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Abstract
Methane is a strong greenhouse gas, with a higher radiative forcing per unit mass and shorter
atmospheric lifetime than carbon dioxide. The remote sensing of methane in regions of industrial
activity is a key step toward the accurate monitoring of emissions that drive climate change. Whilst
the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinal-5P satellite is
capable of providing daily global measurement of methane columns, data are often compromised
by cloud cover. Here, we develop a statistical model which uses nitrogen dioxide concentration data
from TROPOMI to efficiently predict values of methane columns, expanding the average daily
spatial coverage of observations of the Permian basin from 16% to 88% in the year 2019. The
addition of predicted methane abundances at locations where direct observations are not available
will support inversion methods for estimating methane emission rates at shorter timescales than is
currently possible.

1. Introduction

Methane and carbon dioxide are the two domin-
ant anthropogenic greenhouse gases responsible for
warming Earth’s atmosphere above its pre-industrial
era temperature [1]. The current average atmospheric
concentrations of these gases are ≈1900 parts per
billion by volume (ppbv) for methane at marine
surface measurements sites [2] (an increase of over
1000 ppbv in the past 250 years as a result of human
activity [3]), and ≈413 parts per million by volume
for carbon dioxide [4]; the mass of carbon diox-
ide in the atmosphere now is roughly 600 times the
mass of methane. However, methane is a dramatically
stronger absorber of thermal radiation than carbon
dioxide. Despite its much lower concentration com-
pared to carbon dioxide, methane is still responsible
for trapping more than 50% of the additional heat

that atmospheric carbon dioxide traps compared to
the pre-industrial era [5].

Satellite-borne remote sensing and monitoring
of greenhouse gas emissions is playing an increas-
ingly important role in assessing mankind’s impact
on the climate [6, 7], as direct measurements can
displace or complement bottom-up inventory estim-
ates that rely on self-reported industrial metrics
[8]. Measurements of methane column concentra-
tions from space began in 2003 with the SCan-
ning Imaging Absorption SpectroMeter for Atmo-
spheric CHartographY (SCIAMACHY) on board
ENVISAT, an ESA mission which terminated in 2012
[9]. SCIAMACHY was succeeded by the Greenhouse
Gases Observing Satellite (GOSAT, 2009–present)
and GOSAT2 (2018–present) [10, 11], operated by
JAXA. BothGOSATandGOSAT2have improved cap-
abilities with pixel resolutions of 10× 10 km2 and
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global coverage in 3 days when compared to SCIA-
MACHY, which required 6 days for global coverage
with a ground pixel resolution of 30× 60 km2. In
2016 the private enterprise GHGSat-D instrument
was launched, with a greatly improved pixel resolu-
tion over GOSAT of 50× 50 m2 for targeted view-
ing of selected methane sources [6]. Next genera-
tion instruments such as the Advanced Hyperspectral
Imager launched on board China’s GaoFen5 satellite
in 2018 provide methane retrievals with a pixel resol-
ution down to 30 metres [12], but such missions are
sporadically operated for targeted areas and do not
provide the same level of spatial coverage as GOSAT
[13]. Leading the field in regional observation is the
TROPOsphericMonitoring Instrument (TROPOMI)
on board the ESA’s Sentinal-5 Precursor satellite.
Launched in 2017, TROPOMI delivers daily global
coverage, initially observing full methane columns
with a ground pixel resolution of 7× 7 km2 at
nadir [14, 15], and later with an increased ground
pixel resolution of 5.5× 7 km2 from August 2019
onwards. With early data successfully compared with
GOSAT [16], TROPOMI is the cornerstone of the
ESA’s commitment to monitoring national pledges
toward emission reductions under the Paris Climate
Accord [17].

Remote sensing ofmethane emissions using satel-
lites is attractive because it can be frequent, peri-
odic, and non-intrusive to operations on the ground.
Satellites therefore have the potential to detect inter-
mittent methane sources or emissions released dur-
ing abnormal operating conditions [18]. Observa-
tions from SCIAMACHY [19] and GOSAT [20] have
successfully provided top-down estimates of regional
methane emission rates. More recently, observations
from TROPOMI have provided top-down estimates
of methane emission rates from the Permian basin
(shown in figure 1, extending from western Texas to
southeastern New Mexico) of 2.7 teragrams per year
over a 12-month period from March 2018 to March
2019 [21].

Although the TROPOMI instrument covers the
entire surface of the Earth at least once a day, the
actual amount of methane concentration data from
TROPOMI is limited by a variety of factors [14].
Cloud cover and the presence of aerosols in the atmo-
sphere often hamper the retrieval of methane column
data [22]. Consequently, sparse data is typically aver-
aged over at least monthly timescales in order to
obtain suitable coverage for emission estimates of oil
and gas producing regions [19–21]; however, indi-
vidual daily TROPOMI methane observations can be
used on an intermittent basis for flux estimates of
smaller targets on clear-sky days [23]. In contrast,
whilst TROPOMI observations of nitrogen dioxide
are subject to similar difficulties posed by clouds
and aerosols [24], their geospatial coverage tends
to exceed that of TROPOMI methane observations.
Large excesses of nitrogen dioxide are often linked

to regions of rapid urban expansion and industrial
activity [25].

Oil and gas production is also associated with
nitrogen dioxide emissions. For example, lit meth-
ane flare stacks emit combusted natural gas which
contains nitrogen dioxide [26, 27]; it is also known
that the combustion efficiency in flares is not equal
to 100%, leading to the co-emission of methane into
the atmosphere [21, 28]. Similarly, gas-fuelled com-
pressors emit nitrogen dioxide during operation but
they may also emit methane leaking through their
seals. A final example are the pumps and storage tanks
which are an integral part of oil distribution net-
works: pumps can emit nitrogen dioxide as a result
of fuel combustion, whereas methane can leak from
thief hatches in storage tanks. Indeed, a recent study
[28] has shown that there is a correlation between the
nitrogen dioxide and methane concentrations meas-
ured by TROPOMI over the Permian basin.

In this work, we develop a method to compensate
for the missing direct methane data from TROPOMI
by using nitrogen dioxide as a proxy of methane
column density, with the methane-nitrogen dioxide
relationship empirically inferred from sample loca-
tions where confident measurements exist for both
species [28]. We develop a Bayesian model to infer
missing methane column data based on co-located
column values for nitrogen dioxide, which expands
the spatial coverage of methane observations from
TROPOMI.We use the Permian basin as a case study;
as the most productive basin in the United States, it
produces more than 18 000 million cubic feet of nat-
ural gas and nearly 5 million barrels of oil per day
[29]. We fit our model to TROPOMI observations,
test its predictive ability and investigate how the inclu-
sion of such estimates expands the daily spatial cov-
erage of methane data. Spatial coverage over the Per-
mian for the year 2019 is increased on average by
72%whenourmodel predictions are used to augment
TROPOMI methane observations. We examine the
implications of including inferred values in emission
budgets by calculating the above-background mass
of methane observed in the Permian basin over the
course of the year 2019, and find the inclusion of
inferred methane values results on average in nearly
four more kilotonnes of excess methane observed per
day. The spatial augmentation of TROPOMI meth-
ane observations will support inverse methods for
estimating methane emission rates on shorter times-
cales than currently possible, which will be invalu-
able as policymakers begin to require recent and up-
to-date methane emission estimates for industrial
regions.

2. Results

2.1. Model evaluation
TROPOMI provides one observation of nitrogen
dioxide andmethane per day per location. Ourmodel
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Figure 1. TROPOMI observations of methane (a) and nitrogen dioxide (b) over the Permian Basin on 31 January 2019. Only
methane and nitrogen dioxide pixels which pass the recommended quality assurance threshold are shown [22] and all other pixels
are masked. The study region is shown by the red dashed rectangle in (b), superimposed over county lines which are shown in
grey solid lines in both panels. We show the locations of the cities of Midland and Odessa (the only cities in the study region with
populations exceeding 100 000 people) in (a) with green squares. Also shown in (b) with green triangles are the locations of lit
methane flare stacks identified by VIIRS Nightfire [40], demonstrating their co-location with atmospheric overabundances of
methane and nitrogen dioxide.

is a linear hierarchical model where the relationship
between observations of nitrogen dioxide and meth-
ane on a given day t are related to one another by a lin-
ear form with slope parameter βt and intercept para-
meter αt , plus another daily parameter to account for
intrinsic scatter around the linear trend. We fit our
model to a year’s observations of methane and nitro-
gen dioxide over the Permian basin from 2019, using
co-located observations contained within a marked
study region shown in figure 1. The daily parameter
αt has units of ppbv and roughly corresponds to the
abundance of methane in the study region on day t
that is not associated with nitrogen dioxide. The daily
parameter βt has units of ppbv (mmolm−2)−1 as we
scale all observations of nitrogen dioxide columns
into mmolm−2.

We specify a multivariate normal hierarchical
prior on values of αt and βt such that(

αt

βt

)
∼N

((
µα

µβ

)
,

(
Σ11 Σ12

Σ21 Σ22

))
(1)

where Σ11 = σ2
α, Σ22 = σ2

β and Σ12 =Σ21 =
ρ σα σβ . The hyperparameter ρ controls the degree of
correlation between αt and βt , with ρ ∈ [−1, 1]. The
hyperparameter µα roughly corresponds to the aver-
age background level of methane in the study region
across the year 2019, and the hyperparameter σα is
the deviation that controls the spread of αt around
µα, with σα > 0, and similarly for µβ and σβ .

We fit twomodels, each to a specific subset of data.
First, we fit a ‘data-rich’ model to observations from
days that produce numerous highly correlated co-
located observations ofmethane andnitrogen dioxide

in the study region. Afterwards, we fit a ‘data-poor’
model to observations from all other days where there
are at least two co-located observations of methane
and nitrogen dioxide in the study region. Note that
the latter model can be fit to data very well and is
referred to as the ‘data-poor’ model because it is fit
to data from days that have relatively few co-located
TROPOMI observations of methane and nitrogen
dioxide. The difference in construction between the
two models is that in the data-rich model, we stip-
ulate a uniform prior independently for each of the
hyperparameters in order for the model to learn their
posteriors predominantly from the data, and in the
data-poor model we provide the information learned
from the data-rich model to the hyperparameters
as prior information. We do this so that when the
data-poor model is being fit either to sparse or less-
correlated observations we are making full use of the
information that can be obtained fromdata-rich days.
The effect of requiring that data-rich days be those
with both large amounts of co-located observations of
nitrogen dioxide andmethane as well as a high degree
of correlation is that model predictions of methane
from the fitted data-poor model may be more dom-
inated by the prior when observations are extremely
sparse, but we find that this is typically not the case.
When fitting all models, we monitor the effective
sample size (ESS) and R̂ of all parameters in addition
to the energy Bayesian fraction of missing inform-
ation (E-BFMI) to ensure convergence and efficient
sampling [30, 31]. The data-rich model was fit with
an ESS of 212.9 and the data-poor model was fit with
an ESS of 860.0, indicative of sufficient mixing in
both cases.
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Figure 2. A graphical representation of how αt and βt are estimated (a), with a demonstration of results across all data-rich days
in 2019 (b). (a) Co-located TROPOMI observations of methane column average dry air mixing ratio plotted against nitrogen
dioxide column densities within the study region on 31 January 2019, shown in red. Error bars on the observations (shown in
blue) are the single-sigma precisions provided in the TROPOMI Level 2 Data Products. Superimposed over the scatterplot of
observations we plot a random 1000 selections of (αt, βt) pairs from the 4000 sampled draws from the posterior of the fitted
data-rich model, shown in lime green. In the bottom right corner we show median estimated posterior values of αt (ppbv) and βt

[ppbv (mmolm−2)−1] with± indicating the extent of the 68% central credible interval. (b) Median estimated posterior values of
αt and βt (shown in red) across all data-rich days with their estimated 68% central credible intervals (shown in blue). Shown
underneath the plotted values of αt and βt is a red ellipse constructed from the median over random samples drawn from the
joint posterior chain of µα, µβ , ρ, σα and σβ . This ellipse indicates the information that is eventually supplied to the data-poor
model as prior information for αt and βt .

We examine the joint posterior distribution of the
hyperparameters of the data-rich model, and repres-
ent median values of µα, µβ , ρ, σα and σβ in panel
(b) of figure 2. We find that the correlation ρ between
αt and βt on data-rich days for the year 2019 has a
median value of −0.18 with a 68% central credible
interval of (−0.30,−0.05). We would expect a value
of ρ< 0 due to the positive correlation between the
amount of methane and nitrogen introduced to the
atmosphere from flare stack combustion chemistry
[32–35], i.e. positive correlation in the data implies
negative correlation between the slope and intercept.
However, it is important to note that this result was
obtainedwithout stipulating any prior constraint that
ρ must be negative. Multivariate normal hierarch-
ical prior specification and uniform hyperpriors for
hyperparameters in the data-rich model allows us to
learn the degree to which the daily model paramet-
ers αt and βt are correlated, and leverage this inform-
ation as a prior of appropriate strength in the data-
poor model.

Other model hyperparameters that we discuss at
this stage areµα andσα. These twomodel parameters
have physical meaning, where µα can be thought of
as the ‘mean’ regional background of methane in our
study region for the year 2019, and σα as the extent
to which the daily intercept α varies around µα from
day to day. We find µα to have a median value of
1861.32 ppbv with a 68% central credible interval of

(1859.52, 1863.15), and σα to have a median value
of 14.44 ppbv with a 68% central credible interval of
(13.25, 15.73).

2.2. Predictive skill
To assess the predictive ability of our models, we per-
formed hold-out testing by refitting our models to a
random selection of 80% of observations in the study
region on each day, using the remaining 20% of TRO-
POMI methane observations for comparison against
model predictions at those locations. Both the data-
rich and the data-poor model fit to the 80% datasets
with satisfactory E-BFMI, ESS and R̂. After generat-
ing predictions from the fitted model and comparing
to co-located withheld observations across all days,
we calculate values of reduced chi-squared χ2

ν for
each day (i.e. chi-squared per degree of freedom),
the resulting distribution of which is shown in panel
(b) of figure 3. We also calculate residuals between
model predictions and withheld observations across
all days, which have a mean of 0.15 ppbv and stand-
ard deviation 12.09 ppbv, correlated with Pearson
R= 0.82 (shown in panel (a) of figure 3). For com-
parison, first results from TROPOMI were initially
tested against co-located GOSAT observations with
a mean difference of 13.6 ppbv and standard devi-
ation 19.6 ppbv, correlated with Pearson R= 0.95
[16]. Recent work has derived the observation stand-
ard deviation over the Permian to be 11 ppbv [21].
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Figure 3. Results of the dropout testing. (a) Predictions of methane CHpred
4 plotted against actual TROPOMI observations CHobs

4 .
The color scale indicates the number density of the scatterplot. Predictions come from a model that was fitted without using the
observed values shown on the x-axis. We plot in black the line y= x to demonstrate the effect that uncertainty on nitrogen dioxide
observation has on our model; regression dilution results in slight underestimation of methane at high values of nitrogen dioxide
and overestimation at low values of nitrogen dioxide, though there is still good agreement overall. (b) A distribution of reduced
chi-squared values for data-rich days in the year 2019, comparing model predictions to the data withheld from the model fitting.

In an extreme case where all 11 ppbv is independent
of our model error, the standard error of our model
predictions would be roughly

√
122 + 112 ≈ 16 ppbv.

Panel (a) of figure 3 also demonstrates the tendency
of the model to underestimate methane from high
values of observed nitrogen dioxide and overestim-
ate methane at low values of nitrogen dioxide. This
is a result of regression dilution caused by the rel-
atively high uncertainty of the TROPOMI observa-
tions of nitrogen dioxide [36, 37], seen in panel (a)
of figure 2. Correcting for regression dilution is not
necessary in predictive modelling scenarios. Valida-
tion studies have shown that the TROPOMI nitrogen
dioxide data product can be biased low by as much
as 50% over highly polluted regions when compared
to ground-based observations [38]. Since we fit our
models using nitrogen dioxide TROPOMI observa-
tions that are not bias corrected, the resulting pre-
dicted methane abundances will not be degraded
when non-bias-corrected TROPOMI nitrogen diox-
ide observations are used as input for the methane
predictions.

We also assess the predictive ability of our mod-
els against the weighting function modified differen-
tial optical absorption spectroscopy (WFMD) CH4

data product [39]. This data product has much bet-
ter spatial coverage than the operational Sentinal-
5P CH4 data product that we fit our models to.
We find that predictions of methane from our fitted
model correlate nearly as well with co-located obser-
vations of the Permian basin from the WFMD CH4

data product as the ‘original’ TROPOMI methane
observations (figure 4). TROPOMI observations of
methane exhibit a standard deviation of 15.5 ppbv

around their line of best fit with co-located obser-
vations from the WFMD CH4 data product red
with a correlation of Pearson R= 0.73, whilst pre-
dictions from our model exhibit a standard devi-
ation of 15.8 ppbv around the same line red with a
Pearson R= 0.58.

2.3. Seasonality
After re-fitting the data-rich model to 100% of avail-
able observations we examine posterior estimates
of daily model parameters as time series. We plot
median values of the slope parameter βt in figure 5
along with a time series of active flare stacks in the
study region on data-rich days, identified fromVIIRS
Nightfire [40]. We do not find any significant cor-
relation between estimated βt and the total num-
ber of identified flare stacks inside the study region
on a given day, which is not unexpected as recent
work suggests that super-emitting individual flares
may be accountable for themajority ofmethane emis-
sions in the Permian basin [13]. However, we do find
that higher values of βt tend to occur in the sum-
mer months. We investigate this further by examin-
ing the seasonality of nitrogen dioxide in the study
region, shown in of figure 6(c). Nitrogen dioxide has
a shorter atmospheric lifetime in the warmer sum-
mer months, which could explain the higher inferred
values of βt shown in figure 5. However, in figure 6
we also investigate the correlation between the aver-
age value of nitrogen dioxide in the study region and
number of active flares, and find that nitrogen diox-
ide correlates with number of flares to a significant
level in the warmer summer months. Future work is
needed to determine the origin of this correlation.
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Figure 4. (a) A comparison of TROPOMI observations of methane CHobs
4 over the Permian in the year 2019 on data-rich days to

co-located observations from the WFMD CH4 data product [39]. In black we plot the line y= x and with the red dashed line we
plot the ordinary least squares line of best fit (the parameters of the fit are shown in the bottom right of the panel). The color scale
indicates the number density of the scatterplot. The root mean square deviation of the data around the line of best fit is 15.5 ppbv.

CHobs
4 correlates with CH4 WFMD with a Pearson R of 0.73. (b) A comparison of methane predictions CHpred

4 from our fitted
model over the Permian in the year 2019 on data-rich days to co-located observations from the WFMD CH4 data product. As in
(a), the color scale indicates the number density of the data, and in black we plot the line y= x. We plot dashed in red the same
line from (a), not a fit to the data in (b). The root mean square deviation of the data in (b) around this same regression line is

15.8 ppbv. CHpred
4 correlates with CH4 WFMD with a Pearson R of 0.58.

Figure 5. A demonstration that the number of total lit methane flares in the study region identified by VIIRS does not appear to
correlate with estimated values of βt . In panel (a) we plot median estimated posterior values of βt (with 68% central credible
regions as error bars) as a function of the identified number of lit methane flares on that day. (b) The same estimates of βt from
panel (a) as a time series. Also shown with red x’s the numbers of active lit methane flares identified by VIIRS Nightfire on
data-rich dates. In general, higher values of βt are found to occur in the summer months. This could be due to the fact that
nitrogen dioxide is removed from the atmosphere more quickly in the summer than in the colder winter months, or due to
changes in operating procedure when energy demand is low.

2.4. Enhancement of spatial coverage
We augment daily observations over the study region
by including model predictions at locations where
direct observations are not available from TRO-
POMI. Predictions are only made from co-located
TROPOMI observations of nitrogen dioxide with an

associated quality assurance value greater than or
equal to 0.75. An example of this procedure is shown
in figure 7. Prior to augmentation using predictions
from the model, we calculate that the mean value
of daily pixel coverage within the study region for
the year 2019 is 16%± 13%. After adding in model

6
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Figure 6. (a) A time series of active flares identified by VIIRS Nightfire in the study region in the year 2019. (b) A time series of
average TROPOMI nitrogen dioxide pixel value in the study region. (c) A time series of ordinary least squares slope estimates,
fitted to average nitrogen dioxide pixel value against flare count, using rolling 120 day averages. (d) p-values for the slopes
calculated in (b) (values exceeding 0.20 emitted). In all panels, only data on dates where the slopes in (c) are significantly positive
according to (d) are shown as solid blue, demonstrating that nitrogen dioxide and number of identified flares are strongly
correlated in the summer months.

Figure 7. A comparison between original (a) and augmented (b) TROPOMI observations of methane columns. The colorbar
labels in both plots are in units of ppbv. (a) The same TROPOMI observation of methane columns as in figure 1(a). (b) The same
observations from (a), augmented with predictions from the fitted model at all locations where we have a TROPOMI observation
of nitrogen dioxide that passes the recommended quality assurance thresholds. On this day, including model predictions
increased the spatial coverage of the study region from 53% to 100%.

predictions at appropriate pixel locations, the mean
value of daily pixel coverage rises to 88%± 18%. A
time series demonstrating this rise in spatial cover-
age is shown in figure 10(a). We find that the spa-
tial coverage of our augmented TROPOMI observa-
tions at least matches and usually exceeds that of the
WFMD CH4 data product (figure 8). Increasing the
spatial coverage over regions of interest like the Per-
mian basin can allow for the aggregation of data on
shorter timescales than previously used in perform-
ing methane emission estimates, which will be key

for accurately monitoring greenhouse gas emissions
in near-real time.

2.5. Examination of urban influence
The cities of Odessa and Midland are contained
within the study region and each have populations
that exceed 100 000 people. Cities are known to emit
large quantities of nitrogen dioxide [25], and may
emit co-located methane at a rate that differs from
the rural surrounding oil and gas producing regions.
We here examine the extent to which including these

7
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Figure 8. A time series of the difference between the spatial coverage of our augmented TROPOMI methane observations and the
spatial coverage of the WFMD CH4 data product. In general, the spatial coverage of our augmented TROPOMI observations over
the Permian Basin in the year 2019 exceeds that of the WFMD CH4 data product.

Figure 9. A comparison of distributions of observations over the study region for the year 2019, segregated according to location
within the study region. (a) Distributions of nitrogen dioxide observed over the urban sub-region and the rural surroundings.
(b) Observations and predictions of methane over the rural region made from the fitted model. (c) Observations and predictions
of methane over the urban region made from the fitted model.

cities in the study region may affect predictions of
methane in non urban areas. To do this, we define a
new sub-region within the study region that contains
the two cities. Figure 9 shows comparative distribu-
tions of various TROPOMI observations and model
predictions, segregated according to whether or not
they are located in the urban sub-region contain-
ing the cities. Using a Kolmogorov–Smirnov test, we
determine these pairs of distributions to be signific-
antly different from one another [41]. We calculate
the fractional difference between the mean value of
observed nitrogen dioxide columns over the urban

sub-region and the mean value of observed nitrogen
dioxide columns over the surrounding rural areas and
find that they differ by 31.28%. This indicates that
nitrogen dioxide emissions tend to be higher on aver-
age over the city sub-region than over the surround-
ing rural regions, and that as a result itmay be the case
that methane emissions are slightly over-predicted by
our model over the city sub-region. However, the dif-
ference between the mean values of predicted and
observed methane over the urban sub-region is less
than one percent. The same is true for the fractional
difference between the mean values of predictions
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and observations ofmethane over the rural surround-
ings. Although it is beyond the scope of this work to
fully investigate this result, it may be the case that our
model under-predicts methane emissions in the sur-
rounding rural areas of the study region where meth-
ane sources like livestock are not directly correlated
with nitrogen dioxide emissions. We note that the
majority of locations of data in our sample corres-
pond to rural areas, and section 2.2 demonstrated
that in general our model predictions agree well with
the data. In future work, this methodology could be
applied to smaller study areas where infrastructure
remains more homogenous, though this would come
at a cost of less data.

2.6. Observed mass of methane hotspots
By subtracting a nominal background level of meth-
ane from TROPOMI observations and model predic-
tions, we can calculate the above-background mass
of methane contained above the study region on a
given day. We use the global monthly marine mean
surface value of methane as a far-field reference
background [2].

We convert all methane columns within the study
region on each day to above-background masses and
integrate over the spatial extent to calculate the above-
background mass. This involves converting all val-
ues of methane (which either returned from TRO-
POMI or predicted from themodel as dry-air column
averaged mixing ratios) into column densities, for
whichwe need a grid of dry-air column densities at all
pixel locations. We calculate a grid of dry air column
density to convert both TROPOMI observations and
model predictions to masses in a consistent manner
[42], since dry air column densities are only provided
with the TROPOMI Level 2 CH4 Data Product at
the location of observed pixels [22]. Values of dry air
column density from our grid are correlated with val-
ues returned with the TROPOMI Level 2 CH4 Data
Product with a Pearson R of 0.97, and have a mean
residual of −1242 kgm−2 with standard deviation
1836 kgm−2. We use the root mean square deviation
of 2217 kgm−2 for error propagation in the calcula-
tion of mass of methane contained with a pixel in the
study region.

We find that over the course of the year 2019,
the average daily above-backgroundmass of methane
is 0.9± 1.5 kilotonnes. We re-calculate this quantity
including predictions from the model and find a new
daily mean of above-background methane mass of
4.3± 5.1 kilotonnes. These two quantities are plot-
ted in panel (c) of figure 10. The choice of a refer-
ence background from the far field does allow for
negative values of above-background methane levels,
but the point of the calculation is to demonstrate the
affect of including predictions, and so the choice of
background is not strictly important. Previous work
has demonstrated that time-integrated TROPOMI

observations of methane can be used to create top-
down estimates ofmethane emission rates [21].While
we do not currently carry out any inverse analysis,
we demonstrate that the inclusion of predictions
of methane from co-located observations of nitro-
gen dioxide increases the above-background value of
methane loading in the study region by kilotonnes per
day on average, which could indicate that the inclu-
sion of predictions reveals methane hotspots that
were previously unobserved. By increasing the spa-
tial coverage of observations, we can in future work
attempt to increase the temporal resolution of meth-
ane emission rates in the Permian.

3. Discussion

The remote sensing of atmospheric methane from
space is a crucial tool for monitoring anthropogenic
greenhouse gas emissions. Using the Permian basin
as a case study, we show that observations of nitro-
gen dioxide can be used as predictors for methane
at locations for which meteorological factors prevent
TROPOMI frommaking direct observations ofmeth-
ane. We validate our Bayesian model using a variety
of metrics and examine its predictive ability against
withheld observations. When using predicted values
of methane observations to augment daily observa-
tions over the Permian, we find that methane estim-
ates can be obtained with effectively full spatial cov-
erage on most days, and that the observed mass
of methane hotspots is increased by approximately
3.4 kilotonnes per day on average, a 377% increase.

The algorithm described in this work has lim-
itations that could be improved upon in future
work. The atmospheric lifetimes of methane and
nitrogen dioxide are different, with nitrogen dioxide
being removed from the atmosphere on a scale of
minutes compared to years for methane. This effect
is enhanced in warmer summer months, when the
atmospheric lifetime of nitrogen dioxide decreases
even further compared to that of methane. It is there-
fore possible that our model may tend to under-
estimate methane emissions as a consequence of
‘missing’ nitrogen dioxide that has reacted away, leav-
ing behind overabundances of methane that are no
longer co-located with an overabundance of nitro-
gen dioxide. This effect might be incorporated as
a smoothly varying seasonal βt . Inclusion of wind
field data may allow for the temporal modeling of
nitrogen dioxide decay as pollutants move through
plumes. Furthermore, varying surface altitudes may
result in spurious methane predictions if the current
model is used for a study region with highly varying
topography.

Whilst our currentmethodology works efficiently
for a study region like the Permian basin where oil
and gas producing infrastructure results in highly
correlated overabundances of nitrogen dioxide and
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Figure 10. An examination of the effects of including model predictions of methane columns in addition to original TROPOMI
observations. (a)–(c) In each panel we plot two time series. Plotted in blue are quantities calculated purely from TROPOMI
observations that pass the recommended quality assurance threshold. Plotted in red are the same quantities but calculated with
the inclusion of predictions of methane concentration from the fitted model at pixel locations in the study region where direct
TROPOMI observations of nitrogen dioxide are available but no direct observations of methane are available. For both time series
in each panel, full circles indicate data-rich days and open circles indicate data-poor days. (a) Percentage of usable pixels in the
study region, demonstrating that the application of the predictive algorithm augments spatial coverage to nearly 100% of the
study region on most days. (b) Median observed pixel value in the study region, demonstrating that the inclusion of predictions
does not skew the median pixel value in the study region to higher or lower values away from the original median observed pixel
value. (c) Total observed above-background mass of methane over the study region (in reference to the NOAA background). We
calculate uncertainty on the quantity plotted in (c), but error bars would so narrow as to not be visible when plotted on this scale.
Panel (c) demonstrates that the inclusion of predictions could potentially account for extra kilotonnes of excess methane over the
Permian Basin that would nominally be unobserved.

methane, it remains to be seen if themethodologywill
be as easily applicable to other regions. Whereas our
model does not require methane and nitrogen diox-
ide to be exactly co-emitted, it does require them to
be roughly correlated on approximately 5 km scales.
Ongoing work is investigating the applicability of the

model to additional regions of varying geographies
and industrial settings.

This work presents what we believe is thus far
the most extensive estimation of atmospheric meth-
ane over the Permian basin from satellite data. The
current methodology might provide a useful starting
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point for joint inversion of satellite observations of
nitrogen dioxide and methane, and hence potentially
estimation of methane emission rates on timescales
much shorter than previously achieved.

4. Methods

For each day in 2019 we retrieved TROPOMI obser-
vations of methane and nitrogen dioxide over the
study region as shown in figure 1. Before conducting
any analysis, we reduce the data by ignoring pixels that
do not pass the recommended quality assurance (qa)
value. For the TROPOMI Level 2 CH4 Data Product,
the threshold qa factor for recommended usage is
0.5 or greater, and for the TROPOMI Level 2 NO2

Data Product, the threshold qa factor for recommen-
ded usage is 0.75 or greater. We then classified indi-
vidual days as being either rich or poor in remain-
ing data, with data-rich days being those with N⩾
100 co-located observations of methane and nitro-
gen dioxide in the study region correlated with Pear-
son’s R⩾ 0.4, and data-poor days being all other days
with N⩾ 2. Co-located observations are determined
by linearly interpolating the grid of CHobs

4 onto the
grid of NOobs

2 . We leave the TROPOMI Level 2 CH4

Data Product in units of ppbv, but we scale the TRO-
POMI Level 2 NO2 Data Product from molm−2 to
mmolm−2.

4.1. Data-rich model
We next developed a fully Bayesian linear hierarch-
ical model to fit solely to observations from data-rich
days. Data-rich days are indexed via t= 1,2, . . . ,D,
and co-located observations of methane and nitrogen
dioxide within the study region on day t are indexed
via i= 1,2, . . . ,N.

We relate observed values of methane and nitro-
gen dioxide to their true latent values via

NOobs
2,i ∼N

(
NOtrue

2,i , σ
2
N,i

)
(2)

CHobs
4,i ∼N

(
CHtrue

4,i , σ
2
C,i

)
(3)

where σNi and σCi are the TROPOMI-providedmeas-
urement standard deviations on NOobs

2i and CHobs
4i

respectively. We also relate latent values of methane
to latent values of nitrogen dioxide via

CHtrue
4,i ∼N

(
αt +βtNO

true
2,i , γ

2
t

)
(4)

where we have now introduced the daily model para-
meters αt , βt and γt . On a given day t, αt and βt

are respectively the y-intercept and slope of the line
of best fit relating methane to nitrogen dioxide, while
γt is the standard deviation of the scatter around the
mean relation.

We stipulate an improper flat prior on latent
values of nitrogen dioxide observations in order to

combine equations (2)–(4) into the single model
equation

CHobs
4,i ∼N

(
αt +βtNO

obs
2,i , β

2
t σ

2
N,i + γ2

t +σ2
C,i

)
.

(5)

Writing this equation in this way is desirable because
it relates the observed pixel value of methane to the
observed pixel value of nitrogen dioxide entirely in
terms of the associated pixel precisions and the by-
day model parameters αt , βt and γt .

We add hyperparameters to our model by includ-
ing a multivariate prior distribution for αt and βt ,
shown in equation (1). We include this multivariate
prior to allow for the possibility of learning the extent
towhichαt andβt are correlated. Althoughwebelieve
it is likely that αt and βt are negatively correlated,
we do not encode this belief in the prior. We instead
assume a uniform flat prior on the domain (−∞, ∞)
on each of µα, µβ , Σ12 and Σ21, and assume a uni-
form flat prior on the domain (0, ∞) on both Σ11

and Σ22. This lets us learn the extent to which αt and
βt are correlated entirely from the posterior inference.
Equations (5) and (1) are the likelihood and prior of
our data-rich model respectively. We write our model
in Stan [43] via the interface CmdStanPy [44] and
sample the posterior of ourmodel using Stan’s default
Markov Chain Monte Carlo algorithm NUTS (the
No U-Turn Sampler, which is a variant of Hamilto-
nian Monte Carlo). When fitting our model we spe-
cify the algorithm to draw samples from the posterior
using four separate Markov chains, each with 500
burn-in iterations with a further 1000 retained draws,
combining for a total of 4000 draws from the pos-
terior for each of our model parameters. Specifying
1000 post burn-in draws per chain easily allows for a
sufficient ESS.

4.2. Data-poor model
We developed a separate Bayesian model to fit to days
that we identified as being poor in data. Data-poor
days were classified as those that were not data-rich
and have N⩾ 2 co-located observations of methane
and nitrogen dioxide in the study region. The point
of developing a second model to fit to data-poor days
after we have already fit a model to data-rich days is to
incorporate information learned from the data-rich
model into the data-poormodel as an informed prior.

As in the data-rich model, the likelihood of the
data-poor model is given by equation (5), and the
multivariate prior on values of αt and βt is given by
equation (1). However, when fitting the hierarchical
model to all data-rich days simultaneously, we have
learned information about what sort of values the
model hyperparameters ‘should’ take. To account for
this information we have learned, we add a prior on
the hyperparameters with
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
µα

µβ

Σ11

Σ12

Σ22

∼N (θ,Υ) . (6)

We have θ as the mean vector of the 4000 posterior
draws of (µα,µβ ,Σ11,Σ12,Σ22) from fitting the data-
richmodel to data-rich days.Υ is the 5× 5 covariance
matrix ofµα,µβ ,Σ11,Σ12 andΣ22, constructed using
their 4000 posterior draws from the data-rich model.
We fit the data-poormodel to all data-poor days again
using Stan and the NUTS MCMC algorithm.

4.3. Reparameterisation
When fitting the data-rich and data-poor models to
actual observations, the MCMC sampler was con-
fronted with an abundance of divergent transitions.
To remove these transitions, we reparameterise our
models into effectively equivalent mathematical rep-
resentations that present a simpler posterior geo-
metry [43, 45]. We do so making use of the Cholesky
decompositions of our covariance matrices [46].

In order to decrease fitting time of the data-rich
model, we replace the per-pixel precisions returned
with the TROPOMI data products with daily aver-
ages, defined by

σCt =
1

N

N∑
i=1

σCi,t (7)

σNt =
1

N

N∑
i=1

σNi,t. (8)

This yields a new likelihood equation given by

CHobs
4i ∼N

(
αt +βtNO

obs
2i , β

2
t σ

2
Nt + γ2

t +σ2
Ct

)
.

(9)

In order to determine how this affects the predict-
ive accuracy of the data-rich model, we fit a data-
rich model using per-pixel precisions and a data-rich
model using daily averages of precision to data-rich
days for the month of January 2019, and estimate
the difference between the two models’ expected log
pointwise predictive density (ELPD) using the widely
available information criterion [47, 48]. We estim-
ate that the difference in ELPD of the two mod-
els in this case is 6.92± 7.09. As the difference in
ELPD is within a standard error of zero we continue
using daily averages of TROPOMI pixel precision in
order to decrease the fitting time of our data-rich and
data-poor models.

4.4. Predictions
We can predict CHpred

4 and precision σ
pred
C from a

fitted model using an observation of nitrogen diox-
ide NO2 and its associated precision σN as input. To

obtain predictions, we first sample K = 1000 poten-
tial values of CH4 from the model values via CH4,k ∼
N

(
αt,k +βt,kNO2, β

2
t,kσ

2
N + γ2

t,k

)
where the sub-

script k denotes a random draw with replacement
of a set of parameter values from one of the 4000
sets in the posterior chain. We then have CHpred

4 =

1
K

∑K
k=1CH4,k and σ

pred
C =

√∑K
k=1(CH4,k−CHpred

4 )
2

K . If

predictions CHpred
4 were to be used in an inver-

sion analysis, σpred
C would be the error associated

to CHpred
4 .

4.5. Dropout testing
We perform dropout testing in order test the predict-
ive ability of our model. For each data-rich day t we
ignore a random selection of 20% of the co-located
observations of methane and nitrogen dioxide and fit
the model to the remaining 80% of the data. We use
Stan to encode our model and sample the posterior
using NUTS, with four independent chains each with
500 burn-in draws and 1000 retained sampled draws
for a total of 4000 draws from the posterior.

After the data-rich model has been fit to the
retained 80% of the data, we can compare observed
values of methane from the held-out subset of data
to predictions from the model and summarise how
well the model has fit each day using a reduced chi-
squared statistic. The reduced chi-squared statistic on
day t is calculated via

χ2
ν,t =

χ2
t

νt
(10)

χ2
t =

N∑
i=1

(
CHobs

4,i −CHpred
4,i

)2

σ2
C,i +σ

pred2

C,i

(11)

νt = N− 8, (12)

where again N is the number of co-located observa-
tions of methane and nitrogen dioxide in the study
region on day t. After examining the resulting distri-
bution of calculated values of χ2

ν,t, we fit the model to
the entire set of observations in the year 2019, without
withholding any subset of the data. This fitted model
is themodel that we use for predicting values ofmeth-
ane for our final results.

4.6. VIIRS
We next retrieved VIIRS Nightfire observations of lit
methane flare stacks for each day in 2019. Nightfire
datasets provide the location coordinates, estimated
temperature and source size of identified flares [40].
We reduce the daily datasets down to flare stacks iden-
tified within the study region regardless of estimated
temperature. Daily tallies of lit flare stacks were col-
lected for eventual comparison against time series of
daily fitted model parameters.
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4.7. ERA5
The TROPOMI CH4 Level 2 Data Product provides
the dry-air column average mixing ratio of meth-
ane in units of ppbv, defined as the ratio between
the column density of methane to the column dens-
ity of dry air at each pixel location [22]. To convert
the dry-air column average mixing ratio of methane
back to a column density, we simply multiply by the
value of the dry air column density at the pixel loc-
ation, which we calculate ourselves from ERA5 data.
Although values of dry air column density are sup-
plied at TROPOMI pixel locations where a retrieval
was successfully performed, we calculate our own grid
from ERA5 data in order to avoid any discrepancy
between values of dry air column density at the loca-
tions of ‘original’ observed methane pixel values and
the locations of model predictions.

We began by retrieving hourly spatial grids of sur-
face pressure PS and vertical column of water vapour
VCH2O that cover the entire extent of the study region
for each day in 2019 [42]. PS is given in (Pa) and
VCH2O given in (kgm−2). From the value PS we can
calculate the total column density of air VCair via
VCair =

PS
g where g= 9.8 m s−2 is gravity. We then

calculate the total vertical column of dry air VCdry air

via VCdry air = VCair −VCH2O.
When calculatingVCdry air at the location of either

an observation or model prediction of methane, we
interpolate the hourly spatial grids of ERA5 data
to the grid of TROPOMI methane observations,
and then linearly interpolate in time between the
two adjacent hourly grids according to the pixel
scanline [22].

4.8. Calculation of methane loading
We were interested in observing how the applica-
tion of our predictive algorithm altered the amount
of observed methane over the Permian Basin for
the year 2019. By virtue of observing more spatial
area, the algorithm would result in an increase of
total observed mass of methane To counteract this
effect, we subtract a nominal background level of
methane from each pixel and then describe how
the above-background mass of methane in the study
region changes after the application of our predictive
algorithm.We linearly interpolate the global monthly
marine mean surface value of methane as a far-field
reference background, provided by the GlobalMonit-
oring Laboratory (GML) at the National Oceanic and
Atmospheric Association (NOAA) [2].

The number of moles of methane above the
GML/NOAA background contained in a pixel
is calculated via mol CH4 = (CH4 −B)× 109 ×
VCdry air ×A where A is the pixel area in square
metres, B is the mean global surface value of methane
in ppbv, and CH4 is either the TROPOMI-observed
or model-predicted pixel value of CH4 in ppbv. We
then convert from moles to tonnes by multiplying by
the molar mass of methane and scaling into tonnes.

The precision on the moles of above-background
methane contained in a pixel is calculated

via σmol CH4 =mol CH4

√(√
σ2
C+σ2

B

CH4−B

)2

+
(

RMSEVC
VCdry air

)2

where σC is the standard deviation uncertainty on
the value of CH4 and σB is the standard deviation
uncertainty on the value of B. We take RMSEVC
to be the root mean squared error on the residuals
between our ERA5-calculated value of VCdry air and
the value returned with the TROPOMI Level 2 CH4

Data Product at all pixel locations possible on all
data-rich days in the year 2019.

We calculate the total methane mass above
background on a given day in the study region
via total mol CH4 =

∑N
i=1mol CH4i where N is the

number of pixels in the study region where we have
either CHobs

4 or CHpred
4 . In order to obtain a con-

servative estimate, we only include predicted values
of methane CHpred

4 in the summation that are pre-
dicted from values of NO2 with NO2/σN > 2. The
precision of total mol CH4 is given by σtotal mol CH4 =√∑N

i=1 (σmol CH4,i)
2.
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