
Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

Differential Geometry Tools for Multidisciplinary Design
Optimization, Part II: Application to QSD

Craig Bakker · Geoffrey T. Parks

Received: date / Accepted: date

Abstract Having previously developed a differential

geometry framework for analyzing and conceptualizing

Multidisciplinary Design Optimization (MDO) prob-

lems and methods, we now apply that framework to

consider the Quasi-Separable Decomposition (QSD) ar-

chitecture. Based on our theoretical investigations, we

predict that QSD will fail to return feasible designs for

MDO problems. In the same vein, we analyze the In-

dividual Discipline Feasible (IDF) architecture, predict

that IDF will converge to feasible designs, and propose

a modified version of QSD which we believe will also

output feasible design points. To test these predictions,

we run all three architectures on a well-known analyti-

cal MDO problem. Our predictions regarding feasibility

prove to be accurate: QSD does not return any feasi-

ble points, whereas all of the final design points from
IDF and the modified QSD are feasible. Now that con-

vergence to feasibility has been established, the next

step is to investigate the optimization performance of

various QSD modifications.

Keywords Multidisciplinary Design Optimization ·
Differential Geometry · Design Analysis

1 Introduction

In Part I of this paper, we developed a differential ge-

ometry (DG) framework for analyzing and developing

Multidisciplinary Design Optimization (MDO) solution

methods: we outlined the underlying theory and then

C. Bakker · G.T. Parks
Department of Engineering
University of Cambridge
Cambridge, United Kingdom
CB2 1PZ E-mail: ckrb2@cam.ac.uk

translated MDO into that language of that theory. Hav-

ing done this, we highlighted the analytical work that

has already been done in MDO and discussed our past,

present and future uses of our framework elsewhere. Fi-

nally, we promised to provide an example of how DG

can be used to investigate and improve current MDO

solution methods. In Part II, we now provide that ex-

ample through our analysis of the Quasi-Separable De-

composition (QSD) architecture. As mentioned in Part

I, Hafkta and Watson (2005) proved solution equiva-

lence between the original and decomposed problems.

Using a qualitative analysis of the various manifolds

involved in the QSD decomposition, however, we will

show that their proof fails in the presence of state equa-

tions: given the presence of state equations, QSD will

not necessarily return a feasible solution, let alone one

which is optimal for the original problem. We will then

compare its performance with an architecture which we

predict will converge and produce a convergent version

of QSD, Modified QSD (MQSD).

2 The Quasi-Separable Decomposition

QSD was first proposed by Haftka and Watson (2005).

They began from this quasi-separable constrained op-

timization formulation

min f0 (z) +
∑
i

fi
(
x(i), z

)
(1)

g(0) (z) ≤ 0 (2)

g(i)

(
z,x(i)

)
≤ 0 , i = 1, 2, . . . (3)

where z are the global design variables, x(i) are the dis-

ciplinary design variables for discipline i, f0 is the global

objective function, the fi’s are the disciplinary objective



2 Craig Bakker, Geoffrey T. Parks

functions, g(0) are the global design constraints, and

g(i) are the disciplinary design constraints. There may

be explicit bounds on the design variables, but as they

are not significant for the decomposition analysis, we

omit them for brevity’s sake. The decomposed problem

has the system-level objective function and constraints

min
z,b

f0 (z) +
∑
i

bi (4)

g(0) (z) ≤ 0 (5)

s (z,b) ≤ 0 (6)

and the subsystem optimization, for subsystem i, is

min
x(i),si

si (7)

g(i)

(
z,x(i)

)
− si ≤ 0 (8)

fi
(
x(i), z

)
− bi − si ≤ 0 (9)

where si is the constraint margin for discipline i and bi

is the budget for the objective function of discipline i.

In (8), the combination of the vector g(i) and the scalar

si is simply a shorthand way of showing that the same

quantity si is subtracted from each element of g(i), and

the inequality holds element-wise. The explicit design

variable constraints are, again, implied but omitted. As

Haftka and Watson (2005) observe, it is not necessary to

put a constraint margin (i.e. an si) on these constraints.

In their original formulation, the minimization of the

subsystem-level objective function is only with respect

to x(i), not with respect to si as well, but it is necessary

that the constraint margins vary, to do the optimiza-

tion, so this discrepancy is not particularly important;
in their formulation, Martins and Lambe (2013) have

the subsystem optimization with respect to the con-

straint margins as we have described it here.

In this formulation, there are no state equations,

state variables, or equality constraints. Assuming con-

vexity, Haftka and Watson (2005) prove that the (opti-

mal) solutions to the original and decomposed problem

correspond to each other. They also note that the con-

straint margin variables, the si’s, will generally not be

smooth, though they may be piecewise smooth or piece-

wise analytic. Calculating their values in the system-

level optimization in practice, moreover, may require

the use of response surfaces, as their values will de-

pend on the results of each subsystem optimization.

Irrespective of how those constraint margins are calcu-

lated, they are a key part of the architecture – the solu-

tion method hinges on satisfying inequality constraints.

Later, Haftka and Watson extend QSD and their anal-

ysis to include discrete variables and provide some sim-

ilar analysis (Haftka and Watson 2006).

A full MDO formulation (i.e. one with state vari-

ables and state equations) of QSD is given by Mar-

tins and Lambe (2013); they also note that, in practice,

all practical design problems are quasi-separable – even

if a problem were not quasi-separable, it could easily

be transformed into a quasi-separable problem through

duplicating the necessary variables. The differences be-

tween the formulation of Haftka and Watson and that

of a full MDO version can be seen by comparing (1)-

(9) with (10)-(20). The paper by Martins and Lambe

also has different signs or directionality for the con-

straint margins than does the original by Haftka and

Watson: Haftka and Watson use ≤, whereas Martins

and Lambe use ≥, and this correspondingly affects how

the constraint margins appear in the formulation else-

where (e.g. the sign of the constraint margin and thus

whether it is minimized or maximized). Here, we will

keep the directionality used by Haftka and Watson.

QSD has not been implemented very often, however.

In their paper, de Wit and van Keulen (2007) evaluate

QSD alongside a number of other MDO architectures on

a two-bar truss problem. QSD converged but was one

of the more expensive architectures. We also note, as

will become meaningful following our analysis, that the

optimization problem used there had state variables but

no coupled state equations (i.e. the state variables were

not coupled to each other through equality constraints);

the only constraints on the problem were inequalities.

3 Analyzing, comparing, and fixing QSD

In Section 3 of Part I, we described MDO as consisting

of optimization problems on manifolds – i.e. the con-

strained optimization in <n becomes an unconstrained

optimization on a Riemannian manifold; any inequal-

ity constraints present define the boundaries of that

manifold. We can do the same thing with the various

optimization processes in QSD. Although we could use

parts of the manifold structure like the metric tensor to

aid our investigation into QSD, for the purposes of our

analysis here, it will be sufficient to identify the rele-

vant manifolds, discuss how they relate to each other,

and describe how the optimizations move along their

respective manifolds. Additional analysis with the met-

ric tensor, for example, is informative but prohibitively

lengthy, and as it is not necessary for the conclusions we

have drawn here, we have not included it. The different

options available for calculating the approximation to s

in the system-level problem (Martins and Lambe 2013)

would also complicate the details of such analysis – the

precise nature of the system-level properties (such as

its metric tensor and optimality conditions) would vary

depending on how the approximation was performed.



Differential Geometry Tools for Multidisciplinary Design Optimization, Part II: Application to QSD 3

Consider an illustration of the reasoning used in our

qualitative analysis with manifolds: if an architecture

has an optimization process with an associated mani-

fold, Mopt, which does not intersect the feasible design

manifold, Mfeas, then that optimization process can-

not return a feasible point – the process is confined to

Mopt. However, if Mopt and Mfeas intersect, then the

optimization process may return a feasible point; the

feasibility of the returned point will depend on how the

process moves along Mopt. Finally, if Mopt is a sub-

manifold of Mfeas (or is equivalent to Mfeas), then the

optimization process must return a feasible point.

As discussed in Section 3 of Part I, manifolds can be

seen as a set of points in a Euclidean space, but man-

ifolds have more structure than a set of points will, in

general. This extra structure is helpful in several ways:

it provides a set of coordinates as a reference (which

are not necessarily part of a set); it aids in the concep-

tion and visualization of the problem to think of the

relevant collections of points as manifolds rather than

just as sets (i.e. the manifolds are simply like higher-

dimensional versions of surfaces, but point sets do not

have a similarly concrete conceptual analogy); and the

intrinsic and extrinsic manifold perspectives, which do

not exist for sets as such, provide two different, com-

plementary ways of considering each manifold. Perhaps

most importantly, though, part of the structure of a

manifold is dimensionality – a set of points may have

a dimension, but that dimensionality is not an inte-

gral property of their existence as a set. Dimensional-

ity, however, helps us to see one aspect of the relation-

ship between manifolds (especially manifolds and their

submanifolds). For example, if a manifold has a sub-

manifold of a lower dimension, and any point on the

manifold is chosen at random, the probability of that

point also being contained in the submanifold is effec-

tively zero; more technically, the submanifold is a set

of zero content on the manifold.

To aid in our analysis, we have included Table 1

showing variable denotations, meanings, and locations

for those relevant quantities not discussed in Part I.

3.1 QSD

Here we will consider the QSD architecture as described

by Martins and Lambe (2013) but with our notation

and the constraint margin directionality of Haftka and

Watson (2005). Using our DG tools and concepts, we

will look at the manifolds and submanifolds involved in

both the original and decomposed problem and thereby

learn something about how this architecture functions.

We begin by describing the original problem (for no-

tational simplicity, we assume that each discipline has

only one state variable, but this does not affect the

analysis) with the formulation

min f0 (z,y) +
∑
i

fi
(
x(i), z, y

i
)

(10)

h (w,y) = 0 (11)

g(0) (z,y) ≤ 0 (12)

g(i)

(
x(i), z, y

i
)
≤ 0 , i = 1, 2, . . . (13)

The QSD decomposition is as follows: the system-

level problem is

min
z,y,b

f0 (z,y) +
∑
i

bi (14)

g(0) (z,y) ≤ 0 (15)

si
(
x(i), z, ψ

i
(
x(i), z, ỹ(i)

)
, bi
)
≤ 0 , i = 1, 2, . . . (16)

and the subsystem problem for subsystem i is

min
x(i),si

si (17)

g(i)

(
x(i), z, y

i
)
− si ≤ 0 (18)

fi
(
x(i), z, y

i
)
− bi − si ≤ 0 (19)

yi = ψi
(
x(i), z, ỹ(i)

)
(20)

As before, in (18), the combination of the vector

g(i) and the scalar si is simply a shorthand way of

showing that the same quantity si is subtracted from

each element of g(i), and the inequality holds element-

wise. Using DG in an MDO context can often strain the

standard notation conventions for superscripts and sub-

scripts; see Part I or Ivancevic and Ivancevic (2007) for

more on those conventions, and see Part I for variable
descriptions not listed in Table 1.

The QSD optimization process consists of perform-

ing the subsystem optimizations and then doing the

system-level optimization (Martins and Lambe 2013).

We can now consider the pertinent manifolds for the

decomposed problem:

1. Mtot = <n+3(m−n) with coordinates (x, z,y,b, s).

2. Msys (x) is defined for each value of x by s (z,y,b);

the local design variables are dropped from the s

equations here to show that they are held constant

during the system-level optimization and thus act

as fixed parameters and not variables. Msys (x) is

an (nz + 2 (m− n))-manifold, with ∂Msys defined

by (15) and (16), naturally embedded in Mtot.

3. Each Mi

(
z, ỹ(i), b

i
)

is defined by (18)-(20) with all

variables except x(i) and si are held constant. To

be more precise, (20) defines Mi itself; (18) and

(19) define ∂Mi. Each Mi

(
z, ỹ(i), b

i
)

is an (ni + 1)-

manifold naturally embedded in <ni+2.



4 Craig Bakker, Geoffrey T. Parks

Table 1 Symbols used in Section 3

Symbol Denotation Location
f0 System-level objective function QSD, MQSD
fi Discipline i objective function QSD, MQSD
g0 System-level constraints QSD, MQSD
g(i) Discipline i constraints QSD, MQSD
si Discipline i constraint margin QSD, MQSD
bi Discipline i objective function budget QSD, MQSD
σ Duplicate state variables IDF, MQSD

Mtot The space of all possible variable values QSD, IDF, MQSD
Msys System-level optimization manifold QSD, MQSD
Mi Subsystem i optimization manifold QSD, MQSD
ni Total design variables in discipline i QSD, MQSD

MIDF IDF optimization manifold IDF
φ (·) Constraint enforcement function IDF, MQSD

4. Mfeas is defined by (11) with its boundary ∂Mfeas

defined by (12) and (13). As such, it is independent

of b and s.

We now consider all of these (parameterized) mani-

folds embedded in Mtot and make several observations:

1. At a given point of intersection, the Mi’s are all

mutually orthogonal, but Msys is not orthogonal to

the Mi’s.

2. Msys intersects Mfeas, but neither is a submanifold

of the other. The intersection Msys (x) ∩Mfeas is

defined by y = y (z) and s = s (z,y (z) ,b), where

y (z) is determined by the solution of (11) with x

held constant. Submanifolds of Mfeas with constant

x values are submanifolds of Msys.

3. The Mi’s may intersect Mfeas, but neither is a sub-

manifold of the other.

The main observation of this analysis is that, in

the multidisciplinary case (i.e. with state equations),

apart from the use of optimizer-enforced feasibility or

a system-level multidisciplinary analysis – neither of

which show up in the formulation given by Martins and

Lambe (2013) – the architecture has no way to force the

optimization either to stay on Mfeas or to return to it

in the event that the optimization leaves it.

In their paper, Haftka and Watson (2005) prove

that solutions to the decomposed problem are equiv-

alent to solutions to the original problem (both feasi-

ble and optimal solutions). Their formulation, however,

had no state equations. If the qualitative analysis done

above were re-done without state equations, it would

show the system manifold to be a submanifold of the

feasible design space, and thus the optimization would

never leave the feasible design space; correspondingly,

each subsystem manifold would also be a submanifold

of the feasible design space, and this would always be

the case. However, in the multidisciplinary formulation,

the system optimization may move off of the feasible

design manifold because the system manifold is not a

submanifold of the feasible design space; although they

intersect, there is no mechanism for preventing the op-

timization from leaving that intersection or returning

the optimization to that intersection once it has left.

The subsystem optimizations would then take their

starting y values from a point not on the feasible design

manifold, and the Mi’s defined by the disciplinary anal-

yses and that starting point would be not be guaranteed

to intersect the feasible design manifold anywhere. In

other words, if the subsystem optimizations do not start

from a feasible point, it may not be possible for them

to finish at a feasible point, and the system-level opti-

mization is under no compulsion (or even inclination)

to return a feasible point. Moreover, even if the subsys-

tem optimizations start from a feasible point, they, too,

will not generally return a feasible design point – and

for the same reasons that the system-level optimization

fails to return feasible points.

Inspecting the optimality conditions for both the de-

composed and original problems would explicitly show

how the condition of multidisciplinary feasibility is nec-

essary in order to make the optimality conditions equiv-

alent. That analysis, however, would require more space

than we have remaining, and it would only support our

conclusions rather than lead to new ones in this regard.

3.2 IDF

Elsewhere, we considered some other MDO architec-

tures within our framework (Bakker et al. 2012), and

it may be instructive to reiterate some of our analysis

there in comparing one of those architectures with QSD

at this point. Martins and Lambe (2013) classify QSD

as a distributed form of the Individual Discipline Feasi-

ble (IDF) architecture (Cramer et al. 1994), so we will



Differential Geometry Tools for Multidisciplinary Design Optimization, Part II: Application to QSD 5

consider IDF. The original MDO problem of minimiz-

ing f (w,y) subject to h (w,y) = 0 and g (w,y) ≤ 0

is transformed into

min
w,σ

f (w,y) + φ (y − σ) (21)

y = ψ (w,σ) (22)

g (w,y) ≤ 0 (23)

where the φ (y − σ) in the objective function indicates

that the argument of φ is an equality constraint which is

handled by the optimizer – possibly through a penalty

function – and thus satisfied by a convergent final solu-

tion (though not necessarily at every iteration). Mfeas

is a submanifold of the architecture’s manifold, MIDF ,

along which the optimizer moves. MIDF is defined by

(22), ∂MIDF is defined by (23), Mfeas is the submani-

fold resulting from the additional constraint y = σ, and

Mtot is just <2m−n; Mfeas ⊂ MIDF ⊂ Mtot. The opti-

mizer, not a multidisciplinary analysis, is thus responsi-

ble for eventually forcing the optimization to the feasi-

ble submanifold of MIDF , and the presence of φ (y − σ)

ensures that it does so.

3.3 MQSD

There are several different ways in which QSD could

be modified. In keeping with the description of QSD

as a distributed form of IDF, we chose to model our

approach after IDF: we used duplicate state variables

and optimizer-driven multidisciplinary feasibility in the

system-level problem. The system-level problem is thus

min
z,σ,b

f0 (z,y) + φ (y − σ) +
∑
i

bi (24)

g(0) (z,y) ≤ 0 (25)

si
(
x(i), z, ψ

i
(
x(i), z, σ̃(i)

)
, bi
)
≤ 0 , i = 1, 2, . . . (26)

y = ψ (w,σ) (27)

and the subsystem problem for subsystem i is

min
x(i),si

si (28)

g(i)

(
x(i), z, y

i
)
− si ≤ 0 (29)

fi
(
x(i), z, y

i
)
− bi − si ≤ 0 (30)

yi = ψi
(
x(i), z, σ̃(i)

)
(31)

We now analyze MQSD in a way paralleling our

analysis of QSD. We begin with the relevant manifolds:

1. Mtot = <n+4(m−n) with coordinates (x, z,y,b, s,σ).

2. Msys (x) is defined for each value of x by s (z,σ,b)

and (27); the local design variables are dropped from

the s equations here to show that they are held con-

stant during the system-level optimization and thus

act as fixed parameters and not variables. Msys (x)

is an (nz + 2 (m− n))-manifold naturally embedded

in Mtot. The boundary, ∂Msys, is defined by (25)

and (26).

3. Each Mi

(
z, σ̃(i), b

i
)

is defined by (31), and all vari-

ables except x(i) and si are held constant; each Mi is

an (ni + 1)-manifold naturally embedded in <ni+2.

4. Mfeas is defined as it was for the original QSD for-

mulation; h (w,y) = 0 is equivalent to the combi-

nation of (27) and y = σ. Mfeas is still independent

of b and s when embedded in Mtot, as before.

Again, we consider all of these (parameterized) man-

ifolds embedded in Mtot.

1. The Mi’s are all mutually orthogonal, but Msys is

not orthogonal to the Mi’s.

2. Msys intersects Mfeas, but neither is a submanifold

of the other. The intersection Msys (x) ∩Mfeas is

defined by y = ψ (w,σ) with x held constant, y =

σ, and s = s (z,y (z) ,b). Submanifolds of Mfeas

with constant x are submanifolds of Msys (x).

3. The Mi’s may intersect Mfeas, but those intersect-

ing Mi’s are not submanifolds of Mfeas.

The modification to QSD has not changed the ar-

chitecture manifolds significantly; the subsystem opti-

mizations, for example, may still move the design point

away from Mfeas. However, the system-level optimizer

now tries to return to Mfeas through the use of penalty

functions or some other optimizer method for enforc-

ing the constraint y = σ. Like IDF, within a given

system-level optimization, those constraints will only

be satisfied at an optimum point – feasibility will only

be enforced progressively – but the optimizer should

eventually ensure that they are satisfied. In fact, at the

end of each system-level optimization, the architecture

should return a multidisciplinary feasible design; since

each architecture iteration ends with a system-level op-

timization (Martins and Lambe 2013), each iteration of

the architecture should return a feasible point. Again,

checking the optimality conditions could help to con-

firm this, but given our qualitative analysis, we now

wish to proceed to testing this experimentally.

4 Numerical testing

Our analysis predicts that QSD diverges when the prob-

lem it is applied to has state equations (which serve to

couple the state variables from different disciplines). We



6 Craig Bakker, Geoffrey T. Parks

now want to test that prediction. In order to do this,

we will use an analytical test problem from Sellar et

al. (1996); this problem has been used in other papers

(Perez et al. 2004; Tedford and Martins 2006), though

not with QSD. We predict that when this problem is

optimized with the QSD architecture, it will diverge

from the feasible design manifold (as measured by the

norm of the state equation residual h = y −ψ (w,y)).

Conversely, we predict that IDF and MQSD will return

feasible design points.

To test these predictions, we ran 500 optimizations

from random points on Mtot (thus typically infeasible

points) and 500 optimizations from random points on

Mfeas, solving for the y-coordinates so that the initial

point was feasible. We generated our points using the

sobolset function, solved our state equations with fsolve,

and performed our optimizations with fmincon, all in

MATLAB R© (The MathWorks Inc. R2010a). To clarify

the point generation procedure by way of an example,

for QSD, the infeasible points were generated by apply-

ing sobolset to (x, z,y,b) within their bounds, and the

feasible points instead applied sobolset to (x, z,b). For

the Sellar problem, at least, it did not matter what s

was initialized to because the QSD architecture begins

from the subsystem problem; s was then calculated di-

rectly from the other variables as seen in (50) and (51).

The possible ranges for the design variables were al-

ready given in the original problem formulation, and for

generating our initial points, we produced b’s and σ’s

with coordinate values between 0 and 10. We consid-

ered the optimization to have converged once there was

less than a 0.001 relative change in the original objec-

tive function; this was a more stringent criterion than

that of the same relative change in the system-level ob-

jective function, and it allowed us to apply the same

criterion to all three architectures.

4.1 Sellar analytical problem

The Sellar problem is

min f =
(
x1
)2

+ z2 + y1 + e−y
2

(32)

y1 =
(
z1
)2

+ x1 + z2 − 0.2y2 (33)

y2 =
√
y1 + z1 + z2 (34)

1− y1

3.16
≤ 0 (35)

y2

24
− 1 ≤ 0 (36)

−10 ≤ z1 ≤ 10, 0 ≤ z2 ≤ 10, 0 ≤ x1 ≤ 10 (37)

Note that we have renamed the variables to cor-

respond to our local/global design variable and sub-

script/superscript conventions (see Part I).

4.2 QSD reformulation

The QSD for this problem has the following system-

level objective function and constraints

min
z,y,b

f0 = z2 + b1 + b2 (38)

−10 ≤ z1 ≤ 10, 0 ≤ z2 ≤ 10 (39)

s1, s2 ≤ 0 (40)

The subsystem 1 optimization is

min
x1,s1

s1 (41)(
x1
)2

+ y1 − b1 − s1 ≤ 0 (42)

1− y1

3.16
− s1 ≤ 0 (43)

y1 =
(
z1
)2

+ x1 + z2 − 0.2y2 (44)

0 ≤ x1 ≤ 10 (45)

and the subsystem 2 optimization is

min
s2

s2 (46)

e−y
2

− b2 − s2 ≤ 0 (47)

y2

24
− 1− s2 ≤ 0 (48)

y2 =
√
y1 + z1 + z2 (49)

Some of the expressions with state variables could

have been divided up differently between the subsystem

and system optimizations, but we chose to try and put

as much as possible in the subsystem-level problems;

our final results, qualitatively speaking, do not depend

on this, however. Note also that because of the simplic-

ity of the problem and the analytical relations between

variables, we can evaluate the si’s analytically rather

than using metamodels. Combining the subsystem in-

equality constraints with the ψi equations produces

s1 ≥

{(
x1
)2

+
(
z1
)2

+ x1 + z2 − 0.2y2 − b1

1− (z1)
2
+x1+z2−0.2y2

3.16

(50)

s2 ≥

 e

(
−
√
y1−z1−z2

)
− b2√

y1+z1+z2

24 − 1
(51)

Each si is thus simply the larger of the two values

on its respective right-hand side.



Differential Geometry Tools for Multidisciplinary Design Optimization, Part II: Application to QSD 7

4.3 IDF reformulation

The IDF reformulation of the Sellar problem is

min
z,σ

f =
(
x1
)2

+ z2 + y1 + e−y
2

(52)

y1 =
(
z1
)2

+ x1 + z2 − 0.2σ2 (53)

y2 =
√
σ1 + z1 + z2 (54)

y − σ = 0 (55)

1− y1

3.16
≤ 0 (56)

y2

24
− 1 ≤ 0 (57)

−10 ≤ z1 ≤ 10, 0 ≤ z2 ≤ 10, 0 ≤ x1 ≤ 10 (58)

The constraints in (55)-(58) were handled by the

optimizer; the disciplinary analyses were directly inte-

grated into the objective function and constraints.

4.4 MQSD reformulation

The system-level optimization of MQSD is

min
z,b,σ

f0 = z2 + b1 + b2 (59)

y1 =
(
z1
)2

+ x1 + z2 − 0.2σ2 (60)

y2 =
√
σ1 + z1 + z2 (61)

y − σ = 0 (62)

−10 ≤ z1 ≤ 10, 0 ≤ z2 ≤ 10 (63)

s1, s2 ≤ 0 (64)

As with IDF, (62) was handled by the optimizer,

and the disciplinary analyses were directly integrated

into the relevant equations. The subsystem 1 objective

function and constraints are

min
x1,s1

s1 (65)(
x1
)2

+ y1 − b1 − s1 ≤ 0 (66)

1− y1

3.16
− s1 ≤ 0 (67)

y1 =
(
z1
)2

+ x1 + z2 − 0.2σ2 (68)

0 ≤ x1 ≤ 10 (69)

and the subsystem 2 optimization is

min
s2

s2 (70)

e−y
2

− b2 − s2 ≤ 0 (71)

y2

24
− 1− s2 ≤ 0 (72)

y2 =
√
σ1 + z1 + z2 (73)

Combining the subsystem inequality constraints with

the disciplinary analyses, we get

s1 ≥

{(
x1
)2

+
(
z1
)2

+ x1 + z2 − 0.2σ2 − b1

1− (z1)
2
+x1+z2−0.2σ2

3.16

(74)

s2 ≥

{
e(−
√
σ1−z1−z2) − b2√
σ1+z1+z2

24 − 1
(75)

4.5 QSD results

Fig. 1 Objective function, system-level objective, and state
equation residual for a single optimization run (QSD)

The history of a single optimization run (Fig. 1),

initialized from a random infeasible point in the de-

sign space, shows the objective function diverging very

strongly as the residual fails to go to zero; the objec-

tive function ends up hovering around 5 × 106. This

was probably due to the e−y
2

term: in the decomposed

system-level optimization, y2 is no longer connected

to its analysis and thus is not restrained in the opti-

mization process. Handling the explicit constraint on

y2 in the system-level optimization instead of the sub-

system optimization would limit this kind of behaviour,

but such a reassignment would not eliminate the diver-

gence. Because the state variables were not consistent

with each other, reducing f0 did not help in reducing f

– it actually had the opposite effect, in this case. Our



8 Craig Bakker, Geoffrey T. Parks

Fig. 2 Histograms comparing initial and final f values (in-
feasible start, QSD)

Fig. 3 Histograms comparing initial and final f0 values (in-
feasible start, QSD)

analysis concerned feasibility, so that behaviour was not

part of our prediction; that being said, it would not be

surprising, in general, to see the optimization fail if the

design trajectory diverges from feasibility. That diver-

gence is exactly what we see here: the residual initially

increased slightly and then remained fairly constant as

the design point did not change much after that point.

The histograms of the initially infeasible optimiza-

tion runs in Figs. 2 and 3 show that although the op-

timizer was clearly working to minimize f0, typically

converging to a value between 3 and 3.5, the original

Fig. 4 Histogram showing final f values below 100 (infeasible
start, QSD)

Fig. 5 Plot showing final f values vs. final state equation
residual values for f ≤ 100 (infeasible start, QSD)

Fig. 6 Histograms comparing initial and final state equation
residual values (infeasible start, QSD)

objective function was not being minimized so success-

fully: only 55 of the 500 runs reduced the value of f ,

and most of the runs diverged to f values around 106.

Even the 132 runs which had final f values below

100, shown in Fig. 4, failed to include any good results:

the lowest value reached was 9.52. For those final f val-

ues below 100, though – runs which could be considered

only moderately divergent – Fig. 5 appears to show a



Differential Geometry Tools for Multidisciplinary Design Optimization, Part II: Application to QSD 9

Fig. 7 Histograms comparing initial and final f0 values (fea-
sible start, QSD)

Fig. 8 Histograms comparing initial and final f values (fea-
sible start, QSD)

very strong correlation between residual and objective

function value. Residual values did change during the

course of the optimization, as can been seen in Fig. 6,

but only 134 runs resulted in reduced residual values,

and none of those residuals went to zero. Moreover, the

average residual value increased from 38.71 to 58.49. In-

terestingly, in line with the trend seen in Fig. 5, the opti-

mization run with the lowest final residual value (11.48)

also had the lowest final objective function value.

The histograms in Figs. 7-11 for the initially feasi-

ble optimization points paint a similar picture to their

Fig. 9 Histogram showing final f values below 100 (feasible
start, QSD)

Fig. 10 Plot showing final f values vs. final state equation
residual values for f ≤ 100 (feasible start, QSD)

Fig. 11 Histogram of final state equation residual values
(feasible start, QSD)

infeasible counterparts: the histograms for f0 and f are

basically the same, and the final residual is in fact, on

average, higher than the infeasible starts (66.54 for fea-

sible starts as compared to 58.49 for infeasible starts).

That being said, there are more objective function

values below 100 (213 as compared to 132), and the

minimum value reached is lower (7.49 as compared to

9.52). Also, as with the infeasible start, the optimiza-



10 Craig Bakker, Geoffrey T. Parks

tion run with the minimum final residual value (4.54)

had the lowest final objective function value; again,

there was a strong correlation between final residual

values and final objective function values for runs which

were only moderately divergent, as shown in Fig. 10.

4.6 IDF results

Fig. 12 Objective function and state equation residual for a
single optimization run (IDF)

Figure 12 shows essentially what we would expect

from an initially infeasible IDF optimization run: the

state equation residual and objective function both re-

duce over time and converge together to a final feasible,

optimal design. The decrease in the residual is not en-

tirely monotonic, but it is close.

Fig. 13 Histogram of initial f values (infeasible start, IDF)

The initial points for the IDF runs were not neces-

sarily the same as those for the QSD problems because

of the different number of variables involved, but the

same algorithm (sobolset) was used to generate them.

As the histograms in Figs. 13 and 14 show (the initial

Fig. 14 Histograms comparing final f values for feasible and
infeasible starts (IDF)

f values for the feasible starts are same as for QSD,

shown in Fig. 8), the IDF optimizations all converged

to one of two objective function values; the infeasible

starts had a much wider range of initial f values, but

more of those values got to the lower objective func-

tion value. Histograms of the state equation residuals

are not shown, but the initial residuals for the feasi-

ble start points and the final residuals for feasible and

infeasible start points were on the order of 10−6 – the fi-

nal design points obtained were feasible, in other words.

We could have gone for tighter constraint tolerances in

the optimizer, but this seemed sufficient.

4.7 MQSD results

MQSD usually converged in two or three architecture

iterations. Each architecture iteration was composed of

the subsystem optimizations followed by a system-level

optimization, so showing a plot like Fig. 1 would not be

very informative. Feasibility would be obtained by the

end of the first architecture-level iteration and main-

tained until convergence an iteration or two later.

The plots in Fig. 15 are arranged so that, for each

architecture-level iteration, the behaviour of the sub-

system optimizations is shown for the first half of the

iteration and the system-level optimization is shown

in the second half; the subsystem optimizations fol-

lowed by the system-level optimization constitutes one

architecture-level iteration. For example, in the first

architecture-level iteration, the progress of the subsys-

tem optimizations is shown between 0 and 0.5, and

the progress of the ensuing system-level optimization is

shown between 0.5 and 1. The subsystem and system-

level optimizations each required a certain number of

their own iterations, but that is not really our concern

here – we simply want to give a qualitative picture of

the architecture’s behaviour.



Differential Geometry Tools for Multidisciplinary Design Optimization, Part II: Application to QSD 11

Fig. 15 Objective function, system-level objective, and state
equation residual for a single optimization run (MQSD)

Figure 15 shows that most of the optimization work

is being done in the first architecture iteration (by the

system-level optimization). The following two iterations

are only tweaking the result of the first iteration. As

predicted, the system-level optimization also produces

a feasible design at the end of each architecture-level

iteration. We also see that, as the design point becomes

feasible, f0 → f , as is necessary for the architecture to

work properly: f0 is constant during the subsystem op-

timizations while f varies, but the two are brought back

to the same value during the system-level optimization.

Fig. 16 Histograms comparing final f values for feasible and
infeasible starts (MQSD)

For MQSD, the initial f0 values for feasible and in-

feasible starts, the initial f values for feasible starts, and

the initial residual for infeasible starts were all the same

as for the original QSD formulation (shown in Section

4.5); the initial f values for the infeasible starts were

the same as for IDF (Fig. 13). The only difference is

that the optimizer crashed for four of the runs starting

from infeasible start points: the optimizer was using fi-

nite differences to get derivative information, and when

y1 ≈ 0, these four points ended up with imaginary com-

ponents to the derivatives (through the
√
y1 term). We

could have dealt with this by introducing the constraint

y1 ≥ 0, but this was not explicitly part of the original

problem, and using it actually resulted in the optimizer

producing different results for a number of unaffected

runs. We wanted the architecture tests to be as alike as

possible, so we simply removed the four offending start

points from our sample. Given the sample size we used,

this seemed a simple and unproblematic way of dealing

with this problem. The optimizations themselves over-

whelmingly went to the same two points that IDF did.

There were a few runs which did not converge to these

points (slightly more for the feasible starts than the in-

feasible starts), but the relevant peaks are still easily

identifiable in Fig. 16. Except for one outlier near 10−5

from a feasible start, all of the final residuals were on

the order of 10−6. Again, the architecture was return-

ing feasible design points. The final values for f0 were

the same as those for f , shown in Fig. 16, which we

should expect if the architecture is working properly –

it means that minimizing f0 is actually minimizing f .

4.8 Discussion

As we predicted, QSD failed to return feasible designs.

In fact, the final design points were both exceedingly

non-optimal and infeasible. Interestingly, there was a

strong correlation between successes in optimization and

in feasibility if the optimization did not diverge too

wildly, but this could be problem-specific. It was neces-

sary to choose somewhat arbitrary starting points for b

and σ, as they were not specified in the original problem

description. Different ranges for those variables might

have altered the exact results obtained but would not

have changed the overall convergence behaviour – the

analysis is independent of the initial values for these

variables (i.e. the infeasible results are due to the na-

ture of QSD, not any particular starting point).

IDF, on the other hand, converged very well – both

in terms of optimality and in terms of feasibility – and

MQSD demonstrated similar performance. The opti-

mization in MQSD was not quite as effective as IDF,

but it still worked in the overwhelming majority of

cases. This optimization convergence could possibly be

improved by making the optimization criteria more strin-

gent. It is also possible, though, that QSD creates extra

minima: Haftka and Watson (2005) claim that QSD can

actually remove spurious local optima, but they were

also dealing with a QSD formulation that lacked state

equations. Our analysis was focused on feasibility, not

optimality, but checking the optimality conditions for

QSD (or MQSD) could help to resolve this.



12 Craig Bakker, Geoffrey T. Parks

Comparing iterations with the original QSD formu-

lation would be rather pointless, seeing as that archi-

tecture failed to converge, but it might be useful to

consider other ways of modifying QSD to ensure con-

vergence and then comparing those different ways to

see which modifications are more efficient or effective.

The focus of this paper, however, was the predic-

tion that QSD would not return feasible designs but

that IDF and MQSD would return feasible designs. This

prediction proved to be accurate for the MDO problem

we tested it on. Given the generality of the analysis, we

would expect the same results in all other nonlinearly

coupled MDO problems: both QSD and IDF are relax-

ations of the original problem, but IDF is a relaxation

which works, and QSD is a relaxation which does not.

Relaxation can be very effective – the issue does not

lie in relaxing the original optimization problem – but

such a technique must still be able to solve that original

optimization problem.

The analysis we did to come to these conclusions

was relatively simple and straightforward: all we did

was identify the relevant manifolds and submanifolds

for the architecture and the original problem, deter-

mine the relationships between those manifolds and

submanifolds, and then describe how the architecture

moved along those manifolds during the course of opti-

mization. Once the manifold/submanifold concept was

grasped, with the support of our framework, there were

no long proofs or further mathematical gymnastics.

5 Conclusions and recommendations

Using the concepts and tools provided by our DG frame-

work for MDO, we predicted that QSD would fail to

return a feasible design in optimization problems with

state equations – i.e. a typical MDO problem. Impor-

tantly, the framework enabled us to explain why QSD

would fail and thus enabled us to propose changes to

QSD which would render it convergent; we were also

able to analyze an architecture which we successfully

predicted would converge to feasible designs.

Having done this, we tested all three architectures

on a well-known analytical MDO problem. As predicted,

QSD failed to converge, but both IDF and MQSD con-

verged. MQSD was not quite as successful in the opti-

mization as IDF was, but both architectures returned

feasible designs, and that was the focus of our analysis.

Now that the question of feasibility has been resolved,

the optimizing behaviour of MQSD variations could be

investigated analytically, by examining their optimal-

ity conditions, and experimentally, by comparing their

performance in numerical simulations.

Acknowledgments

This research is supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) and

the Cambridge Commonwealth Trust and Cambridge

Overseas Trust (CCT/COT).

References

Bakker C, Parks GT, Jarrett JP (2012) Geometric

perspectives on MDO and MDO architectures. In:

12th Aviation Technology, Integration and Opera-

tions (ATIO) Conference and 14th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Confer-

ence, AIAA, Indianapolis, Indiana

Cramer E, Dennis JE Jr, Frank PD, Lewis RM, Shubin

GR (1994) Problem formulation for multidisciplinary

optimization problems. SIAM Journal on Optimiza-

tion 4:754–776

Haftka RT, Watson LT (2005) Multidisciplinary design

optimization with quasiseparable subsystems. Opti-

mization and Engineering 6:9–20

Haftka RT, Watson LT (2006) Decomposition theory

for multidisciplinary design optimization problems

with mixed integer quasiseparable subsystems. Op-

timization and Engineering 7:135–149

Ivancevic VG, Ivancevic TT (2007) Applied Differential

Geometry: A Modern Introduction. World Scientific

Publishing Co. Pte. Ltd., Singapore

Martins JRRA, Lambe AB (2013) Multidisciplinary

design optimization: Survey of architectures. AIAA

Journal 51:2049–2075

Perez RE, Liu HHT, Behdinan K (2004) Evaluation

of multidisciplinary optimization approaches for air-

craft conceptual design. In: 10th AIAA/ISSMO Mul-

tidisciplinary Analysis and Optimization Conference,

AIAA, Albany, New York

Sellar RS, Batill SM, Renaud JE (1996) Response sur-

face based concurrent subspace optimization for mul-

tidisciplinary system design. In: 34th Aerospace Sci-

ences Meeting and Exhibit, AIAA, Reno, Nevada

Tedford NP, Martins JRRA (2006) On the com-

mon structure of MDO problems: A comparison

of architectures. In: 11th AIAA/ISSMO Multidis-

ciplinary Analysis and Optimization Conference,

AIAA, Portsmouth, Virginia

The MathWorks Inc (R2010a) Matlab R© manual

de Wit AJ, van Keulen F (2007) Numerical com-

parison of multi-level optimization techniques. In:

48th AIAA/ASME/ASCE/ASC Structures, Struc-

tural Dynamics, and Materials Conference, AIAA,

Honolulu, Hawaii


