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Opposing transcriptional programs of KLF5 and AR
emerge during therapy for advanced prostate
cancer
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Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription

factor. In most cases, AR activity resumes during therapy and drives progression to castration-

resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and

select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the

stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers

prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage

plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional

programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal

epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence dis-

playing activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-

driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be

upregulated in CRPC to oppose AR activities and promote lineage plasticity.
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The human prostate contains glandular acini composed of
luminal epithelial cells, basal epithelial cells, and rare
interspersed neuroendocrine epithelial cells, all supported

by a surrounding stroma1. Testes-derived androgens testosterone
or dihydrotestosterone (DHT) bind and activate the AR, a tran-
scription factor that regulates homeostasis of prostate luminal
cells2. Castration-induced androgen depletion inhibits AR activ-
ity, causing apoptosis of luminal cells and prostate regression2.
Most prostate cancer cells have a luminal identity and remain
dependent on AR activity3. Therefore, castration-based therapies
are effective treatments for advanced prostate cancer4.

Prostate basal cells are AR-negative and insensitive to andro-
gen depletion3. The Krüppel-like factor 5 (KLF5) transcription
factor is functionally redundant with the Yamanaka factor KLF4
for maintaining embryonic stem cell self-renewal5. Klf5 deletion
in the mouse prostate reduces basal cell populations, including
rare basal cells with stem/progenitor properties6. Co-deletion of
Klf5 and Pten in the mouse prostate accelerates tumorigenesis
compared with Pten deletion alone, indicating that KLF5 is a
prostate tumor suppressor7. Consistent with this notion, KLF5
protein expression is low or absent in prostate cancer relative to
normal prostate, which is due to KLF5 gene deletion in a subset of
cases8,9. Intriguingly, in bladder, intestinal, breast, and gastric
cancers, KLF5 is oncogenic and linked to poor prognosis10–13,
often due to activating KLF5 gene alterations14. The molecular
mechanisms that govern KLF5 functioning as a tumor suppressor
in prostate cancer, and an oncogenic factor in other cancers, are
currently unknown.

A challenge in prostate cancer management is the inevitable
emergence of castration-resistant prostate cancer (CRPC) during
androgen deprivation therapy. In most cases, CRPC is driven by
AR re-activation15, and more potent AR-targeted therapies,
including abiraterone acetate and enzalutamide, are effective.
However, resistance ultimately limits the therapeutic durability of
abiraterone and enzalutamide. Additionally, the selective pres-
sures exerted by these potent therapies can promote lineage
plasticity where transcriptional and epigenetic regulators are
upregulated to support non-luminal, AR-independent cell phe-
notypes such as neuroendocrine CRPC (NEPC)16–20. However,
mechanisms in the lineage plasticity cascades that initiate early
steps in luminal de-differentiation are poorly defined. Here, we
show that KLF5 is expressed at high levels in a subset of CRPC
tissues and models, including NEPC. In this context,
KLF5 supports oncogenic phenotypes and transcriptionally
opposes AR to induce ERBB2 and basal cell identity. These
findings indicate that castration-based therapies switch KLF5
from a tumor suppressor to an oncogene, thereby promoting
luminal cell de-differentiation during CRPC progression.

Results
Transcriptional up-regulation of KLF5 in a subset of CRPC.
We evaluated KLF5 expression at various stages of prostate
cancer progression. KLF5 mRNA and protein levels were low in
AR-positive, androgen-dependent cell lines LNCaP and VCaP,
intermediate in AR-positive CRPC 22Rv1 cells, and high in AR-
negative CRPC cell lines DU145, NCI-H660, and PC-3 (Fig. 1a,
b). KLF5 staining was high in basal epithelial cells from benign
prostate tissue and low in luminal epithelial cells (Fig. 1c, d).
Lower KLF5 staining occurred in localized prostate cancer relative
to benign prostate, which is consistent with loss of basal cells and
expansion of luminal cells during tumorigenesis3. In CRPC tis-
sues obtained from clinical procedures or CRPC tissues propa-
gated as patient-derived xenografts (PDXs), KLF5 staining ranged
from very low to intense, with average KLF5 levels in CRPC
PDXs being higher than observed in localized prostate cancer.

We next evaluated whether AR-targeted therapies affected
KLF5 expression. Klf5 mRNA levels in organoids from prostates
of castrated Pten −/− mice were 25% higher than in organoids
from prostates of intact Pten −/− mice (Fig. 1e)21. Further, KLF5
mRNA and protein levels were higher in LNCaP sub-lines derived
from xenografts that had progressed in castrated mice to a CRPC
phenotype (16D) or an enzalutamide-resistant CRPC phenotype
(49F and 42D)16 (Fig. 1f, g). In LNCaP 16D, 49F, and 42D cells,
levels of the basal cell marker CK5 were also higher and levels of
the luminal cell markers CK8/18 were lower. KLF5 mRNA and
protein levels were also elevated in the LNCaP95 cell line derived
from the long-term passage of LNCaP cells in an androgen-
depleted medium22 (Supplementary Fig. 1). These data demon-
strate that upregulation of KLF5 occurs in prostate cancer
subjected to AR inhibition in vitro and in vivo.

AR inhibition promotes durable KLF5 transcriptional activa-
tion by androgens. Because KLF5 levels were highest in AR-null
CRPC cells, we tested whether AR represses KLF5. However, the
expression of AR in PC-3 and DU145 cells did not affect KLF5
levels (Supplementary Fig. 2a, b). Next, we considered prior
reports of KLF5 induction by androgens23–25 and evaluated KLF5
regulation by AR in LNCaP and VCaP cells. KLF5 mRNA and
protein levels were induced after 4–8 h exposure to 1 nM DHT
but returned to baseline within 24 h (Fig. 2a–d, Supplementary
Fig. 2c). This transient induction by androgens required AR
(Supplementary Fig. 2d) and was not due to DHT metabolism
because 1 nM doses of synthetic androgens produced similar
responses (Fig. 2e and Supplementary Fig. 2e).

Transient induction of KLF5 by androgens was inconsistent
with a recent report showing sustained induction of KLF5 in
LNCaP and C4-2B cells treated with supraphysiological concen-
trations of androgens25. We found that a physiological 1 nM dose
of DHT sustained KLF5 induction over 24–48 h in C4-2B cells
(Fig. 2f). However, in LNCaP cells, sustained induction of KLF5
over 24 h was only observed when cells were treated with 10 nM
of the synthetic androgen R1881 (Supplementary Fig. 2e). To
explain the lowered threshold for sustained induction of KLF5 by
androgens in C4-2B cells, we considered the fact that C4-2B
represented a CRPC sub-line derived from LNCaP26 and
hypothesized that prior exposure to castration could influence
the transcriptional responsiveness of KLF5. To test this, we
treated LNCaP, 16D, 49F, and 42D cells with 1 nM DHT. In
addition to having higher baseline levels of KLF5, the CRPC 16D
and enzalutamide-resistant 49F and 42D cell lines displayed a
longer duration of KLF5 induction by androgens compared with
parental LNCaP cells (Fig. 2g).

To directly test whether AR-targeted therapy enhances the
transcriptional response of KLF5 to androgens, we cultured
LNCaP cells in the enzalutamide-containing medium for 21 days,
followed by a 3 day washout and subsequent treatment with 1 nM
DHT (Fig. 2h). Enzalutamide pre-treatment did not affect the
baseline levels of KLF5 but did cause a higher and more sustained
induction of KLF5 by androgens than pre-treatment with vehicle
(Fig. 2i).

We also tested baseline and androgen-induced levels of KLF5
in AR-positive R1-AD1 cells, which are androgen- and
antiandrogen-sensitive cells derived from a CRPC CWR22
xenograft27. KLF5 displayed a modest induction by 1 nM DHT
at 4 h, and returned to baseline levels by 8–24 h of treatment
(Fig. 2j). Notably, the baseline level of KLF5 in R1-AD1 cells was
comparable to PC-3 cells and much higher than LNCaP cells and
LNCaP-derived models (Fig. 2k). Collectively, these findings
confirm and extend published literature showing positive
regulation of KLF5 by AR23–25. However, these findings also
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show that additional mechanisms contribute to KLF5 over-
expression in CRPC.

The KLF5 super-enhancer displays different epigenetic states in
prostate cancer cell lines. To investigate androgen-independent
mechanisms regulating KLF5 upregulation in CRPC, we eval-
uated a super-enhancer of the KLF5 gene that displays genomic
duplication and active chromatin marks in cancers where KLF5 is
oncogenic14,28. AR binding within the KLF5 super-enhancer was
evident in chromatin immunoprecipitation DNA-sequencing
(ChIP-seq) data from LNCaP and VCaP cells under androgen-
replete conditions (Fig. 3a). However, the KLF5 super-enhancer
was devoid of ChIP-seq peaks for active enhancer marks histone
H3 acetylated on lysine 27 (H3K27ac) or histone H3 methylated
on lysine 4 (H3K4me1) relative to control enhancers near the
GAPDH, ACTB, and TUBA1A-C genes (Fig. 3a, Supplementary
Fig. 3a–h). Conversely, KLF5-high PC-3 cells displayed a high
density of peaks for H3K27ac and H3K4me1 across the KLF5
super-enhancer. This inverse relationship between H3K27ac/
H3K4me1 density and AR binding in the KLF5 super-enhancer
contrasted with the KLK2/KLK3 super-enhancer, where AR
binding and H3K27ac/H3K4me1 density were strongly correlated
(Fig. 3b, Supplementary Fig. 3e).

In CRPC patient metastases with low H3K27ac density in the
KLK2/KLK3 super-enhancer, the KLF5 super-enhancer displayed
H3K27ac peaks that overlapped those in PC-3 cells (Fig. 3c, d,
Supplementary Fig. 3i–k). These KLF5 super-enhancer H3K27ac
peaks were absent in a CRPC metastasis that displayed high
H3K27ac density in the KLK2/KLK3 super-enhancer (compare
CRPC met 4 to CRPC mets 1–3 in Fig. 3c, d and control
enhancers in Supplementary Fig. 3i–k). These data demonstrate
that PC-3 cells and CRPC tumors with reduced/lost H3K27ac
and/or AR at the KLK2/KLK3 super-enhancer display over-
lapping H3K27ac peaks within the KLF5 super-enhancer.

KLF5 overexpression is oncogenic in AR-positive prostate
cancer cells. A previous study demonstrated oncogenic effects of
high KLF5 levels in AR-negative PC-3 and DU145 cells29. To
investigate the effects of high KLF5 levels in an AR-positive
context, we used the AR/KLF5-high R1-AD1 cell line. KLF5
knockdown reduced colony formation of R1-AD1 cells in soft
agar under androgen-replete conditions (Fig. 4a, b) and reduced
R1-AD1 cell migration towards a serum gradient in trans-well
migration assays (Fig. 4c). However, KLF5 knockdown only
modestly reduced 2-dimensional (2D) growth under androgen-
depleted conditions but not androgen-replete conditions (Sup-
plementary Fig. 4a, b). Overexpression of KLF5 in LNCaP cells
increased 2D growth under androgen-depleted and androgen-
replete conditions (Fig. 4d, Supplementary Fig. 4c, d), promoted
soft agar colony formation (Fig. 4e), and enhanced trans-well
migration (Fig. 4f). These results indicate that KLF5 over-
expression promotes oncogenic phenotypes in AR-positive
prostate cancer cells.

KLF5 and AR interact on chromatin and regulate opposing
transcriptional programs. Using rapid immunoprecipitation and
mass spectrometry of endogenous proteins (RIME) with a vali-
dated AR antibody in DHT-treated R1-AD1 cells, we identified
KLF5 peptides in AR immunoprecipitates (Fig. 5a). We used co-
immunoprecipitation in R1-AD1 cells to confirm an interaction
between FLAG-tagged KLF5 and endogenous AR (Supplementary
Fig. 5). To study the transcriptional consequences of KLF5
overexpression and interaction with AR, we performed RNA
sequencing (RNA-seq) to identify KLF5 and AR target genes in
R1-AD1 cells (Fig. 5b). We confirmed KLF5 transcriptional

output in R1-AD1 cells was relevant to CRPC by identifying
genes that were positively or negatively correlated with KLF5
expression in CRPC metastases30,31, and showing these genes
were positively or negatively enriched in R1-AD1 RNA-seq data
as a function of KLF5 expression (Supplementary Fig. 6a, b and
Supplementary Data 1).

Next, we identified genes that displayed differential regulation
by KLF5 and/or ligand-activated AR (Supplementary Data 2–5).
KLF5 up-regulated genes outnumbered KLF5 down-regulated
genes, indicating that KLF5 was functioning mainly as a
transcriptional activator (Supplementary Fig. 7a, b). In R1-AD1
cells with KLF5 knocked down, there was a 2-fold increase in the
number of DHT-responsive genes relative to control cells,
suggesting that KLF5 was suppressing AR transcriptional output
(Supplementary Fig. 7c, d). However, KLF5 knockdown did not
affect a set of canonical AR target genes involved in luminal cell
homeostasis (Supplementary Fig. 7e).

To probe the interplay between KLF5 and AR, we tested
oncogenic gene sets in the molecular signatures database
(MSigDB)32 for associations with KLF5 or AR activity using gene
set enrichment analysis (GSEA)33. Strikingly, many of the MSigDB
oncogenic signatures that were negatively correlated with active AR
(that is, enriched in vehicle vs. DHT-treated cells, depicted in red in
Fig. 5c) were positively correlated with active KLF5 (that is, enriched
in the shCTRL vs. shKLF5 cells, depicted in red in Fig. 5d). One of
these gene sets was ERBB2_UP.V1_UP, which represents a set of
190 genes upregulated in cells expressing the constitutively active c-
erbB-2 (ERBB2 or HER2/neu) oncoprotein34. Overall, oncogenic
gene sets that displayed positive correlation with active AR were
more likely to display negative correlation with active KLF5
(depicted in blue in Fig. 5c, d), and gene sets that displayed positive
correlation with active KLF5 were more likely to display negative
correlation with active AR (depicted in blue in Supplementary
Fig. 8a, b, P= 0.00047, Fisher’s exact test shown in Supplementary
Fig. 8c). These data demonstrate that AR and KLF5 have opposing
regulatory effects on many MSigDB oncogenic gene sets with high
relevance to cancer biology.

KLF5 and AR differentially regulate transcriptional programs
of prostate epithelial cell identity. We further evaluated these
opposing regulatory effects in the context of KLF5 and AR being
expressed in different epithelial cell lineages of benign prostate
tissue (basal and luminal). Using GSEA to test gene sets that
distinguish the three main prostate epithelial cell lineages35

revealed that a 30 gene basal cell identity signature was positively
enriched in R1-AD1 RNA-seq data reflecting active KLF5, but
negatively enriched in R1-AD1 RNA-seq data reflecting active AR
(Fig. 5e, Supplementary Fig. 8d). As expected, a 121 gene neu-
roendocrine cell identity signature was also negatively enriched in
RNA-seq data reflecting active AR and a 71 gene luminal cell
identity signature was positively enriched in RNA-seq data
reflecting active AR (Fig. 5e, Supplementary Fig. 8d). These data
indicate that KLF5 activates genes defining basal cell identity,
while active AR represses these basal genes and activates genes
defining luminal cell identity.

An emerging clinical problem arising from the increased use
of potent AR-targeted therapies is prostate cancer lineage
plasticity associated with NEPC and reduced/lost dependence
on AR36. In RNA-seq data from metastatic CRPC biopsies37,
KLF5 mRNA levels were negatively correlated with an AR
activity score and positively correlated with an NEPC score
(Supplementary Fig. 9a, b)38. CRPC PDXs and a CRPC liver
biopsy characterized as NEPC displayed intense staining for
KLF5 (Supplementary Fig. 10a, b). Additionally, genes that were
positively-regulated by KLF5 in R1-AD1 cells were positively
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enriched in gene expression data comparing clinical NEPC vs.
CRPC tissues (Supplementary Fig. 10c, d) as well as gene
expression data comparing NEPC vs. primary prostate cancer
tissues (Supplementary Fig. 10e, f). However, active KLF5 did not
appear to regulate genes defining neuroendocrine cell identity
(Fig. 5e).

To evaluate whether opposing activities of KLF5 and AR were
associated with temporal evolution of CRPC to NEPC, we studied
gene expression data from the LTL-331 PDX tumor model of
castration-induced progression from adenocarcinoma to NEPC
(Fig. 5f)39. Pre-castrate LTL-331 tumors displayed low KLF5
expression, high AR expression (Fig. 5g), and a high luminal
activity score (Fig. 5h). Castration-relapsed NEPC LTL-331-R
tumors displayed low AR expression, high expression of the
NEPC transcriptional drivers ASCL1, EZH2, FOXA2, ONECUT2,
POU3F2/BRN2, and SOX2, low expression of the neuronal
repressor REST (Fig. 5g), and a high neuroendocrine activity
score (Fig. 5h)36. The interval spanning this transition was
marked by KLF5 up-regulation (Fig. 5g), the emergence of a high
basal activity score, and erosion of luminal activity score (Fig. 5h).
We also derived AR and KLF5 activity scores using 19 AR target
genes and 37 KLF5 target genes. We found that KLF5 activity was
highest during the interval where KLF5 expression and basal
activity were high, whereas AR activity declined during this
interval (Fig. 5i). Cell cycle activity scores were highest in NEPC
LTL-331-R tumors but lowest when KLF5 expression and basal
activity scores were high (Fig. 5i). Collectively, these results
support a role for KLF5 in opposing AR to promote features of

basal cell identity, which precedes the emergence of neuroendo-
crine hallmarks and castration-resistant tumor growth in a model
of NEPC progression.

ERBB2 and ERBB2-related genes are direct targets of KLF5 and
AR opposition. To identify direct transcriptional targets of KLF5,
we performed KLF5 ChIP-seq in R1-AD1 cells treated with DHT
or vehicle control. We identified 23,397 peaks that represented
KLF5 binding sites under either of these two conditions. Inte-
grating KLF5 ChIP-seq and AR ChIP-seq data showed that
20,985 binding sites were uniquely engaged by KLF5 (KLF5 only
sites), 7,012 binding sites were uniquely engaged by AR (AR only
sites), and 2,412 binding sites were engaged by both AR and KLF5
(KLF5/AR common sites) (Fig. 6a). AR and KLF5 motifs were the
top motifs enriched at KLF5/AR common sites (Supplementary
Fig. 11), indicating motif proximity as the molecular basis for AR/
KLF5 interaction.

We integrated RNA-seq and ChIP-seq data to identify 831
genes regulated by KLF5 or DHT and located within 50 kb of a
KLF5/AR common binding site. Gene ontology analysis of these
831 genes revealed enrichment of the epidermal growth factor
receptor (EGFR) pathway (Supplementary Fig. 12). Unsupervised
clustering of these 831 genes revealed eight main patterns of the
regulation (Fig. 6b). Genes in Cluster 2 displayed repression by
DHT and activation by KLF5 and contained ERBB2, LGALS7
(encodes galectin 7, which regulates activity of ERBB240),
PPP1R1B (encodes protein phosphatase 1 regulatory inhibitor
subunit 1B, which is associated with resistance to the ERBB2-

Fig. 1 KLF5 levels are upregulated in CRPC. a KLF5 mRNA measured using quantitative RT-PCR in AR-positive LNCaP, VCaP, 22Rv1 and AR-negative
DU145, NCI-H660 and PC-3 cell lines. n= 9, mean ± 95% CI from three biological replicates in technical triplicate. b Protein measured by western blot
using the same cell lines as a. Actin is a loading control. c Representative immunohistochemistry (IHC) staining of benign, localized prostate cancer
(hormone naïve) and CRPC tissues from patients or patient-derived xenografts (PDX) using an antibody specific for KLF5. d Quantification of KLF5 IHC
staining in tissue microarrays by a genitourinary pathologist (PM). Bounds of boxes are lower/upper quartiles with median; whiskers show range from
minima to maxima; dots are the average staining intensity of an individual case or PDX. n= 50 localized prostate cancer cases (n= 50/50 cases contained
benign luminal cells, n= 47/50 cases contained benign basal cells, n= 47/50 slides contained cancer cells), n= 14 localized CRPC cases, and n= 29
CRPC PDXs. P-values are from two-sided Mann–Whitney U-tests. n.s.= not significant. e Klf5 mRNA measured using quantitative RT-PCR in organoids
derived from intact Pten−/− mouse prostates maintained in androgen-replete (DHT, dihydrotestosterone) conditions or castrate Pten−/− mouse
prostates maintained in androgen-depleted conditions. n= 6, mean ±95% CI from two biological replicates in technical triplicate. f KLF5 mRNA measured
by RT-PCR in LNCaP cells and sub-lines derived from castration-resistant (16D) or castration/enzalutamide-resistant (49F and 42D) LNCaP xenograft
tumors. n= 9, mean ±195% CI from three biological replicates in technical triplicate. g Protein measured by western blot using the same cell lines as in f.
Tubulin is a loading control.
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targeted antibody therapeutic trastuzumab41), and FAM129B
(encodes a Ras-binding protein that can be phosphorylated by
EGFR to activate Ras signaling42).

We validated KLF5-mediated regulation of these targets in R1-
AD1 cells using RT-PCR (Supplementary Fig. 13a). ERBB2
protein levels in R1-AD1 cells were highest under androgen-
depleted conditions with KLF5 expressed and lowest under
androgen-replete conditions with KLF5 knocked down (Fig. 6c).
The EGFR family member ERBB3 was insensitive to KLF5
knockdown (Fig. 6c). Knockdown of KLF5 also reduced
expression of the basal cell marker CK5, as well as the luminal
marker CK18, but not the luminal marker CK8 (Fig. 6d).

Overexpression of KLF5 in LNCaP cells up-regulated ERBB2,
CK5, and CK18 proteins, and down-regulated CK8 protein
(Fig. 6e). Knockdown of KLF5 in LNCaP sub-lines 16D and 42D
down-regulated CK5 protein and up-regulated CK8 protein, with
the magnitude being highest in CRPC 16D cells (Supplementary
Fig. 13b, c). Knockdown of KLF5 in PC-3 cells down-regulated
LGALS7 and FAM129B, but ERBB2 and PPP1R1B were
insensitive (Supplementary Fig. 13d). Collectively, these data
demonstrate that KLF5 overexpression regulates ERBB2 expres-
sion in AR-positive prostate cancer cells and more broadly
regulates ERBB2-related genes LGALS7 and FAM129B in prostate

cancer cells regardless of cellular AR status. Consistently, KLF5
promoted the expression of the basal cytokeratin CK5 in AR-
positive prostate cancer cells, which supports a role for KLF5 in
lineage plasticity.

KLF5 maintains ERBB2 expression in a model of
enzalutamide-resistant CRPC. In soft agar assays, the growth of
AR-positive prostate cancer cells overexpressing KLF5 was sup-
pressed by androgen withdrawal or enzalutamide treatment
(Fig. 4b, e), and cell cycle activity was lowest in LTL-331 tumors
when KLF5 expression and basal cell activity were highest
(Fig. 5g–i). This indicated that KLF5 overexpression alone is
insufficient to drive castration- or enzalutamide-resistant cell
proliferation but may enable or cooperate with subsequent events
that drive this phenotype. Therefore, we tested the effects of KLF5
overexpression in R1-D567 cells, which contain a genetic deletion
of AR exons 5–7 and display enzalutamide-resistant growth
supported by the truncated, constitutively active AR variant
protein, ARv567es43. In RIME experiments with R1-D567 cells,
KLF5 peptides were observed in ARv567es pull-downs (Supple-
mentary Fig. 14a). Further, FLAG-tagged KLF5 interacted with
endogenous ARv567es in R1-D567 cells (Supplementary

Fig. 2 CRPC models display increased durability of KLF5 induction by androgens. a KLF5 mRNA measured by RT-PCR in LNCaP cells cultured in
androgen-deplete medium supplemented with 1 nM DHT for indicated time-points. n= 6, mean ± 95%CI from 2 biological replicates in technical triplicate.
b KLF5 protein measured by western blot using the same conditions as a. ERK2 is a loading control. c KLF5 mRNA measured by RT-PCR in VCaP cells as in
a. n= 6, mean ± 95% CI from 2 biological replicates in technical triplicate. d KLF5 protein measured by western blot using the same conditions as in c.
ERK2 is a loading control. e KLF5 protein measured by western blot in VCaP cells treated with 1 nM mibolerone (Mib) as in d. One additional replicate
experiment was performed that yielded a comparable result. f KLF5 protein measured by western blot in C4-2B cells treated as in b. One additional
replicate experiment was performed that yielded a comparable result. g KLF5 mRNA measured by RT-PCR in LNCaP and LNCaP-derived CRPC sub-lines
16D, 49F, and 42D cells treated as in a. n= 6, mean ± 95% CI from three biological replicates in technical duplicate. h Schematic of LNCaP cell culture
conditions for i. enz= enzalutamide, DMSO= vehicle control. i KLF5 mRNA measured by RT-PCR in cells cultured as in i. n= 6, mean ± 95%CI from 2
biological replicates in technical triplicate. j KLF5 protein measured in R1-AD1 cells by western blot using the same conditions as a. One additional replicate
experiment was performed that yielded a comparable result. k KLF5 and AR proteins measured by western blot using LNCaP cells cultured in androgen-
deplete medium (CSS), LNCaP cells stimulated 8 h with 1 nM DHT as in a, or indicated cell lines grown in their respective standard medium conditions.
Actin is loading control. One additional replicate experiment was performed that yielded a comparable result.
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Fig. 14b). Knockdown of KLF5 in R1-D567 cells reduced soft agar
colony formation and trans-well migration phenotypes
(Fig. 7a–c), and modestly reduced cellular growth in 2D assays
(Supplementary Fig. 15).

In ChIP-seq experiments, KLF5/AR common sites displayed
co-localization of KLF5 and ARv567es (Fig. 7d). We also used
RNA-seq to identify KLF5-regulated genes in R1-D567 cells
(Supplementary Fig. 16a–d, Supplementary Data 6). In R1-D567
cells, KLF5 maintained positive regulation of ERBB2, LGALS7,
PPP1R1B, and FAM129B expression (Fig. 7e, Supplementary
Fig. 17) as well as the broader ERBB2_UP.V1_UP gene signature
(Fig. 7f). These data demonstrate that KLF5 maintains oncogenic
activities and activates ERBB2 and related genes in a context
where cooperative events, such as expression of an AR variant,
drive enzalutamide resistance.

Therapeutic targeting of ERBB2 blocks oncogenic KLF5
activities. In the clinic, the dual EGFR/ERBB2 inhibitors lapatinib
and neratinib are used as therapies for ERBB2/HER2-positive
breast cancer. A previous drug screen with NEPC patient-derived
organoids (PDOs) identified sensitivity to neratinib plus an EZH2
inhibitor44. We found that neratinib as a single agent displayed
IC50 values that were 14–16-fold lower in NEPC PDOs
OWCM154 and OWCM155 when compared with a CRPC ade-
nocarcinoma PDO MSK-PCA3 (Fig. 8a). OWCM154 and
OWCM155 also displayed higher average expression of 37 genes
reflecting KLF5 activity compared to MSK-PCA3 (Supplementary

Fig. 18a, b) even though KLF5 expression was higher in
OWCM154 and lower in OWCM155 compared to MSK-PCA3
(Supplementary Fig. 18c). Next, we used a computational method
for predicting drug responses in patients based on their baseline
tumor gene expression profiles45, using RNA-seq data from
metastatic CRPC37 and primary tumors46. Higher KLF5 expres-
sion was associated with scores that predicted greater lapatinib
sensitivity in both datasets (Fig. 8b and Supplementary Fig. 18d).
Higher KLF5 activity scores predicted greater lapatinib sensitivity
in the dataset derived from metastatic CRPC but not the dataset
derived from primary tumors (Fig. 8c and Supplementary
Fig. 18e).

We tested lapatinib in the KLF5-high R1-AD1 and R1-D567
models, and observed IC50 values in the low-μM range for growth
inhibition (Supplementary Fig. 19). Because lapatinib and
neratinib are inhibitors of EGFR1 and ERBB2, we also tested
the ERBB2-selective inhibitor mubritinib. In R1-AD1 and R1-
D567 cells, IC50 values for growth inhibition were in the low-nM
range (Fig. 8d, e). The IC50 value for mubritinib in KLF5-low
LNCaP cells was also in this low-nM range but did not change
with KLF5 overexpression (Fig. 8f, g). Across these 2D growth
assays in cell line models, KLF5 levels did not correlate with
sensitivity to ERBB2 inhibitors.

We next considered our findings that KLF5 affected pheno-
types of migration and anchorage-independent growth in soft
agar, but had minimal effects in 2D-growth assays. If ERBB2 is an
important effector downstream of KLF5, the effects of ERBB2
inhibition may not manifest in 2D-growth assays. Therefore, we

Fig. 3 The KLF5 and KLK2/3 super-enhancers display an inverse pattern of H3K27ac activation marks. a, b Gene track views of H3K27ac and AR ChIP-
seq data from AR-positive LNCaP and VCaP cell lines and the AR-negative PC-3 cell line at genomic loci for KLF5 and KLK2/KLK3. c, d Gene track views of
H3K27ac from four clinical CRPC specimens at genomic loci for KLF5 and KLK2/KLK3. H3K27ac track heights were set using H3K27ac density at
housekeeping gene enhancers shown in Supplementary Fig. 3.
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tested the effects of ERBB2 inhibitors in soft agar colony
formation assays and trans-well migration assays. Lapatinib and
mubritinib inhibited the increase in soft agar colony formation
mediated by KLF5 overexpression in LNCaP cells (Fig. 8h, i).
Further, mubritinib blocked the trans-well migration that was
driven by KLF5 overexpression in LNCaP cells (Fig. 8j). These
results support the concept that ERBB2 activity is regulated by
KLF5 in prostate cancer cells. These results also indicate that
ERBB2 could represent a therapeutic target to prevent or reverse
oncogenic phenotypes driven by KLF5 overexpression during
CRPC progression.

Discussion
In this study, we found that AR-negative basal cells in the normal
prostate express high levels of KLF5, whereas AR-positive luminal
cells express low KLF5. This reciprocal relationship persists in
localized prostate cancer, where KLF5 expression is low/absent
and tumor cells have an AR-positive luminal identity. Low/absent
KLF5 in localized prostate cancer is consistent with reports of
KLF5 being a prostate tumor suppressor7–9. Androgen-dependent
prostate cancer cell lines LNCaP and VCaP also expressed low
levels of KLF5. In contrast, a subset of CRPC tumors, PDXs, and
CRPC cell lines displayed KLF5 overexpression.

We identified two distinct mechanisms that up-regulate KLF5
expression in prostate cancer cells. First, androgens transiently
up-regulate KLF5 expression, and exposure to AR-targeted
therapies increases the durability of this response. For instance,
stronger and more durable upregulation of KLF5 by androgens
occurred in LNCaP cells after just 3 weeks of exposure to enza-
lutamide. Second, we found that a KLF5 super-enhancer active in
other cancers displayed a high density of active chromatin marks
in PC-3 cells and that KLF5 expression in PC-3 cells was insen-
sitive to AR re-expression. The transcriptional and epigenetic
regulators that control this AR-independent mechanism of KLF5
activation remain undefined but are likely linked to the changes
in KLF5 permissiveness for transient vs. durable androgen up-
regulation in cells treated with antiandrogens. KLF5 mRNA
translation is also negatively regulated by androgens21, which
together with these transcriptional mechanisms establishes a
disease context where AR-targeted therapy can lead to high KLF5
levels in AR-positive CRPC cells.

In this context of KLF5 and AR co-expression, transcriptional
programs driven by KLF5 physically and functionally opposed
androgen/AR transcriptional programs, including regulation of a
gene set defining basal cell identity. This is in disagreement with a
prior finding that KLF5 co-operates with AR to activate canonical
androgen/AR responsive genes PSA, TMPRSS2, and FKBP525.

Fig. 4 KLF5 promotes oncogenic phenotypes in prostate cancer cells. a KLF5 protein measured by western blot using R1-AD1 cells infected with control
shRNA lentivirus (shC) or two independent KLF5-targeted shRNA lentiviruses (shK1 and shK2). ERK2 is a loading control. b R1-AD1 cells as in a were
analyzed by 3D soft agar colony formation assays in androgen-deplete medium supplemented with 1 nM DHT or vehicle control (0.1% ethanol). n= 8,
mean ±95% CI from 2 independent experiments in biological quadruplicate (n= 8). c R1-AD1 cells transfected with KLF5-targeted siRNAs (siK1 and siK2)
or control siRNA (siC) were analyzed by chemotactic migration assays. n= 6, mean ±95% CI, 2 independent experiments in biological triplicate. d KLF5
protein measured by western blot using R1-AD1 cells, LNCaP cells, and LNCaP cells infected with empty lentivirus or lentivirus encoding KLF5. ERK2 is a
loading control. e LNCaP cells as in d were analyzed by 3D soft agar colony formation assays in an androgen-replete medium supplemented with
enzalutamide or vehicle control (DMSO). n= 6, mean ±95% CI, 2 independent experiments in biological triplicate. f LNCaP cells as in d were analyzed by
chemotactic migration assays. n= 4 or 6, mean ±95% CI, 2 independent experiments in biological duplicate or triplicate. P-values are from 2-sided, 2-tailed
t-tests.
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One potential explanation for this discrepancy could be that this
prior study knocked down KLF5 in LNCaP cells, which express
negligible levels of KLF5. Additionally, low vs. high KLF5
expression levels may impact the stoichiometry of KLF5 acet-
ylation, which regulates KLF5 protein activity6. In our study with
models of KLF5 overexpression, there was no evidence for KLF5
affecting the regulation of canonical AR targets that are mainly
involved in the homeostasis of prostate luminal cells. Noteworthy,
these canonical targets are also unaffected by loss of TP53 and
RB1, which also promotes the expression of a basal cell signature
and CRPC lineage plasticity47.

Our finding of KLF5 and AR opposition provides clues to the
molecular determinants of KLF5 functioning as an oncogene vs.
tumor suppressor in prostate cancer. In early stages of prostate
cancer, tumor cells have luminal identities and their growth and
survival is AR-dependent3. In this context, KLF5 opposition of

AR would be expected to have a tumor-suppressive effect, and
could explain why Klf5 deletion in the mouse prostate accelerates
tumorigenesis driven by Pten loss7. Alternatively, CRPC tumors
consist of populations of cells that have adapted to AR inhibition
via myriad somatic alterations to the AR gene and extensive
reprogramming of AR cistromes15. This reprogramming may
create an environment where KLF5 activity is tolerable and
oncogenic effects can manifest. In our study the oncogenic effects
of KLF5 were context-specific, promoting migration and colony
formation in soft agar but modestly affecting cell proliferation.
Consistent with context-specificity, acetylated KLF5 was shown to
promote growth, epithelial to mesenchymal transition (EMT),
and docetaxel resistance in intra-tibial xenografts of DU145 and
PC-3 cells29, but inhibit invasion of DU145 and PC-3 cell lines
in vitro and in vivo via the IGF1-STAT5 pathway9. Further,
although our study showed that LNCaP and C4-2B cells contain
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low levels of KLF5, a separate study that knocked down KLF5 in
these cells showed inhibition of androgen-dependent prolifera-
tion in vitro and in vivo9,25. Collectively, these data point to KLF5
having divergent effects on cancer phenotypes, which are likely
influenced by AR levels, epithelial cell identity, KLF5 levels, KLF5
acetylation, and hormonal milieu, among other factors.

Our finding that KLF5 and AR opposition converged on a set
of genes that define basal cell identity, and that KLF5 over-
expression in AR-positive prostate cancer cells enhanced
expression of the basal cytokeratin CK5, highlights a role for
KLF5 in supporting a mixed basal/luminal cell identity. In the
LTL-331 model of NEPC progression, the emergence of a high
basal cell identity score coincided with upregulation of KLF5 and
bridged the transition from a luminal cell identity to neu-
roendocrine cell identity. Future studies are warranted to test
whether this mixed basal/luminal identity promoted by KLF5 is a
common, early step in CRPC lineage plasticity that enables sub-
sequent reprogramming to establish NEPC or other cell lineage
states observed in advanced CRPC36.

Prior studies found that ERBB2 enhances AR mRNA degra-
dation, protein stability, and transcriptional activity48–50. Our
work adds to these ERBB2/AR regulatory relationships by
establishing ERBB2 as a point of convergence of AR and KLF5
transcriptional activities. We found that ERBB2 inhibitors
blocked oncogenic phenotypes promoted by KLF5, including
migration and colony formation in soft agar. Conversely,
potencies of ERBB2 inhibitors in cell proliferation assays were
insensitive to KLF5 levels, which is noteworthy because cell
proliferation regulation by KLF5 in 2D assays was negligible. In a
Phase II trial, lapatinib displayed clinical activity in 2/29 CRPC
patients51, suggesting a potential for efficacy in specific contexts.
Our computational model suggested that KLF5 expression or
activity might serve as biomarkers of higher lapatinib sensitivity
in CRPC. Further, NEPC PDO viability was more sensitive to
neratinib than the viability of a PDO representing CRPC ade-
nocarcinoma. Interestingly, combination therapy of LNCaP
xenografts with lapatinib plus enzalutamide reduced growth more
effectively than either therapy alone52. Our studies indicate the
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independent experiments, two performed in biological triplicate and two performed in biological quadruplicate. P-values are unadjusted from 2-sided,
2-tailed t-tests. c R1-D567 cells transfected with KLF5-targeted siRNAs (siK1 and siK2) or control siRNA (siC) analyzed by chemotactic migration assays.
n= 6, mean ±95% CI, two independent experiments in biological triplicate. P-values are unadjusted from 2-sided, 2-tailed t-tests. d Heatmaps of AR
variant (AR-V) and KLF5 ChIP-seq signals ±3 kb around KLF5/AR common, KLF5 only, or AR only peaks in R1-D567 cells cultured in androgen-deplete
medium. e Heatmap of RNA-seq gene expression data for a set of 79 genes located ±50 kb from a KLF5/AR common peak and differentially expressed in
R1-D567 cells based on comparisons between shRNA control (shCTRL) vs. shKLF5 conditions and/or DHT vs. vehicle conditions. The heatmap was
generated by unsupervised clustering, revealing two main clusters. f GSEA testing enrichment of the signature ERBB2_UP.V1_UP in R1-D567 gene
expression data reflecting active KLF5 (differential expression in shCTRL vs. shKLF5).
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potential for this combination to prevent or delay the progression
of CRPC to more advanced and lethal phenotypes.

Methods
Cell lines. LNCaP, VCaP, 22Rv1, DU145, PC-3, and NCI-H660 cells were obtained
from American Type Culture Collection (ATCC). R1-AD1 and R1-D567 cells have
been previously described43. LNCaP sub-lines derived from xenografts in castrated
or castrated/enzalutamide-treated mice (V16D, 49F, and 42D) have been
described16. LNCaP95 cells were a gift from Jun Luo (Johns Hopkins University).
C4-2B cells were a gift from Leland Chung (Cedars Sinai). R1-AD1, LNCaP
(parental and V16D, 49F, and 42D), 22Rv1, DU145, and PC-3 cells were main-
tained in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco) with 10%
fetal bovine serum (FBS) and antibiotics (penicillin and streptomycin). Medium for
49F and 42D was supplemented with 10 μM enzalutamide (MedChem Express).
R1-D567 and LNCaP95 were cultured in RPMI 1640 medium with 10% charcoal-
stripped FBS (CSS). VCaP cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) plus 10% FBS and antibiotics. NCI-H660 cells were maintained
according to ATCC protocol with supplements. For androgen depletion and
repletion experiments, cells were seeded in corresponding media containing 10%
CSS for 48 h and stimulated for indicated time-points with medium containing
0.1–10 nM dihydrotestosterone (DHT, Sigma), 0.1–10 nM R1881 (Sigma-Aldrich),
or 1 nM mibolerone (Biomol). Cell line authentication and mycoplasma testing
procedures are described in the “Supplementary Materials and Methods”.

Antibodies and siRNA reagents. siRNAs targeted to KLF5, siKLF5-1 (siK1,
5′-CGAUUACCCUGGUUGCACA-3′) and siKLF5-2 (siK2, 5′-AAGCUCACC
UGAGGACUCA-3′), were purchased from Dharmacon.

Antibodies were purchased from Santa Cruz for western blot detection of AR
(N-20, sc-816, 1:1000), tubulin (B-5-1-2, sc-23948, 1:3000), ERK2 (D-2, sc-1647,
1:4000), and KLF5 (Santa Cruz, G7, sc-398470, 1:2000). Antibodies were purchased
from Cell Signaling for western blot detection of ERBB2 (29D8, #2165, 1:1000) and
ERBB3 (D22C5, #12708, 1:1000), Cell Marque for western blot detection of AR
(SP107, 200R-16, 1:4000), Sigma for western blot detection of CK5 (SAB4501651,
1:1000) and from Leica for western blot detection of CK8/18 (NCL-L-5D3, 1:3000).

Rapid immunoprecipitation and mass spectrometry of endogenous proteins
(RIME). RIME with R1-AD1 and R1-D567 cells has been described53.

Western blot. Cells were lysed in 1X Laemmli buffer (65 mM Tris-HCl, pH7.0, 2%
(w/v) SDS, 5% (v/v) β-mercaptoethanol, 10% (v/v) glycerol, and 0.5% (w/v) bro-
mophenol blue) and homogenized using a 28-gauge insulin syringe (BD). Equal
protein masses of lysates were separated by electrophoresis in 7.5% PAGE gels,
followed by transfer to PVDF membranes (Immobilon-P, Millipore). Membranes
were incubated with primary antibodies overnight at 4 °C and the HRP-conjugated
secondary antibodies at room temperature for 1 h. Blots were incubated with Super
Signal West Pico (Thermo) and exposed to X-ray film or imaged using an iBright
CL750 system (Thermo Fisher).
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RT-PCR. Total RNA was extracted from cells using the ReliaPrep RNA miniprep
systems (Promega) according to manufacturer instructions. Total RNA (1 μg) was
reverse transcribed using the GoScript Reverse Transcription Kit (Promega) and an
oligo (dT) primer according to manufacturer instructions. cDNA from Pten−/−
mouse organoids have been described21. Quantitative PCR was performed on a
Bio-Rad CFX Connect Real-Time Detection System using SYBR Green Master Mix
(Bio-Rad) and 1 μL of cDNA as input in a 20 μL reaction with primers listed in
Supplementary Table 1 or purchased from Applied Biosystems (GAPDH). Cycle
thresholds (Ct) were determined using Bio-Rad CFX manager software. Relative
quantification was used to determine fold change in expression levels by com-
parative Ct method using the formula 2−ΔΔCt with GAPDH or ACTB as calibrator.
PCR reactions were performed in technical duplicate or triplicate, with at least two
biological replicates (n ≥ 6).

ChIP-seq analysis of KLF5, AR, and H3K27ac in prostate cancer cell lines.
Chromatin immunoprecipitation (ChIP) with an antibody specific for KLF5 (H300,
Santa Cruz) was performed as two independent biological replicate experiments as
described previously54 with the following modifications: R1-AD1 and R1-D567
cells were seeded at 5 × 106 cells/plate on 100 mm dishes in RPMI 1640 containing
10% CSS, allowed to adhere for 72 h, then re-fed for another 4 h with RPMI 1640
containing 5% CSS with ethanol (0.1% v/v) or 1 nM DHT prior to fixation. Nuclear
extracts were subjected to sonication on dry ice for eight cycles at 40% amplitude
using a 450 Sonifier (Branson). Each cycle consisted of 10 s pulse / 10 s rests for
1 min, with 5 min rests between cycles to achieve DNA fragmentation of
200–500 bp. Lysates were pre-cleared by 1 h incubation with Protein A/G Plus
agarose beads (GE) pre-blocked with tRNA (Sigma). Lysates were immunopreci-
pitated overnight with 5 μg KLF5 antibody and tRNA-blocked Protein A/G Plus
agarose beads. DNA was purified using a PCR purification kit (Qiagen), and 2 ng of
input or ChIP-enriched DNA was submitted to the University of Minnesota
Genomics Center for library preparation with a Rubicon ChIP Sample Preparation
Kit (Illumina) and sequencing using an Illumina HiSeq 2500 at 1 × 50 bp settings in
high output mode. ChIP-seq with antibodies specific for AR in R1-AD1 and AR-V
in R1-D567 cells has been described54 and data are available in NCBI Gene
Expression Omnibus (GEO accession GSE61838). H3K27ac ChIP-seq data from
LNCaP, VCaP, and PC-3 cells maintained continuously in androgen-containing
medium were obtained from NCBI GEO (LNCaP, GSM3138725; VCaP,
GSM2827606; PC-3, GSM1383871). H3K4me1 ChIP-seq data from LNCaP, VCaP,
and PC-3 cells maintained continuously in the androgen-containing medium were
obtained as .bigwig files from the Cistrome Data Browser55, which analyzed raw
data from NCBI GEO (LNCaP, GSM353634; VCaP, GSM353631) or the ENCODE
project (PC-3, ENCSR566UMF_1). AR ChIP-seq data from LNCaP and VCaP cells
treated 4 h with the synthetic androgen R1881 was obtained from NCBI GEO
(LNCaP, GSM2480801, and GSM2480803; VCaP, GSM2235688, and
GSM2235689).

ChIP-seq analysis of H3K27ac in clinical CRPC tissues. Metastatic samples from
CRPC patients were collected at the Netherlands Cancer Institute-Antoni van
Leeuwenhoek, Amsterdam, Netherlands. This study was approved by the institu-
tional METC and IRB and conducted according to the principles of the Declaration
of Helsinki (Oktober 2013 version) and in accordance with the Medical Research
Involving Human Subjects Act (WMO) and other guidelines, regulations, and Acts.
The patient’s materials were handled in accordance with the ‘Code of conduct for
responsible use’ (version 2011) as made by the Dutch Federation of Biomedical
Scientific Societies. Informed consent was obtained from the participants included
in the study. Fresh frozen metastasis samples from CRPC patients were processed
using the ChIP-seq protocol as described56. ChIP-seq for H3K27ac (Active Motif,
Cat#39133) was performed using 5 μg of antibody and 50 μL of Protein A magnetic
beads (Invitrogen) per sample. Immunoprecipitated DNA was processed for
sequencing using standard protocols and sequenced on an Illumina Hi-seq 2500
with 65 bp single end reads.

ChIP-seq data analysis. KLF5, AR, and H3K27ac ChIP-seq data sets were mapped
using bwa (v. 0.7.17 for cell line data and v. 0.5.10 for tissue data)57 against the
human (hg19) reference genome. Mapped data were filtered to keep only reads
with a mapq= 1. Bam files were filtered using bedtools (v. 2.27.1)58 to remove any
ENCODE blacklisted regions (ENCFF001TDO.bed). Macs2 (v. 2.1.1)59 was used
for peak calling using paired treatment and control bam files. Data from treatment
replicates were merged to create bam files and bigwigs for visualization. We used
the bedtools ‘intersect’ and ‘subtract’ functions to obtain final peak sets. H3K4me1
ChIP-seq data sets were obtained as .bigwig files from the Cistrome Data
Browser55. For the peak sets derived from KLF5 ChIP-Seq, we reduced the number
of peaks by finding the intersect across all replicates. For the peak sets derived from
AR ChIP-seq, we used the AR ChIP-seq replicate that yielded the most peaks. Read
coverage snapshots were generated using IGV (v. 2.8.2 for cell line data and v.
2.3.93 for tissue H3K27). Individual H3K27ac and H3K4me1 window scales were
selected using two times of the average maximum H3K27ac or H3K4me1 peaks
height of GAPDH, ACTB, and TUBA1A-C regions.

Immunohistochemistry with clinical tissues. Tissue microarrays (TMAs) (56
case hormone sensitivity array, 40 Case Screening array, 42 LuCaP PDX Models
array), were purchased under materials transfer agreements from the Prostate
Cancer Biorepository Network (PCBN). A metastatic biopsy (liver) with AR-/
NEPC+ histology has been described60. Unstained tissue sections (4 µm) were de-
paraffinized and rehydrated using standard methods. For antigen retrieval, slides
were incubated in 6.0 pH buffer (Reveal Decloaking reagent, Biocare Medical,
Concord, CA) in a steamer for 30 min at 95–98 °C, followed by a 20 min cooldown
period. Subsequent steps were automated using an immunohistochemical staining
platform (Intellipath, Biocare). Endogenous peroxidase activity was quenched by
slide immersion in 3% hydrogen peroxide solution (Peroxidazed, Biocare) for
10 min followed by TBST rinse. A serum-free blocking solution (Background
Sniper, Biocare Medical, Concord, CA) was placed on sections for 10 min. Blocking
solution was removed and slides were incubated in primary antibody diluted in
10% blocking solution/90% TBST. A mouse monoclonal antibody recognizing
KLF5 (anti-BTEB2 G-7, Santa Cruz Biotechnology sc-398470) was incubated with
blocked TMA slides at 1:200 dilution for 60 min at room temperature followed by
TBST rinse and detection with Novocastra Novolink Polymer Kit (Leica Micro-
systems Inc., Buffalo Grove, IL) using the manufacturer’s specifications. All slides
then proceeded with TBST rinse and detection with diaminobenzidine (DAB)
(Biolegend, Dedham, MA). Slides were incubated for 5 min followed by TBS rinse
then counterstained with CAT Hematoxylin (Biocare, Concord, CA) for 5 min.
Slides were then dehydrated and coverslipped. TMA spots were scored by a gen-
itourinary pathologist (P.M.) for antibody staining intensity in carcinoma cells,
benign acinar luminal cells, or benign basal cells using a scale of 0–3 as described61.
For tissue samples that were represented by multiple replicate spots on the TMAs,
an average of the individual scores for each spot was used. Differences in staining
intensity between tissue types were determined using Mann–Whitney U-test based
on non-normal data distributions in Shapiro–Wilks goodness of fit tests.

Plasmid constructs. The non-silencing shRNA pGIPZ lentiviral vector for shRNA
control (shC), and the pGIPZ shRNA constructs for KLF5 (V2LHS_150120,
V3LHS_333122) were purchased from Open Biosystems (Pittsburgh, PA). The
lentivirus overexpression vector pLenti-EF1a-PGK-puro harboring KLF5 cDNA, as
well as empty vector, have been described14 and were kindly provided by Dr.
Matthew Meyerson.

Soft agar colony formation assays. Two agar layers were generated per well of 6-
or 12-well plates, with the bottom layer containing 0.7% (w/v) SeaPlaque agarose
(Lonza) in tissue culture growth medium, and the top agar layer containing 1 × 104

cells dispersed in 1 mL of 0.35% (w/v) agarose in tissue culture medium. After the
top agar layer solidified at room temperature, 1 mL of tissue culture growth
medium containing 3 nM DHT (or ethanol as vehicle control), 30 μM enzaluta-
mide, 5 or 75 nM mubritinib, or 2 or 10 μM lapatinib (or DMSO as vehicle control)
was added. The plates were incubated in a tissue culture incubator at 37 °C for
21–28 days, with the top 1 mL of growth medium replaced every 7 days. For
visualization of colonies at the assay endpoint, the top 1 mL of growth medium was
replaced with fresh growth medium containing 100 μg/μL Iodonitrotetrazolium
chloride (INT, Sigma I8377). Images of plates were captured and colonies were
counted using Image J software.

Trans-well migration assays. Haptotactic migration assays were performed as
previously described62 with modifications. Briefly, cells were suspended in RPMI
media containing 10% CSS and seeded at 60,000 cells/well (R1-AD1 and R1-D567)
or 30,000 cells/well (LNCaP) cells in 8.0 µm pore size cell culture inserts for 24-well
plates coated with 20 µg/mL fibronectin in PBS (Sigma F-1141-1MG). For
mubritinib experiments, cells were seeded in a medium containing 10 nM
mubritinib or 0.1% (v/v) DMSO as vehicle control. Each well of the 24-well plates
with the 8.0 µm pore size cell culture inserts contained RPMI medium supple-
mented with 20% FBS and antibiotics. After scraping off the non-migratory cells
from the top chamber, the migrated cells on the bottom surface of the membrane
were fixed in 100% methanol for 15 min and stained with 0.2% crystal violet
overnight at 4 °C. Images from each cell culture insert were captured using a Nikon
Eclipse TS100 microscope, 10X phase objective, NA= 0.25 equipped with a Nikon
digital sight camera and NIS Elements D 4.00.12 software. The experiment was
done in three inserts per condition per experiment and repeated two times (n= 6).

RNA-seq. For RNA-seq, 1 μg of isolated total RNA from indicated cells were
submitted to University of Minnesota Genomics Center. The library was prepared
with TruSeq Stranded mRNA kit (Illumina) according to manufacturer’s instruc-
tions and was constructed for 2 × 100 paired-end sequencing on an Illumina HiSeq
2000 system.

Identification of differentially expressed genes in RNA-seq data. Fastq files
containing 75 bp paired-end reads were aligned to the hg19 reference genome using
HiSat2 (v. 2.1.0)63. Subread (v. 1.4.6)64 was used to quantify gene expression using
the version 87 GRCh37 annotation from Ensembl65. Count data were filtered to
only keep genes that had a cpm (counts per million) value greater than 1 cpm in at
least two samples across all experimental conditions. The likelihood ratio test was
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used to evaluate differential expression with edgeR (v. 3.20.9)66,67. The
Benjamini–Hochberg method was used for multiple hypothesis testing correction.
An adjusted p-value= 0.01 was used as a differential expression significance
threshold. We annotated differentially expressed genes that were within a ±50 kb
window of the KLF5/AR common peak bed file from our ChIP-seq analysis.

Gene set enrichment analysis and gene set activity scoring. Ranked gene lists
for Gene Set Enrichment Analysis (GSEA) were generated using the following two-
step transformation. First, unadjusted P-values from the differential expression
tests were transformed by −log10, then the −log10 P-values for each gene are
multiplied by either +1 or −1 depending on the sign of the expression fold change
for that gene (positively regulated genes are multiplied by +1 and negatively
regulated genes are multiplied by −1). This ranked gene list was used for “Pre-
ranked” GSEA analysis using the GSEA java program (v. 3.0)33. We used 10,000
permutations for significance testing instead of the default of 1000 to better control
for false discoveries. To enable reproducible testing results, we used a seed of 149
instead of the default timestamp. We tested our ranked gene lists against the
oncogenic and hallmark MSigDb collections (v. 6.1). We also tested our ranked
gene lists against gene sets that are restricted to basal (30 genes), luminal (71
genes), and neuroendocrine prostate epithelial cells in single-cell RNA-seq data35.
The 560 gene prostate neuroendocrine gene set was truncated at the top 121 genes
(FDR cutoff of 1E-48). Activity scores were determined using summative Z-scores
of gene sets, which were converted to percent where 0 is the lowest score and 100 is
the highest score as described30. All gene sets are in Supplementary Data 1. Activity
scores were applied to microarray gene expression data from longitudinal collec-
tions of pre- and post-castration LTL-331 PDX tumor tissue39 and RNA-seq data
from PDOs OWCM154 (GEO accession GSM3083468), OWCM155 (GEO
accession GSM3083470), and MSK-PCA3 (GEO accession GSM5501250). MSK-
PCA3 RNA-seq data in FPKM (fragments per kb per million) were converted to
TPM (transcripts per million) by dividing the FPKM value for that gene in that
sample by the sum of all FPKM values in that sample and scaling by 1e6.

Cell growth assays. Cells were seeded at a density of 2 × 104 cells/well on 24-well
plates in RPMI 1640 with 10% CSS, allowed to adhere for 24 h, and the medium
was replaced with a medium containing 1 nM DHT or 0.1% v/v ethanol as a
control. At indicated time-points, cells were fixed and stained with crystal violet as
described68 and the absorbance was measured at 560 nM. Significance was assessed
by unpaired 2-sided t-tests.

Patient-derived organoid viability assays. OWCM154 and OWCM155
organoids44 and MSK-PCA3 organoids69 have been described. Cell viability assays
were performed using a CellTiter-Glo kit (Promega) according to the manu-
facturer’s protocol. Organoid cells (4000) were seeded in 96 well, collagen Type
I-coated microplates and the next day treated with 16 nM–10 μM neratinib (Sell-
eckChem) or DMSO as vehicle control for 6 days. Cell viability was determined by
normalizing raw luminescence units to the median values of the negative control
(DMSO) on a per plate basis. IC50 (nM) was calculated using GraphPad Prism 8.

Statistics and reproducibility. Experiments requiring dedicated statistical tests
have those tests described in the appropriate section of the Methods. For all other
experiments, differences in mean values were deemed significant if no overlap was
noted in 95% confidence intervals. For relative quantification RT-PCR experi-
ments, we illustrated mean ±95% confidence intervals for all data derived from
technical replicates within biological replicate experiments to show the experi-
mental variability in measuring reference and non-reference samples. The rationale
for this approach is that averaging technical replicates to a single value per bio-
logical replicate in a relative quantification RT-PCR experiment makes all reference
sample values equal 1.0 exactly, with zero error in measurement of the reference
sample. This would not appropriately reflect the technical imprecision in mea-
suring gene expression for reference and non-reference samples by relative
quantification RT-PCR. For migration and soft agar colony formation assays,
unpaired 2-sided t-tests were used to calculate p-values for differences in means.
For experiments showing a representative western blot, at least one additional
replicate experiment was performed that yielded a comparable result.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ChIP-seq and RNA-seq data generated in this study have been deposited in the
NCBI GEO database under accession code GSE148808. Full western blot images are in
Supplementary Figs. 20-21. Public datasets that were used include: R1-AD1 and R1-D567
AR ChIP-seq (GSE61838), LNCaP H3K27ac ChIP-seq (GSM3138725), VCaP H3K27ac
ChIP-seq (GSM2827606), PC-3 H3K27ac ChIP-seq (GSM1383871), LNCaP H3K4me1
ChIP-seq (GSM353634), VCaP H3K4me1 ChIP-seq (GSM353631), PC-3 H3K4me1
ChIP-seq (ENCSR566UMF_1), LNCaP AR ChIP-seq (GSM2480801 and GSM2480803),
VCaP AR ChIP-seq (GSM2235688 and GSM2235689). OWCM154 RNA-seq
(GSM3083468), OWCM155 RNA-seq (GSM3083470), MSK-PCA3 RNA-seq

(GSM5501250). The remaining data are available within the Article and Supplementary
Information.
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