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This paper explores an iterative approach to Wiener-Hopf problems arising from mixed
boundary value problems associated with fluid-structure interaction. We apply the method to
problems in aeroacoustics involving multiple boundary condition junctions that yield matrix
Wiener-Hopf problemswhich are often impossible to solve exactly. By identifyingweak physical
couplings within the system reliable and rapidly convergent schemes may be constructed.
We present an effective implementation utilizing spectral techniques which we hope to be
accessible to the broader engineering community. The efficiency of the method facilitates
optimization and parameter studies useful for real-world applications. It naturally fits into the
established Wiener-Hopf literature, in principle enabling previous applications of the Wiener-
Hopf technique to various linear partial differential equations in two and three dimensions to
be extended to problems with additional boundary condition junctions.

I. Introduction
The Wiener-Hopf (WH) technique provides a powerful analytic method for solving mixed boundary problems that

arise when considering fluid-structure interactions. Its contributions to aeroacoustic theory include investigations of
canonical scattering problems [1–3], jet engine exhaust configurations [4–8] and most recently quiet aerofoil adaptations
inspired by the silent flight of owls: poroelasticity [9–11] and serrations[12, 13]. The application of such material
modifications introduces new junctions at which the physical boundary condition to be imposed changes sharply. Indeed,
a multiplicity of such junctions is generically present in devices composed of distinct materials. These situations
yield matrix Wiener-Hopf problems for which exact solutions are typically impractical, indeed general constructive
approaches for exact solutions do not exist.

Useful approximate approaches to achieve the requiredWiener-Hopf factorizations include using Padé approximations
[7, 10, 14, 15] and asymptotic approximations [1, 16, 17] that may be more easily factorized than the original functions.
Unfortunately each has a limited domain of applicability excluding many problems of physical interest. Specifically, the
prototypical Wiener-Hopf kernel

γ(α) =
√
α2 − k2 (1)

does not permit a uniform rational approximation on the real line, limiting the utility of Padé approximation, and
asymptotic methods are innately constrained to extreme parameter regimes. Numerical approaches are available in
Fredholm factorization[18] used in electromagnetic scattering, and a singular integral equation formulation associated
with Riemann-Hilbert problems [19], but each requires more computationally expensive matrix inversions avoided by
direct approaches, in addition to precise consideration of singular features to achieve effective implementations.

We instead consider the iterative approach proposed in [11, 20] which provides an effective, rigorous framework
to attack matrix Wiener-Hopf problems. By identifying weak couplings within the system, one may reduce the
dimension of the Wiener-Hopf system to be initially solved and so construct an iterative scheme based on scalar
problems. Convergence to the exact solution is guaranteed for sufficiently high frequencies [20]. We demonstrate that
this approach can rapidly produce reliable solutions, even at relatively low frequencies. Our implementation is facilitated
by the spectral numerical framework introduced in [19, 21]. This paper intends to clearly outline the framework so far
developed and clarify its scope in relation to aeroacoustics.

We proceed as follows: we first introduce the method and discuss its practical implementation. The method is then
applied to two problems relevant to aeroacoustics:

A. scattering from a finite plate to review the method
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B. scattering from a set of collinear finite plates to demonstrate applicability to problems with many junctions
We close by briefly discussing the potential of the method, emphasising that this technique may be applied to problems
involving various linear differential operators in two and three dimensions with boundary conditions imposed on parallel
sections.

II. Method
This section describes the iterative procedure for solving matrix Wiener-Hopf problems. We first review how a

Wiener-Hopf problem may be formulated from the boundary value problem of interest using integral transforms. We
then outline how the problem so found may be solved using iteration, and steps towards implementing this efficiently
numerically.

A. Generating Wiener-Hopf problems associated with aeroacoustics
To ground our discussion we consider specific example: scattering of an incident disturbance φi by a plate of finite

length and infinite span. A schematic diagram is presented in figure 1 and results will be presented later in section III.A.
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Fig. 1 Scattering from a finite plate. We consider a prescribed incident gust φi with interacting with a finite
plate of length L on which a Robin boundary condition is imposed. This formulation can model a rigid, porous
or poroelastic plate.

Many aeroacoustic scattering problems such as that depicted in figure 1 reduce to solving the 2D Helmholtz equation[
∇2 + w2

]
φ = 0 (2)

for φ, the scattered part of an acoustic field. This might variously be the pressure, velocity potential or a generalised
acoustic potential [22]. For instance, for uniform background flow the convective wave equation may be reduced to this
form using a convective transform.

Boundary conditions A boundary value problem is given by imposing inhomogeneous boundary conditions provided
by the geometry and incident disturbance. We consider a finite plate of length L at y = 0 on which a Robin boundary
condition is imposed to model, for example, permeability of the plate. We impose continuity of the field elsewhere:[

φ(x, 0)
]+
− = q1(x) upstream −∞ < x < 0 (3a)

∂φ

∂y
(x, 0) − µ

2
[
φ(x, 0)

]+
− = q2(x) porous 0 < x < L (3b)[

φ(x, 0)
]+
− = q3(x) downstream L < x (3c)

We additionally require φ′ = ∂φ
∂y to be continuous on y = 0. The parameter µ in the Robin boundary condition might

model the porosity of the plate and is taken to be constant. The final conditions to be imposed are the Sommerfeld
radiation condition for outgoing waves at infinity:

√
x2 + y2 = r →∞:

r−1/2
[
∂

∂r
− iw

]
φ→ 0, r →∞ (4)
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and that we seek the least singular solution at the edges [1].

Formulation of a spectral (Wiener-Hopf) equation A Wiener-Hopf problem is now found by Fourier transforming
the governing equation (2) and boundary conditions (3). We define the x-Fourier transform along an interval of the real
line [a, b] by

Φ[a,b](α, ·) =
∫
[a,b]

φ(x, ·) eiαx dx (5)

and introduce the notation (−∞, a] = [−, a], [a,∞) = [a,+] and Φ = Φ(−∞,∞). Solving the resulting ordinary differential
equation and imposing the far-field radiation condition gives

Φ(α, y) =
{

A(α)e−γ(α)y y > 0
B(α)e+γ(α)y y < 0

(6)

where γ(α) =
√
α2 − w2 with branch cuts chosen to be the rays ±w + e±iπ/2[0,∞]. From this known form of Φ and

required continuity of φ it follows that Φ is anti-symmetric in y. Restricting attention to y > 0, so Φ(α, 0) ≡ Φ(α, 0+),
the boundary conditions on Φ reduce to

Φ[−,0] = Q1 (7a)
Φ
′
[0,L] − µΦ[0,L] = Q2 (7b)

Φ[L,+] = Q3 (7c)

The known form of Φ in (6) provides the relation Φ′ + γΦ = 0 for y > 0. Substituting the boundary conditions (7) into
this relation yields

Φ
′
[−,0] +Q2 + Φ

′
[L,+] + γQ1 + (γ + µ)Φ[0,L] + γQ3 = 0, (8)

an equation in the spectral variable α relating partial Fourier transforms of unknown boundary values. This forms the
basis of our Wiener-Hopf system.

B. Solving Wiener-Hopf problems by iteration
For many problems similar to that considered in the previous section, we generically find a matrix Wiener-Hopf

system of the form
AΦ + BΨ = F (9)

where A and B are matrices and Φ,Ψ (unknown, except certain analyticity properties) and F (known) are vectors. Our
approach considers this system as a set of coupled scalar problems:

AnnΦn + BnnΨn = Fn −
∑
m,n

[AnmΦm + BnmΨm] (10)

We seek to construct a convergent fixed-point iterative scheme by formulating the system such that the couplings are
weak. An appropriate choice may often be informed by physical considerations to give

AnnΦn + BnnΨn = Fn + εn(Φ,Ψ) (11)

where ε represents a sub-dominant coupling. The scheme may be initialised by providing an initial estimate of the terms
on the right hand side, and thenceforth use the last computed value for the quantity. We note that for large systems there
may be a large degree of freedom when choosing the sequence in which to solve the scalar problems; we will return to
this question in section III.B.

Example: Finite plate For scattering problems we anticipate a weak coupling to be provided by ‘backscattering’
between junctions. We so rewrite the spectral equation (8) to sequentially focus on the junctions at x = 0 and x = L.
First introducing plus/minus splitfunctions Φ± analytic in the upper/lower half planes with at worst algebraic decay as
|α | → ∞ in their respective half-plane of analyticity:

Φ
′(0)
− = Φ[−,0], Φ

(0)
+ = Φ[0,L], Φ

(L)
− = e−iαLΦ[0,L], Φ

′(L)
+ = e−iαLΦ[L,+], (12)
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equation (8) becomes

(γ + µ)Φ(0)+ + Φ′(0)− = −eiαLΦ′(L)+ + F(0) (13a)
(γ + µ)Φ(L)− + Φ

′(L)
+ = −e−iαLΦ′(0)− + F(L) (13b)

where the known forcing terms are given by F(0) = −γQ3 −Q2 − γQ1 and F(L) = e−iαLF(0).
An iterative fixed-point scheme can be constructed by solving, at iteration m, the scalar Wiener-Hopf problems

(γ + µ)Φ(0)m+ + Φ′(0)m− = −eiαLΦ′(L)m−1
+ + F(0) (14a)

(γ + µ)Φ(L)m− + Φ
′(L)m
+ = −e−iαLΦ′(0)m−1

− + F(L) (14b)

The scheme may be initialised for n = 0 by setting quantities with negative index to zero.

Recovering physical values of interest The scattered velocity potential φ may be recovered by inverting the spatial
Fourier transform:

φ(x, y) = sgn y

2π

∫ ∞

−∞
Φ(α, y)e−|y |γ(α)−iαx dα (15)

This may be evaluated efficiently numerically by deforming the contour to a path of steepest descent, and an asymptotic
steepest descent approximation can yield accurate far-field approximations:

φ(r, θ) ∼ sgn y

√
weiπ/4
√

2π
Φ(−w cos θ, 0) sin θ eiwr

√
r

(16)

As in [11] we define the far-field directivity D(θ) by

φ(x, y) ∼ D(θ) e
iwr

√
r

(17)

C. Numerical implementation: solution of scalar Wiener-Hopf problems
We now consider how to solve the scalar Wiener-Hopf problems systematically on a computer. The standard

mathematical theory is presented in [1], which we must first partially review.
Central to the Wiener-Hopf technique is the rearrangement of an equation into parts analytic in overlapping regions

R± (typically deformations of the upper/lower half-planes Imz ≷ 0) that together cover the complex plane. This first
requires a multiplicative factorization of the premultiplying factor, or kernel: e.g. (γ + µ) in equation (14). Having used
this to isolate the analyticity of terms involving unknown functions, we require additive factorizations of the remaining
terms: e.g. those arising from the terms on the LHS of equation (14). Such additive factorizations (and thereby also
scalar multiplicative factorizations) may be generically obtained by performing Cauchy transforms [1]. We define the
Cauchy transform CΓ[φ] over a contour Γ for α < Γ of a function φ(x, ·) via

CΓ
[
φ
]
(α, ·) = 1

2πi

∫
Γ

φ(x, ·)
x − α dx (18)

The iterative approach solves a sequence of scalar problems and so requires the repeated computation of the associated
integrals.

To efficiently and accurately compute Cauchy transforms numerically we follow [19]. We first uniformly represent
the function along the transform contour Γ in a basis that encodes singular features, then employ known analytic
expressions for the transforms of these basis functions. In this way cancellation errors associated with singular integrals
may be largely avoided. For our purposes it is sufficient to consider contours formed of intervals and rays. Cauchy
transforms along arbitrary intervals and rays may be related to Cauchy transforms along the unit interval [−1, 1] by
Möbius mappings.

In order to obtain spectral convergence it is necessary to carefully encode endpoint singularities, which for the
problems we consider look like x−1/2. In this case Cauchy transforms may be expressed simply, avoiding the need to
evaluate special functions. We first expand in the so-called vanishing basis [19] of Chebyshev polynomials of the first
kind, given by

T z
0 (x) = 1, T z

1 (x) = x, T z
n (x) = Tn(x) − Tn−2(x), for n ≥ 2 (19)
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weighted by (1 − x)−0.5(1 + x)−0.5. Then for n ≥ 2 we have

CΓ[T z
n (x)(1 − x)−0.5(1 + x)−0.5)](z) = i

(
J−1
+ (z)

)n−1
(20)

where J−1
+ = z −

√
z − 1
√

z + 1 is one of the right inverses of the Joukowsky map. In general we require Cauchy
transforms of functions with other endpoint behaviours; algebraic endpoint singularities may be considered by expanding
in Jacobi polynomials P(a,b)n , whose Cauchy transforms may be represented in terms of the Gauss hypergeometric
function.

The method has been implemented in Matlab and Julia employing the approximation packages Chebfun and
ApproxFun respectively. The moments of the Cauchy transforms evaluated at points of interest may be precomputed,
decoupling this computation expense from the iterative procedure. For problems so far considered typically fewer than
100 degrees of freedom are sufficient in order to achieve machine accuracy. Each factorization is fast, taken less than a
millisecond when provided kernel values.

III. Results
This section explores the iterative Wiener-Hopf method described above by applying it to two problems relevant to

aeroacoustics.

A. Finite plate
We first consider scattering from a finite rigid plate. This model problem was pictured in figure 1 and the derivation

of the associated Wiener-Hopf equations was presented in section II.B.

Validation We first validate the present implementation by considering scattering from a finite plate. This canonical
problem has been investigated by numerous approaches including an approximate Wiener-Hopf technique [1], the
iterative matrix Wiener-Hopf technique[11], expansions in Mathieu functions or Chebyshev polynomials [11, 23, 24],
the Unified Transform method [25]. In figure 2a we observe good agreement with the the exact solution given in terms
of Mathieu functions presented in [11].

Convergence In figure 2a we observe that the the iterative scheme can require only a few iterations to converge by eye.
It is anticipated that the scheme will converge more slowly, if at all, for small reduced wavenumbers Lk0; indeed [20]
proves convergence only for asymptotically large Lk0. Physical grounds for expecting the method to still work at low
reduced frequencies may be considered as follows: despite the coupling becoming stronger as the junctions become
nearer on the length scale of the acoustic field, the field scattered from a junction A to another B and back to A should
be weaker than the initial field that was scattered from A. Figure 2b demonstrates that in fact further to previous work,
the approach converges even at low frequencies, albeit more slowly. Undertaking the larger number of factorizations
required is facilitated by the numerical implementation that enables an arbitrary number of iterations given a defined
pattern in which to consider the scalar problems associated with the system.

Scattering of a convected gust We may also consider the scattering of a convective gust by a finite plate in a
background mean flow. Figure 3 presents directivity patterns for the scattering of convected gust from a finite plate,
varying the Mach number associated with the background flow and boundary condition imposed on the plate. For the
frequency considered, increasing the Mach number increases the far-field noise, whilst imposing an acoustically softer
boundary condition (perhaps mimicking porosity) reduces the far-field sound.

Discussion We briefly discuss connections with existing analytic approaches to consider scattering from a finite plate
in the aeroacoustic community, namely Amiet’s model [26] and its extensions including backscattering [24, 27, 28].
Amiet considers Schwarzschild’s solution for scattering from a semi-infinite plane that is only forced on a finite section
to mimic a flat plate of finite chord for a study of trailing edge noise. Roger and Moreau [27] introduce a leading edge
correction to correct for flow upstream of the aerofoil, by solving a half-plane problem associated with the leading edge
using Schwarzschild’s solution. Further corrections may be included by iteration. Such an approach can solve the same
set of problems as our iterative scheme. The crucial difference is that our scheme exists in spectral space, that is solves
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Fig. 2 Results for far-field directivity for scattering from a single plate of a plane wave incident at an angle
θi = π/4 to the x axis. (a) Comparison of far-field directivity for an incident plane wave with Lk0 = 12 and
of our implementation with Matheiu function expansion derived for [11]. Legend indicates the iteration, and
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for the variable α. Firstly this enables well known expressions from steepest descent approximations for the far-field to
be quickly applied, and secondly fits into the broader Wiener-Hopf literature allowing for established techniques to be
incorporated to deal with problems involving alternative boundary conditions and governing equations.

B. Many collinear finite plates
The formulation for a single finite plate may be readily extended to many collinear finite plates. A schematic diagram

is presented in figure 4. For rigid, impenetrable equations at {(x, 0) for x ∈ Γ we now impose boundary conditions

x0 = −∞
· · ·

x0 = −∞ x2N+1 = +∞x1 x2 x3 x4 x2N−1 x2N

incident wave φi

Fig. 4 Schematic diagram for scattering by a set of N collinear finite plates

φ′(x, 0±) = q(x) x ∈ Γ (21a)[
φ(x, 0)

]+
− =

[
φ′(x, 0)

]+
− = 0 x ∈ R \ Γ (21b)

together with the usual continuity of φ′. For two plates at x ∈ [1, 2] and x ∈ [3, 4] we find a spectral equation of the form

Φ
′
[−,1] +Q2 + Φ

′
[2,3] +Q4 + Φ

′
[4,+] + γQ1 + γΦ[1,2] + γQ3 + γΦ[3,4] + γQ5 = 0. (22)

In an analogous manner to the case for a single finite plate equation (22) may be formulated as a set of scalar problems
associated with each junction. For instance, the explicit equation associated with the junction at x = 1 is

Φ
′(1)
− + γΦ

(1)
+ = −F(1) − eiαΦ′(2)+ − e3iα

Φ
′(4)
+ − e2iαγΦ

(3)
+ , (23)

where F(1) = −Q2 −Q4 − γQ1 − γQ3 − γQ5.
We note that alternative approaches to similar problems include hybrid-numerical asymptotics [29] and a sophisticated

singular integral equation approach [21]. The method here is best suited to high frequencies and for the computation of
far-field directivity due to an easy application of the steepest descent approximation.

Convergence We first consider the performance of the scheme as for larger Wiener-Hopf systems. In section II.B we
noted that we must choose the order in which to navigate the system of scalar equations. This can have a dramatic effect
upon the performance of the scheme. In particular, for larger numbers of plates conducting a forward then backward pass
through the system is much more effective than only passing through the system forwards.This may be considered to
correspond to correcting to the term most affected by the previous changes at each stage: updating the Fourier transform
of the nearest boundary section.

Figure 5 presents the number of iterations required to achieve convergence to 5 significant figures (s.f.) of accuracy
in the associated far-field directivity for various numbers of unit spaced, unit length rigid plates for different frequencies.
An iteration is considered to comprise solving a scalar Wiener-Hopf problem for each junction. Convergence is fastest
at high frequencies, taking a consistent number of iterations so defined to achieve a given precision. At low frequencies
many more iterations may be required, and the number of iterations for a given wavenumber increases with the number
of plates. We note that for mid to high frequencies the time to achieve a given accuracy scales quadratically with the
number of junctions N; the number of passes through the system remains constant, but each pass requires the solution
of N scalar WH equation, each of which has O(N) terms to be factorized.
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Fig. 5 Convergence of the iterative scheme for N plates: Number of iterations required to reach a relative
error of 10−5, varying the number of plates, as per legend; each of unit length and unit spacing.

Influence of a gap in a finite plate In scattering problems with multiple length scales it is useful to understand
the validity of low frequency (acoustically compact) or high frequency (geometric optic) assumptions, especially as
the interaction of diffracted fields can be difficult to anticipate. We now demonstrate how such phenomena may be
investigated using the iterative Wiener-Hopf method to solve the precise and approximated problem.

We consider a plane wave incident on two collinear plates of equal length. When the gap between the plates is small
and the wavelength of the incident wave is large it is natural to anticipate that the gap has a negligible effect upon the
far-field. Similarly when the gap is large one would expect the two scattered fields to interact minimally, and so observe
a far-field directivity that is simply twice that of a single plate.

In figure 6 we present results for two collinear plates varying gap size. For very small gap sizes the far-field
directivity collapses onto that of a single plate of length L = 2 (figure 6a). As the gap size is increased we observe
far-field lobes saturating onto double the directivity pattern of the scattered field for a single finite plate of length L = 1,
that is as if the plates did not interact (figure 6b).

The present approach may so provide a useful theoretical tool to better understand pure acoustic scattering effects
and so isolate other complex aeroacoustic phenomena present in physical systems.

IV. Future applications
This section outlines some potential applications of this method and the associated theoretical differences. Since the

method is based upon the solution of scalar Wiener-Hopf equations, any developments require the associated evaluation
of the kernels at points of interest and their factorizations.

The problems so far considered are characterized by kernels involving branch cuts and exponential behaviour, and
with anti-symmetry in the wall-normal direction. A first extension would be to break anti-symmetry, for instance by
imposing distinct boundary conditions on the upper and lower surfaces of a plate or considering different media above
and below a semi-infinite half-plane. A second extension would be to consider kernels involving poles. These arise in a
finite number when considering an elastic boundary condition [9, 10], whereas for geometries requiring decomposition
into sections of finite extent in the wall-normal direction, such as ducts, there are typically infinitely many[1, 7]. Two
examples it may be interesting to investigate are:
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• exhaust configurations for which the lining does not extend to the lip of the exhaust, but does not seem to have
been considered in previous coaxial exhaust configuration studies using Wiener-Hopf, such as [7]

• canopies formed of one or many poroelastic plates above a rigid wall to provide a theoretical model for experimental
designs [30]

Another direction would be to consider governing equations that yield kernels best treated numerically by integrating an
ordinary differential equation in the complex plane, for instance that associated with sheared flow profiles [31]. It is less
clear how far methods involving coordinate transforms could be incorporated, for instance to consider realistic aerofoil
geometry [32] or spanwise serrations [33], as each transform will affect each boundary. However in simple cases, or by
coupling the problems and iterating in the spatial domain, the present technique could provide a useful tool by which to
extend such problems.

V. Conclusion
This paper demonstrates the utility of an iterative application of the Wiener-Hopf technique to investigate mixed

boundary value problems of interest in aeroacoustics. The crucial extension enabled by this method is the solution of
certain matrix Wiener-Hopf problems associated with problems involving multiple junctions at which the boundary
condition imposed changes, rather than just one. Here we considered scattering from a finite plate of arbitrary porosity
and scattering from an arbitrary number of collinear finite plates. The implementation employs an open source package,
and automates much of the mathematical detail of the method, hopefully creating a practical tool for the engineering
community. The speed and reliability of the method makes it ideal for theoretical parameter searches and optimisation
studies to inform investigations of complex systems. This approach may be employed for more general linear differential
operators in 2D and 3D domains with boundary conditions imposed on parallel sections. A significant extension
would be to consider geometries that support modes; this could provide a useful tool to investigate scattering problems
associated with lined duct intakes and exhausts, and bio-inspired canopies.
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