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ABSTRACT
We present GALARIO, a computational library that exploits the power of modern graphical
processing units (GPUs) to accelerate the analysis of observations from radio interferometers
like Atacama Large Millimeter and sub-millimeter Array or the Karl G. Jansky Very Large
Array. GALARIO speeds up the computation of synthetic visibilities from a generic 2D model
image or a radial brightness profile (for axisymmetric sources). On a GPU, GALARIO is
150 faster than standard PYTHON and 10 times faster than serial C++ code on a CPU. Highly
modular, easy to use, and to adopt in existing code, GALARIO comes as two compiled libraries,
one for Nvidia GPUs and one for multicore CPUs, where both have the same functions with
identical interfaces. GALARIO comes with PYTHON bindings but can also be directly used
in C or C++. The versatility and the speed of GALARIO open new analysis pathways that
otherwise would be prohibitively time consuming, e.g. fitting high-resolution observations of
large number of objects, or entire spectral cubes of molecular gas emission. It is a general tool
that can be applied to any field that uses radio interferometer observations. The source code
is available online at http://github.com/mtazzari/galario under the open source GNU Lesser
General Public License v3.
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1 IN T RO D U C T I O N

In the quest for high angular resolution and high sensitivity, radio
astronomy has been developing the use of interferometry since
the late 1940s. Unlike single dishes, which directly measure the
sky brightness and produce an image of it, radio interferometers
measure visibilities, the complex valued samples of the Fourier
transform of the sky brightness (Thompson 1999). The locations in
the Fourier plane where these samples are taken are given by the
spatial distribution of the antennas on the ground and the direction
of the source being observed. Modern interferometers like Atacama
Large Millimeter and sub-millimeter Array (ALMA) and the Karl G.
Jansky Very Large Array (VLA) have developed advanced pipelines
that not only calibrate the observed visibilities, but also produce
for the end users spectrally resolved images of the sky brightness
distribution.

Comparing a model prediction to an interferometric data set is
typically done in one of the following two ways: either in the image
plane by comparing a model image to the image of the sky re-
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constructed from the visibilities, or in the Fourier plane by directly
comparing the observed visibilities to synthetic ones computed from
the model image. The first approach is more intuitive but it is in-
trinsically limited: it relies on estimating the true sky brightness
distribution from the observed visibilities. Unfortunately, the obser-
vations can only provide a finite number of samples of the visibili-
ties, implying that a unique reconstruction of the sky brightness is
not possible. In addition, to remove the effects of discrete sampling,
non-linear deconvolution algorithms (e.g. the traditional CLEAN by
Högbom 1974; Clark 1980 or MEM by Cornwell & Evans 1985) are
applied to perform image reconstruction, which may introduce a
variety of artefacts. Moreover, while each of the observed visibil-
ity point has associated a well-behaved Gaussian noise (with equal
variance in the real and imaginary part), the pixels in the recon-
structed image have correlated noise whose properties are poorly
constrained (due to the non-linear reconstruction algorithms). Ul-
timately, model comparison to the reconstructed images is thus
affected in the image plane by the sampling of the sky visibil-
ity, the non-linear algorithms applied, and the correlated noise on
the images, which reflects in the difficulty to correctly estimate
the observational uncertainty (Cornwell, Braun & Briggs
1999). The second approach – comparing observed to model
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visibilities – is much more straightforward as it operates in the
domain where the observations were made and the uncertainties are
better understood (Pearson 1999).

Comparing a model image computed on a regular grid to observed
visibilities that are scattered across the Fourier plane involves a
series of 1D and 2D array operations such as Fourier transforms,
transpositions, and interpolations (Briggs, Schwab & Sramek 1999).
The size of the arrays used to properly model the visibilities is set by
the properties of the interferometer at observation time: spatial and
spectral resolution, sensitivity, number, and distribution of antennas.
ALMA and the VLA have delivered tremendous improvements in
terms of longer baselines, higher sensitivity, and more uniform
Fourier plane coverage. This implies that the spectral and spatial
sampling of the visibilities has increased enormously.

Inferring a model from the observations – either using a Bayesian
Markov chain sampler or a classical χ2 optimizer – requires an ade-
quate exploration of the parameter space. Performing the inference
in the Fourier plane requires the computation of synthetic visibilities
from the model image in each likelihood evaluation. The enhance-
ments in the quality of the visibilities delivered by modern interfer-
ometers have increased the computational effort required to model
them accordingly, at a point where modelling medium-resolution
observations can take one or more days of multicore computation.1

The large software packages designed for the calibration and the
management of interferometric data sets – e.g. CASA,2 AIPS,3 MIRIAD

(Sault, Teuben & Wright 1995), GILDAS4 – usually offer dedicated
tasks for modelling the visibilities. However, although handy for a
first characterization of the observed sources, these tasks are often
very limited in terms of flexibility: they typically require the user
to choose among a very restricted set of simplified models for the
source brightness, do not allow the user to specify what statistics
should be used for the exploration of the parameter space, and cannot
be easily incorporated into external modelling codes without a heavy
performance penalty. In this context, the CASA-based UVMULTIFIT

library (Martı́-Vidal et al. 2014) constitutes a more flexible solution
as it allows the user to model the visibilities with an indefinite
number of parametric source components that can be personalized.
We note that all the codes named so far are purely designed for
CPUs, and only a few of them (e.g. CASA and UVMULTIFIT) can benefit
from multicore operations.

A breakthrough in the computing capabilities is needed in order
to fully and timely exploit the wealth of information that the new in-
terferometers make available. In this paper we present GALARIO, a
computational library that provides the necessary speed-up. Unlike
the central processing units (CPUs) that are composed of at most
a few tens of cores, the graphical processing units (GPUs) have
thousands of cores that, although less powerful than CPU cores, ef-
fectively outperform CPUs in embarrassingly parallel tasks (Nick-
olls et al. 2008), of which the operations needed to compute the
synthetic visibilities are eminent examples.

GALARIO is a library that uses GPUs or alternatively multiple
CPU cores to speed up the computation of synthetic visibilities
from a model image, and has been designed to achieve the best

1 A representative fit of a single wavelength continuum map at 0.1 arcsec
resolution, assuming 4096 × 4096 matrix size, 106 visibilities, and 0.5 s to
compute them with a standard PYTHON code, 106 likelihood evaluations to
achieve convergence, running on 32 CPU cores, needs 49 wall-clock hours
(excluding the model computation).
2 https://casa.nrao.edu
3 http://www.aips.nrao.edu
4 http://www.iram.fr/IRAMFR/GILDAS

performance and still to be easy to use and to adopt in existing code.
In the context of a fit, GALARIO can be easily adopted as a drop-in
replacement to accelerate the computation of the χ2 between the
model predictions and the observed visibilities. Moreover, thanks to
its modular structure, GALARIO can be included in any likelihood
computation, leaving to the user the choice of the statistical tool used
for the parameter space exploration. The GPU version of GALARIO
is about 150 times faster than standard PYTHON implementations that
rely on the widely used SCIPY and NUMPY packages, and 10 times
faster than serial C code. From the user perspective, GALARIO can
be called directly in C or C++ and easily imported in PYTHON code
as a normal package.

To our knowledge, there is only another code, MONTBLANC

(Perkins et al. 2015) that exploits the power of GPUs to com-
pare models directly to observed visibilities. However, GALARIO
differs from MONTBLANC in many aspects. First, MONTBLANC mod-
els the source brightness only through parametrized models (e.g. a
point source, or a Gaussian ellipse) and does not support, as yet,
unparametrized radio sources. Instead, GALARIO allows the user
to compute synthetic visibilities from a generic 2D image of the
sky brightness that can be the result, e.g. of a complex radiative
transfer computation as well as of a simple parametric profile. Sec-
ondly, while MONTBLANC is dedicated to GPUs, all the functions of
GALARIO are implemented both for GPU and CPU, on which the
acceleration is achieved with OpenMP. Moreover, since the GPU
and CPU functions in GALARIO have the same interfaces, it is
easy to write reusable code that can be executed on the GPU or on
the CPU just by changing which library is linked in (C) or imported
(PYTHON).

The contexts in which GALARIO can be used are manifold. Orig-
inally developed in the field of protoplanetary discs, GALARIO
implements a general computation of the synthetic visibilities that
makes it suitable for application in any field dealing with obser-
vations from radio interferometersfor a wide range of wavelengths
and angular resolutions.

GALARIO has already been used in a few studies to fit moderate-
and high-resolution observations of protoplanetary discs. In Testi
et al. (2016) and Tazzari et al. (2017) GALARIO was used to fit the
visibilities of the disc continuum emission with a physical model to
characterize the disc structure. Tazzari et al. (2016) used GALARIO
to study the properties of the dust grains through the simultaneous
fit of visibilities at multiple sub-mm, mm, and cm wavelengths. In
the domain of extreme high-resolution observations GALARIO has
been used to characterize the shape of the multiple rings appearing
in the continuum emission of the AS 209 protoplanetary disc seen
by ALMA (Fedele et al. 2018). It is worth noting that the speed-up
that GALARIO delivers naturally translates into the capability to
extend the visibility analysis to many objects on much reduced time-
scales, thus making it ideal to fit surveys of many sources (e.g. as
has been done in Tazzari et al. 2017). Furthermore, a new pathway
opened by the acceleration of GALARIO is the possibility to fit
simultaneously entire spectral cubes of molecular-gas emission,
allowing the kinematics of the object – a protoplanetary disc or a
galaxy – to be characterized consistently.

The paper is organized as follows. Section 2 provides an overview
of the code illustrating key functionalities and relevant use cases.
Section 3.1 introduces the theoretical definitions and equations of
Synthesis Imaging and discusses the limitations of the current re-
lease of GALARIO. Section 4 describes the CPU and the GPU
implementation of GALARIO and Section 5 presents the results
of accuracy checks. In Section 6 we analyse the performance of
GALARIO and in Section 7 we draw our conclusions. Appendix A
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summarizes the steps needed to obtain and install GALARIO. Ap-
pendix B reports additional performance tests analogous to those
discussed in Section 6. Appendix C shows the results of additional
accuracy checks carried out against the CASA package. Appendix D
presents the PYTHON implementation of some reference functions.

2 C O D E OV ERV IEW

In this section we aim to give a quick overview of GALARIO
for typical use cases that the reader might find immediately use-
ful, deferring to Section 3.1 the definition of the quantities and
equations involved. GALARIO has been designed to accelerate the
fundamental task of comparing a model prediction (fundamentally,
a brightness image) with an interferometric observational data set,
which typically consists of a collection of complex visibilities Vk

(k = 1...M) defined as the samples of the source visibility V in
discrete locations (uk, vk). The key functionality of GALARIO is
the computation of synthetic visibilities given (i) a model image
(or a radial brightness profile) and (ii) a collection of uv-points
(uk, vk) representing the interferometric baselines sampled by the
observations.

The core of GALARIO is written in C++ (for the CPU version)
and CUDA C++ (for the GPU version). This allows GALARIO to
achieve the best performances and to offer the same core function-
alities in both versions. The PYTHON wrappers written in CYTHON

are available for the main functions to facilitate the adoption of
GALARIO in existing code.

On machines where no GPU is available, GALARIO can still
provide a speed-up through OpenMP on multiple CPU cores. If
compiled and executed on machines with a CUDA enabled GPU,5

GALARIO delivers a dramatic speed-up with respect to normal
CPU code, up to 150 times faster than a standard PYTHON imple-
mentation that uses the NUMPY and SCIPY packages (more details in
Section 6).

2.1 Selection of the version

Both the CPU and GPU versions of GALARIO are compiled in
single and double precision. After installation, the CPU and GPU
versions can be imported in PYTHON with

from galario import double # CPU
from galario import double cuda # GPU

The single- and double-precision libraries in both the CPU and
GPU versions offer the same functions with identical interfaces,
thus making it easy to write reusable code. Our recommended de-
fault is double precision. To use the single-precision versions, re-
place double→ single in the above commands. The functions
described below can be imported from any of these four libraries.

2.2 Basic usage

The computation of the synthetic visibilities Vmod of a model image,
sampled at some uv-points (uk, vk) can be done with sampleIm-
age:

from double cuda import sampleImage
Vmod = sampleImage (image, dxy, u, v)

5 The updated list of CUDA enabled GPUs is available at
https://developer.nvidia.com/cuda-gpus

where the image is a 2d array in Jy pixel−1 units and its coordinate
system is the same as that of the sky (East to the left, North to
the top), dxy is the size (in radians) of the image pixel (assumed
square), u and v are linear arrays containing the coordinates uk, vk

(expressed in units of the observing wavelength λ), and the returned
array Vmod is a complex array containing the synthetic visibilities
(in Jy).
sampleImage makes no assumptions on the symmetry of the

2D input image and therefore can be used to compute the visibili-
ties of any image. However, in case the model image has an axisym-
metric brightness distribution, GALARIO offers a faster version of
sampleImage called sampleProfile that exploits the sym-
metry of the image and takes as input the brightness profile Iν(r)
defined on a radial grid and computes internally the 2D image by
azimuthally sweeping the profile over 2π :

from double cuda import sampleProfile
Vmod = sampleProfile (I,Rmin,dR,Nxy,dxy,u,v)

where I is a 1d array containing the radial brightness profile Iν(R)
(in Jy sr−1), Rmin and dR are the innermost radius and the cell
size of the radial grid expressed in radians, and Nxy is the number
of pixels on each image axis. Fig. 1 summarizes the workflow of
sampleProfile: the radial brightness profile (left-hand panel)
is used to produce an axisymmetric 2D image (central panel) which
is then Fourier transformed and sampled in the specified uv-points
(right-hand panel).

The instruction above produces a face-on 2D image out of the
profile Iν(r). Producing an image with an inclination inc (radi-
ans) along the line of sight can be done by specifying the optional
parameter inc:

Vmod = sampleProfile(I,Rmin,dR,Nxy,dxy,u,v,

inc=inc)

as shown in the example in Fig. 1 for an inclination of 45◦.
In the context of a fit, GALARIO provides handy functions to

compute directly the likelihood of the model in terms of a χ2, both
in the case the input is a model image or an axisymmetric brightness
profile:

chi2 = chi2Image (image,dxy,u,v,Re Vobs,
Im Vobs,w)

chi2 = chi2Profile (I,Rmin,dR,Nxy,dxy,u,v,)
Re Vobs, Im Vobs, w)

where Re_Vobs, Im_Vobs are the real and imaginary part of the
observed visibilities and w their associated weights.

All the functions described so far support optional parameters
useful to rotate and translate the model image given. It is possible
to rotate the model image by a position angle PA, and to translate
it by angular offsets in Right Ascension and Declination direction
(�RA, �Dec.) by specifying the optional parameters:

Vmod = sampleImage(image, dxy, u, v,
PA=PA, dRA=�RA,dDec=�Dec)

where PA, (�RA, �Dec.) are all expressed in radians and the offsets
are defined in sky coordinates, i.e. positive �RA and �Dec. trans-
late the image towards east and north, respectively. Fig. 2 illustrates
these definitions. The same optional parameters can be specified
in sampleProfile, chi2Image, and chi2Profile. As de-
scribed in Section 3.3, to achieve better performances the image
rotation and translation are not applied to the model image but to
the synthetic visibilities.
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Figure 1. Workflow of the sampleProfile and sampleImage functions. sampleImage takes in input a 2D model image (central panel) and produces
the synthetic visibilities by sampling its Fourier transform at the specified uv-points locations (right-hand panel). sampleProfile computes the synthetic
visibilities in the same way as sampleImage, but takes in input a radial brightness profile (left-hand panel) from which the model image is internally
computed assuming axisymmetry and a line-of-sight inclination (45◦ in this example).

Figure 2. Conventions used in GALARIO. (a) Definition of inclination
and position angle (PA). A circular disc is inclined by 55◦ and rotated by
the position angle PA. The inclination is performed with a tilt along the
north–south axis before rotating by PA (see e.g. the central panel in Fig. 1).
PA is the angle between the north–south axis and the line of nodes – the
intersection of the plane of the object with the north-east plane – and is
measured counter-clockwise (east of north). (b) Definition of the angular
offsets. �RA and �Dec. are positive for offsets towards East and North,
respectively.

Hereafter we will refer to the sampleProfile and sam-
pleImage functions by sample*, and analogously by chi2*
for the chi2Profile and chi2Image functions. In a similar
way, we will use *Profile and *Image to indicate the related
functions.

Details on how to install GALARIO are given in Ap-
pendix A and, more thoroughly, in the online documentation at
https://mtazzari.github.io/galario/, which also contains code exam-
ples showing how GALARIO can be used in typical data analysis
workflows.

3 V ISIBILITY MODELLING

The response of a synthesis array like ALMA and the VLA to the
brightness distribution of a source in the sky is a collection of mea-
surements called complex visibilities. In this section we introduce
the basic equations needed to define the visibility (a more thorough
derivation can be found in Wilson, Rohlfs & Hüttemeister 2013),
we illustrate how they can be implemented in a computer code, and

we discuss the use cases and the limitations that follow from the
adopted assumptions.

3.1 Basic equations of synthesis imaging

To define the visibility measurement, we first derive the response of
a two-element interferometer, the fundamental receiving unit of the
array. It consists of a correlator that combines, or multiplies and time
averages, the signals received by the two antennas. A diagram of a
two-element interferometer can be found in fig. 2-1 in Thompson
(1999).

Let us introduce some definitions and a system of coordinates,
following standard conventions as in Thompson (1999). Let Iν(s) be
the source brightness in direction s at frequency ν. Iν(s) is a spectral
brightness and is measured in erg s−1 cm−2 Hz−1 sr−1 or Jy sr−1. Let
us assume the two antennas are identical, with response pattern
A(σ ) defined as the effective collecting area in direction s. The
radiation power collected from each of the antennas in direction s
and received from the source element d� in the frequency range �ν

is then Iν(s)A(s)�ν d�. Let us call b the baseline vector connecting
the two antennas on the ground and s the unit vector – identical
for both the antennas – pointing towards the source. Under the
simplifying assumption that the source brightness extends over a
small region of the celestial sphere (Clark 1999), it is useful to
rewrite s = s0 + σ , where s0 is a unit vector representing the phase
centre of the synthesized field of view and |σ | � 1. As a result, σ ,
which is perpendicular to s0, lies in the plane tangent to the celestial
sphere in s0.

Assuming that the source is in the far field of the interferome-
ter (the incoming wave fronts are plane parallel) and its emission
is incoherent (different parts of the source emit uncorrelated ra-
diation), it can be shown (Clark 1999; Thompson 1999) that the
response of a two-element interferometer to a source of brightness
Iν(s) is

V (b) =
∫

�S

A(σ )Iν(σ ) e−2π iν b·σ/cd� , (1)

where �S is the angular size of the source and A(σ ) = A(σ )/A0

is the normalized antenna response pattern, with A0 being the an-
tenna response at the centre of the beam. The central Gaussian-like
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feature of the antenna pattern is usually termed primary beam and
is characterized by a full width at half-maximum

θFWHM = K
λ

D
, (2)

where D is the antenna diameter and k is a numerical factor close
to unity. For reference, ALMA antennas have a measured K = 1.13
(ALMA Partnership et al. 2017). The primary-beam full width at
half-maximum serves as the field of view of single-pointing obser-
vations. Equation (1) – derived assuming a bandwidth �ν small
enough so that Iν and A can be considered effectively constant with
ν – defines the complex visibility of the source with respect to the
chosen phase centre s0.

In order to express equation (1) in a practical form, it is useful to
define a system of coordinates such that the baseline vector b has
coordinates (u, v, w) where u points towards the East, v towards
the North, and w is parallel to the direction of interest (i.e. s0, the
phase centre). The coordinates (u, v, w) are measured in units of
the observing wavelength λ = c/ν0 , with ν0 measured at the centre
of the bandwidth. We also introduce a coordinate system on the sky
(l, m, n) with its origin in the phase centre and with (l, m, n) being
the direction cosines with respect to u and v such that

b · s
λ

= ul + vm + wn . (3)

The (l, m) plane is usually called image plane because it is the plane
on which the source brightness Iν(l, m) is defined. We note that inside
the code the (l, m) coordinates are termed (x, y) to ease readability.
With these definitions we can rewrite the complex visibility (1) as

V (u, v) =
+∞∫

−∞

+∞∫
−∞

A(l, m)Iν(l, m)√
1 − l2 − m2

e−2π i(ul+vm+w
√

1−l2−m2−1)dl dm.

(4)

Following Thompson (1999), for small-field imaging, i.e.
|(l2 + m2)w| � 1, the above expression simplifies to

V (u, v) =
+∞∫

−∞

+∞∫
−∞

A(l, m)Iν(l, m)e−2πi(ul+vm)dl dm , (5)

where the ranges of the integrals have been extended to infinity
since the integrand AIν is expected to be zero for l2 + m2 > 1.
Under the small-field imaging assumption, equation (5) shows that
the visibility V of a source of brightness Iν is the two-dimensional
Fourier transform of its modified brightness distribution AIν .

For arrays with non-coplanar baselines (w �= 0), the small-field
imaging assumption introduces a phase error π (l2 + m2)w for ra-
diation coming from the (l, m) direction. Thompson (1999) and
Cornwell, Golap & Bhatnagar (2008) show that this error is small
in the region of the image plane centred in (l, m) = (0, 0) with
angular diameter

θF �
√

θres

3
, (6)

where θ res is the full width at half-maximum of the synthesized beam
(expressed in radians). For a reference observation at a resolution
θ res = 0.1 arcsec, this corresponds to a region θF � 48 arcsec in the
image plane. If the field of view of the observations (equation 2)
is smaller than θF, then the small-field imaging assumption will be
valid for single-pointing observations.

The complex-valued visibility function Vobs(u, v) is defined ev-
erywhere in the (u, v) plane but it is only measured at the dis-
crete locations (uk, vk) that correspond to the projected baselines at
the moment of observation. These sampling locations are usually

termed uv-points. In more general terms, the visibility measure-
ments made by the interferometer can be written as

Vobs(uk, vk) = S Vobs(u, v) , (7)

where S(u, v) is the visibility sampling function defined as

S(u, v) =
M∑

k=1

δ(u − uk, v − vk) , (8)

where δ is the Dirac delta distribution.
In order to compare a model prediction to some observed visi-

bilities Vobs(uk, vk), we need to compute the synthetic visibilities of
the model brightness Iν mod using equation (5):

Vmod(u, v) =
+∞∫

−∞

+∞∫
−∞

A(l, m)Iν mod(l, m)e−2πi(ul+vm)dx dy , (9)

and then sample Vmod at the same uv-points where the observations
were taken. The model likelihood, i.e. the probability of obtaining
the observed data assuming the model is correct, can be estimated
by means of a Gaussian likelihood (Pearson 1999)L ∝ exp(−χ2/2)
where

χ2 =
M∑

k=1

χ2
k =

M∑
k=1

|Vobs(uk, vk) − Vmod(uk, vk)|2 wk , (10)

where wk is the weight associated with the k-th observed visibility.
The weights are computed theoretically as described in Wrobel &
Walker (1999) and should reflect the standard deviation σ k of the
measurements of V(uk, vk) such that wk = 1/σ 2

k .

3.2 Summary of the assumptions in the first release

In this section we discuss some relevant assumptions made in the
first released version of the code:

(i) Small-field imaging: the first release of GALARIO uses
equation (5) to compute the visibilities, thus neglecting the non-
coplanarity of the baselines. This restricts the usage of the code to
the cases in which the region modelled with*Image or*Profile
lies within the region defined in equation (6).

(ii) Primary-beam correction: the *Image functions take as in-
put an image of the primary-beam corrected brightness AIν(l, m).
In the cases in which the region of interest in the image plane is
small compared to the primary beam and close to its centre, one can
approximate AIν ≈ Iν and apply the *Image functions directly to
the brightness without significant deviations. The choice whether to
apply this approximation is left to the user. We note, however, that
in the first released version of the code the *Profile functions –
which take as input a profile Iν(R) and internally compute Iν(l, m) –
do not apply the primary beam correction.

(iii) Frequency dependence of A and Iν : both the antenna pattern
and the source brightness are frequency-dependent quantities. As
stated in the previous section, the definition in equation (1) holds for
small bandwidths �ν over which the integrand can be assumed con-
stant. For this reason, in the first release of GALARIO, the visibili-
ties are assumed all at the same average frequency ν0. This implies
that, in order to compare synthetic visibilities to observed ones (e.g.
through equation 10 with the chi2* functions), the observed visi-
bilities (typically consisting of multiple measurements over several
hundreds of spectral channels) must be channel-averaged6 into a

6 This can be achieved, e.g. with the split command of the Common
Astronomy Software Application (CASA) package.
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single channel at frequency ν0 and characterized by a small �ν. We
note that the effect of channel averaging is to combine the bright-
ness measurements over a region with angular extent �ν

ν0

√
l2 + m2

along the radial direction. Often termed bandwidth smearing, this
effect is not negligible at the distances

√
l2 + m2 where its angular

extent becomes comparable with the synthesized beam. The user
can choose �ν in order to control the bandwidth smearing within
the image plane region of interest.

The computation of synthetic visibilities of a field of view with
multiple sources can be done in basically two ways: either by ap-
plying *Image to an image of AIν(l, m) containing all the sources,
or by summing up the visibilities of each single source computed
independently with either *Image or *Profile. In the second
approach, the displacement of each source in the field of view
can be achieved (at a small computational cost) by applying a dif-
ferent complex phase to the individual visibilities as described in
the next section. While the first approach requires executing only
one Fourier transform – appearing theoretically more computation-
ally convenient – the second approach exploits the linearity of the
Fourier transform and might yield results faster if there are many
identical sources to be placed in different locations.

It is worth highlighting that in all cases (single or multiple sources
in the field of view), the limitations due to the assumptions (i) to (iii)
apply: all the sources must be located in a region that is close to the
phase centre and small compared to θF and the synthetic visibilities
are computed in a narrow band around the observing frequency ν0.

3.3 Image translation and rotation

The *Profile and *Image functions enable the user to apply
a translation and a rotation with respect to the phase centre to the
model image by specifying the optional parameters dRA, dDec,
and PA. This functionality can be useful, e.g. to fit the centre and
the Position Angle of a model image to the observations. Instead of
translating and rotating the model image before taking the Fourier
transform, GALARIO exploits the symmetries of the Fourier trans-
form under these geometric operations to achieve a better perfor-
mance and accuracy (Briggs et al. 1999).

To perform the rotation, we use the fact that the Fourier transform
commutes with rotations. This implies that to compute the visibili-
ties of a model Iν mod rotated by an angle PA, it is sufficient to rotate
the coordinates of the uv-points by −PA with

u′
k = uk cos(PA) − vk sin(PA), (11)

v′
k = uk sin(PA) + vk cos(PA), (12)

where u′
k and v′

k are the rotated coordinates of the k-th uv-point.
The translation of the model image is obtained by multiplying

the sampled visibilities Vmod(uk, vk) by a complex phase, rather than
by interpolating the image on a shifted spatial grid. This is based on
the behaviour of the Fourier transform with respect to translations,
according to which

F g(x − �x) = F g(x) × e−2π iu�x , (13)

where F denotes the Fourier transform operation. By mul-
tiplying the sampled visibilities Vmod(uk, vk) by a phase
exp [ − 2π i(u�α + v�δ)] with u, v measured in units of wave-
length and �α, �δ measured in radians, it is possible to apply the
desired shift in the image plane.

3.4 Requirements on the image

To compute the Fourier transform in equation (5) GALARIO uses
the fast Fourier transform algorithm (FFT) (Cooley & Tukey 1965)
that requires a regularly spaced 2D image as input. In this section
we describe the constraints on the image size and the pixel size
that should be fulfilled for a correct computation of the complex
visibilities. We note that such constraints are jointly determined
by the distribution of uv-points (which sets the resolution and the
maximum recoverable scale of the observations), by the diameter
of the antennas (which sets the primary beam), and by the size and
the location of the sources (which set the portion of the image plane
of interest). For the clarity of the exposition, the considerations that
follow are derived assuming a single source in a single-pointing
observation. The generalization for multiple sources is at the end of
this section.

Let us call Nl and Nm the number of pixels in the l and m direction,
respectively, of the input matrix containing AIν(l, m). The origin
(l, m) = (0, 0) is located at the image centre. If �θ l and �θm are
the angular pixel sizes in each direction, the input matrix covers a
rectangular region in the image plane defined by

|l| ≤ Nl�θl

2
and |m| ≤ Nm�θm

2
. (14)

In an analogous way, we can introduce the pixel size in the uv-plane
�u and �v, in the u and v direction, respectively. The region of the
uv-plane covered by the output matrix of the FFT algorithm is thus
defined by

|u| ≤ Nl�u

2
and |v| ≤ Nm�v

2
. (15)

There is a correspondence between the pixel size in the image plane
and that in the uv-plane, given by

Nl�θl = 1

�u
and Nm�θm = 1

�v
. (16)

In the remainder of this discussion, let us assume square pixels both
in the image plane and in the uv-plane:

�θl = �θm ≡ �θlm and �u = �v ≡ �uv . (17)

This is a choice that is usually made and it is also assumed in-
side GALARIO. For the present discussion let us also assume for
simplicity that the input matrix is square; i.e.

Nl = Nm ≡ Nlm . (18)

The distribution of uv-points where the synthetic visibilities have
to be computed imposes two fundamental constraints on the values
of Nlm, �θ lm, and �uv:

(i) the region of the uv-plane that is modelled must encompass
the region sampled by the uv-points, exceeding the most extended
baseline by at least a factor of two in order to fulfil Nyquist sampling,
that is
Nlm�uv

2
= max

k
{(u2

k + v2
k )1/2} · fmax with fmax > 2 , (19)

where the maximum is taken over all the baselines represented by
the given uv-points.

(iia) the region of the image plane that is modelled must be at
least larger than the maximum recoverable scale θMRS, namely:

Nlm�θlm > θMRS ≡ 

mink{(u2
k + v2

k )1/2} , (20)

where  ≈ 0.5 is a constant. For reference, ALMA has  = 0.6
(cf. equation 3.27 in ALMA Partnership et al. 2017). Using
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equation (16) we can rewrite equation (20) as a constraint on the uv

cell size:

�uv = 1

 fmin
· min

k

{(
u2

k + v2
k

)1/2
}

with fmin > 1 , (21)

and thus compute the image size:

Nlm = 2fmin
maxk{(u2

k + v2
k )1/2}

mink{(u2
k + v2

k )1/2} . (22)

A conservative choice for fmin would be fmin = 5 to ensure that the
field of view of the input matrix encompasses at least by five times
the scale of the largest sources that might be resolved in the data.

The most conservative criterion for the choice of �uv consists of
imaging the whole field of view covered by the observations:

(iib) the region of the image plane that is modelled must be as
large as the primary beam, namely:

Nlm�θlm = θFWHM . (23)

In this case, the image size is given by

Nlm = 2
D

Kλ
max

k
{(u2

k + v2
k )1/2} , (24)

which typically yields much larger Nlm than equation (22).
Given a distribution of uv-points (uk, vk), these criteria allow one

to compute Nlm and �θ lm that should be used for the input image.
These criteria are implemented in get_image_size, which can
be used as

Nlm, dlm = get image size(u, v, PB=θFWHM)

By default get_image_size uses criterion (iia) and equation
(22). If the primary beam FWHM is specified as the optional param-
eter PB, then get_image_size uses equation (24) in criterion
(iib).

In case the field of view contains multiple sources, criterion (iib)
(instead of iia) should be used to ensure that the sources are correctly
represented in the image plane. In any case, Nlm should always be
large enough so that the sources are far from the edges of the image.
Finally, we note that Nlm is ultimately limited by the assumptions
discussed in Section 3.2.

Table 1 shows a compilation of matrix properties derived for
realistic ALMA and VLA array configurations. For each configu-
ration we report the nominal minimum and maximum baseline, Nlm

computed using both criteria (iia) and (iib), �θ lm and the resolu-
tion θ res. �θ lm and θ res depend on the observing wavelength, for
which we assumed representative values of λ = 1.3 mm for ALMA
and λ = 7.0 mm for the VLA. In creating the table, we computed
θ res = (Max Baseline λ−1�uv)−1, which is an ideal estimate that
assumes a natural weighting scheme and neglects inhomogeneities
in the baseline distribution; real values depend on the actual distri-
bution of the antennas and differ at most by 15 per cent (cf. ALMA
Partnership et al. 2017). We notice that the typical matrix sizes re-
quested to cover the MRS by at least a factor of five (fmin = 5) range
between 2562 and 40962 for ALMA and between 5122 and 20482

for the VLA; much larger matrix sizes (up to 163842) are needed
to cover the full primary beam (we caveat that the image sizes
Nlm (iib) reported for the VLA A and B configurations exceed the
small field imaging assumption). In all cases the values of �θ lm are
comfortably smaller than the synthesized beam θ res by 5–10 times.

For best performances in the FFT computation, it is advisable to
use matrices with Nlm that is a power of two.

The last step in the visibilities computation requires sampling
the matrix containing V(u, v) at the discrete locations (uk, vk), as

Table 1. Matrix and pixel sizes for ALMA and VLA configurations.

Baselines Matrix properties
Array Min Max Nlm (iia) Nlm (iib) �θ lm θ res

Config. (m) (m) (px) (px) (arcsec) (arcsec)

ALMA
C43-1 14.6 160.7 256 256 0.215 1.669
C43-2 14.6 313.7 512 512 0.108 0.855
C43-3 14.6 500.2 1024 1024 0.054 0.536
C43-4 14.6 783.5 1024 1024 0.054 0.342
C43-5 14.6 1397.9 2048 2048 0.027 0.192
C43-6 14.6 2516.9 4096 4096 0.013 0.107
C43-7 64.0 3637.8 1024 4096 0.012 0.074
C43-8 110.4 8547.7 2048 8192 0.004 0.031
C43-9 367.6 13894.2 1024 16384 0.002 0.019
C43-10 244.0 16194.0 1024 16384 0.003 0.017

VLA
A 680.0 36400.0 1024 16384 0.006 0.040
B 210.0 11100.0 1024 4096 0.020 0.130
C 35.0 3400.0 2048 2048 0.060 0.425
D 35.0 1030.0 512 512 0.242 1.402

Note. The baselines are taken from the ALMA Cycle 5 Technical Hand-
book and the VLA 2018A Call for proposal. Nlm (iia) and Nlm (iib) have
been computed using criteria (ii) and (iii) in equation (22) and equation
(24), respectively. We used fmax = 2.5 and fmin = 5. �θ lm and θ res have
been computed assuming representative values λ = 1.3 mm for ALMA and
λ = 7.0 mm for the VLA. We caveat that the image sizes Nlm (iib) for the
VLA A and B configurations exceed the maximum allowed by the small-
field assumption.

described by equation (7). This operation can be done either by con-
volving V(u, v) with a carefully chosen kernel and then by sampling
the result at the centre of each grid cell (Schwab 1984; Briggs et al.
1999), or by means of interpolation. GALARIO performs the sam-
pling using a bilinear interpolation algorithm (Press et al. 2007);
i.e. by inferring the value Vmod(uk, vk) from the value of V(u, v)
in the four closest grid points, assuming linear increments in both
directions.

4 IM P L E M E N TAT I O N

The basic purpose of GALARIO is to compute synthetic visibilities
at a set of points in the uv-plane as illustrated in Fig. 1. To achieve
this, a number of operations have to be carried out. In Fig. 3 we
show the relevant operations that are common to CPU and GPU as
a flow chart in order to compute the visibilities (Vmod) and the χ2.
The functions Chi2Image and Chi2Profile only differ in the
first stage, where the input image is either taken as is or created
from a radial profile. The next steps before the χ2 reduction create
the visibilities. If the users wishes to use these directly, perhaps in a
more sophisticated analysis than a χ2 fit, then sampleImage and
sampleProfile would return at that point.

All operations shown in Fig. 3 have a multithreaded CPU and
GPU implementation. We wrote the code in C++ and parallelized
custom kernels in NVIDIA CUDA (2017) on the GPU, and with
the help of OpenMP (Dagum & Menon 1998) on the CPU. For
custom kernels, we used common inline functions to inject the core
operations into surrounding code that differs on CPU and GPU
because of memory handling or available libraries. GPU kernels
use grid-stride loops when applicable. Whenever possible, we prefer
optimized library functions instead of custom kernels. The FFT is
performed by FFTW (Frigo & Johnson 2005) or cuFFT (NVIDIA
cuFFT 2017). We use cuBLAS (NVIDIA cuBLAS 2017) for the
χ2 reduction on the GPU.
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Figure 3. Flow chart of the algorithm, proceeding from top to bottom.
White boxes indicate inputs, green boxes represent operations involving
one or more parallel regions that can run on the GPU or the CPU. Circles
indicate outputs and are colour-coded as the functions from which they are
produced: red for the chi2* functions and the purple for the sample*
functions. Arrows indicate data flow between kernels.

To simplify the flow chart, we omit the memory operations be-
cause they are quite different on CPU and GPU. We assume that,
prior to calling GALARIO, observations and all other inputs are
initially in the CPU main memory. To use the GPU, these data
have to be transferred and this can take a significant fraction of the
overall execution time whereas the transfer is unnecessary when
computing on the CPU; see Section 6 for details. In the special
case of an axisymmetric brightness profile, we can exploit the sym-
metry of the image to avoid unnecessary data transfer: we supply
the *Profile functions that only copy a radial profile defined on
sky coordinates and create the image directly in the GPU memory
through the sweep function, which essentially rotates the profile
to sweep the 2D image over 2π , performing bilinear interpolation
as in Press et al. (2007). The purpose of the Chi2* function is to
avoid transferring the sampled visibilities back from the GPU.

In the typical use case, an input image is such that the origin of
the coordinate system is in the central pixel. But FFTW and cuFFT
expect the origin in the top-left pixel. So we copy or create the
input image in a buffer and perform the shift, the FFT, and the
inverse shift in place. The shift algorithm is similar to the one by
Abdellah (2014) but was independently devised. The input image
is real which saves a factor of two in both memory and computing
effort in the FFT compared to a complex-to-complex transform.

All operations of Fig. 3 are accessible separately, which greatly
help with unit testing. We build up an extensive suite of tests using
pytest that verifies the individual operations and their various

combinations. To improve the speed of GALARIO, we used graph-
ical profilers such as Nvidia nvvp and Intel Amplifier as well
as custom timing methods to continuously monitor the performance
in a more automated fashion.

5 AC C U R AC Y

In this section we report the results of the tests that we conducted
to check the accuracy of GALARIO against analytic results. In
Appendix C we report additional accuracy checks performed against
the NRAO CASA package for input images that do not necessarily
have analytic visibility expressions.

To check the accuracy of GALARIO against analytic results,
we use the fact that the synthetic visibilities of an axisymmetric
brightness profile Iν(r) centred at the origin of the image plane have
an analytic result:

V (ρ) = 2π

∫ ∞

0
Iν(r) J0(2πρr) r dr , (25)

where ρ = √
u2 + v2 is the deprojected uv-baseline, r is the angular

distance from the centre, and J0 is the 0-th order Bessel function of
the first kind (Pearson 1999). For example, this approach has been
recently used by Zhang et al. (2016) to compare different brightness
profiles to interferometric observations of protoplanetary discs.

Using equation (25) we compute analytical synthetic visibilities
of four brightness-profile templates with different features and we
compare them to the visibilities output by the sample* functions.

(a) a Gaussian disc with a Gaussian ring-like excess:

Iν(r) = exp

[
−

( r

0.2 arcsec

)2
]

+ 0.3 exp

[
−

(
r − 0.4 arcsec

0.15 arcsec

)2
]
,

(26)

(b) a smooth Gaussian ring:

Iν(r) = exp

[
−

(
r − 0.5 arcsec

0.1 arcsec

)2
]

, (27)

(c) a sharp rectangular ring:

Iν(r) =
{

1 for 0.2 arcsec ≤ r ≤ 0.5 arcsec
0 otherwise

(28)

(d) three Gaussian rings:

Iν(r) = exp

[
−

(
r − 0.2 arcsec

0.1 arcsec

)2
]

+0.7 exp

[
−

(
r − 0.5 arcsec

0.05 arcsec

)2
]

+0.2 exp

[
−

(
r − 0.7 arcsec

0.03 arcsec

)2
]

. (29)

The choice of these templates with smooth or sharp, small or
large spatial features aims at reproducing typical brightness pro-
files that are used to fit real observations and also to check how well
GALARIO samples the different spatial frequencies that character-
ize their visibility profiles.

The visibilities are computed at uv-points with baselines between
10 and 1000 kλ. For reference, ALMA 1.3 mm observations in
C43-5 configuration achieve a similar uv coverage. The results
presented below hold for different baseline extents and uv-point
locations; in Fig. 4 we show just one of the several different con-
figurations we tested. For each of the templates we plot the radial
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Figure 4. Results of the accuracy checks. For each of the templates we plot the radial brightness profile Iν (r) (left-hand panel), the image of the model (central
panel), and the comparison of the synthetic visibilities (right-hand panel). The synthetic visibilities computed analytically (red lines) are compared to those
computed by GALARIO (grey dots). The analytic synthetic visibilities have been sampled exactly in the same uv locations of those computed by GALARIO
but we show them as a continuous red line to aid the visual comparison.
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Table 2. Execution times of chi2Profile.

CPU GPU
Nlm Python Serial 6 threads 12 threads
(px) (ms) (ms) (ms) (ms) (ms)

512 815 109 19 33 12
1024 1407 120 22 16 14
2048 2719 175 38 31 18
4096 5959 478 115 95 39
8192 14702 1440 358 317 126
16384 41895 6204 1536 1411 479

Note. Timings refer to the execution of the double-precision version of
chi2Profile with M = 106 visibility points.

brightness profile Iν(r) (left-hand panel), the image of the model
(central panel), and the comparison of the synthetic visibilities
(right-hand panel). The sampleProfile and sampleImage
functions yield identical synthetic visibilities at machine precision
level, therefore in Fig. 4 we just show the results for one of them,
sampleProfile. Only the real part Re(V ) of the synthetic vis-
ibilities is shown, since the imaginary part is identically zero for
axisymmetric input images.

In general we observe a very good agreement between the syn-
thetic visibilities computed by GALARIO and those computed ana-
lytically with equation (25), as the deprojected visibility profiles in
Fig. 4 clearly show.sampleProfile andsampleImagemodel
correctly the visibility profile of the templates at all the spatial fre-
quencies. We performed quantitative checks on the discrepancy
between the results and we find that the fractional difference be-
tween the sampled Re(V ) values is generally smaller than 10−5.
Only for a few data points where Re(V ) is very close to zero
does the fractional difference reach a level of 0.1 per cent. We con-
ducted numerous other consistency checks during the development
of GALARIO that we do not report here – e.g. comparing the out-
put of the complex-to-complex Fourier transform with respect to
the real-to-complex one, etc. – but all are available as unit tests and
can be executed from GALARIO’s source code.

6 PE R F O R M A N C E

We now investigate the performance characteristics of GALARIO.
All experiments shown are performed on a desktop workstation with
an Intel i7-6800K CPU with six cores on one socket, hyperthreading,
3.4 GHz maximum frequency and 32 GB of RAM. The machine
also has an Nvidia GTX 1060 graphics card with 6 GB of RAM
and 1280 CUDA cores. We also ran identical benchmarks on high-
performance systems with 32 CPU cores and more powerful Nvidia
P100 GPUs. While the exact timings differed, we verified that our
qualitative conclusions presented below also hold on these much
more expensive systems.

All results are for double precision only. We observed signifi-
cant loss of precision in the single-precision FFT for reasonably
sized images beyond 5122 pixels that could affect scientific results
whereas the double-precision FFT was much more robust. Therefore
we recommend double precision as the default mode in GALARIO.

6.1 Scaling with image size

To justify the effort of creating this package, we consider an alterna-
tive implementation of chi2Profile in standard PYTHON without
any explicit loops, using instead the widespread NUMPY and SCIPY

packages (van der Walt, Colbert & Varoquaux 2011) to do all the
‘heavy lifting’. This represents a baseline solution that could be as-
sembled in a short time without requiring deep thought. This PYTHON

version is shipped with GALARIO’s unit tests and is reported for
completeness in Appendix D.

In Fig. 5 we show the scaling behaviour by calling GALARIO’s
chi2Profile double-precision implementation for different
sizes of the input image varying from 5122 to 163842 pixels. This
is repeated on the CPU with 1, 6, and 12 OpenMP threads and
on the GPU. The absolute timings are reported in Table 2, while
Fig. 5 presents the timings in terms of the speed-up relative to the
PYTHON-only baseline. Contrary to common belief, even the serial
CPU implementation of GALARIO is significantly faster than the
baseline, thus implying that there is a price to pay when relying
on NUMPY and SCIPY even though the relevant parts also execute
compiled C code just like GALARIO.

Figure 5. Scaling with image size: speed-up of the CPU and GPU version of chi2Profile. The CPU version is executed with 1, 6, and 12 threads. The
speed-up is computed with respect to a PYTHON version that relies on NUMPY and SCIPY and make no use of explicit loops. The absolute execution times are
reported in Table 2. The horizontal brackets highlight typical matrix sizes for realistic ALMA and VLA array configurations (cf. Table 1).
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Figure 6. Strong scaling of the CPU version for different image sizes:
speed-up (with respect to the serial version) for increasing computing power.

It turns out that because of the large amount of memory accesses
inherent to our algorithm, hyperthreading can help significantly.
The biggest gain is 30 per cent for a 10242 image comparing 6–12
threads; i.e. one to two threads per physical core. In contrast, for
the smallest image size 5122, the overhead of threads leads to a
performance penalty of about 50 per cent. It appears the optimum
number of threads has to be determined by trial and error.

Comparing the fastest CPU timing to the GPU timing, we observe
that executing on the GPU is about 30 per cent to three times faster. A
speed-up of two to five is often observed when comparing optimized
parallel implementations on CPU and GPU, and bigger speed-ups

occur when the baseline is serial or unoptimized CPU code (Lee
et al. 2010). The advantage of the GPU is the enormous number of
threads that can operate simultaneously, so it performs best if there
are many arithmetic operations per data unit. The disadvantage is
that data transfer from the CPU to the GPU and memory allocation
on the GPU are much slower compared to the CPU. The ideal
application for the GPU then is for a large image that is created on
the GPU and need not be transferred from host memory.

6.2 Strong scaling

Taking the serial CPU code for one OpenMP thread as the baseline,
Fig. 6 shows the strong-scaling behaviour; i.e. by how much the
execution improves with more threads for a fixed image size. We
compute chi2Profile 300 times with identical input parameters
for each number of threads, and display the shortest of the 300 times
recorded.

For small images up to 10242 pixels, the speed-up is nearly equal
to the number of threads until it reaches six, the number of physical
cores on our test machine. For larger images, the cache size becomes
a factor as threads compete for it and we have many memory-heavy
operations. The improvement up to six threads is still monotonous.
Using more threads than cores slightly hides the cache misses, so
for all image sizes except 5122, the highest performance is attained
for 12 threads, i.e. two threads per core, the maximum supported
by native hyperthreading.

6.3 Profiling suboperations

While GALARIO aims to be user friendly and accepts an input
image supplied by the user with chi2Image, it is generally ad-
vantageous to create the image on the GPU. For the particular case
of an image created from a radial profile, chi2Profile only
transfers a radial profile equivalent to one row of pixels to the GPU,
creates the image on the GPU, then performs the same operations
on the image as chi2Image. In Fig. 7, we show a detailed break-

Figure 7. Execution times of the suboperations in chi2Image (left-hand panel) and chi2Profile (right-hand panel). Each vertical bar represents the
smallest time across 20 calls of chi2* for a 40962 image. The CPU version is run with the optimal configuration of threads for this image size. CPU to GPU
(Host to Device) copy operations are coloured in tones of blue. On the GPU, chi2Profile dramatically reduces the time spent in copying with respect to
chi2Image and, even accounting for the extra-time needed to create the image, it manages to be 1.5 times faster than chi2Image.
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down of the time that each of the suboperations requires for both
chi2* functions for a 40962 image. We compare only the optimal
number of threads on the CPU (12 in this case) to the GPU imple-
mentation. We repeated each function call 20 times and display the
minimum time for each suboperation during the 20 runs. Since no
run features the minimum time for all suboperations, the minimum
time for chi2* across the 20 runs is slightly larger than the sum
of timings shown in Fig. 7.

The important point of Fig. 7 is that all compute-intensive op-
erations are faster on the GPU compared to the CPU, in particular
the Fourier transform and the creation of the image. But the data
transfers partly reduce this advantage, either because they are not
needed at all on the CPU (for example the copy of read-only data
like observations) or because the PCI express bus has a much re-
duced bandwidth and higher latency compared to accesses to the
main CPU memory.

For a large image, copying to the device actually takes longer than
the FFT, that is why chi2Image is nearly 20 ms, or 50 per cent,
slower than chi2Profile on the GPU, and that does not even
account for the time needed to create the image on the CPU, which
in this example takes another 20 ms. On the CPU, chi2Profile
is only about 15 per cent faster than chi2Image.

7 C O N C L U S I O N S

In this paper we have presented GALARIO, a GPU accelerated li-
brary for analysing radio interferometer observations. Distributed
under the open source GNU LGPLv3, GALARIO is actively de-
veloped at http://github.com/mtazzari/galario and can be easily in-
stalled on machines with different configurations.

Unlike single dishes, which directly measure the brightness of
a source over a continuous region of the sky, radio interferometers
measure its Fourier transform, sampling it at discrete locations and
producing a collection of complex visibilities. The computational
effort required to compare a model prediction to an observational
data set of complex visibilities has increased dramatically in the
last years due to the improved angular resolution and data rate of
modern radio interferometers, which require larger matrix sizes and
involve hundreds of thousands of visibility points.

The process of computing synthetic visibilities from a model
brightness involves several time-consuming matrix operations such
as Fourier transforms, quadrant swaps, and interpolations. These
operations have to be performed once for every likelihood evalua-
tion, and the likelihood is called thousands or even a million times
in the normal workflow required to fit a model to the data.

In this context, GALARIO leverages the computing power of
modern GPUs to accelerate the computation of the synthetic
visibilities, thus reducing the overall execution time of the like-
lihood. For ease of use, GALARIO offers dedicated functions that
produce directly the weighted χ2 of the model for the given observa-
tions. Such functions can be easily included in any analysis scheme,
be it a Markov Chain Monte Carlo sampler or a classical χ2 opti-
mizer. Moreover, thanks to its modularity, GALARIO can be used
to fit simultaneously several observations at different wavelengths,
thus speeding up even the most demanding multiwavelength
analyses.

GALARIO is easy to use – computing the synthetic visibilities
from a model image can be done in one line of code – and easy
to adopt in existing code – PYTHON wrappers to the underlying C

and CUDA code are available for all the functions. The design of
GALARIO, with symmetric CPU and GPU versions of all the func-
tions, allows the user to develop highly reusable code that can be

executed both on CPUs and on GPUs with minimal changes, ensur-
ing considerable speed-ups also on machines without a GPU.

In terms of performances, GALARIO is faster than a stan-
dard PYTHON implementation of the same functionalities by up to
150 times on the GPU and up to 90 times on the CPU. We note that
these speed-ups are achievable not only on top-tier GPUs, but also
on affordable desktop-class ones.

In the future releases of GALARIO we plan to generalize the
implementation of the synthesis imaging equations by including
the primary beam correction and a proper treatment of non-coplanar
baselines (relevant for wide field imaging). Moreover, several new
features will be added, including the multiwavelength synthesis of
brightness models with spectral dependence.
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APPENDIX A : INSTA LLATION

GALARIO is actively developed online at http://github.
com/mtazzari/galario. Contributions are welcome and we invite
users that encounter problems in using GALARIO to report them
at https://github.com/mtazzari/galario/issues.

The easiest way to install GALARIO is via CONDA, the pack-
age manager of the Anaconda PYTHON distribution,7 which ensures

7 https://www.anaconda.com/

all the dependencies are installed automatically. With CONDA, the
user gets access to GALARIO C/C++ and PYTHON bindings, both
with support for multithreading. The installation command is as
easy as

conda install -c conda-forge galario

Due to technical limitations, the CONDA package does not sup-
port GPUs at the time of writing. In order to use the GPU
version, GALARIO must be compiled by hand as follows.
First, download the latest stable version from the repository
with

git clone <t>https://github.com/mtazzari/

galario.git

GALARIO works with both PYTHON 2 and 3, and to simplify the
build we suggest to work in a PYTHON virtual environment. Instruc-
tions on how to create an environment are reported in the online
documentation.

Once downloaded, GALARIO can be installed with:

cd galario
mkdir build && cd build
cmake.. && make

which will compile the CPU version of GALARIO and, if a GPU
is present on your machine, also the GPU version. The cmake
command takes care of adapting the compilation instructions to the
compilers and the libraries available on your machine.

Once compiled, GALARIO can be installed with

sudo make install

or, in the case the user has no root privileges, an installation path
can be specified with

cmake -DCMAKE INSTALL PREFIX=/path/to/
galario/..make install

This installs the C libraries of GALARIO in path/
to/galario/lib and the PYTHON libraries in the currently active
Python environment.

A full list of system requirements and detailed instructions to
compile GALARIO on different systems are available in the online
documentation at https://mtazzari.github.io/galario/.

A P P E N D I X B : PE R F O R M A N C E ( C O N T I N U E D )

In Section 6 we presented the performance of samplePro-
file. For completeness, in this appendix we report analogous per-
formance measurements conducted for sampleImage. Fig. B1
shows the scaling of the CPU and GPU version as a function of
matrix size, while Fig. B2 shows the scaling of the CPU version for
increasing computing power. The absolute time measurements are
reported in Table B1.
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Figure B1. Scaling with image size: speed-up of the CPU and GPU version of chi2Image. The CPU version is executed with 1, 6, and 12 threads. The
speed-up is computed with respect to a PYTHON version that relies on NUMPY and SCIPY and make no use of explicit loops. The absolute execution times are
reported in Table B1. The horizontal brackets highlight typical matrix sizes for realistic ALMA and VLA array configurations (cf. Table 1).

Figure B2. Strong scaling of the CPU version for different image sizes:
speed-up (with respect to the serial version) for increasing computing power.

Table B1. Execution times of chi2Image.

CPU GPU
Nlm Python Serial 6 threads 12 threads
(px) (ms) (ms) (ms) (ms) (ms)

512 799 101 18 33 11
1024 1385 110 20 16 13
2048 2651 172 34 30 22
4096 5747 489 105 88 59
8192 13829 1589 346 300 208
16384 38311 7038 1497 1348 810

Note. Timings refer to the execution of the double-precision version of
chi2Image with M = 106 visibility points.

A P P E N D I X C : AC C U R AC Y ( C O N T I N U E D )

In this section we present some of the results of the accuracy checks
that we carried out against the NRAO CASA package. We ran a large
suite of tests, here we show only some representative cases for
different model images.

In all these tests we used the results of the sampleImage func-
tion of GALARIO and of the ft command of CASA, which are
designed to perform the same operation: compute the sampled vis-
ibilities V(uk, vk) for a given model image. For each image of the
source brightness Iν(l, m), we computed the visibilities in two ways:
(i) we applied GALARIO’s sampleImage to the 2d matrix con-
taining the image; (ii) we exported the image to a FITS file, imported
it in CASA with the importfits task and then Fourier-sampled it
with the ft task (invoked with usescratch option set to True).

Fig. C1 shows the comparison for three different input models,
reporting a central cut of the image Iν(l, m) (left column), a compar-
ison of the amplitude [Re(V)2 + Im(V)2]1/2 (central column) and a
comparison of the phase arctan[Im(V )/Re(V )] (right column). In
the amplitude and phase plots, the bottom panels represent, respec-
tively, the relative and absolute difference between the GALARIO
and the CASA results (except in the first row, where the results are
each compared to the analytic solution). The uv-points used for
the comparison represent a realistic uv coverage for an ALMA ob-
servation, with baselines in the range 11–1370 kλ, corresponding
to a maximum recoverable scale θMRS ∼ 10 arcsec and an angular
resolution θ res ∼ 0.15 arcsec.

In the first row the image is an axisymmetric model centred
at the phase centre. By definition its visibility function is real-
valued and has an analytic solution given by the Hankel transform in
equation (25). We therefore compare the results given by GALARIO
and by CASA against the analytic solution. Both GALARIO and
CASA reproduce very well the analytic amplitude within 0.1 per cent
up to approximately 750 kλ. GALARIO is slightly more accurate
than CASA at longer baselines, up to 875 kλ. The frequent spikes
in the relative difference are due to the very sharp shape of the
lobes, and occur only at the amplitude minima. Since the model is
axisymmetric, the phase should be identically zero at every baseline:
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Figure C1. Results of the accuracy checks that we carried out against the NRAO CASA package. Left column: images of the simulated sources. Central and
right columns: the comparison of the amplitude and phase of the synthetic visibilities. Each dot represents a uv-point. The lower panels of the amplitude and
phase plots represent, respectively, the relative and the absolute difference between the computed quantities. First row: the results from CASA (grey dots) and
GALARIO (red dots) are compared to the analytic solution (yellow dots). Second and third row: the results of CASA are compared to those of GALARIO.

the phase plot clearly shows that GALARIO is almost 10 orders of
magnitude more accurate than CASA in reproducing the null phase.

In the second row the image is made by multiple sources dis-
placed across the field of view, and in the third row by a mock
observation of Saturn (not to scale). These images have been cho-
sen because they exhibit structures spanning a wide range of spatial
scales, and therefore are useful to probe the accuracy of the codes
across a wide range of spatial frequencies. In both cases, the am-
plitude and phase comparison shows a good agreement between
the results obtained by GALARIO and CASA. In the second row the
vast majority of uv-points agree better than 0.5–1 per cent, while in

the third row the agreement is slightly worse, within 1–4 per cent.
The discrepancies are significant only for the visibility phase in a
handful of uv-points (10–100) out of a total of approximately 105

visibilities. Additionally, we compared the synthesized images (not
reported here) produced from the visibilities computed by CASA and
GALARIO and we find that they also are in very good agreement.
We note that the slightly larger discrepancies found in the third row
might be due to the fact that the CASA ft task is likely applying a
correction for wide field effects that is not included in the first re-
lease of GALARIO used here: this might be marginally relevant for
the source brightness used in the third row, which is more extended
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Figure D1. Implementation of py_chi2Image and py_chi2Profile, the PYTHON version of GALARIO’s chi2Image and chi2Profile functions.
These PYTHON functions are used as reference for the speed-up factors computed in Section 6.

than those used in the first two rows. However, due to the lack of
documentation in the CASA package, it was unclear how to disable
such correction for wide field effects when using the ft task.

A P P E N D I X D : PY T H O N R E F E R E N C E
F U N C T I O N S

For completeness, in Fig. D1 we report the implementation of
py_chi2Image and py_chi2Profile, the PYTHON version of

GALARIO’s chi2Image and chi2Profile functions. These
PYTHON functions are used as the reference for the speed-up fac-
tors computed in Section 6. For all the computate-heavy operations
they employ only optimized NUMPY and SCIPY functions, as provided
in the Anaconda Python distribution. The py_chi2Image and
py_chi2Profile functions are also provided in the unit tests in
the online repository.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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