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Practical challenges to extrapolating Moore’s law 

favour alternatives to electrons as information carriers. 

Two promising candidates are spin-based and all-

optical architectures, the former offering lower energy 

consumption1, the latter superior signal transfer down 

to the level of chip-interconnects2. Polaritons – spinor 

quasi-particles composed of semiconductor excitons 

and microcavity photons – directly couple exciton spins 

and photon polarisations, combining the advantages of 

both approaches. However their implementation for 

spintronics has been hindered because polariton spins 

can only be manipulated optically3,4 or by strong 

magnetic fields5,6. Here we use an external electric field 

to directly control the spin of a polariton condensate, 

bias-tuning the emission polarisation. The nonlinear 

spin dynamics offers an alternative route to switching, 

allowing us to realise an electrical spin-switch 

exhibiting ultralow switching energies of order 𝟎. 𝟓 𝐟𝐉. 

Our results lay the foundation for development of 

devices based on the electro-optical control of coherent 

spin-ensembles on a chip.  

 

Polaritons result from strong coupling of quantum-well 

(QW) excitons and photons in semiconductor 

microcavities. Their properties are determined by their 

constituents: from their photonic fraction comes a small 

effective mass (~10−4 𝑚𝑒) and propagation over long 

distances at high speeds, while their excitonic 

component imparts strong self-interactions, resulting in 

large nonlinearities7,8. These characteristics favour Bose-

stimulated condensation into macroscopic quantum 

states, fully-coherent light-matter waves that spread 

over tens of microns and manifest a number of 

properties resembling atomic Bose-Einstein condensates 

and superfluids9–11. A number of polariton-based devices 

have been reported in the literature, including ultra-low 

power all-optical transistors and switches12,13.  

    Polaritons have two spin projections 𝑠𝑧 = ±1 arising 

from the coupling between spin-up (-down) heavy-hole 

excitons and right- (left-)circularly polarised photons3–6. 

Experimentally, their spin is directly accessible through 

the polarisation of the condensate emission (Suppl. 1), 

enabling phenomena such as non-local spin-switching3, 

multi-stability4,14 and the optical spin-Hall effect15. 

However, while electrical control of electron spins in the 

solid state has greatly advanced in recent years, allowing 

their fully integrated injection, manipulation and 

detection16, no such advances have been made 

regarding polaritons. 

    Here we demonstrate electrical control of the spin of  

polariton condensates. Spatially separating the 

condensate from its non-resonant pump (in a trapped 

geometry, Fig. 1b) diversifies the observed spin 

configurations, accessing circularly- to linearly-polarised 

states17. The condensate polarisation critically depends 

on several system parameters, including tiny energetic 

splittings in its linear polarisation. Since the latter can be 

tuned by electric fields, applying a bias across the 

microcavity provides direct control of the condensate 

spin. We utilise this mechanism to invert the spin of an 

optically-trapped condensate exhibiting bistable 

behaviour, thus realising an electrical spin switch. Such 

electro-optic switching is crucial in many 

communications and IT applications. 

    Our results are obtained from micron-long cavities at 

cryogenic temperatures, which contain twelve QWs and 

are processed into contacted mesas, allowing application 

of electric fields perpendicular to the QWs (Fig. 1a, 

methods). A spatial light modulator is used to project 

four laser spots onto the sample surface (Fig. 1b). The 

linearly-polarised, continuous-wave pump non-

resonantly generates clouds of hot excitons, which in a 

series of relaxation steps accumulate at the bottom of 

the polariton dispersion and condense. Since polaritons 

are blue-shifted at locations of high exciton and 

polariton densities due to their repulsive interactions7, 

the laser pattern induces a square-shaped potential trap 

(Fig. 1b).
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Figure 1 | Spontaneous spin-polarisation of trapped polariton condensates. a, Microcavity structure with 12 QWs 

sandwiched between two multilayer mirrors. Contacts are deposited on an etched annular recess and below the bottom 

reflector to apply fields perpendicular to the QW plane. b, Schematic of trapped polariton condensate. Four linearly 

polarised laser beams induce a reservoir distribution corresponding to a square-shaped potential trap. The resulting 

condensate is confined to the centre and shows circular polarisation. c, Polarisation-resolved spatial images of the circular 

component of condensate emission for two measurements under identical experimental conditions. While both 

measurements exhibit strong circular polarisation (|𝑠𝑧| > 95%) which remains stable for seconds, the direction of 

polarisation spontaneously changes from right- (spin-up) to left-circular (spin-down) when the condensate is re-initialised. 

White arrows indicate condensate spin. 

 

Such conditions favour formation of ‘trapped’ 

condensates which minimally overlap with the exciton 

reservoir, resulting in narrower linewidths and strongly 

reduced condensation thresholds18–20. Moreover, 

separating condensate and reservoirs leads to 

spontaneous breaking of the spin-symmetry for 

excitation powers above a spin-bifurcation threshold17. 

The condensate then spontaneously adopts one of two 

circularly-polarised bistable states under linear, non-

resonant excitation, stochastically changing between 

right- and left-circular polarisations (spin-up and spin-

down) for each realisation of the experiment (Fig. 1c). 

Note that this spin bifucation is favoured by the 

anisotropy of the non-linear polariton-polariton 

interactions (see Eq. S3, Suppl. 1) and fundamentally 

differs from conventional polariton bistability, where the 

spectral position and pump power of a resonant laser 

deterministically select one of the polarisation states4,14.          

    The influence of external electric fields on the spin of a 

trapped polariton condensate is explored in Fig. 2a,d. 

The strong circular polarisation observed at 0 V 

transforms to elliptical as the applied bias increases, 

until the bistable states collapse into a single linearly 

polarised mode around ±15 V. The orientation of the 

linear polarisation axes, referred to as horizontal and 

vertical, does not depend on the optical trap or the 

position on the sample surface, but is fixed along the 

[110] and [11̅0] axes of the crystal structure. The 

applied bias 𝑈 induces a small energy splitting ℏ𝜖𝐹 

between the horizontally and vertically polarised modes, 

varying linearly with the bias (Fig. 2c,e,f). Two physical 

mechanisms contribute to this behaviour: First, applying 

an electric field along the [001] axis of the crystal 

induces birefringence due to the Pockels effect, leading 

to splitting of the photonic modes linearly polarised 

along the [110] and [11̅0] axes21. Second, external fields 

mix heavy- and light-hole QW excitons, lifting the 

degeneracy of the exciton ground state22,23. Both effects 

split linearly-polarised polariton modes through a linear 

dependence on the external field with magnitudes 

matching the experimental data21,23. Note that the 

transverse-electric transverse-magnetic energy splitting 

observed for polaritons at larger in-plane wavevectors 

vanishes at normal incidence and consequently plays no 

role here. Moreover, TE-TM splitting does not break the 

spin-symmetry and can thus not account for the 

stochastic formation of circularly polarised condensates. 

  



 
 

Figure 2 | Condensate polarisation under external electric fields. a, Bias dependence of polarisation components of a 

trapped polariton condensate. Shown is the average polarisation of bistable spin-up (solid lines) and -down (dashed lines) 

states obtained from 100 realisations at each bias, positive values for horizontal, diagonal and right-circular polarisations. 

b, Numerical simulations of the same. c, Measured energy splitting between horizontal-vertical condensate components 

vs applied bias 𝑈. Data points average 100 measurements at each bias. Linear fit gives ℏ𝜖𝐹 ≈ 0.9 μeV V−1 ∙ 𝑈 + 1.3 μeV. 

The ℏ𝜖𝑆 ≈ 1.3 μeV offset at 0 V is attributed to the local effect of strain24,25. d, Illustration of transition from bistable 

regime at 0 V (blue) to linear-polarised condensate at ±15 V (yellow) on the Poincare sphere. e,f, Condensate emission 

spectra of horizontal and vertical components at 0 V and 15 V, showing ℏ𝜖𝐹 ≈ 0 μeV and 30 μeV, respectively. 

 

    To interpret the experimental results, we extend the 

model of spontaneous spin bifurcations17,26 to include 

the effects of an external electric field (see methods and 

Suppl. 1). A small energy-splitting ℏ𝜖 between two 

linearly polarised modes with difference −2𝛾 between 

their respective loss rates induces a dynamical 

instability, driving a parity-breaking bifurcation above a 

critical density. Physically, the observed linear 

anisotropies ℏ𝜖𝐹 and ℏ𝜖𝑆 arise due to the combined 

effects of electric field and strain21–25 and necessarily 

translate into linewidth differences ℏ𝛾𝐹,𝑆 between the 

corresponding linear modes due to curvature of the 

cavity stopband (Suppl. 2). For the given microcavity 

structure, transfer matrix simulations predict 𝛾𝐹,𝑆 ≈

0.05 𝜖𝐹,𝑆, below the resolution of our experiment. 

Numerical simulations of Eq. S4 (Suppl. 1) are based on 

the measured bias- dependence of ℏ𝜖𝑆,𝐹 (Fig. 2b). The 

good qualitative agreement with the experiment 

demonstrates that electrical control of the condensate 

spin is indeed achieved by tuning the linearly polarised 

condensate modes. Our model furthermore implies that 

the ability to bias-tune the condensate polarisation 

critically depends on the non-linear polariton self-

interactions, which control the transition between the 

bistable and the linear regime. (Suppl.1). 

    We now realise an electrical spin switch based on 

these phenomena. Slightly rotating the linear pump with 

respect to the crystal axes induces field-dependent 

birefringence (Pockels effect), giving rise to a small 

degree of circular polarisation in the excitation. The 

imbalance of the left- and right-circular pump rates 

results in preferential occupation of one of the two 

bistable condensate states when applying electric fields, 

leading to stable left-/right-circular polarisation above 

±0.3 V, respectively (Fig. 3a). Under continuous optical 

excitation the condensate circular polarisation now 

exhibits hysteresis with applied voltage, corresponding 

to a bias-threshold for spin-switching. To reproduce the 

experimental data, a field-dependent pump-imbalance 

Δ𝑃 between the spin-up and -down components of the



 

 
 

Figure 3 | Polarisation hysteresis and electrical spin-switching. a, Circular polarisation vs applied bias under continuous 

excitation. Bias swept from −5 V to +5 V (dark blue) and back (light blue) over 40 μs duration. Positive values represent 

right-circular polarisation. b, Numerical simulation of a with additional bias-dependent pump imbalance Δ𝑃 in the model 

(Suppl. 3).  c,d, Time evolution of circular polarisation (dark blue) for ±1 V electrical pulses of 0.9 μs duration (red, top 

panel) acting on condensates randomly initialised in the up- (bottom panel) and down-states (middle panel). 

e,f, Corresponding numerical simulations based on the model of b. Note: data obtained for different excitation conditions 

than Fig. 2 (see methods). 

 

 

 

 
 

Figure 4 | Mechanism of the electrical spin-switch. a, Simulation of a switching pseudospin trajectory (from Fig. 3f middle 

panel, for the first switching process). b, Time evolution of 500 randomly chosen polarisation states without applied 

electric field, depicted on the Poincare-sphere. Colours encode trajectories ending in the spin-up (dark blue) and spin-

down (light blue) attractors, thus approximating the respective basins of attraction. c,d, Same as b, but for external fields 

of −0.1 V and −0.5 V, respectively. Simulations demonstrate how the basin of attraction of the spin-down state is 

destabilised due to the applied bias (see Suppl. 3 for additional discussions). 

 



condensate is introduced to the model (methods and 

Suppl. 3), leading to a collapse of the bistable region 

above ±0.3 V as well as polarisation hysteresis in the 

numerical simulations (Fig. 3b). The system can be 

widely tuned, through excitation power (bistability 

range), sample position (rotating the axis of strain-

induced splitting) and polarisation of the excitation laser 

(spin population imbalance).  

    The hysteretic nature of the system allows the 

implementation of electrically controlled directional spin 

switching (Fig. 3c,d). Electric pulses of ±1 V are applied 

to condensates which are randomly initialised in the 

bistable region, inducing switching depending on the 

previous condensate polarisation. For instance, Fig. 3c 

illustrates that a +1 V pulse will only switch the spin of a 

condensate initialised in the right-circularly polarised 

state, whereas the opposite holds for a −1 V pulse. Note 

that the condensate state persists after the voltage pulse 

ends, demonstrating the bistable nature of the system. 

Unlike conventional switches where an energy barrier 

controls transitions between states, switching of this 

nonlinear system is achieved by temporarily destabilising 

one of the basins of attraction due to the field-induced 

pump imbalance (Fig. 4). The measured switching time 

𝑡𝑠 ≈ 2.5 ns is limited by our resolution (Fig. 5) and 

exceeds the rise-time of the electric pulse, illustrating 

that the switching process is non-adiabatic. 

    To estimate the switching energy 𝐸𝑠, ±3 V electrical 

pulses of 𝑡𝑝 ≈ 4 ns duration are applied to the sample 

(Fig. 5). While switching is already observed at applied 

fields as low as ±0.3 V (Fig. 3a), increasing the bias 

significantly improves the reliability of the switching 

process (Suppl. 4). The drawn current 𝐼𝑠 ≈ 37 nA is 

obtained from the device IV-curve (Suppl. 5), resulting in 

a switching energy of 𝐸𝑠 = 𝑉𝑠 ∙ 𝐼𝑠 ∙ 𝑡𝑝 ≈ 0.5 fJ. This 

estimate surpasses all state-of-the-art electronic (spin-) 

switches2,27–29, although more energy efficient polariton-

based all-optical solutions exist13,30. However, our 

estimate represents only an upper bound for the 

fundamental minimum switching energy in this system, 

since wasted energy from the photocurrent is not 

intrinsic to switching but stems from parasitic thermal 

escape of hot carriers. Improved sample designs could 

reduce the current drawn to the corresponding dark 

current (∼ 1.6 𝑛A) resulting in significantly lower 

switching energies (Suppl. 5). The spin switch eye 

diagram at applied fields of ±3 V is fully open, 

confirming stable operation for hundreds of cycles 

(Suppl. 4). 

 

 

Figure 5 | Spin-switching time. Measured time evolution 

of the circular polarisation component (blue) under the 

influence of a 3 V bias pulse (red). The duration of the 

bias pulse 𝑡𝑝 is approximately 4.4 ns (FWHM). The 

observed condensate switching time 𝑡𝑠 ≈ 2.5 ns is 

limited by the time resolution of the experimental setup. 

 

    In conclusion, we demonstrate the ability to 

electrically control the spin of a trapped polariton 

condensate and realise an electrical spin switch 

operating at ultra-low switching energies. The switching 

mechanism is highly reliable and the selected 

condensate states remain stable for many seconds 

(Suppl. 6). Our findings suggest implementation of 

electrically-controlled spin-optotronic devices and 

effects, such as polariton-spin transistors, switches and 

memories23,31, which in the case of large-bandgap 

materials could operate at room temperature32. Finally, 

from a more general point of view, our results represent 

the first example of electrically controlling the spin of a 

macroscopic quantum state, such as Bose-Einstein 

condensates or superconductors.  

Materials and methods 
    The sample studied is a 5𝜆/2 Al0.3Ga0.7As microcavity, 
formed by distributed Bragg reflectors (DBRs) with 32/35 
layer pairs on top/bottom. The individual layer pairs are 
composed of Al0.15Ga0.85As/AlAs with thicknesses of 
57.2/65.4 nm, respectively. The quality factor of the 
microcavity exceeds 𝑄 > 16,000. Four sets of three GaAs 
QWs are located at the maxima of the cavity light-field, 
resulting in a exciton-photon Rabi-splitting of 12 meV. The 
cavity mode is detuned approximately −5 meV relative to 
the exciton energy. The 200 μm diameter mesas are etched 
into the sample and electrical contacts deposited on the n -

doped substrate and on an annular recess around the top 
of the mesa, four DBR layers above the cavity location. An 
applied bias 𝑈 provides a resulting electric field 𝐹[kV/
cm] ≈ 1.86/𝑐𝑚 ∙ 𝑈[V]. 
    Polaritons are excited non-resonantly, with a 𝜆 =
750 nm horizontally-polarised, single-mode continuous 
wave laser at a total power of approximately 40 mW in 
four separate spots. The excitation amplitude is modulated 
with an acousto-optic modulator giving a rise time of  
90 ns. A spatial light modulator is employed to generate 
patterns of laser spots on the sample surface. The resulting 
emission around 800 nm is polarisation resolved with a 



series of beam splitters, quarter- and half-waveplates and a 
Wollaston-prism to simultaneously measure its linear, 
diagonal, and circular components. The signal is recorded 
with a CCD for imaging and a monochromator plus CCD for 
spectral analysis, while photomultipliers are employed for 
time-resolved measurements of 7 ns resolution. A source-
measurement unit is used to apply fields across the sample 
and monitor the resulting currents. All measurements were 
performed at cryogenic temperatures (T < 10 K). For 

further details see Ref 33. 
    Simulations of Fig. 2b, Fig. 3ef and Fig. 4 are based on 
equations of the form (see Suppl. 1 and 3 for a detailed 
discussion): 
 

𝑖Ψ̇ = 
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 −
𝑖

2
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1

2
[(𝛼1 + 𝛼2)𝑆 + (𝛼1 − 𝛼2)𝑆𝑧𝜎𝑧]Ψ ,  

 
where ℏ was set to 1 and Ψ = (𝜓+, 𝜓−)𝑇 . 𝑔(𝑆) describes 
the balance between the pump-rate 𝑃 and the decay-rate 
Γ, with 𝑔(𝑆) = Γ − 𝑃 + 𝜂𝑆. The term 𝜂𝑆 accounts for gain-
saturation, with the total occupation 2𝑆 = |𝜓−|2 + |𝜓+|2 
and the saturation factor 𝜂. In the case of an imbalanced 
pump, 𝑔(𝑆) takes the form 𝑔(𝑆) = (Γ − (1 − 𝛽)𝑃 +
𝜂𝑆, Γ − (1 + 𝛽)𝑃 + 𝜂𝑆)𝑇, with the field-induced pump-
imbalance Δ𝑃 = 2𝛽(𝐹)𝑃 (see Suppl. 3 for details). The 
factors 𝜖𝑆,𝐹  and 𝛾𝑆,𝐹  denote the energy splitting and 

corresponding linewidth differences arising from sample 
strain and an applied electric field, respectively. The 
splitting axis is selected by the factors 𝑎𝑆,𝐹  and 𝑏𝑆,𝐹, where 

𝑎𝑖
2 + 𝑏𝑖

2 = 1 and 𝑎𝑖 , 𝑏𝑖 ∈ [−1,1]. The coefficients 𝛼1 and 𝛼2 
represent the strength of same- and cross-spin polariton-
polariton interactions. 
    The parameters used for the numerical simulations of 
Fig. 2b and Suppl. 1 are: 𝜂 = 0.01 ps−1, Γ = 0.2 ps−1, 𝑃 =
0.205 ps−1, ℏ𝛼1 = 10 μeV and 𝛼2 = −0.5 ∙ 𝛼1. The field 
induced energy splitting ℏ𝜖𝐹  as a function of the applied 
bias 𝑈 is determined from the linear fit in Fig. 2c as ℏ𝜖𝐹 ≈
0.9 μeV/V ∙ 𝑈 + 1.3 μeV. The offset of ℏ𝜖𝐹  is attributed to 
the effect of strain, with a maximum field-independent 
splitting ℏ𝜖𝑆 ≈ 1.6 μeV being observed along the axes 
rotated by −25° relative to the horizontal/vertical (𝑎𝑆 =
−0.6). The corresponding linewidth differences are derived 
from the transfer matrix calculations presented in Suppl. 2 
as 𝛾𝑆,𝐹 = 0.05 ∙ 𝜖𝑆,𝐹. To achieve a better fit of the diagonal 

polarisation at large fields, the linear polarisation axes 
between which the splitting ℏ𝜖𝐹  is induced are assumed to 
be rotated by 1.3° with respect to the experimentally 
defined horizontal and vertical axes, i.e. 𝑎𝐹 = 0.999.  
    The data presented in Fig. 3 was obtained at a different 
sample position (different strain) and excitation power than 
that of Fig. 2, with the corresponding parameters being 
changed to 𝑃 = 0.203 𝑝𝑠−1 and 𝑎𝑆 = 0.6 to match the 
experimental data. Additionally, a field-dependent 
imbalance Δ𝑃 was added to the pump-terms of the spin-up 
and -down components, with Δ𝑃 = ∓𝑈 ∙ 𝑃 ∙ 0.002. The 
same parameters were used for the simulations in Suppl. 3 
and Suppl. 5. 
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