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During CO2 sequestration into a deep saline aquifer of finite vertical extent, CO2 will
tend to accumulate in structural highs such as o↵ered by an anticline. Over times of tens
to thousands of years, some of the CO2 will dissolve into the underlying groundwater to
produce a region of relatively dense, saturated water directly below the plume of CO2.
Continued dissolution then requires the supply of unsaturated aquifer water. In an aquifer
of finite vertical extent, this may be provided by a background hydrological flow, or
a laterally-spreading buoyancy-driven flow caused by the greater density of the CO2

saturated water relative to the original aquifer water.
We investigate the long time steady-state dissolution in the presence of a background

hydrological flow. In steady-state, the distribution of CO2 in the groundwater upstream
of the aquifer involves a balance between three competing e↵ects: (i) the buoyancy-driven
flow of CO2 saturated water; (ii) the di↵usion of CO2 from saturated to under-saturated
water; and (iii) the advection associated with the oncoming background flow. This leads to
three limiting regimes. In the limit of very slow di↵usion, a nearly static intrusion of dense
fluid may extend a finite distance upstream, balanced by the pressure gradient associated
with the oncoming background flow. In the limit of fast di↵usion relative to the flow, a
gradient zone may become established in which the along aquifer di↵usive flux balances
the advection associated with the background flow. However, if the buoyancy-driven flow
speed exceeds the background hydrological flow speed, then a third, intermediate regime
may become established. In this regime, a convective recirculation develops upstream of
the anticline involving the vertical di↵usion of CO2 from an upstream propagating flow
of dense CO2 saturated water into the downstream propagating flow of CO2 unsaturated
water. For each limiting case, we find analytical solutions for the distribution of CO2

upstream of the anticline, and test our analysis with full numerical simulations. A key
result is that, although there may be very di↵erent controls on the distribution and
extent of CO2 bearing water upstream of the anticline, in each case the dissolution rate
is given by the product of the background volume flux and the di↵erence in concentration
between the CO2 saturated water and the original aquifer water upstream.

1. Introduction

Carbon capture and storage in deep saline aquifers has been proposed as a potential
means to limit carbon emissions into the atmosphere, while enabling the continued supply
of energy from fossil fuels. Much research has been undertaken to explore the processes

† Email address for correspondence: hjtu2@cam.ac.uk
‡ Email address for correspondence: gnw20@cam.ac.uk

¶ Email address for correspondence: andy@bpi.cam.ac.uk



2 H. J. T. Unwin et al

(a) Cartoon of the geological problem with region of interest indicated by dashed box. The
large red arrows represent the direction of the background hydrological flow, while the smaller
black curved arrows below the CO2, which is trapped at the top of the anticline, represent
the convective mixing of the CO2 saturated and undersaturated water. The smaller blue arrow
inside the dashed box represents the buoyancy driven flow of dense CO2 saturated water flowing
upstream into the background hydrological flow.
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(b) Model problem for analysis and simulation.

Figure 1: Problem of interest.

which control the storage of CO2 over very long periods, and in particular the integrity
of a geological storage facility in terms of the possible migration of CO2 back to the
surface (Boait et al. 2012; Hesse et al. 2007; Pruess et al. 2003; Verdon et al. 2013).
Owing to the buoyancy of CO2 relative to water at depths of 1–2 km, CO2 tends to
migrate along permeable sedimentary layers and ultimately ponds in structural highs,
for example an anticline, which represents the upper part of a fold or other deformation
in the geological strata (see Figure 1a). Such structural traps o↵er a possible storage site
providing there is a competent seal rock above the anticline (e.g., IPCC 2005). However,
CO2 is soluble in groundwater, which may accommodate concentrations of a few wt%
CO2 in solution. This in turn leads to an increase in density of the water. With the
dependency of water density on CO2 concentration, convectively-driven dissolution may
develop. Water below the trapped CO2 plume becomes increasingly concentrated in CO2

until it becomes convectively unstable and sinks into the underlying permeable rock,
to be replaced by less dense, unsaturated water (c.f. Hewitt et al. 2014; Lindeberg &
Wessel-Berg 1997; Pau et al. 2009; Riaz et al. 2006). Eventually, the water below the
CO2 plume becomes fully saturated and the continued dissolution requires a more distal
supply of undersaturated groundwater.

Szulczewski et al. (2013) examined the longer-time dissolution by examining the
convective exchange flow which can develop in a horizontal aquifer. They established
that following the initial dissolution and near-saturation of the groundwater directly
below the plume of CO2, the lateral convective exchange flow leads to the slow hori-
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zontal spreading of a zone of CO2 enriched groundwater associated with the continued
dissolution. Eventually, the dynamics of this zone may become controlled by a balance
between: (a) the buoyancy-driven shear, as the dense groundwater spreads along the base
of the aquifer; and (b) the vertical di↵usion of CO2 from this outward spreading dense
fluid to the return flow of under-saturated groundwater higher in the aquifer. By itself,
such buoyancy-driven shear dispersion leads to a progressively waning rate of dissolution,
and, owing to the relatively low solubility of CO2 in the ground water, the prediction
that the plume of CO2 may be trapped in the anticline for a very long time (Szulczewski
et al. 2013).

However, at long times the slow background hydrological flows which transport fluid
laterally through aquifers will become important in controlling the flux of unsaturated
water from far upstream, especially as other transport processes wane. It is the purpose
of this paper to explore the long term influence of a background hydrological flow on the
process. In this context, Woods & Espie (2012) established some non-linear bounds on
the flux of groundwater that may reach an anticline along a weakly tilted aquifer resulting
from the interaction of a background hydrological flow with a convective exchange flow
for intermediate times, during which the cross-aquifer di↵usive transport of CO2 is small.
In the present work, we account for the e↵ects of such di↵usion and this leads to a more
complex problem involving the interaction of the background advection, the buoyancy-
driven flow and the di↵usive transport of CO2 upstream of the anticline. We note that
in our modelling we assume the background hydrological flows are constant in time
and that there are no mineralogical reactions of the CO2 with the formation; these are
simplifications but provide a reference with which the e↵ects of mineral precipitation or
changes in the background forcing over time could be compared.

We develop a series of idealised, analytical solutions for the governing equations
and then test these solutions using a full numerical simulation of the two-dimensional
governing equations. In modelling the flow in porous rock, we assume that the dynamics
are governed by Darcy’s Law, which relates to slow viscous flow. This is an appropriate
model in the present content of slow hydrological flows and the slow buoyancy driven
flow of CO2 saturated water (e.g. Bear 1972; Woods 2015). We thereby establish that
when the buoyancy-driven flow of the dense CO2 saturated water is large compared
to the background flow speed, which is typical, three di↵erent regimes may become
established: (i) the weak di↵usion limit in which there is a nearly static intrusion of CO2

saturated water upstream; (ii) an intermediate regime in which there is a balance of
buoyancy-driven flow and vertical di↵usion with the oncoming flow; and (iii) a strong
di↵usion limit, in which there is a balance between the upstream di↵usion of CO2 and
the downstream advective transport of unsaturated water. In each case, the dissolution
rate is proportional to the groundwater flow, even though the controls on the extent of
the CO2 enrichment of the groundwater upstream of the anticline may be very di↵erent.

2. Model system

In our analysis, we consider a two-dimensional flow geometry, shown in Figure 1. This
corresponds to an anticline produced by a fold in the geological strata that extends for
a relatively long distance in the direction normal to the page compared to the width
of the fold. We consider a background hydrological flow that supplies fluid from the
right-hand side, and an aquifer that is of uniform thickness and horizontal. We assume
that directly below the plume of CO2 which is trapped in the anticline, the water is
fully saturated in CO2 as a result of the vertical convective dissolution, and that this
is carried downstream (to the left in Figure 1a). The primary purpose of this paper is
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to examine how the concentration of CO2 varies in the upstream direction, shown in
Figure 1b. In our numerical model, we choose the location of the upstream boundary
of the flow domain to be upstream of the region containing elevated concentrations of
CO2, so that we can impose a simple uniform flow of fluid with uniform background CO2

concentration.

The full model involves Darcy flow with a buoyancy term that is dependent on the
dissolved CO2 concentration c 2 [c0, cD], where c0 > 0 is the initial CO2 mass fraction
of the groundwater and c

D

is the mass fraction of the CO2 saturated groundwater below
the trapped plume of CO2 (see Figure 1b). We assume a fluid density ⇢ given by

⇢ = ⇢0 + �(c � c0)⇢0, (2.1)

where the constant ⇢0 > 0 is the initial water density and � > 0 is the expansion
coe�cient of dissolved CO2 in groundwater. We work with scaled concentration c? 2 [0, 1],
given by

c = (c
D

� c0)c
? + c0. (2.2)

To formulate the governing equations in non-dimensional form, we denote dimension-
less variables by the superscript ‘?’ and we introduce:

u =
�(c

D

� c0)⇢0g

µ
u

?, (2.3)

p = �(c
D

� c0)⇢0gHp?, (2.4)

t =
Hµ

�(c
D

� c0)⇢0g
t?, (2.5)

x = Hx

?, (2.6)

where u is the Darcy velocity, the constants  > 0 and µ > 0 are the permeability and
viscosity, respectively, g is the gravitational acceleration, p is the pressure field, H is the
characteristic height of the domain, t is time and x is spatial position.

We denote our domain of interest by ⌦ ⇢ R2, with boundary � = @⌦ and outward unit
normal vector to the boundary n. The boundary is partitioned as depicted in Figure 1b.
We formulate a time-dependent model, with time interval of interest denoted by I =
[0, t

N

). We are interested in steady solutions, hence t
N

will be chosen to be suitably
large in numerical simulations. In terms of non-dimensional quantities, the continuity
equation, the Darcy equation and the boundary conditions read:

r? · u? = 0 on ⌦ ⇥ I, (2.7)

u

? = �r?p? + c?e
k

on ⌦ ⇥ I, (2.8)

p? = p?
D

on �
c

⇥ I, (2.9)

u

? · n = 0 on �cap ⇥ I, (2.10)

u

? · n = �u?

B

on �
B

⇥ I, (2.11)

where e

k

is the unit vector in the direction in which gravity acts, p?
D

is a prescribed
pressure and u?

B

> 0 is the prescribed fluid velocity across the inflow boundary. The
condition in (2.11) gives a background flow from right-to-left in Figure 1b.
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The concentration of dissolved CO2 is modelled by:

@c?

@t?
+ r?c? · u? � 1

Ra
r? · r?c? = 0 on ⌦ ⇥ I, (2.12)

c?u? · n = u

? · n on �
c,in ⇥ I, (2.13)

1

Ra
r?c? · n = 0 on �

c

⇥ I, (2.14)

(� 1

Ra
r?c + c?u?) · n = 0 on

�
�cap [ �

B

�
⇥ I, (2.15)

c?(x, 0) = 0 on ⌦, (2.16)

where �
c,in is the portion of �

c

on which u

? · n < 0, the constant Ra is a Rayleigh
number,

Ra =
�(c

D

� c0)⇢0gH

µD
, (2.17)

and D > 0 is the pore-scale di↵usivity. The boundary condition in (2.13) ensures that the
advective flux of CO2 at the CO2 trap boundary (x = 0) has dimensionless concentration
unity on the inflow parts of the boundary, while it is not prescribed on the outflow parts
of the boundary. In steady state, equations (2.12)–(2.15) require that:

Z

�c

c?u? · n ds = 0 (2.18)

We work from this point onward with the non-dimensional equations, hence we drop
the ‘?’ superscript in the following.

3. Physical discussion

The above non-dimensionalisation identifies two controlling parameters: u
B

represents
the ratio of the background flow speed to the buoyancy-driven flow speed, and Ra
represents the buoyancy-driven flow speed compared to the e↵ective speed associated
with vertical di↵usive transport across the flow domain. These two parameters may be
used to delineate the di↵erent flow regimes which may develop. We explore this below.

3.1. Gravity intrusion model

In the case of weak di↵usion, we expect that a nearly static intrusion of the dense
CO2 saturated fluid extends upstream into the aquifer, and that this is balanced by
the pressure gradient of the oncoming hydrostatic flow. There will be a thin di↵usive
boundary layer between the intrusion of CO2 saturated water and the oncoming flow of
groundwater. If the intrusion extends far into the aquifer (X � 1), then the continuity
equation suggests that the background flow will be largely parallel to the boundary of
the domain. To model this regime, we assume a sharp interface in the concentration
field at a height h(x) above the lower boundary of the aquifer, where 0 6 h(x) 6 1.
This interface delineates the CO2 saturated intrusion and the overlying groundwater.
Assuming the pressure in the intrusion is approximately hydrostatic (c.f. Huppert &
Woods (1995); Woods (2015)), then in equilibrium the buoyancy driven pressure gradient
in the x-direction along the intrusion matches the pressure gradient associated with the
background flow above the intrusion, which has speed u

B

/(1 � h). This leads to the
balance

� (1 � h)
dh

dx
= u

B

. (3.1)
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The shape of the intrusion is therefore given by

h(x) = 1 �
p

2u
B

x, (3.2)

and it follows that the extent of the intrusion into the aquifer is Xint = 1/2u
B

. This
implies that if u

B

is small, the intrusion extends far upstream into the aquifer, relative
to the vertical extent of the aquifer, and the assumption that the flow is one-dimensional
is valid.

The dimensionless time-of-travel of the oncoming flow past this intrusion is given by
⌧int =

R 0
Xint

(1/u) dx = 1/(3u2
B

). For the interface to remain sharp, the time should be

small relative to the di↵usion time, ⌧di↵ = Ra. This requires that Ra � 1/(3u2
B

) which
may be expressed in the form:

u2
B

Ra � 1

3
. (3.3)

For simplicity, we will henceforth use the condition u2
B

Ra � 1.
When u

B

is large, we expect any intrusion will become progressively smaller, with
Xint 6 1/u

B

(for example Figure 9a, Section 4.2) and so we now expect the time-scale
1/u2

B

to be an upper bound on the advection time, ⇠ Xint/u
B

. Since Xint < 1 for large
u
B

, we compare this with the di↵usion time along, rather than across, the aquifer. This
di↵usion time scales as X2

intRa and suggests that the line Ra = 1 provides an upper
bound on the transition from the di↵usion to the advection regime. We return to this
case in Section 4.2.

3.2. Buoyancy-driven shear dispersion model

In the case u2
B

Ra ⌧ 1, di↵usion in the vertical direction will be relatively fast, hence
the vertical gradient in concentration across the aquifer will be small. However, there
may be a significant gradient in the along-aquifer direction. This can lead to di↵erent
regimes in which di↵usion is important and we now establish conditions which determine
whether a buoyancy-driven shear flow develops or a simple advection–di↵usion balance
controls the transport. We explore these two limits by starting from the full equations
and allowing for variations in the concentration of CO2 in the fluid associated with the
di↵usive flux. We follow largely the analysis of Szulczewski et al. (2013) and Woods
(2015) to formulate a one-dimensional asymptotic model for the long-time evolution of
the vertically averaged concentration field, but now in the presence of a background flow.

We decompose the CO2 concentration of the groundwater in the form c(x, y, t) =
c̄(x, t) + ĉ(x, y, t), where c̄ is the average concentration across the depth of the aquifer:

c̄ =

Z 1

0
c dy. (3.4)

Under the assumptions that the concentration fluctuations ĉ are small, as expected in the
limit u2

B

Ra ⌧ 1, and that the horizontal scale of the flow is much larger than the thickness
of the aquifer, as expected in the case u

B

⌧ 1, the non-hydrostatic vertical pressure
gradient is relatively small and the flow is approximately parallel to the boundaries of
the flow domain. Therefore the pressure may be approximated by:

p = p0 � yc̄, (3.5)

where p0 = p0(x, t) is the pressure at the base of the aquifer.
We decompose the velocity of the fluid u = (u, v) into a sum of the average across the
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depth of the aquifer ū = (ū, v̄) and the fluctuation û = (û, v̂), where:

ū =

Z 1

0
u dy. (3.6)

Using the approximation for the pressure (3.5), Darcy’s law implies that

u = �@p0
@x

+ y
@c̄

@x
, (3.7)

and so

û =
@c̄

@x

✓
y � 1

2

◆
. (3.8)

Taking the vertical average of the transport equation (2.12), and combining with the
continuity equation (2.7), it may be shown that

@c̄

@t
+ ū

@c̄

@x
+ û

@ĉ

@x
+

@û

@x
ĉ =

1

Ra

@2c̄

@x2
. (3.9)

Subtracting (3.9) from the transport equation, we obtain an equation governing the
evolution of the concentration fluctuation:

@ĉ

@t
+ û

@c̄

@x
+ ū

@ĉ

@x
+ û

@ĉ

@x
+ v̂

@ĉ

@y
=

1

Ra

 
@2ĉ

@x2
+

@2ĉ

@y2

!
+ û

@ĉ

@x
+

@û

@x
ĉ. (3.10)

After long time periods, we expect the dominant balance in equation (3.10) to be
between the distortion of the mean concentration due to the shear flow and the cross
layer di↵usion (Taylor 1953). This gives rise to the following dominant balance, which
can be shown a posteriori :

1

Ra

@2ĉ

@y2
= û

@c̄

@x
. (3.11)

Inserting (3.8) into (3.11) and integrating leads to the expression

ĉ = Ra

✓
@c̄

@x

◆2
 

y3

6
� y2

4
+

1

24

!
. (3.12)

Combining this expression with the expression for û in (3.8), the depth-averaged trans-
port equation (3.9) becomes:

@c̄

@t
� u

B

@c̄

@x
=

1

Ra

@2c̄

@x2
+

Ra

120

@

@x

✓
@c̄

@x

◆3

. (3.13)

At long times, (3.13) admits steady solutions in which c̄ ! 0 as x ! 1. In the limit
that u2

B

Ra ⌧ 1, the vertical gradient of concentration is small, and so in this limit it
follows from the boundary condition in (2.13) that these solutions also require c̄ ⇡ 1
at x = 0. To help interpret these solutions, it is convenient to re-scale the horizontal
coordinate according to

x =

✓
Ra

120u
B

◆ 1
3

x̃, (3.14)

leading to the relation

� @c̄

@x̃
= ↵

@2c̄

@x̃2
+

@

@x̃

✓
@c̄

@x̃

◆3

, (3.15)
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where

↵ =

 
120

Ra4u2
B

! 1
3

. (3.16)

We see that for large ↵ di↵usion dominates (�c̄ = ↵c̄0), and for small ↵ dispersion is
dominant (�c̄ = c̄03). We have not found an analytic solution to (3.15), but in the two
limits ↵ � 1 and ↵ ⌧ 1 there are useful analytical approximations.

In the limit ↵ ⌧ 1, the buoyancy-driven dispersion balances the advection. The solution
to (3.15) when ↵ = 0 is:

c̄ =

0

@1 � 2

3

✓
120u

B

Ra

◆ 1
3

x

1

A

3
2

. (3.17)

Substitution of this solution into equation (3.10) and comparison of terms identifies that
the dominant balance is indeed given by (3.11), in the limit u2

B

Ra ⌧ 1 and u
B

< 1. The
flow extends a large distance upstream compared to the thickness of the aquifer and the
cross-flow di↵usion is fast compared to the time for the background flow to pass through
the region in which there is an elevated CO2 concentration. The solution (3.17) suggests
that the region of enhanced concentration advances upstream a non-dimensional distance

Xdis =
3

2

✓
Ra

120u
B

◆ 1
3

. (3.18)

In the limit ↵ � 1 the steady-state is dominated by a balance of advection and
di↵usion, and the solution may be approximated by

c̄ = e�RauBx, (3.19)

with a characteristic length scale of

Xdi↵ = � ln cdi↵
Rau

B

, (3.20)

where cdi↵ is the concentration at which we consider it to be negligible.
Equating Xdi↵ and Xdis, we find that

↵
e

=
3

2 ln cdi↵
, (3.21)

and this provides an indication of the transition between di↵usive and dispersive mech-
anisms. For cdi↵ = 0.01, we find ↵

e

= 0.326. Figure 2 shows Xdis and Xdi↵ as function of
Ra for two di↵erent values of the background flow, using cdi↵ = 0.01. For larger Rayleigh
numbers, dispersion controls the distance that the CO2 front extends upstream.

3.3. Regime di↵erentiation

Combining the analysis of the gravity intrusion with the model of the buoyancy-driven
shear dispersion, we infer that for u

B

< O(1) three regimes may arise, as shown in
Figure 3. Gravity intrusion occurs when u2

B

Ra � 1. When u2
B

Ra ⌧ 1, either a di↵usion
or dispersion dominated flow results, depending on the parameter ↵ (see equation (3.16)).

As u
B

approaches unity, the above analysis shows that the transition between the dis-
persion and di↵usion regimes and between the dispersion and intrusion regimes converge.
In the case u

B

> O(1), the flow becomes more restricted in lateral extent upstream of
the anticline, and our analysis of time-scales for u

B

> 1 given at the end of Section 3.1,
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Figure 2: The distance the CO2 front extends upstream in the dispersion limit and in
the di↵usion limit as a function of Ra for two di↵erent values of background flow u

B

.
Distances X correspond to multiples of the aquifer height H.
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Figure 3: Illustration of the di↵erent regimes. The dashed line denotes ↵ = 1 (see
equation (3.16)) which delineates the dispersive and di↵usive regimes for u

B

< O(1). The
solid line shows Ra = 1/u2

B

(see equation (3.3)) and delineates the boundary between the
intrusion regime and (i) the dispersive regime for u

B

< O(1) and (ii) the di↵usive regime
for u

B

> O(1). The dotted line Ra = 4.93 denotes an upper bound on the transition
between the intrusive and di↵usive regimes in the case u

B

> 1, when the intrusion is
relatively short, and the along-aquifer di↵usive transport dominates the cross-aquifer
di↵usion; we have chosen Ra = 4.93, so that this line intersects the point where the
dashed and solid lines converge.
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suggests that with u
B

> O(1), an upper bound for the case in which the along-aquifer
di↵usion dominates the intrusion regime is Ra = 0(1). In the di↵usion dominated regime,
from the boundary conditions (2.13) and (2.14), we expect that at x = 0, c̄ < 1 and we
explore this further in Section 4.2 below. In Figure 3, we illustrate this upper bound with
a dotted line, which for convenience we show as Ra = 4.93 so that it intersects the point
at which the solid and dashed lines converge.

4. Comparison of analytical and numerical models

To support the asymptotic analysis, the full problem in Section 2 has been solved on a
domain of length L = 100 and height H = 1. We use a mixed finite element method for the
Darcy flow, and an upwinded discontinuous Galerkin method for the transport equation.
Problems are advanced in time until a steady-state is reached. A detailed description of
the numerical method and the complete computer code used to produce all examples is
provided in the supporting material (Unwin & Wells 2015). The computer code is built
on the FEniCS libraries (Logg et al. 2012).

4.1. Weak background flows (u
B

< 1)

To illustrate the form of the velocity and concentration fields for the three di↵erent
regimes when u

B

< 1, we show in Figure 4 the computed concentration field for three
di↵erent values of Ra when u

B

= 0.1. The values of Ra correspond to points in the
gravity intrusion, dispersion dominated, and di↵usion dominated regimes.

4.1.1. Concentration profiles

Figure 5 shows the vertically averaged concentration as a function of position along
the aquifer for the one-dimensional model as given by (3.15) (dashed lines) and the two-
dimensional full numerical calculations (solid lines) for u

B

= 8 ⇥ 10�4 and values of Ra
ranging from 100 to 10000. The one-dimensional model (equation (3.15)) was solved using
the FEniCS libraries and the full code is included in the supporting material (Unwin &
Wells 2015). There is very good agreement between the two models when Ra 6 1000
and the flow is in either the dispersion or di↵usion dominated regime. The limiting
dispersive (3.17) and di↵usive (3.19) cases (heavy black lines as shown in legend) are also
shown in the figure, and coincide with the two-dimensional numerical simulation when
in the appropriate limit regimes.

When Ra = 10000, the problem is entering the gravity intrusion regime. In Figure 5 the
two-dimensional numerical solution for this case no longer matches the one-dimensional
dispersion dominated model in (3.15) since there are significant fluctuations in concen-
tration across the height of the aquifer. In this regime the solution has a narrow vertical
region of adjustment in the concentration field from the CO2 saturated fluid at the
base of the aquifer to the unsaturated oncoming groundwater at the top of the aquifer,
reminiscent of the intrusion model given in Section 3.1.

Indeed, in Figure 6 we compare the numerical solution for the concentration in the
case Ra = 3000 and u

B

= 0.1 with the prediction of the interface height h as predicted
by equation (3.2) for the gravity intrusion model. That model treats the adjustment of
the concentration from the CO2 saturated fluid to the oncoming groundwater flow, as a
sharp interface. There is a reasonable match for x < 3.5. However, the di↵usive boundary
layer which is present in the full numerical solution leads to a weak recirculation that is
not included in the intrusion model.
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(a) Gravity intrusion: Ra = 3000

(b) Dispersive regime: Ra = 50

(c) Di↵usive regime: Ra = 1.0

Figure 4: Concentration contours for u
B

= 0.1 and di↵erent values of Ra. The colours
show the concentration locally as defined by the scale in the figure and the contour lines
are shown at equal intervals of 0.1 from 0.1 to 0.9. The x-axis is longer in (c) than (a)
or (b) to display the full di↵usive regime.

4.1.2. Velocity fluctuation profiles

In the buoyancy driven dispersion regime, which arises for small ↵ and when u2
B

Ra ⌧ 1,
equation (3.8) predicts that the velocity variation from the mean flow û will vary linearly
with depth. If û is divided by the depth-averaged concentration gradient, the profiles
are predicted to pass through �0.5 at y = 0 and 0.5 at y = 1. Figure 7a shows the
scaled velocity profiles computed from the two-dimensional model for Ra = 1000 and
u
B

= 8 ⇥ 10�4 (↵ = 0.0527). For x . (3/4)X
dis

the velocity profiles are linear, whereas
close to the stall point (x/X

dis

= 1) the profile begins to deviate from the simplified
theory.

When in the regime where di↵usion is important (u2
B

Ra ⌧ 1), as ↵ increases and
the flow transitions from dispersive to di↵usive, the one-dimensional analytical model
becomes less applicable for û. This can be seen in Figure 7b, where the scaled horizontal
velocity fluctuations are shown at di↵erent distances into the domain for di↵erent
values of ↵. For 0.0572 6 ↵ 6 0.1442, the scaled horizontal velocity fluctuations at
di↵erent distances into the domain all lie on a straight line between �0.5 and 0.5.
As ↵ increases, the numerically computed profiles deviate from the model, as the
lateral di↵usive transport becomes comparable to and then progressively more significant
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x/Xdis

0.0

0.2

0.4

0.6

0.8

1.0

c̄

Dispersion limit

Ra = 10000, � = 0.0027

Ra = 1000, � = 0.0572

Ra = 500, � = 0.1442

Ra = 175, � = 0.5847

Ra = 100, � = 1.2331

Di�usion limit

Figure 5: Computed and analytical variation of c̄ with x for di↵erent values of Ra when
u
B

= 8 ⇥ 10�4. The solid lines represents the two-dimensional numerical solution and
the dashed lines represent the one-dimensional solution.

Figure 6: Concentration as a function of position for the gravity intrusion case with
u
B

= 0.1 and Ra = 3000 and the prediction of the intrusion model (equation 3.2) for the
interface position overlaid (dotted line).

than the shear dispersion, but in this di↵usion limit these perturbation velocities are
very small compared to the background hydrological flow. When Ra = 10000 and
u
B

= 8 ⇥ 10�4 (↵ = 0.0027) the gravity intrusion region is being approached and the
vertical concentration fluctuations across the domain are no longer small and so the
velocity fluctuations are no longer governed by equation (3.8).

In Figure 8, we present a picture of the typical streamlines for the flow when u
B

=
0.01 and Ra = 1, 10 and 100. The streamlines are computed, approximately, by solving
equation (3.15) numerically and inserting the result into (3.8), and then adding on the
background hydrological flow. The case Ra = 1 corresponds to the di↵usion limit, the case
Ra = 100 corresponds to the dispersion regime, and the case Ra = 10 is an intermediate
case. The figure shows that in the di↵usion limit the oncoming groundwater flow is
dominant and the flow remains nearly uniform, but as Ra increases, some fluid begins
to flow upstream leading to a small circulation in the lower part of the aquifer. As Ra
increases further, and the flow is controlled by the buoyancy driven dispersion, a strong
recirculation develops upstream of the anticline, leading to the diversion of the oncoming
groundwater flow towards the top of the aquifer.
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(a) Velocity fluctuations û scaled by concentration gradient for
Ra = 1000 and uB = 8⇥ 10�4 (↵ = 0.0527).

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6

( �c̄
�x)�1û

0.0

0.2

0.4

0.6

0.8

1.0

y

� = 0.0027

� = 0.0572

� = 0.0840

� = 0.1442

� = 0.3634

� = 1.2331
x/Xdis = 0.25

x/Xdis = 0.5

x/Xdis = 0.75

(b) Velocity fluctuations û for di↵erent values of ↵ at di↵erent values
of x.

Figure 7: Scaled velocity profiles at di↵erent points along the domain for di↵erent values
of ↵ with u

B

= 8 ⇥ 10�4.

4.2. Strong background flows (u
B

& 1)

We now look at the case with a stronger background flow (u
B

& 1). Three examples
of full numerical solutions are shown in Figure 9 corresponding to Ra = 1000, 2 and
0.5 for u

B

= 1.0. In contrast to the case u
B

< O(1), only two distinct regimes develop
(figure 3) . Now, the flow transitions from the gravity intrusion regime to the di↵usion
dominated adjustment of the concentration since, with large u

B

, the upstream extent
of the buoyancy driven flow is insu�cient for the buoyancy driven dispersion to develop
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Figure 8: Typical streamlines of the flow for u
B

= 0.01 and Ra = 1, 10 and 100.

(a) Gravity intrusion regime: Ra = 1000

(b) Transitional regime: Ra = 2

(c) Di↵usive regime: Ra = 0.5

Figure 9: Concentration fields for di↵erent values of Ra for u
B

= 1.0. The white contour
in (b) and (c) is the c = 0.01 contour. The presented domains have been truncated at
di↵erent lengths to best show each regime. Note that the maximum concentration for the
colour bar is set equal to 0.3, which is greater than the highest concentration for panels
(b) and (c).
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Figure 10: Computed vertically averaged concentration for various values of Ra and u
B

at x = 0.

before the along aquifer di↵usion becomes significant. With large Ra, the solution is
similar to the gravity-driven intrusion solution (Figure 9a), while for smaller values of
Ra the solution evolves towards the along aquifer di↵usion solution (Figure 9c).

We have calculated the vertically averaged mean concentration at x = 0 from the
numerical solutions for the cases when Ra = 10, 1, 0.1 and 0.01, as shown in Figure 10.
As u

B

increases, c̄ decreases at x = 0 since there is a progressively stronger flow from
the upstream region which suppresses the upstream buoyancy driven flow of dense, CO2

saturated fluid from below the anticline
In the di↵usive regime, which we expect to apply for small Ra, the vertically averaged

concentration may be approximated by the di↵usive solution of equation (3.15), given
by:

c̄(x) = c̄(0)e�RauBx. (4.1)

Figure 11 shows the vertically-averaged concentration profiles for the three values of Ra
and u

B

= 1.0. Using the numerically determined value for the mean concentration at
x = 0, we have compared the vertically averaged concentration with the di↵usion solution
given by equation (4.1). When Ra = 0.1, the system is in the di↵usion regime and the
numerical solution for c̄ matches the di↵usion profile. When Ra > 1, the simulations
move towards the intrusion regime and the numerical solutions evolve away from the
approximate analytical solution.

5. Conclusions

We have explored both analytically and numerically the long-term dissolution of a
plume of CO2 trapped in an anticline and driven by a steady background flow of CO2

unsaturated water from upstream. We have focused on the role of di↵usion and buoyancy-
driven flow in regulating the distribution of CO2 in the aquifer fluid upstream of the
anticline. In the case u

B

< 1, where u
B

is the dimensionless background hydrological
flow, the buoyancy-driven speed of the dense CO2 saturated water exceeds the oncoming
flow speed and the CO2 extends a significant distance upstream of the anticline (x �
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Figure 11: Computed and analytical variation of c̄ with x for di↵erent values of Ra
when u

B

= 1.0. The solid line represents the two-dimensional numerical solution and
the dashed line represents the di↵usion limit if using the numerically computed c̄ as the
boundary condition at x = 0.

H). In this case, we have established that three di↵erent regimes may develop. With a
small di↵usive flux across the aquifer (u2

B

Ra � 1, where Ra is the Rayleigh number
associated with the dense CO2 laden fluid), a static intrusion of dense CO2 saturated
fluid develops and extends a distance 1/2u

B

upstream of the anticline. This is balanced
by the pressure gradient in the oncoming flow. With larger di↵usive fluxes across the
aquifer (u2

B

Ra ⌧ 1) we have established that a buoyancy-driven shear dispersion flow
regime may develop and a convective recirculation develops just upstream of the aquifer,
regulated by (i) the supply of unsaturated aquifer fluid from upstream; (ii) the buoyancy-
driven flow associated with the dense CO2 saturated fluid from downstream; and (iii) the
vertical di↵usion of CO2 across the aquifer. However, if the di↵usive transport is too rapid
(↵ ⌧ 1) then a simple advection-di↵usion balance regulates the distribution of the CO2

in solution in the water upstream of the anticline. In the case u
B

> 1, the CO2 extends
a much smaller distance upstream from the anticline, and in this case, either only the
advection-di↵usion balance or the intrusion regimes develop.

In the context of CO2 sequestration in deep saline aquifers, this analysis is important
as it demonstrates the strong e↵ect that a background hydrological flow has on the long-
term dissolution of CO2 in a structural trap. We now show that under some typical
conditions the dynamics may indeed be controlled by a balance between the buoyancy-
driven shear dispersion and the background hydrological flow. This leads to new estimates
of the maximum upstream migration of CO2 rich groundwater. The solubility of CO2 in
groundwater is only a few wt%, so if we consider a plume of CO2 of order 10 m deep,
trapped in a structural anticline and connected to a laterally extensive aquifer of order
20–30 m deep, then vertical convective dissolution alone will only lead to dissolution of
order 0.2–0.6 m. Continued dissolution will require the lateral supply of undersaturated
water from the aquifer and this may be achieved through a combination of buoyancy-
driven lateral dispersion of the dense CO2 saturated water from below the CO2 plume and
supply of water resulting from a background hydrological flow. For typical conditions,
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with permeability of order 0.1–0.01 Darcy, a density di↵erence of order a few percent
between the undersaturated and saturated water, and an aquifer di↵usivity of order
10�9–10�10 m2/s, the Rayleigh number will be of order 103–104. With a hydrological
flow speed of order 10�8–10�9 m/s, the dimensionless velocity u

B

will be of order 0.01–
1.0. From Figure 3 we see that it is the transport associated with the shear dispersion that
balances the steady background flow. We estimate that the length scale of the dispersive
transport (equation (3.18)) will be of order 100–400 m. Once the steady flow regime
is established, the continued dissolution will occur at a rate proportional to the supply
of undersaturated water in the hydrological flow, as given in non-dimensional form by
u
B

(c
D

�c0). For an anticline whose extent in the direction of the flow is of order 1000 m,
and with a CO2 plume with initial depth of order 10 m, then in order to dissolve, this
will require a net flow of groundwater of order 106 m2, which will require a time of order
1012–1013 s corresponding to 105–106 years.
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