 3.3 for genetic constructs.

Samples 1018 and 1019 did not have targeted optogenetic manipulation of the Basin
neurons via the Chrimson channelrhodopsin; due to its absorption spectrum Chrimson is
stimulated continuously by the imaging laser [25]. Subsequent activity imaging samples
use jRGECO1a [23]) instead of GCaMP6s [22] paired with Chronos to allow independent
imaging and stimulus for closed- and open-loop manipulation. As the focus of this thesis is
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See Figure 3.1
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Fig. 4.2 Data Flow Diagram of LSM-EM Registration. This diagram details the con-
tributed methods for co-registering LSM and high-throughout FIBSEM of the same Droso-
phila larva CNS, detecting somatic activity or marker signals, and identifying those detections
with cell body detections in the FIBSEM. "Or" nodes represent multiple alternatives which
have been used for one or more of the datasets. See Figure 1.2 for an abstracted overview.
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methods for creating augmented wiring diagrams and not their analysis, no activity analysis
is performed here and the manipulation protocols are omitted. Activity indicator larva are
imaged for 30-45 min, preluded by 15-30 min for microscopy calibration.

Samples 1018 and 1019 expressed histone binding red fluorescent protein (RFP), which
was imaged in the light sheet subsequent to GCaMP imaging [21]. The separate channel is
intended to be used to build template images of nuclear fluorescence to assist in registration
of the activity imaging and for co-registration with FIBSEM. Due to apoptosis observed in
structural imaging (Figure 3.7), this second imaging process was not performed in subsequent
calcium activity indicator animals to reduce the time and phototoxicity of the light sheet
microscopy and thus the progression of apoptosis before fixation. A UAS-H2bGFP cross
for the second chromosome could be used for nuclear imaging otherwise. Neurotransmitter
samples expressed nuclear tdTomato [165] to allow for pan-neuronal detection of cell bodies
regardless of neurotransmitter label expression, which was imaged.

4.2.2 LSM Registration and Overview

As shown in the LSM-EM data flow diagram (Figure 4.2), several distinct registrations
are required: between the multiple cameras’ views in LSM and across time for each or
all jointly, an approximate LSM-EM pre-registration, and a final LSM-EM co-registration.
Additionally, the process must support incremental correction to the LSM-EM co-registration
based on proofreading and circuit-analysis-guided discovery of somatic identity matching
errors, which may be accomplished by re-registering or a separate post-registration.

Registration between views and over time in LSM is an active area of research with
recent methods surveyed above. While it contributes to image and registration quality
and thus the feasibility of this thesis’ contributed methods, it was not in the scope of
explored methods. Multiple existing methods and tools were applied variously to the datasets,
including MultiView Reconstruction [155, 166], and block-matching-based registration and
GPU deconvolution [167]. Nadine Randel, Raghav Chhetri, Chen Wang, Léo Guignard,
Albert Cardona, and myself all created registrations used in subsequent methods.

Acquired and registered LSM volumes are stored in Keller lab block format (KLB) [168],
with registered copies or projections exported to N5 [124] for LSM-EM registration and
visualization and annotation in CATMAID.

4.2.3 Landmark Registration

Manual landmark annotation is used to create an initial pre-registration been the LSM and
FIBSEM image volumes with BigWarp [169]. Rigid registration is used to not introduce any
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overfitting distortions given the ambiguity and poor localization of many landmarks. While
subsequent registration performs well without this pre-registration, it is useful to inspect the
sample for any issues that need to be manually addressed in later steps, such as tissue loss
in the FIBSEM significant enough to require manual infilling of its tissue segmentation to
match the LSM sample condition. Generating an elastic registration with the same landmarks
also allows for estimation of large scale tissue deformation between modalities, such as
bending of the brain relative to the VNC or torsion along the VNC, that may require tuning
later registration parameters.

4.2.4 Mesh-Based Tissue Registration

Cell body rind and neuropil are segmented from background using a random forrest classifier
trained with label data created in Ilastik [170]. Labeling can be ambiguous where CNS
boundaries are not distinct, especially along quiescent regions such as the lateral brain, and
the ventral surface of the VNC where the sheet-parallel alignment of the tissue causes large
regions of low-intensity-variance scattering that make the boundary vague. By inspecting
the quality of the resulting co-registration, additional labeling around these regions must be
placed in each LSM volume to tune the segmentation classifier.

As peripheral nerves attached to the CNS move during re-embedding protocols for
FIBSEM, they create noise if included in registration. Both the LSM and FIBSEM CNS
surface mask (rind combined with neuropil) are cleaned with image processing morphological
opening to remove these. Manual adjustments may be made to the mask due to tissue loss,
brain hemisphere separation, or other issues identified during pre-registration visualization.
If the esophagus is attached to the CNS, it must also be removed from the FIBSEM mask, as
it does not fluoresce in LSM, although it still contributes to scattering. As esophageal tissue
was labeled in its ground truth, the tissue type classifier from Chapter 3 can be optionally
trained to output this mask separately.

A mesh is extracted from each segmentation, the LSM mesh is smoothed to match the
resolution of the FIBSEM mesh, and both are point sampled. Coherent point drift is applied
to the resulting point sets, with LSM as the target and FIBSEM as the deformable set, as
being higher resolution its transformed volume interpolates better for visualization. First an
affine registration is applied, then a deformable registration is applied. If inspection in napari
[143] and BigWarp [169] identifies quality issues, points can be resampled, registration
parameters can be adjusted, or transformations from multiple samplings can be averaged.

Following mesh registration, proofreading, refinement, and corrections are made in
BigWarp with an elastic registration.
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4.2.5 Improving Activity Analysis with Structural Segmentation

An advantage in detection and filtering of activity indicators or other fluorescent markers
in this augmented approach as opposed to LSM alone is that once co-registered, structural
information from FIBSEM can be used as regions of interests and masks. In these methods,
rather than using LSM-derived somatic signal detections, cell body segmentation from the
FIBSEM can be transformed into the LSM space and used to extract ∆ f

F activity timeseries
or fluorescent label presence for that neuron. If LSM-derived activity detection is still used,
transformed FIBSEM neuropil tissue segmentation can mask out neuropil regions in the LSM,
which introduce many spurious detections and are difficult to filter with the LSM-segmented
neuropil, as scattering makes it less accurate than the rind segmentation.

4.3 Results

4.3.1 LSM-EM Registration of Complete Larval CNS

Mesh-based registration of the CNS (Figure 4.3) yields variable accuracy based on LSM qual-
ity, tissue segmentation, and condition of the tissue when it is structurally imaged (Figure 4.4).
For some regions of the VNC, mesh-based registration is sufficient for sub-cell-body-diameter
accuracy for correct matching. In most regions this is not the case, but the mesh-based reg-
istration aids in proofreading identification of landmarks and disambiguation of candidate
matches for iterative improvement of the registration. Lack of distinct fluorescence signal
of somata or tissue structures, as well as tissue damage following LSM imaging, still yields
un-aligned regions without clear corrections.

Due to its much sparser activity during activity imaging in these samples, registration in
brain lobes is both less accurate and less densely assessable. Ongoing work is registering
neurotransmitter datasets with nuclear markers enabling cell body point-cloud matching
(see Figure 4.1 and discussion below) that have more features for registration than activity
indicator sample results here.

4.4 Discussion

Mesh-based tissue registration aligns regions in some larval CNS samples with sufficient
accuracy to enable subsequent iterative manual proofreading to unambiguously identify
matching pairs of cell bodies or regions of interest. Using transformed cell body detections
from FIBSEM as regions of interest for somatic signal extraction obviates many problems
with detecting distinct somata directly from LSM. However, future work could make use of
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Fig. 4.3 Mesh-Based Registration of Larval Drosophila CNS. (a) Meshes of LSM (green)
and FIBSEM (red) segmented CNS (sample 1038) shown in perspective, transverse, and
sagittal views. (b) Point sampling of the mesh. (c) Affine registration of the FIBSEM
points (orange) to LSM by coherent point drift. (d) Deformable registration of the affine-
transformed FIBSEM points (blue). (e) Comparison of affine and deformable registration
steps, as an indicator of deformation of tissue between LSM and FIBSEM. Flattening of the
brain lobes and curvature of the VNC are visible. (f) Co-registered mesh of the FIBSEM
CNS (red) after application affine and deformable transforms.

LSM-derived somatic detections to introduce another constrained point-cloud registration
following mesh-based registration and prior to manual landmark correction. While point-
cloud registration of somatic detections to segmented FIBSEM is too sparse and under-
constrained to be effective as an initial registration or following pre-registration, given the
within-cell-radius accuracy of the mesh registration in many locations it could reduce the
amount of manual correction required. As discussed in the background, it also functions
effectively as mechanism of enforcing manual matching constraints rather than a landmark-
based final registration.

The lack of a separately imaged nuclear marker channel as in [21] complicates both
the LSM registration and the LSM-EM co-registration. A dense neuronal marker would
make the point-cloud cell body registration problem much better posed and potentially
eliminate the need for mesh-based registration and most manual correction. While this
process was not performed for the majority of activity imaging samples to reduce both time-
and phototoxicity-induced damage to the sample, from the results in Chapter 3 it is not clear
that it was effective (see Figure 3.6). Imaging the second channel requires time because
the microscope must be recalibrated after changing the illumination laser to the appropriate
wavelength (15-30 min) during which the sample is being illuminated, while the acquisition
itself is only seconds as the signal is not time-varying. Future instrument and protocol
improvements could reduce calibration time for both channels, allowing acquisition of both
in a similar or shorter interval than the single channel acquisition for existing samples.



4.4 Discussion 55

a

g

b

c

d

e

f
A

P
L R

Fig. 4.4 LSM-EM Registration of a Complete Larval Drosophila CNS. (a) Perspective
rendering of a cutaway of FIBSEM of a complete larval Drosophila CNS (sample 1038)
registered with calcium indicator fluorescence in LSM. Scale axes are 10 µm. (b) Overview
of registration quality of mesh-based registration prior to correction. LSM, LSM-overlaid
FIBSEM, and FIBSEM sections of the VNC show fit of the cell body right surface (yellow
arrow), but less precise fit contralaterally (blue arrow). Transverse sections are shown for
all subfigures because low axial resolution hinders interpretation without volumetric or
interactive visualization. (c) Example of sub-cell-body-radius accuracy in a posterior VNC
segment for a well-imaged soma in both modalities (blue star). (d) Example of region
correctable with landmarks. While the neuropil surface (blue arrow) is well registered, a
difficult task for landmark registration, the convergence of two well-imaged somata with the
midline (yellow arrow) is offset by approximately half a cell body radius. The registration
makes placement of this landmark correction unambiguous, while in the unregistered volumes
many candidate convergences for the landmark exist. (e) Even when somatic signals are
evident in LSM (yellow arrow), matching may be ambiguous. Three candidates in FIBSEM
(blue stars) and at least two more ventrally are possible. (f) Regions with clear somatic signals
(blue stars) can be difficult to match due to tissue damage subsequent to LSM deforming the
local arrangement of cell bodies (yellow arrow). (g) For ongoing quantification of registration
and matching quality, ground truth somatic detections can be labeled or transformed cell
body locations from co-registration can be proofread in CATMAID.
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Methods and results contributed here allow for augmentation of wiring diagrams with
activity or labeling markers in regions of good registration, subject to proofreading and the
presence of fluorescent signal. In the absence of signal or somatic detection, interpretation is
more nuanced. When the neighbors of a FIBSEM-determined cell body location are matched
with fluorescing somata in LSM, the absence of signal for that cell can be verified. However
for some indicators and markers, absence of signal does not necessarily imply negative
indication; for example, markers may have variable expression, or in adult Drosophila some
neurons are known to be electrotonically extensive so lack of somatic calcium indicator
activity is not a guarantee of lack of dendritic activity [171]. This specific case is unlikely
to apply to larval neurons due to their smaller spatial extent. When inaccurate or imprecise
registration or poor LSM quality interfere with matching, there is conjunctive uncertainty
from localization and ambiguity about a given locale’s interpretation. These and other factors
impacting the likelihood of augmenting a given neuron and interpretation of that result are
modeled in Figure 5.1.

One mitigation for these uncertainties applicable to motor control in the VNC is redun-
dancy in the data from stereotyped, repeating circuitry. Depending on the circuit of study,
one may only need to identify a single hemisegment that jointly maximizes the quality of
all imaging conditions. Alternatively, if activity dynamics are believed to be segmentally
identical for propagating behaviors like peristaltic waves, representatives for each stereotyped
cell type in a circuit can be pooled from wherever in the VNC a hemisegmental neuron of
that type is reconstructable, identifiable between modalities, and has reliable LSM signal.

4.4.1 Future Directions

Mesh-based registration would be improved by jointly making use of the neuropil segmenta-
tion with the rind segmentation as a labeled point-cloud matching registration in samples
where LSM is of sufficient quality for accurate neuropil segmentation. More generally,
mesh-based registration could improve by removing the stochasticity and potential overfit
problems of point sampling. The expectation maximization approach could operate directly
from the distance transform of the mesh rather than re-estimation of density from the sample,
or direct mesh-to-mesh methods as described in the background can be applied. None of
the methods applied exploit image features of the multi-modal data. The existing methods
can be used to create manually curated ground truth registration, which can be used to
train inter-modal generative or similarity models, allowing the application of image-based
registration inference methods. Unsupervised methods are also possible [172, 173].

Another approach would be to introduce fiducial markers into the sample. Beads in the
sample embedding material can be used to register multiple cameras and acquired regions
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in LSM [155, 174]. Because the embedding material is exchanged between modalities,
this particular technique would not apply to multi-modal larval imaging, but it may instead
be possible to affix markers onto the surface of the CNS. Fiducial markers that both do
not interfere with LSM and remain attached to the sample through fixation, contrasting,
embedding, and the many washes in between may be challenging to engineer.





Chapter 5

Augmenting Wiring Diagrams of VNC
Circuits

To demonstrate the feasibility and circuit-targeted workflow of augmenting wiring diagrams,
this chapter applies methods contributed by the previous chapters to neuronal populations in
the larval Drosophila ventral nerve cord (VNC). Populations participating in motor circuitry
described in Section 1.1 and subsection 2.1.2 are targeted, building a foundation for future
work modeling motor coordination between antagonistic behaviors.

Feasibility encompasses two concerns: whether it is possible to augment wiring diagrams
with this approach, and whether it is practical. This chapter addresses the latter. As concerns
of possibility identified in previous chapters inform practice, they are summarized in the
background below. The practical challenge to augmenting wiring diagrams is if, given these
data quality and completeness issues, analysis of a circuit of interest in each augmentation
animal can be performed with sufficient throughput and robustness to justify complexity of
the process in comparison to alternative targeted experiments. Under this criteria, the critical
question is how quickly and reliably circuits of interest can be identified in structural imaging
of the per-augmentation animal, as this step requires the most time and is where most factors
determining possibility converge.

To investigate this question, neurons in and adjacent to a neuroblast (NB) lineage bundle
in the VNC were partially reconstructed in one activity indicator expressing animal and one
neurotransmitter marker expressing animal. The process is representative of exploratory
reconstruction to find neurons of interest that must be made efficient for augmentation, while
allowing for developing new approaches to comparative connectomics. As it is not an aim
of activity augmented wiring diagrams to fully reconstruct neuronal morphologies, only to
establish identity, there are new approaches to neural circuit reconstruction to explore that
jointly maximize certainty of identity while minimizing reconstructed cable by exploiting
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dense reconstruction in a reference animal and replicated reconstruction across multiple
animals.

5.1 Background

Successful augmentation of wiring diagrams, meaning observation of somatic signals in light
sheet microscopy (LSM) (or absence thereof for some signals as discussed in Chapter 4)
and accurate transitive identification of that signal’s fluorescing neuron with the stereotyped
neuron in the wiring diagram, requires overcoming several limitations and sources of error
identified in previous chapters. These sources and their interactions are modeled in Figure 5.1
for the augmentation of each neuron independently. Estimating parameters of this model is
ongoing work (e.g., estimation of reconstructability in Figure 3.8).

Methods Factors

Sample Factors

Activity /
Expression

Ultrastructural
Integrity

Morphological
Distinctiveness

Neuron
Identity

Cell Body
Position

LSM Imaging
Time

Detected 
Somatic Signal

Correct LSM-EM
Soma Registration Reconstructability Neuron

Identification

Augmentation

Fig. 5.1 Bayesian Network Model of Successful Wiring Diagram Augmentation. This
conceptual probabilistic model summarizes the dependency structure of factors influencing
the successful augmentation of the wiring diagram node of a single neuron with activity
information or other fluorescent marker. Factors are broadly grouped into those drawn for
each sample CNS, those determined by methods contributed by this thesis, and the intrinsic
factor of neuronal identity in Drosophila neurobiology.

The probability of augmenting each neuron in a wiring diagram is not independent, as
factors identified in this model have conditional dependence between neurons, especially
spatially. For example, correct or corrected LSM-EM registration of one cell body will
improve the matching of nearby cell bodies, while apoptosis of a cell can lead to tissue
damage reducing the probability of successful reconstruction of many neighboring cells.
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Some factors are necessarily conditioned on neuronal populations, such as morphological
distinctiveness. However, this per-neuron model is useful both for focusing optimizations
and future work for methods, and for designing circuit-targeted annotation and reconstruction
strategies. This latter use is relevant to the aims of this chapter.

5.2 Methods

5.2.1 Datasets and Targeted Populations

Two first instar larvae, samples 1018 and 1128, were chosen for reconstruction. They
represent an activity indicator and a neurotransmitter marker sample respectively, and are
representative of the two FIBSEM apparatuses used and their influence on EM quality.
Sample 1128 expresses a GABA marker; GABA is an inhibitory neurotransmitter whose
identification in wiring diagrams greatly constrains them. Sample 1018 has the most extensive
exploratory reconstruction to demonstrate feasibility (Figure 3.8), while sample 1128 has the
best overall imaging quality and tissue condition of the samples (Figure 3.6)

Lineage 6 (NB5-2), entering the VNC neuropil [32] through a ventromedial bundle, was
targeted for reconstruction in segment A1 in each larva. This lineage contains several neurons
relevant to motor circuit modeling, including motor neuron MN-12, which recruits ventral
longitudinal muscles in peristaltic behaviors [14], premotor neuron A05k, and multiple
neurons upstream of A27k, which modulates phase offset of backward peristaltic muscle
recruitment as described in subsection 2.1.2 [13]. All reconstruction was done through
CATMAID as described in Chapter 3. Reconstruction in sample 1018 required a mixture of
extension of existing reconstructions and de novo reconstruction, while sample 1128 had no
prior annotation. Katharina Eichler, a neuroanatomical reconstruction expert, contributed to
these reconstructions.

Reconstruction is seeded by projecting the target neuron set from the reference larva
into the augmentation larva via previously created landmark registration (Figure 3.3). Lin-
eage bundles entering the neuropil in that locus are identified and queued for exploratory
reconstruction.

5.2.2 Optimizing Population Matching of Neuronal Morphology

Establishing morphological identity with as little reconstruction as possible is key both to
efficiency for the practical feasibility of augmenting wiring diagrams and for overcoming
unresolvable ultrastructure so that augmentation is possible. Morphological similarity metrics
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such as NBLAST [118] can better determine probable identity when they are constrained to
bipartite matching between sets of neurons (Figure 5.2).

For these reconstructions two levels of constrained processing of morphological metrics
were applied. First, bipartite matching was continuously made between each of the three
pairings of larva (i.e., all choices of the two FIBSEM samples and the reference), using
the traditional Hungarian algorithm with extensions for non-square matrices [175, 176].
However, a matching does not provide a confidence metric. To both observe convergence
in matching and to aid assessment of whether lineages or hemilineages are complete, the
putative neuron set of interest was hierarchically clustered independently in each larva with
the Natverse analysis toolkit in R [177]. For the reference larva, cluster thresholding was
chosen to be 1.1 (N = 7), while for the augmentation larvae the threshold was adjusted
to yield a similar number of clusters as the reference (sample 1018: 0.8,N = 7; sample
1128: 0.55,N = 6). A second bipartite matching is then applied to comparatively match
these clusterings between larva. To do this, the count of the edges in the neuronal bipartite
matching when clustered are summed and the weights of these inter-cluster edges are used
for the objective matrix of the bipartite matching optimization.

Finally, the transitive or cyclic agreement of pairwise neuronal matchings is tracked.
That is, if neuron A in sample 1018 is matched with neuron B in the reference larva,
which is matched with neuron C in 1128, which is matched with neuron A in sample
1018, it may be an indicator of confidence in the pairwise identifications. A tripartite
matching across all three larvae, or more generally n-matching hypergraphs across an
arbitrary number of comparative connectomics datasets, should in theory yield a more
optimal matching. However, given that tripartite matching is NP-hard, and the goal of
these methods is to investigate when morphological matchings are convergent or what
their confidence is, observing correspondences between the bipartite matchings is more
informative.

5.3 Results

5.3.1 Comparative Connectomic Reconstruction of VNC Linage Bun-
dles

In the initial seeding bundle in the reference larva, 38 morphologically similar cells were
identified as belonging to or cofasciculating with lineage 6 (NB5-2). Using the landmark-
projected bundle seeding strategy described above, initial candidates were identified in
each augmentation volume within 30 min. 38 cells were reconstructed until only uncertain
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Fig. 5.2 Improving Morphological Matching with Constraints. (a) Morphological match-
ing scores neurons (circles) based on similar morphological features. For organisms with
stereotyped, identifiable neurons, this can be interpreted as a cell identity (color). For identi-
fying a single neuron from a query set (left column) with a set of candidate matches (right
column), scores for each can be considered (edge thickness) and the greatest can be chosen
(arrow). (b) However, an incorrect match may individually have a better score. (c) When
querying with sets, an optimal assignment that maximizes the sum score of the set can be
chosen by bipartite matching. (d) Non-unique but coloring labels (dashed strokes), such as
neurotransmitter identity, can further constrain and improve matching, even if they are soft,
violable constraints like stereotyped bundle lineage entry that may developmentally vary. (e)
Non-unary information can further constrain possible assignments, such as sets of neurons
being assigned in ways that preserve the isomorphism of connections between them.
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continuations remained in sample 1018 that also formed a cofasciculation. An ongoing
reconstruction effort in sample 1128 has identified 13 candidates in the corresponding bundle
of lineage 6 thus far, though not all have been exhaustively reconstructed. Combined, 9
off-target neurons were partially traced in the augmentation volumes but discarded, and 2
neuronal fragments in sample 1018 were filtered from results because they could not be
eliminated as bundle candidates but were not reconstructable to either soma or substantial
cable length. Total reconstruction time was 17.76 h in sample 1018 (not including existing
exploratory reconstruction from Figure 3.8) and 2.85 h in sample 1128.

As shown in Figure 5.3, bipartite clustered morphological matching identifies some con-
sistent lineage clusters even when bipartite neuronal matching is not unanimous. Transitively
consistently identified neurons (N = 2) suggest likely stereotyped neuron types even when
reconstructable cable length is short. The analysis that generates Figure 5.3b is an interactive
tool that will be made available via CATMAID or a compatible environment to continually
monitor and guide reconstruction.

Though less reconstruction exists for sample 1128, 1.76x speedup of reconstruction
rates due to better imaging quality and tissue condition (5.8 µm/min, N = 16;R2 = 0.952)
is measured over sample 1018 (3.3 µm/min, N = 42;R2 = 0.867). For comparison, in
previous work I measured estimated cable reconstruction rate without synapse annotation
in adult Drosophila ssTEM at 8 µm/min (subsection 3.2.6), but the length of cable needed
for adequate reconstruction in adult Drosophila is far larger due to more spatially extensive
arbors. Mean cable length is higher in sample 1128 than sample 1018 (60 µm and 26 µm
respectively) despite reconstruction not being exhaustive.

5.4 Discussion

Stereotyped neuron lineages can be reconstructed in multiple larvae enabling augmenta-
tion with both activity indicators and neurotransmitter labelings. Rates and reliability of
reconstruction are less than those of high-resolution electron microscopy volumes imaged
exclusively for long-term mapping of wiring diagrams, but exploiting existing reconstruction
through constrained morphological matching reduces the cable length needed for confident
identification, reducing overall reconstruction time. Image quality and tissue condition sig-
nificantly impact reconstruction rate and length of reconstructable cable, therefore improving
the possibility and practicality of augmenting wiring diagrams.

Improved quality in structural imaging volumes will also enable the application of
computer vision for segmentation-based reconstruction, which complements morphological
matching-guided reconstruction. With sufficient reduction in tissue damage and improvement
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Fig. 5.3 Comparative Connectomic Reconstruction of Lineage 6 Bundle in Three Dro-
sophila Larvae. (a) Lineage bundle reconstructions in two FIBSEM augmentation larvae and
the reference first instar larva. Neurons are colored by inter-larvae morphologically-matched,
intra-larva morphologically-clustered groups as described in the text. (b) Inter-larvae mor-
phological matching of reconstructed cells. Colors are according to the same clusters as (a).
Numbers indicate the individual NBLAST score rank of the assigned match for that neuron
when it is not 1. Gray arrows indicate transitive, cyclic matches between the three larvae.
(c) Transitively matched neurons from (b), colored matching the stars there. Non-matched
neurons are in gray. (d) Kernel density and regression estimate of reconstruction time and
cable for each FIBSEM augmentation larva. Summary statistics are given in the text. Points
corresponding to neurons in (c) are stroked with those colors. (e) Complete reconstructions
from both augmentation larvae projected into the reference larva over neurons there (gray).
Larva colors are as in (d).
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in structural imaging quality, augmenting wiring diagrams with activity, neurotransmitter
labels, or other fluorescent markers is feasible.



Chapter 6

Summary

Augmenting neural circuit wiring diagrams with activity and other information about neu-
ron state and function aids in the creation of models that mechanistically explain behavior.
Augmented wiring diagrams can extend the scope of connectomics-guided circuit modeling
to larger and more complex neural systems coordinating multiple sensory modalities and
behavioral outputs. The contributed methods of this thesis provide a template for augmenting
the central nervous system wiring diagram of the Drosophila larva with activity, neurotrans-
mitter, and arbitrary cell-specific marker labelings for multiple larvae, with reduced resource,
time, and computational costs relative to the eight year, multi-group reconstruction of the
reference larva. While the current results do not achieve the full extent of the aims of activity
augmented wiring diagrams with respect to density of augmentation or robustness and speed
of the process, the feasibility of each constituent method has been demonstrated. This work
informs future methods to augment wiring diagrams, either by refinement of the contributed
methods, both experimental and computational, or by substitution of constituent methods
with alternatives discussed in Section 2.4.

6.1 Future Directions

Future directions for these methods fall into two scopes: improving the reliability of the
contributed methods, and expanding the application of augmented wiring diagrams to other
systems and questions.

The reliability of the current methods is predominantly limited by two factors: the
fidelity of functional imaging to resolve densely packed somatic activity signals, and the
integrity of ultrastructure in structural imaging following functional imaging. Quality of
functional imaging can be improved by trading temporal resolution for spatial resolution, as
activity-augmented wiring diagrams are valuable even if only co-activity of circuit elements
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is observed without fast activity dynamics. Computationally, computer vision methods that
generate deformation fields directly from functional imaging and electron microscopy to
register them can also use structural information to better distinguish fluorescent signals,
improving on the use of transformed electron microscopy nuclei masks employed here. To
reduce tissue damage, investigating rates of apoptosis would allow evidence-based reduction
of functional imaging time to optimize for ultrastructural integrity while maximizing observed
function.

In Drosophila larva and other animals with stereotyped, individually identifiable neurons,
augmented wiring diagrams enable not only inter-individual comparative connectomics, but
also experimental connectomics by allowing observation of the functional perturbations
induced by genetic interventions in a neural circuit, so long as primary neurite morphology
is conserved. While more challenging, applications are also possible for animals without
individually identifiable neurons. For example, in nervous systems with morphologically
stereotyped neuronal types, such as adult Drosophila, wiring diagrams can still be augmented
at the granularity of those types’ populations. Though this may not identify individual neu-
ronal connectivity with activity timeseries between animals, intra- and inter-type population
activity is still informative in conjunction with their wiring diagram. Most such model
organisms have nervous systems spatially larger than Drosophila larvae, so an extension of
these methods would require alternative structural imaging approaches.
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