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Abstract

Biological systems are made up of components that change their actions (and
interactions) over time and coordinate with other components nearby. Together with a
large state space, the complexity of this behaviour can make it difficult to create concise
mathematical models that can be easily extended or modified. This paper introduces
the Beacon Calculus, a process algebra designed to simplify the task of modelling
interacting biological components. Its breadth is demonstrated by creating models of
DNA replication dynamics, the gene expression dynamics in response to DNA
methylation damage, and a multisite phosphorylation switch. The flexibility of these
models is shown by adapting the DNA replication model to further include two topics of
interest from the literature: cooperative origin firing and replication fork barriers. The
Beacon Calculus is supported with the open-source simulator bcs
(https://github.com/MBoemo/bcs.git) to allow users to develop and simulate their
own models.

Author summary

Simulating a model of a biological system can suggest ideas for future experiments and
help ensure that conclusions about a mechanism are consistent with data. The Beacon
Calculus is a new language that makes modelling simple by allowing users to simulate a
biological system in only a few lines of code. This simplicity is critical as it allows users
the freedom to come up with new ideas and rapidly test them. Models written in the
Beacon Calculus are also easy to modify and extend, allowing users to add new features
to the model or incorporate it into a larger biological system. We demonstrate the
breadth of applications in this paper by applying the Beacon Calculus to DNA
replication and DNA damage repair, both of which have implications for genome
stability and cancer. We also apply it to multisite phosphorylation, which is important
for cellular signalling. To enable users to create their own models, we created the
open-source Beacon Calculus simulator bcs (https://github.com/MBoemo/bcs.git)
which is easy to install and is well-supported by documentation and examples.
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Introduction 1

The ability to quickly create flexible and concise models of biological systems makes 2

mathematical modelling more practical, enables rapid hypothesis testing, and increases 3

the likelihood that modelling will be used to ensure that conclusions drawn from 4

experiments are consistent with data. Process calculi (or process algebras) are valuable 5

tools for assessing the performance, reliability, and behaviour of a system. Each 6

component in a system is abstracted as a process that can perform actions. 7

Communication actions allow processes to interact with one another to perform 8

coordinated behaviours. The semantics of a process calculus sets rigorous rules that 9

govern which actions that processes can perform, enabling formal reasoning about 10

whether a system is ever capable of performing (or not performing) a certain sequence 11

of actions. While process calculi have been historically developed to formally reason 12

about programs and algorithms, they are applicable to any concurrent system (such as 13

biological systems). 14

There have been many process calculi developed in recent decades: The calculus of 15

communicating systems (CCS) [1] and communicating sequential processes (CSP) [2] 16

are early and foundational examples of process calculi where “reachability”, or whether 17

a system can ever perform a certain set of actions, can be determined using the 18

language’s structural operational semantics. Performance Evaluation Process Algebra 19

(PEPA) assigned a rate to each action so that the system could be mapped onto a 20

continuous time Markov chain (CTMC) [3, 4]. Once expressed as a CTMC, the system 21

can be simulated by generating random paths through the CTMC’s states. It also 22

becomes possible to determine the probability that a behaviour occurs within a 23

specified amount of time, and the system’s asymptotic behaviour can be determined 24

using the CTMC’s stationary distribution [5]. Tools have been developed to map the 25

PEPA language onto a CTMC and perform this analysis, including the PEPA 26

workbench [6], the PEPA Eclipse plug-in [7], and a PEPA-to-PRISM compiler [8]. 27

PEPA has been expanded in a number of ways: Bio-PEPA [9] is an extension for the 28

simulation and verification of biochemical networks and can be analysed via the 29

accompanying Eclipse plugin or the Bio-PEPA workbench [10]. PEPAk is an extension 30

of PEPA that includes process parameters and gated actions [11, 12]. PEPA has also 31

been used as an inscription language for stochastic Petri nets, providing a natural 32

framework for modelling mobile systems [13]. 33

The π-calculus encodes models of concurrent processes using a notion of naming, 34

whereby processes can use channels to communicate channel names to dynamically 35

change which processes can communicate with one another [14]. The stochastic 36

π-calculus is an extension of the π-calculus that has been used for performance 37

modelling in a number of biological applications [15]. SPiM is a stochastic π-calculus 38

simulator for large numbers of interacting biological molecules [16]. In addition, several 39

studies have use the stochastic π-calculus to model regulatory networks in biology, for 40

example [17–20]. 41

This paper introduces the Beacon Calculus, which makes it simple and concise to 42

encode models of complex biological systems. It is a tool that builds upon the intuitive 43

syntax of PEPA and mobility in the π-calculus to produce models that are shorter, 44

simpler, and more flexible than they would be if they were encoded in either of these 45

languages (Section S2). The following section gives a description of the language by way 46

of examples (a formal description of the language is given in Section S1). To 47

demonstrate breadth, results are presented for Beacon Calculus models of three different 48

biological systems from the literature, each of which highlights one of the language’s 49

main features: a model of DNA replication dynamics that fits replication timing data, a 50

model of the gene expression response to DNA methylation damage in which the model 51

qualitatively matches single-cell tracking experiments, and a stochastic version of an 52
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established deterministic multisite phosphorylation model from the literature. 53

Results 54

This section begins with an introduction to the Beacon Calculus by way of examples. 55

Usage is demonstrated by gradually building upon a simple model of a bimolecular 56

reaction A+B ↔ AB, leading to a complex yet concise model that uses many of the 57

language’s features. (An additional introductory example describing kinesin stepping 58

down a microtubule is provided in Section S5.) In addition to the Beacon Calculus 59

itself, a contribution of this paper is bcs, an open-source Beacon Calculus simulator 60

(https://github.com/MBoemo/bcs.git). To make it clear how to translate theory to 61

practice, all examples are given in bcs source code so that they can be simulated and 62

experimented with. A more formal and precise specification of the language and its 63

semantics is given in Section S1. Following an outline of the language, the Beacon 64

Calculus is then applied to three diverse areas of biological research: DNA replication, 65

DNA damage response, and multisite phosphorylation. 66

Language Overview 67

Models are written in the Beacon Calculus by representing components in a system as 68

processes that can perform actions. Processes can make an exclusive choice between 69

multiple actions, execute multiple actions in parallel, and perform actions in a sequence. 70

These three simple but powerful combinators are common amongst many process 71

algebras and are used in CCS, PEPA, the π-calculus, and others [22]. The Beacon 72

Calculus is a stochastic process calculus where each action is specified as an ordered 73

pair together with the rate at which it is performed. The ordered pairs {a,ra} and 74

{b,rb} specify rates for actions a and b, respectively. The following three examples of 75

process definitions show how each combinator is used: 76

� P = {a,ra}.{b,rb} uses the unary prefix operator “{a,ra}. ” to denote a 77

sequence of actions whereby action a is performed at rate ra and, once it has 78

finished, action b is performed at rate rb. 79

� P = {a,ra} + {b,rb} uses the choice operator “+” to denote the exclusive 80

choice between performing action a and rate ra and performing action b at rate 81

rb. The probability of choosing action a is ra
ra+rb , and the probability of choosing 82

action b is rb
ra+rb . 83

� P = {a,ra} || {b,rb} uses the parallel operator “||” to denote that actions a 84

and b are performed in parallel at their respective rates. 85

Prefix binds stronger than choice, and choice binds stronger than parallel execution. For 86

example, in the following process 87

P = {a,ra} || {b,rb}.{c,rc} + {d,rd}.{e,re}

process P makes an exclusive choice between performing action b at rate rb and 88

performing action d at rate rd. If b is chosen, P then performs action c at rate rc while 89

if action d is chosen, P performs action e at rate re. All the while, P can perform action 90

a at rate ra in parallel. 91

A process can have a finite sequence of parameters which, in practice, is often used 92

to encode the process’s location, a quantity, or a state (though there are many other 93

uses as well). A process P with parameters i1,i2,...,in is denoted using the notation 94

P[i1,i2,...,in]. Processes can change their parameters through recursion. This is 95
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often used when a process moves (if the parameter models a location), modifies how 96

much of something it has (if the parameter models a quantity), or otherwise changes 97

state in some way that should influence the process’s later behaviour. For example, the 98

following model describes a process that successively increments i by one and doubles j: 99

100
1 r = 1; // define a rate 101

2 102

3 // process definition 103

4 A[i,j] = {changeParameters ,r}.A[i+1,j*2]; 104

5 105

6 //give the initial state of the system 106

7 A[0,1]; 107108

In this model, process A has the two parameters i and j. The system begins with one 109

copy of A with values i=0 and j=1 (Line 7). Each time A performs the action 110

changeParameters at rate r, the value of i is increased by one and the value of j is 111

doubled. 112

If this model were run in bcs, A would continue changing the values of i and j until 113

it hit the maximum number of transitions allowed by the software. To create effective 114

models, it is often necessary to specify that a process should only perform an action if 115

the parameter values meet a certain condition. A process can change its behaviour 116

according to its parameter values by using a gate, which is a condition that must be 117

satisfied for a process to perform an action. Gated actions are written using the notation 118

[<condition>] -> {a,r}

where action a can only be performed if the condition is true. The Beacon Calculus 119

simulator supports the following operators in the expression for the gate condition: 120

� <=, less than or equal to, 121

� <, less than, 122

� >=, greater than or equal to, 123

� >, greater than, 124

� ==, equal to, 125

� !=, not equal to, 126

� &, logical and, 127

� |, logical or, 128

� ~, logical not. 129

For example, suppose A should continue while i<5 and j<10. This can be expressed as 130

follows: 131

132
1 r = 1; // define a rate 133

2 134

3 // process definition 135

4 A[i,j] = [i<5 & j<10] -> {changeParameters ,r}.A[i+1,j*2]; 136

5 137

6 //give the initial state of the system 138

7 A[0,1]; 139140

Once the condition specified in the gate no longer holds, A can no longer perform the 141

action changeParameters. When a process can no longer perform any actions, it is said 142

to be deadlocked and is removed from the system. If all processes in the system are 143

deadlocked, the simulation stops. In this case, the simulation will stop when A has 144

parameter values i=4 and j=16. 145
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In order for the Beacon Calculus to be useful for biological applications, a process 146

must be able to react in some way to the actions of other processes; they must be able 147

to communicate with one another via special actions. Handshakes are a common type of 148

synchronous communication in many process algebras whereby two separate processes 149

each perform an action at the same time. In the Beacon Calculus, two processes 150

handshake when the following two actions are performed together: 151

� A handshake send is written {@c![i],rs}; it denotes a handshake that is offered 152

on channel c that transmits parameter i. 153

� A handshake receive is written {@c?[Ω](x),rr}; it denotes a handshake that can 154

be received on channel c so long as the parameter from the sending handshake is a 155

member of the set Ω. The particular parameter received is bound to the variable x 156

and can be used subsequently by the process. 157

A handshake always occurs between exactly two processes at a rate equal to the product 158

of the handshake receive rate and the handshake send rate. A handshake send and a 159

handshake receive must always be performed together. If a process is ready to send a 160

handshake but there is no other process that can receive the handshake, then the first 161

process must wait until another process is ready to perform the handshake receive. 162

There is no crosstalk between channels, meaning two processes cannot handshake by 163

performing actions {@c![i],rs} and {@d?[Ω](x),rr} because the channel names do 164

not match. The following example shows how two reactants A and B undergo 165

one-dimensional diffusion where they can react via a handshake when they are in the 166

same position: 167

168
1 r = 1; // define the rate for movement 169

2 rr = 2; // define a reaction rate 170

3 171

4 // process definitions 172

5 A[x] = {moveLeft , r}.A[x-1] + {moveRight , r}.A[x+1] 173

6 + {@react ![x], 1}; 174

7 B[x] = {moveLeft , r}.B[x-1] + {moveRight , r}.B[x+1] 175

8 + {@react ?[x], rr}.AB[x]; 176

9 AB[x] = {unbind , r}.(A[x+1] || B[x -1]); 177

10 178

11 // initial state of the system 179

12 A[5] || B[-5]; 180181

This model has two reactants, A and B, undergoing one-dimensional diffusion. A starts 182

at position i=5 and B starts at i=-5 (Line 12). Both processes make a choice between 183

stepping left at rate r or stepping right at rate r (Line 5,7). The rates are equal so the 184

diffusion is unbiased, but biased diffusion could be introduced by making the rate for 185

one direction higher than the other. When both A and B are at the same position, their 186

parameters match and a handshake is possible over channel react at rate rr*1=rr 187

(Lines 6,8). The probability of the handshake is rr
4·r+rr . If the handshake is chosen, A 188

and B react to form AB (Line 8). Once formed, AB unbinds to reform A and B at rate r 189

(Line 9). 190

In the previous model, some of the code is redundant: processes A and B behave 191

similarly, yet the moveLeft and moveRight actions are typed out in each case. The 192

code can be made more concise by using parameters so that there is a reactant process 193

R at position given by parameter x with an identity encoded by parameter i. Process A 194

becomes reactant R with i=0 and B becomes reactant R with i=1. This can be expressed 195

as follows, which is equivalent to the previous model: 196
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197
1 r = 1; // define the rate for movement 198

2 rr = 2; // define a reaction rate 199

3 200

4 // process definitions 201

5 R[x,i] = {moveLeft , r}.R[x-1,i] + {moveRight , r}.R[x+1,i] 202

6 + [i==0] -> {@react ![x], 1} 203

7 + [i==1] -> {@react ?[x], rr}.AB[x]; 204

8 AB[x] = {unbind , r}.(R[x+1,0] || R[x-1 ,1]); 205

9 206

10 // initial state of the system 207

11 R[5,0] || R[-5,1]; 208209

Here, the reactant R undergoes one-dimensional diffusion (Line 5). If it has parameter 210

i=0 (Line 6) then it can react with a reactant that has parameter i=1 to form AB (Line 211

7). 212

While the handshake receive in the previous example could only receive a single 213

value, handshake receives can accept a set of possible values. A set is specified in the 214

Beacon Calculus simulator using the following operations. Examples are written for 215

each to show the set (right) encoded by each Beacon Calculus expression (left). Note 216

that set subtraction binds more strongly than set intersection, which in turn binds more 217

strongly than set union. 218

� .., range, 219

– 0..3 ≡ {0, 1, 2, 3} 220

– -1..2 ≡ {−1, 0, 1, 2} 221

� U, set union, 222

– 0..3 U 6..7 ≡ {0, 1, 2, 3, 6, 7} 223

– -1 U 0..3 ≡ {−1, 0, 1, 2, 3} 224

� I, set intersection, 225

– 0..10 I 8..15 ≡ {8, 9, 10} 226

– 0..2 U 8..15 I 4..9 ≡ {0, 1, 2, 8, 9} 227

� \, set subtraction. 228

– 0..5\3 ≡ {0, 1, 2, 4, 5} 229

– 0..5\8 ≡ {0, 1, 2, 3, 4, 5} 230

If a handshake receive can accept multiple values, the receiving process can bind the 231

value it receives to a variable for later use. The process may, for instance, use this value 232

in a rate expression or as a parameter. The binding variable can be used in the rate 233

expression to indicate how different values can be received at different rates; it can bias 234

which value in the set is received. For example, suppose it is more likely that two 235

kinesin motors impede each other as they get closer to one another. The two definitions 236

for kinesin below, B1 and B2, are equivalent. 237

238
1 B1[x] = {@react ?[x-2..x+2](p), rr*p}; 239

2 B2[x] = {@react ?[x-2], rr*(x-2)} 240

3 + {@react ?[x-1], rr*(x-1)} 241

4 + {@react ?[x], rr*x} 242

5 + {@react ?[x+1], rr*(x+1)} 243

6 + {@react ?[x+2], rr*(x+2)}; 244245

While handshakes allow two processes to perform a coordinated action 246

simultaneously, beacons provide the means for asynchronous communication. In 247

practice, beacons can be used to communicate the state change of a process globally to 248
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all other processes in the system. Using beacons, a process can efficiently indicate to a 249

number of other processes that a task has been accomplished (shown in the following 250

example) or keep track of tasks that have been done over time (shown in the DNA 251

replication example to follow). A process can launch a beacon on a channel that 252

transmits a parameter; the beacon stays active until it is explicitly killed by a process. 253

While active, the beacon can be received any number of times by any process (including 254

the process that launched it). Processes can also check whether a particular beacon is 255

active and only carry on if there is no active beacon with a given channel and parameter. 256

� A beacon launch is written {c![i], rs}; it denotes a beacon that is launched on 257

channel c that transmits parameter i. 258

� A beacon kill is written {c#[i], rs}; it denotes an action that kills a beacon on 259

channel c transmitting parameter i if one exists. If one does not exist, the action 260

is still performed but the set of active beacons does not change. Once a beacon is 261

killed, it can no longer be received unless it is re-launched by a process. 262

� A beacon receive is written {c?[Ω](x), rs}; it denotes an action that can only 263

be performed if there is an active beacon on channel c transmitting a parameter i 264

in Ω. The parameter received is bound to x and can be used subsequently in the 265

process. 266

� A beacon check is written {~c?[Ω], rs}; it denotes an action that can only be 267

performed if there is no active beacon on channel c transmitting a parameter in Ω. 268

In the following example, a “clock” process C changes between two states, 1 and 2, at 269

rate rs. When the process changes state, it launches a beacon on channel state with 270

the value corresponding to the new state (Line 10). The unbinding rate of AB depends 271

on the value of the parameter transmitted by the beacon: process AB uses the range 272

operator to receive a value of either 1 or 2 on channel state and binds that value to s 273

(Line 11). The value of s is used in the rate of the beacon receive so that if C is in state 274

1, AB dissociates at rate r*1. Likewise, AB dissociates at rate r*2 if C is in state 2. This 275

allows C to autonomously change its state and, in doing so, easily affect the behaviour 276

of other processes. 277

278
1 r = 1; // define the rate for movement 279

2 rr = 2; // define a reaction rate 280

3 rs = 0.1; // define a clock rate 281

4 fast = 1000; //fast rate 282

5 283

6 // process definitions 284

7 R[x,i] = {moveLeft , r}.R[x-1,i] + {moveRight , r}.R[x+1,i] 285

8 + [i==0] -> {@react ![x], rr} 286

9 + [i==1] -> {@react ?[x], rr}.AB[x]; 287

10 C[] = {state ![2], fast }.{ state #[2], rs}.{ state ![1], fast }.{ state #[1], rs}.C[]; 288

11 AB[x] = {state ?[1..2](s), r*s}.(R[x+1,0] || R[x-1 ,1]); 289

12 290

13 // initial state of the system 291

14 R[5,0] || R[-5,1] || C[]; 292293

Thus far, these examples have used strings as handshake or beacon channel names 294

which transmitted a single parameter value. These names can also be comma-separated 295

lists, where each entry is an expression of parameters and/or global variables. This 296

allows a process to dynamically change the channel name, and therefore the other 297

processes it can interact with. Likewise, rather than transmitting a single value and 298

receiving a set of values, handshakes and beacons can transmit a comma-separated list 299

of values and receive a comma-separated list of sets. To illustrate with a two-process 300

model where the only possible action is a handshake: 301
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302
1 // process definitions 303

2 P[x,y] = {@x+1,y/2![x,y+1], 1}; 304

3 Q[i,j] = {@j*2+1,j*4?[i-1..i+1,j+8](a,b), 1}; 305

4 306

5 // initial state of the system 307

6 P[2,8] || Q[1 ,1]; 308309

Processes P and Q will handshake over the channel name 3,4 because P transmits the 310

values 2,9 such that 2 lies within the range i-1..i+1 (where i=1) and 9 is equal to 311

j+8 (where j=1). Process Q will then bind the value 2 to variable a and the value 9 to 312

variable b. However, if the handshake send by process P were changed to 313

{@x+2,y/2![x,y+1], 1} or {@x+1![x,y+1], 1}, the handshake no longer takes place 314

as the channel names do not match. Likewise, {@x+1,y/2![x,y+1,x], 1} would also 315

not result in a handshake as the comma-separated list of parameters must be of the 316

same length between the handshake send and handshake receive. 317

The ability to use comma-separated lists of values and expressions for handshakes 318

and beacons is particularly important for models where multiple dimensions are 319

considered. The following example returns to the bimolecular reaction A+B ↔ AB: 320

321
1 r = 1; // define the rate for movement 322

2 rr = 2; // define a reaction rate 323

3 rs = 0.1; // define a clock rate 324

4 fast = 1000; //fast rate 325

5 326

6 // process definitions 327

7 R[x,y,m] = {moveLeft , r}.R[x-1,y,m] + {moveRight , r}.R[x+1,y,m] 328

8 + {moveUp , r}.R[x,y+1,m] + {moveDown , r}.R[x,y-1,m] 329

9 + {@modify ![0], r}.R[x,y,m+1] 330

10 + [m>0] -> {@unmodify ![0], r}.R[x,y,m-1] 331

11 + {@m?[x-2..x+2,y-2..y+2], rr}.AB[m] 332

12 + {@m![x,y], rr}; 333

13 M[i] = [i==0] -> {@unmodify ?[0] ,1}.M[i] + [i==1] -> {@modify ?[0] ,1}.M[i]; 334

14 C[] = {state ![2], fast }.{ state #[2], rs}.{ state ![1], fast }.{ state #[1], rs}.C[]; 335

15 AB[m] = {state ?[1..2](x), r*x}.(R[x+1,y,m] || R[x-1,y,m]); 336

16 337

17 // initial state of the system 338

18 10*R[0,0,0] || 10*R[5,5,0] || 10*R[0,5,0] || 10*R[5,0,0] || C[] || M[0] || M[1]; 339340

In this model, a reactant R has x- and y-coordinates defined by its parameters x and y, 341

as well as a number of times it was modified m. There is a process M with parameter i 342

that will remove a modification from R if i=0 and add a modification to R if i=1 (Line 343

13). A reactant R can diffuse (Lines 7-8), and it can be modified or unmodified via a 344

handshake with M which increments or decrements the value of its parameter m (Lines 345

9-10). The value of m is used as a channel name to transmit the x- and y-values of R so 346

that only reactants that are nearby and have the same number of modifications can 347

react to create AB (Lines 11-12). 348

The models in this subsection were necessarily arteficial to introduce the Beacon 349

Calculus by way of simple examples, but the following three subsections show the 350

Beacon Calculus applied to three different areas of biological research: DNA replication, 351

DNA damage response, and multisite phosphorylation ultrasensitivity. These diverse 352

examples demonstrate the breadth of applications for the Beacon Calculus and each 353

example showcases a key feature. In the DNA replication model, replication forks use 354

beacons to efficiently coordinate which parts of the chromosome have and have not been 355

replicated. The DNA damage model uses parameters to keep count of damage and 356

repair proteins, showing how to model a population of cells that grows and changes over 357

time. The multisite phosphorylation model shows how receiving a set of possible values 358

in a handshake receive can reduce the number of process definitions required in a model. 359
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DNA Replication 360

The mechanisms underlying DNA replication are detailed in a recent review [27] and are 361

briefly summarised here to provide the necessary background for the model. In budding 362

yeast (S. cerevisiae), DNA replication initiates during S-phase of the cell cycle from 363

discrete sites on the chromosome known as origins of replication. To maintain genomic 364

integrity, the genome must be fully replicated exactly once per cell cycle. The 365

regulatory mechanism responsible for maintaining this integrity uses an origin 366

recognition complex that binds to the origin and recruits additional proteins to form a 367

pre-replicative complex (pre-RC) in late M-phase and G1-phase when cyclin-dependent 368

kinase (CDK) levels in the cell are low. By the the end of G1, CDK levels have risen 369

(and remain high for the remainder of the cell cycle) so that no new origins can 370

assemble a pre-RC. Those origins that have assembled a pre-RC by S-phase are said to 371

be licensed. The chromosome is replicated when these licensed origins “fire” during 372

S-phase to create bidirectional replication forks that travel along the chromosome in 373

opposite directions from the origin. Forks terminate when they meet a fork travelling in 374

the opposite direction or reach the end of a chromosome. 375

A random subset (but typically not all) of a chromosome’s origins initiate replication 376

in S-phase and multiple forks can be active at the same time (Fig. 1a). The probability 377

with which origins are licensed is not uniform; some origins are more likely to assemble 378

a pre-RC than others. In addition, of those origins that are licensed, some fire 379

characteristically early in S-phase while others tend to fire late. Therefore, DNA 380

replication is a stochastic process: the set of active origins and the origins responsible 381

for replicating each position on the chromosome will differ from cell-to-cell. Despite this 382

heterogeneity, DNA replication is a remarkably reliable process where errors such as 383

replication fork collapse are rare. 384

The stochastic nature of DNA replication makes it well-suited to modelling with the 385

Beacon Calculus: the difference in behaviour between simulations mirrors the 386

heterogeneity between replicating cells, and communication via beacons enables origins 387

and forks to keep track of which chromosomal positions have been replicated. DNA 388

replication is simulated using the Beacon Calculus model in Fig. 1b. The model is 389

comprised of three process definitions: rightward-moving forks FR, leftward-moving 390

forks FL, and origins of replication ORI. The chromosome is of length L, and each of 391

these three processes have a single parameter i which is taken to be a position on the 392

chromosome between 1 and L. Origins have two additional parameters: a licensing 393

probability q and a firing rate fire. The processes keep track of which chromosomal 394

positions have already been replicated by using beacons: When a fork replicates 395

position i, it launches a beacon on channel chr with parameter i. 396

The behaviour of an ORI process is encoded on Line 6 of Fig. 1b. An origin is 397

licensed or not licensed, which is modelled by the choice between the actions licensed 398

and nlicensed. If the origin is not licensed, the origin can perform no further actions; 399

it is said to be deadlocked. If the origin is licensed, it fires by performing a beacon check 400

action on channel chr at its position i to ensure that it only fires if that chromosomal 401

position has not yet been replicated by another fork. Once the origin fires, the ORI 402

process continues on as two parallel processes: a rightward-moving fork (FR, Line 8) and 403

a leftward-moving fork (FL, Line 9). The forks first launch a beacon on channel chr 404

with their position to indicate to all other forks and origins that the position has been 405

replicated. After launching the beacon, forks use a gate to ensure they have not yet 406

reached the end of the chromosome. If they have not, the forks verify that the position 407

ahead has not yet been replicated by performing a beacon check on that position. If 408

there is no active beacon at that location, the position has not yet been replicated and 409

the fork moves forward by increasing (for FR) or decreasing (for FL) the position 410

parameter i. Like all processes in the Beacon Calculus, fork movement is stochastic, 411
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but forks will tend to the same average velocity over long timescales. Replication has 412

finished when all processes have deadlocked. The initial processes in the system (Line 413

12) are all ORI processes with positions corresponding to 34 known origin locations on S. 414

cerevisiae chromosome II [30]. As shown in Fig. 1c, when the initial processes in the 415

system are set to be origins with the positions, licensing probabilities, and firing rates 416

from the literature [28], simulations of the Beacon Calculus model in Fig. 1b give good 417

agreement (R2 = 0.76) with established replication timing profiles [29]. 418

The simplicity of the DNA replication model in the Beacon Calculus makes it quick 419

and simple to test biological hypotheses. For example, the licensing probability, affinity 420

for firing factors, and the spatial distribution of origins across the chromosome will all 421

have an effect on the replication timing profile; the model can be easily modified to 422

investigate the effect of the spatial distribution of origins alone. The red curve in Fig. 423

1c shows the timing profile for a modified version of the model where all origins are 424

licensed and the firing rate of all origins is set to the same value. While the timing 425

profile does not match the data as well (R2 = 0.49), the main features of the replication 426

profile are still captured. This suggests that the primary factor influencing the 427

replication timing profile is the spatial distribution of origins, and that an origin’s 428

affinity for licensing and firing factors play a more minor role. As shown in Fig. 4, 429

making other minor modifications to the the Beacon Calculus model in Fig. 1b allows 430

for modelling cooperative origin firing and replication fork progression through fork 431

barriers. More broadly, this modelling strategy is applicable to coordinated movement 432

by biological components within a reference frame. 433

Cellular Response to DNA Damage 434

To show how the Beacon Calculus can be used to model systems at the population level, 435

this section models the E. coli DNA methylation damage system studied in [31]. The 436

effective identification and repair of DNA damage is essential to genome integrity. 437

Unrepaired methylation damage is particularly cytotoxic and mutagenic [32]. In E. coli, 438

DNA methylation damage is repaired by the Ada methyltransferase protein: Ada 439

repairs the damage by transferring a methyl group from O6-Methylguanine or 440

O4-Methylthymidine to itself [33]. The resulting methylated Ada (meAda) significantly 441

upregulates transcription of the ada gene, creating a positive feedback loop that 442

increases Ada levels. This leads to a spike in Ada level following DNA repair which is 443

reduced back to basal levels over generations by successive cell divisions (Fig. 2a). 444

A cell keeps Ada levels low in order to perform a delicate balancing act: Excessive 445

Ada levels are thought to be cytotoxic [34], but the cell must still produce enough Ada 446

to repair DNA methylation damage in a timely fashion. This is accomplished by 447

expressing the ada gene at very low levels such that on average only one Ada protein is 448

produced per generation [31]. Such a low rate of production means that due to 449

stochasticity, DNA damage may go unrepaired for one or more generations before an 450

Ada protein is produced to repair it (Fig. 2a). 451

A stochastic model can provide insight into this repair system by showing the Ada 452

response in rare but important situations where DNA methylation damage has gone 453

unrepaired for several generations (see, for example, the complementary model in [35]). 454

By varying the DNA damage rate, a model can also predict how the repair system 455

responds to both high and low rates of DNA methylation damage. The Beacon Calculus 456

makes modelling this system straightforward by representing an E. coli cell as a process 457

that can repair DNA damage and divide into two daughter cells (Fig. 2b). The cell 458

process keeps track of DNA damage and Ada levels using parameters and the value of 459

these parameters can scale the rate at which the process performs certain actions. 460

The process CELL is defined on Line 9 of the Beacon Calculus model in Fig. 2b. 461

CELL has parameters that keep track of three quantities: the number of Ada molecules 462
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(A), the number of methylated Ada molecules (mA), and the number of sites where DNA 463

has been damaged (d). The cell can generate an Ada molecule with action 464

generate Ada (Line 9). The parameter mA is used in the rate calculation of this action 465

so that Ada is generated at a basal rate if mA=0, but the rate scales to saturation with 466

the value of mA to reflect the upgregulation of the ada gene by meAda. If the cell has 467

DNA damage and at least one Ada molecule to repair it, CELL can fix the damage by 468

first performing action generate meAda and then converting Ada to meAda (Line 10). 469

Damage repair requires interaction between Ada and a methylated base, so the rate of 470

this action scales with the value of d and A. The cell’s DNA is damaged at a static rate 471

(Line 11) which increments parameter d. 472

The cell can divide at the mean rate of replication for E. coli cells (Line 12). When 473

cell division begins, the CELL process carries on as a new process DIV for a dividing cell. 474

The DIV process (Line 14) encodes how Ada, methylated Ada, and damage are 475

segregated between two daughter cells. In addition to the original three parameters of 476

the dividing cell, this process has four additional parameters: the amount of Ada and 477

meAda that segregates to one daughter cell (A1 and M1, respectively) and the amount of 478

Ada and meAda that segregates to the second daughter cell (A2 and M2). These new 479

parameters each start at zero (Line 12). For each Ada and methylated Ada molecule in 480

the parent cell (Lines 14 and 16, respectively) a random choice is made as to which 481

daughter cell inherits the protein. When a choice has been made for each molecule of 482

Ada and meAda, the DIV process starts two new daughter CELL processes (Lines 18-19). 483

The initial condition for each simulation is a single cell with no Ada and no DNA 484

methylation damage (Line 22). As the cell divides, the system is comprised of an 485

exponentially growing population of the initial cell’s descendents. Computing the 486

average Ada per cell for this exponentially growing colony shows that the amount of 487

Ada stays near the basal average amount of 1.25 molecules per cell when the rate of 488

DNA damage is low (Fig. 2c, highest spike at 5 Ada molecules per cell). Some colonies 489

exhibited sharp spikes in Ada levels caused by DNA damage that had gone unrepaired 490

for several generations. However, this happened infrequently and the elevated Ada 491

levels tended back towards zero as the Ada was diluted by successive cell divisions. 492

When the rate of DNA damage was high, the spikes in Ada level were higher in 493

magnitude (Fig. 2d, highest spike at 350 Ada molecules per cell). In addition, Ada 494

levels stayed elevated over time and did not tend back towards zero. These observations 495

are qualitatively consistent with the results from [31] of Ada levels in individual E. coli 496

cells under both high and low DNA damage conditions. 497

Communication between processes in the Beacon Calculus means that the model can 498

be easily extended to incorporate cell-to-cell interactions or cell-to-environment 499

interactions using handshakes and beacons. More generally, the Beacon Calculus makes 500

it simple to model a growing and changing population. While this example focused on 501

how a population of cells responds to DNA damage, a similar approach can be taken to 502

model more diverse applications such as the spread of disease through a population. 503

Multisite Phosphorylation 504

Cellular signalling relies on post-translational modifications and, in many instances, 505

substrates are modified on multiple sites. This is thought to confer specific information 506

processing functions such as switch-like responses [36–38] (see [39] for a review). One 507

example is the reversible phosphorylation of membrane-anchored receptors or adaptors 508

by extrinsic kinases and phosphatases, which applies to a large class of receptors known 509

as non-catalytic tyrosine-phosphorylated receptors (NTRs) of which the T-cell antigen 510

receptor (TCR) is a member [40]. NTRs are known to have multiple phosphorylation 511

sites (20 in the case of TCRs) and are phosphorylated and dephosphorylated by kinases 512

and phosphatases that are also confined to the plasma membrane. Given that these 513
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receptors often control cellular responses, their phosphorylation is tightly regulated and 514

consequently, will be highly sensitive to the relative concentration or activity of their 515

regulating kinases and phosphatases. This leads to so-called ultrasensitivity, where an 516

input signal produces very little output signal as long as the input remains below a 517

certain threshold, but causes a high output signal once the threshold is exceeded. This 518

results in a sigmoidal input-output curve, typically with a very steep inflection. 519

Ultrasensitivity represents an important way in which biomolecular processes remain 520

robust to noise. 521

The Beacon Calculus model in Fig. 3 is similar to, and inspired by, the model by 522

Dushek et al. who modelled the phosphorylation of TCRs when they were 523

phosphorylated by kinase Lck and dephosphorylated by phosphatase CD45 [41]. The 524

model shown here corroborates the authors’ findings: In order to achieve 525

ultrasensitivity, an enzyme must dwell for a short period after modifying the 526

phosphorylation of a receptor. 527

Each TCR can be phosphorylated 20 times. When an enzyme enters the proximity 528

of a receptor, it can either bind to the receptor or leave (Fig. 3a). The enzyme can 529

phosphorylate the receptor if it is a kinase or dephosphorylate the receptor if it is a 530

phosphatase. Once the enzyme phosphorylates or dephosphorylates the receptor, there 531

is a period of inactivity (or a dwell) before the enzyme can bind to the receptor again. 532

The number of phosphorylation sites, together with the action of two types of enzyme, 533

leads to a high number of distinct species in the system; this can make a differential 534

equation model cumbersome to write down and integrate. The Beacon Calculus makes 535

modelling this system straightforward by representing enzymes and receptors as 536

processes, whereby receptor processes keep track of their phosphorylation and the type 537

of enzyme bound to them using parameters. 538

A model in the Beacon Calculus for TCR phosphorylation is shown in Fig. 3b. Each 539

ENZYME process (Line 13) has parameter e, whereby the enzyme is a phosphatase if e=1 540

or else it is a kinase if e=0. A receptor process R (Line 14) has parameter p which keeps 541

track of the number of times the receptor has been phosphorylated. An enzyme enters 542

the proximity of a receptor via a handshake on channel proximalEnzyme, whereby the 543

enzyme transmits its parameter e to the receptor to indicate whether it is a kinase or a 544

phosphatase. After the handshake, the enzyme deadlocks while the receptor carries on 545

as a new process R PROX (Line 15) that encodes the behaviour of a receptor with an 546

enzyme in close proximity. The reverse reaction can occur if R PROX performs action 547

enzLeave (Line 15) where R PROX then carries on as R and ENZYME in parallel. If the 548

enzyme is a kinase and the receptor is not fully phosphorylated, the enzyme can bind at 549

a rate proportional to how many sites on the receptor are unphosphorylated (Line 16). 550

If the enzyme is a phosphatase, the enzyme binds at a rate proportional to how many 551

sites on the receptor are phosphorylated (Line 17). When R PROX binds an enzyme, it 552

carries on as process R BOUND. In this new process, the enzyme can either unbind (Line 553

21), phosphorylate the receptor if the bound enzyme is a kinase (Line 22), or 554

dephosphorylate the receptor if the bound enzyme is a phosphatase (Line 23). If the 555

enzyme phosphorylates or dephosphorylates the receptor, the bound receptor R BOUND 556

carries on as process R CAT in which the enzyme is proximal to the receptor but briefly 557

inert. The enzyme can either leave (Line 18) or rebind once the inert period is over 558

(Line 19-20). 559

The above model is similar to that of [41], and the results agree with the authors’ 560

findings (Fig. 3c). When the enzyme dwells after modifying the phosphorylation of a 561

receptor, the fraction of receptors that are phosphorylated is ultrasensitive with respect 562

to the relative concentration of kinase and phosphatase; it displays switch-like 563

behaviour. If the dwell is removed and all other parameter values are kept constant, the 564

ultrasensitivity is lost. While the Beacon Calculus is able to reproduce an established 565
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model in only a few lines of code, the language also makes it simple to expand upon the 566

model. For example, the model in Fig. 3b can be extended to model groups of receptors 567

on different areas of the membrane. A group of receptors can use beacons to signal a 568

state change in that group which can cause other groups located elsewhere to respond. 569

Extensions to the DNA Replication Model 570

To demonstrate the flexibility of models written in the Beacon Calculus, the DNA 571

replication model from Fig. 1 is extended to include two topics of interest from the field: 572

cooperative origin firing and the effect of a replication fork barrier. 573

It has been hypothesised that the probability of a replication origin firing increases if 574

a nearby origin fires [42]. This may be due to stoichiometrically limiting firing factors 575

which are more likely to interact with an origin if they have already interacted with 576

another origin nearby. The Beacon Calculus model in Fig. 4a extends the DNA 577

replication model so that when an origin fires, it launches a beacon on channel coop 578

transmitting its location to induce firing of nearby origins. If an origin has not yet fired, 579

it can fire at rate fire which is taken to be the origin’s base affinity for firing factors 580

(Line 7). The modified model includes an additional pathway to firing where an origin 581

can receive a beacon on channel coop that is transmitting a parameter within 50 kb of 582

the origin’s location (Line 8). The rate at which this beacon is received is inversely 583

proportional to the distance between the origin and the transmitted parameter. If the 584

beacon is received, the origin fires, launches its own beacon on channel coop 585

transmitting its position to other origins, and starts two replication forks from its 586

position. Therefore, origin firing is either due to the origin’s natural affinity for firing 587

factors or due to another origin firing nearby (if there is one). 588

When proteins bind tightly to DNA, they may act as a replication fork barrier 589

(RFB) that can stall replication forks moving in a particular direction. One role of 590

RFBs is preventing collisions between replication and transcription machinery [43]. This 591

is incorporated into the Beacon Calculus model as shown in 5b. First, the location of 592

the fork barrier is specified on the chromosome (Line 5) along with the rate of the stall 593

(Line 6). If a rightward moving fork makes it to this position, it stalls (Line 12) before it 594

ultimately recovers and continues stepping. 595

Simulations of the models shown in Fig. 4a-4b are shown in Fig. 4c. The replication 596

fork barrier causes a sharp change to the timing profile near the location of the 597

replication fork barrier at chromosomal coordinate i=200 while the cooperative firing 598

behaviour makes the whole chromosome replicate slightly earlier. However, the 599

additional parameters added in these two models were not fit to data; these two 600

extensions are only intended to demonstrate the ease with which Beacon Calculus 601

models can be extended. With further parametrisation, however, these extensions can 602

be useful in making meaningful biological predictions about DNA replication systems. 603

Discussion 604

Process calculi are a natural framework in which to model biological systems, but they 605

are an underutilised tool within systems biology; to the authors’ knowledge, process 606

calculi have never before been applied to DNA replication, DNA methylation damage, 607

or receptor ultrasensitivity. The Beacon Calculus makes it quick and easy to create 608

models of systems where processes can change both their actions and interactions over 609

time. Beacons make it simple for a process to influence the actions of all other processes 610

in the system. This paper has shown how this paradigm is used to model both the 611

complex behaviour of cells and macromolecular structures in only a few lines of code. 612
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A language that makes it simple and concise to encode biological models has 613

advantages beyond saving time: it changes the way the tool is used. Simplicity increases 614

confidence that the user has actually encoded what they think they have encoded and 615

have not introduced bugs into the model. It also leads to models that are easy to 616

change, modify, and extend. This flexibility encourages experimentation where 617

hypotheses can be rapidly tested, and any conclusions drawn from laboratory 618

experiments investigated, to ensure that they are consistent with the biological data. 619

The features in the Beacon Calculus are all geared toward models that are quick to 620

encode and easy to modify. As shown above, the DNA replication model in Fig. 1b can 621

be modified to include features of interest from the literature such as cooperative origin 622

firing and a replication fork barrier that stalls replication forks at a particular 623

chromosomal coordinate. The flexibility of the Beacon Calculus means that these 624

changes are straightforward to incorporate and come at the expense of only one or two 625

lines of code. 626

While this paper has shown that the Beacon Calculus can easily produce flexible and 627

concise models of biological systems from the current literature, it is not appropriate for 628

every task. Section S2 compares the Beacon Calculus with the stochastic π-calculus 629

[15, 16, 18], Kappa [47–49], Bio-PEPA [9], BioNetGen [44, 45], PySB [46], ML-Rules 630

[50, 51], and Simmune [52, 53]. For each of these tools, examples are described where 631

they may be more appropriate than the Beaocn Calculus. In general, rule-based 632

languages may be the better choice for applications where the complex, combinatorial 633

assembly of biomolecules is important. This is particularly important for applications 634

involving large protein-protein interaction networks and modification of species by 635

ligands. In addition, while it is possible to create species within a compartment with 636

Beacon Calculus parameters, tools such as Bio-PEPA, ML-Rules, and Simmune deal 637

with this much more naturally. The Beacon Calculus finds its niche in applications 638

where system components must be able to easily coordinate with each other or with a 639

global reference frame (such as in the DNA replication model) or adapt behaviour in 640

response to complex and changing environmental conditions (such as a cell responding 641

to DNA damage or multisite phosphorylation). 642

There are many applications throughout biology where the Beacon Calculus can be 643

an ideal tool for modelling and simulation. This paper illustrated three examples from 644

cell biology and molecular biology, but modelling at the population level is possible as 645

well. A stochastic version of the SIR model for a population’s response to an infectious 646

disease would be straightforward: each individual is a process, whether they are 647

susceptible, infected, or recovered from an infection is kept track of with a parameter, a 648

response to nearby individuals could be modelled using the ability of handshake receives 649

to accept a range of parameters, and beacons could be used to signal some state change 650

within a city or area as the disease evolves. There are a wide range of applications 651

within biology, and while the Beacon Calculus was developed for biological applications, 652

there is nothing biology-specific in the language; it can be used for applications in 653

engineering and other fields. 654

One of the biggest challenges in creating a simulation tool is ensuring the user is 655

simulating what they think they are simulating; if the user has made an error encoding 656

the model, this can lead to incorrect conclusions being drawn about the underlying 657

biology. An advantage of process algebras is that the language’s semantics, together 658

with automated theorem proving techniques, can be used to prove whether a certain 659

combination of actions is ever possible in the model. In the DNA replication model, for 660

example, a user may wish to verify that replication forks cannot step through each other 661

in the model that they have encoded. If this action is possible, then there is an error in 662

the model and the simulation results will not accurately reflect the biological reality. A 663

planned extension of the bcs tool is allowing the user to specify certain actions or 664
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properties that should not be allowed in the model. The tool will check these properties 665

before beginning the simulations to ensure that they are not possible, giving the user 666

greater confidence in the validity of the result. 667

The Beacon Calculus is a language that makes it fast and easy to encode concise, 668

flexible models of biological systems. It is particularly well-suited for systems where 669

interactions between components change over time, where components need to change 670

the state of many other components, or where components need to respond to events 671

happening within a certain region. Its breadth is demonstrated by creating models of 672

DNA replication and DNA damage repair from the literature, as well as creating a 673

stochastic version of an established deterministic multisite phosphorylation model. To 674

support the language, a contribution of this work is an open-source simulator called bcs 675

which, together with the provided examples, makes it easy for users to create and 676

simulate their own models. 677

Materials and methods 678

An open-source Beacon Calculus simulator (bcs) is provided to simulate models written 679

in the Beacon Calculus (https://github.com/MBoemo/bcs.git). The software uses a 680

modified Gillespie algorithm to simulate paths through the model [26]. For each 681

simulation, the software outputs a table of actions sorted in order of ascending time. 682

Each row specifies a time, the action performed at that time, and the process that 683

performed the action (as well as its parameter values at the time when the action was 684

performed). While there is basic plotting capability included with the software, the 685

output was designed to be easy to parse so that it can be reformatted into plots that 686

are appropriate for the biological system being modelled. For the results in this paper, 687

the Beacon Calculus output has been reformatted into plots that are common in the 688

examples’ respective fields. To make it clear how to use the bcs software to simulate 689

biological models, all of the examples in this paper are written in bcs source code. 690

Benchmarks for the run time of simulations are specified in Section S4. 691
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Figure Legends

Fig. 1 Replication timing from Beacon Calculus simulations. (a) Diagram
of ongoing DNA replication in the same chromosome segment of three different cells.
Replication can begin from four discrete locations (origins of replication). Each cell
successfully replicates its DNA despite having different patterns of origin activation. (b)
DNA replication model written in the Beacon Calculus. (c) Curves showing the mean
time at which each position on S. cerevisiae chromosome II was replicated, taken from
the Beacon Calculus model where each origin has a licensing probability and firing time
taken from [28] (blue), the Beacon Calculus model where all origins are licensed and
have the same firing rate of 0.015 (red), and experimental data from [29] (grey). The
Beacon Calculus results are averaged over 500 simulations and shaded regions show the
standard error of the mean. The system line has been truncated for clarity (see Section
S3).

Fig. 2 DNA damage from Beacon Calculus simulations. (a) Cells undergo
DNA damage (red) and may carry it forward for generations before an Ada molecule
(blue) is generated to repair it. Ada is methylated (gold) as it repairs DNA damage
creating a positive feedback loop whereby methylated Ada upregulates transcription of
the ada gene. Ada levels are reduced through successive cell divisions. (b) DNA
damage model written in the Beacon Calculus. (c-d) Average total Ada and meAda
per cell over time. Each trace corresponds to a simulation of a growing population of
cells for (c) low DNA damage (kdmg = 0.0001) and (d) high DNA damage
(kdmg = 0.01). In each of panels (c-d), 25 simulations are shown. Values for k basal

and k division are from [31] while k me is from [35]. Values for k dmg and kMax were
approximated based on the results in [31].

Fig. 3 T cell receptor ultrasensitivity from Beacon Calculus simulations.
(a) An enzyme enters the proximity of a receptor, binds to the receptor, and
phosphorylates the receptor if the enzyme is a kinase or dephosphorylates the receptor
if the enzyme is a phosphatase. (b) T cell receptor model written in the Beacon
Calculus with parameters taken from [41]. (c) The fraction of phosphorylated receptors
is ultrasensitive to the relative concentration of kinase and phosphatase when the
enzyme dwells after modifying a receptor (green) but loses ultrasensitivity if the dwell is
removed (blue). Points (shown with standard errors) are the average of 50 simulations
taken after the system reaches a steady state.

Fig. 4 Extensions to the DNA Replication Model. The DNA replication
model in Fig. 1b is modified to include either (a) cooperative origin firing or (b) fork
progression through a replication fork barrier. All changes to the model in Fig. 1b are
highlighted in blue. (c) Results from Fig. 1b compared with the simulated models from
(a) and (b) where each curve is the average over 500 simulations. Shading shows the
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standard error of the mean. The system line has been truncated for clarity (see Section
S3). The stall rate sr was chosen to be on average ten times slower than it takes a fork
to move 1 kb.

Supporting information

S1 Appendix. Language Definition. A formal definition of the Beacon Calculus
language, including the grammar and structural operational semantics.

S2 Appendix. Comparison with Other Methods. Case studies and discussion
comparing the Beacon Calculus to three other established methods: the stochastic
π-calculus, Kappa, and PEPA.

S3 Appendix. DNA Replication Model. Further details and discussion relating
to the DNA replication model.

S4 Appendix. Benchmarks. The average computation time needed to compute
the DNA replication model, the DNA damage model, and the multisite phosphorylation
model.

S5 Appendix. Additional Example: Kinesin Stepping Down a
Microtubule. An additional introductory example that describes the movement of
kinesin down a microtubule. This example complements the example in Language
Overview.

Software and Data Availability

The Beacon Calculus simulator is available at https://github.com/MBoemo/bcs.git.
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