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Abstract—The philosophy of SDN has introduced new chal-
lenges in network system management. In contrast to traditional
network devices that contained both the control and the data
plane functionality in a tightly coupled manner, SDN technologies
separate the two network planes, and define a remote API for low-
level device configuration. Nonetheless, the enhanced flexibility
of the SDN paradigm is prone to create novel performance and
scalability bottlenecks in the network.

To help network managers and application developers bet-
ter understand the actual behavior of SDN implementations,
we present a hardware/software co-design that enables switch
characterization at 40Gbps and beyond. We conduct an evalu-
ation of both software and hardware switches. We expose the
unwanted effects of the OpenFlow barrier primitive, potential
misbehaviors when adding or modifying a batch of rules and
how simple operations, such as packet modification, can impact
the switch forwarding performance. We release the code publicly
as open source to promote experiments reproducibility, as well
as encourage the network community to evolve our solution.

Index Terms—OpenFlow, testing, switch performances

I. INTRODUCTION

Research on Software-Defined Networking (SDN) technolo-
gies has produced a wide range of applications improving
network functionality [1]. As a result, many network ven-
dors, within only a few years, enabled SDN support in their
products, in an effort to transfer research innovation into the
market [2], [3].

However, SDN adoption has highlighted a series of new
network management challenges. Legacy network devices
contain both the control and the data plane functionality in a
tightly coupled manner. In contrast, SDN technologies define
a remote API for low-level device configuration, that clearly
separates the control from the data plane. This API is used
by a central network controller to implement new network
services. The introduction of multiple abstraction layers in
SDN network architectures introduces novel performance-
critical functional blocks that can impact the overall network
scalability. Specifically, network behavior can be affected by
(1) the control stack, i.e., the control application and the
Network Operating System (NOS), (2) the switch SDN driver,
i.e. the interface between the control and data planes in an
SDN switch, and (3) the switch silicon itself (Figure 1).

While much research has focused on control application
and NOS benchmarking [4], [5], [6], [7], [8], we argue that
the effective deployment of SDN in production networks
requires a flexible and high–precision open–source switch
performance characterization platform. The OpenFlow pro-
tocol, the predominant SDN realization, currently in its 1.6

Fig. 1: OpenFlow tool-stack x-ray.

version, has greatly morphed since its original versions. This
evolution reflects the development and deployment experience
of the technology, on a constantly widening range of network
environments. Providing an open and flexible solution for
SDN testing is important to ascertain that the behavior of
specific implementations is in-line with the expectations of the
supported OpenFlow versions. The SDN community requires
a performance testing platform, capable to co-evolve with the
protocol and to support rapid prototyping of experimentation
scenarios that test and troubleshoot the impact of new protocol
features. Furthermore, as network link speeds continuously
increase, meaningful packet-level measurements have higher
precision requirements, creating a challenge that can only be
met with specialized hardware.

This paper presents the design of OFLOPS-SUME, a
NetFPGA-SUME [9] based hardware-software co-design
for switch characterization. OFLOPS-SUME builds upon
OFLOPS [10], a software SDN testing platform, and
OSNT [11], a high-performance traffic generation and mea-
surement platform for the NetFPGA SUME. We introduce
the new design of OSNT, previously available only on the
NetFPGA-10G board [12], as well as its integration with
OFLOPS. We use the proposed architecture to test and char-
acterize both software and hardware OpenFlow switches. To
demonstrate the relevance of OFLOPS-SUME, we use it
to expose the undesirable impact of the barrier primitive,
potential misbehaviors when adding or modifying a batch of
rules and the impact of simple packet manipulation operations
on the observed switch performance. OFLOPS-SUME can be
used with any hardware/software device offering an OpenFlow
control plane, including P4-programmable [13] data planes
with OpenFlow support. Moreover, by open-sourcing the tool,
we invite the community to develop support for additional
SDN control planes, such as the P4-runtime [14].
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The contributions of the paper can be summarized as
follows:

• We describe the architecture of OSNT on NetFPGA-
SUME as well as its integration with OFLOPS, to obtain
a high performance, 40Gbps and beyond, OpenFlow
switch testing and characterization platform.

• Using OFLOPS-SUME, we conduct a performance study
of both software and hardware switches and discuss
the implications of the different switch profiles on the
overall network behavior, policy consistency, scalability
and performance.

• We release the code publicly as open source1. By pro-
viding an open source solution, we promote experiments
reproducibility as well as encourage the network commu-
nity to adapt, evolve, and improve our solution to specific
needs.

II. CHALLENGES AND OPPORTUNITIES IN NETWORK
DEVICE TESTING

Two major drivers for SDN are open APIs and the network
management flexibility. These two aspects have incentivised
the community to devise protocols and standards for the
control of multi-technology and multi-vendor networks [15].
However, implementing them is challenging in practice, due
to the wide diversity of the actual support and performance
across different vendors.

A good example of how an SDN implementation can impact
both network operations and its scalability can be found in the
blackholing practice: a defense strategy against Distributed
Denial of Service (DDoS) attacks, which blocks malicious
traffic by redirecting it into a black hole or null route. Char-
acterizing the network control responsiveness, by quantifying
the latency to update the forwarding state of k flows, is
crucial to understand when exactly a blackhole policy is active.
Furthermore, the performance of an SDN implementation can
introduce transient policy violations during the deployment of
a network policy, due to slow or re-ordered rule updates [16].
To ensure consistent policy enforcement, individual devices
must implement a specific rule set at all times, even during
policy updates. Rule update ordering in OpenFlow networks
can be guaranteed using Barrier messages. However, disam-
biguation in Barrier message semantics between commercial
switches can result in unexpected behaviors [17]. Understand-
ing how accurately a barrier message represents the data
plane configuration status can thus help in implementing
better update strategies that overcome policy inconsistencies.
Finally, the deployment of hybrid Xeon and FPGA servers
in datacenters [18] enables a wide range of performance im-
provements, allowing a system to control the trade-off between
performance (FPGA) and flexibility/scalability (CPU).

A. Switch Architecture

This section provides a high-level design overview of a
generic switch. We highlight the physical limits in control
and data plane performance and motivate our discussion on

1https://github.com/oflops-nf

performance characterization. Our presentation focuses on top-
of-rack (ToR) switch devices and high-performance software
switch frameworks, the most common network device types
with built-in SDN support.

Switch datapath. The datapath usually consists of four func-
tional blocks. The input arbiter module schedules incom-
ing packets to the packet processing threads, for software
switches, or to the main processing pipeline, for hardware
switches. The main processing pipeline is implemented by the
header parser and the lookup modules. The parser module
consists of multiple protocol parsers that extract important
header information, used by the lookup module to define
the per-packet processing and forwarding policy. The header
parsing and lookup modules can recirculate packets through
the processing pipeline, to parse nested packet headers or to
enable multi-table processing datapaths. Finally, the output
arbiter module enforces traffic policing, applies outstanding
packet modifications and forwards packets to the appropriate
output ports. Modern hardware based ToR switches use either
an ASIC [19], [20], a FPGA [21] or a Network Processor
unit [22] for packet processing acceleration. In all cases, the
main bottleneck is the size and access speed of its lookup
memory modules. In contrast, software switches rely on the
parallelization of modern multi-core CPUs to achieve line-
rate performance. In this scenario, the main bottleneck is the
number of cores and the clock rate. Furthermore, software
switches use PCIe channels to connect the system CPUs
with the server NICs. The speed and capacity of the PCIe
interconnect and the card driver performance can thus be a
bottleneck.

Switch Management. The switch management module is
responsible for translating high-level control operations into
appropriate data plane configuration. In hardware switches,
the switch management module is made of different control
agents, each providing support for a specific control function,
such as legacy routing protocol or SDN support. Depending on
the switch model, to support the computational requirements
of the control agents, network vendors typically use a general-
purpose low-power management CPU, such as PowerPC SoC
and Intel Atom. In the former case, the CPU may become a
bottleneck when used by interactive control applications. In
contrast, the switch management module in software switch
runs a separate thread or process and uses OS inter-process
communication mechanisms to configure the state of the
packet processing threads. Because the management module
runs on the same CPU as the packet processing threads, soft-
ware switch control channels offer enhanced responsiveness.

B. Datapath memory configuration in modern SDN switches

The packet processing functionality in modern SDN
switches relies on a fast-lookup abstraction with support for
extensive wildcard matching and reconfigurability. Such an
abstraction is based on a match-action architecture [23].

Software switches typically implement the match-action
tables using software lookup structures, like tuple space search
classifiers [24]. Updating such structures usually has very
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Fig. 2: The two memories used by hardware switch datapaths:
(i) TCAMs for flow-match definitions, and (ii) RAMs for
forwarding actions.

low latency, but the lookup speed depends on the size and
the occupancy of the lookup structure. In contrast, hardware
switches implement tables using two different memory sub-
systems embedded in the hardware. The match definitions are
stored in one or more Ternary Content-Addressable Memory
(TCAM) modules. TCAMs are optimized for fast lookups,
supporting O(1) lookup complexity for any match, irrespective
of the lookup key-width or the number of stored match
definitions. The output of a TCAM lookup is then used to
index a RAM memory module, which stores the actions and
statistics associated to the match [25], [26], [23]. Figure 2
shows the interaction between TCAMs and RAM memory in
high performance switching engines.

The management module changes the per-packet processing
behavior of the switch by manipulating the two memories.
Adding a new rule causes an update operation in both TCAM
and RAM memories. A modification of the behavior of an
existing rule causes an update operation in the RAM only.
Unfortunately, the update latency of a single TCAM entry is
not constant and depends on the memory design and on the
number and structure of the entries already installed [16]. The
update latency of a RAM entry is constant and depends solely
on the memory type. This update latency mismatch can cause
inconsistencies during update operations.

III. OFLOPS-SUME: ARCHITECTURE

A schematic of the OFLOPS-SUME design is depicted
in Figure 3. The OFLOPS-SUME architecture consists of a
software and a hardware subsystem. The software subsystem
runs the core OFLOPS functionality, along with the test of the
user. A test contains both the control and data plane logic of
the experiment.

While the control logic, i.e., OpenFlow control messages,
interacts with the system under test through a commodity net-
work interface card, the data plane logic relies on a NetFPGA-
SUME (running the OSNT design) hardware subsystem to
fulfill the data plane requirements of the experiment.

We chose to use two separate hardware subsystems for
control and data plane channels to balance flexibility and
performance. While control plane messages, i.e., OF messages,
mainly works at milli-seconds timescales and do not require
hardware acceleration, data plane traffic needs high-throughput
generation and hardware timestamping to properly characterize
switches at 10Gbps and beyond. Control messages are there-
fore handled by a commodity network interface card, so that
future updates of the control message protocol require a soft-
ware update only. This makes the design flexible and future-

Fig. 3: OFLOPS-SUME design.

proof. On the other hand, data plane traffic is handled using
the OSNT hardware acceleration, to guarantee performance.

The integration of OFLOPS and OSNT on NetFPGA-
SUME is achieved through a C library2, which exposes a
traffic generation and capture interface, as well as access to
card statistics (e.g., counter for packet captures and drops).
The library is designed to exploit as much as possible the
OSNT capabilities, i.e., multi-10Gbps packet generation and
nanosecond scale hardware timestamping. The user can inter-
connect the OFLOPS-SUME host with one or more switches
in arbitrary topologies, and measure with high precision spe-
cific aspects of the network architecture, both of the data and
control plane. Next, we briefly describe the design of the
OSNT on NetFPGA-SUME hardware (Section III-A) and the
OFLOPS software architecture (Section III-B).

A. OSNT: Open Source Network Tester

OSNT is an open–source hardware-based traffic generation
and capture system. Originally designed for the research and
teaching community, its key design goals were low cost, high-
precision time-stamping and packet transmission, as well as
scalability. Being open–source, it provides the flexibility to
allow new protocol tests to be added. The first prototype imple-
mentation was built upon the NetFPGA-10G platform, while
the currently supported version relies on the newer NetFPGA-
SUME hardware. Figure 4 shows the current OSNT architec-
ture. While the hardware side of OSNT (i.e., NetFPGA-SUME
board) provides two independent pipelines for high-precision
traffic generation and monitoring, the software provides user
APIs to interact with the hardware through the NetFPGA
driver.

In the following, we describe the architecture of its main
pipelines and the timestamping module which is shared be-
tween them.

OSNT Monitor. It provides functions for packet capturing,
hardware packet filtering, high precision packet timestamp-
ing and high-level traffic statistic gathering. As soon as a
packet arrives, a module placed immediately after the phys-
ical interfaces, and before the receive queues, timestamps
it. In the meantime, internal hardware counters (number of
packets/bytes received) exposed to the software are updated
accordingly to provide high-level statistics about the traffic.

2https://github.com/oflops-nf/nf-pktgencap-lib
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Fig. 4: Architecture of OSNT.

Then, an internal module gathers the relevant information (the
5-tuple3) to feed the TCAM. The TCAM, implemented using
FPGA resources, enables the host to write up to sixteen 5-
tuple rules representing the traffic of interest. Only packets that
are matched in the TCAM are sent to the software, while all
other packets are discarded. Even though our design implicitly
copes with a workload of full line-rate per port of minimum
sized packets, the input traffic will often exceed the capacity
of the host-processing, storage, etc., or may not be of practical
interest.

OSNT Generator. It is designed to generate 10Gbps at line-
rate, 64B packets, per card interface. Currently, it is able
to replay network traffic from PCAP files stored in either
the NetFPGA internal or external memories. A set of APIs
allow the host to interact with the hardware, to configure
the generation parameters. Specifically, upon signaling from
the software, the hardware reads its memories and starts
the generation process that can follow user-defined timing
information, i.e., inter-packet gap, or can strictly depend on
the PCAP trace. The generator has an accurate timestamping
mechanism, located just before the transmit 10GbE MAC. The
mechanism, identical to the one used in the traffic monitoring
unit, is used for timing-related measurements of the network,
allowing characterization of measurements such as latency and
jitter. The timestamp is embedded within the packet alongside
a packet counter at a pre-configured location, and can be
extracted at the receiver as required.

Timestamping logic. Providing an accurate timestamp to
packets is a fundamental objective of OSNT. Packets are times-
tamped as close to the physical Ethernet device as possible,
so as to minimize FIFO-generated jitter and obtain accurate
latency measurements. A dedicated timestamping unit, shared
between the monitoring and the generation pipelines, stamps
packets as they arrive from/to the physical (MAC) interfaces.
To minimize overhead while also providing sufficient resolu-
tion and long-term stability, OSNT uses a 64-bit timestamp di-
vided into two parts: the upper 32-bits count seconds, while the
lower 32-bits provide a fraction of a second with a maximum
resolution of about 233ps. Given the 160Mhz board clock, the

3We define 5-tuple as the combination of IP address pair, layer four port
pair and protocol.

practical resolution is 6.25ns. Note that accurate timekeeping
requires correcting the frequency drift of an oscillator. To this
end, OSNT uses Direct Digital Synthesis (DDS), a technique
by which arbitrary variable frequencies can be generated using
synchronous digital logic [27]. The addition of a stable pulse-
per-second (PPS) signal, e.g., derived from a GPS receiver,
permits both high long-term accuracy and the synchronization
of multiple OSNT elements.

B. OFLOPS: OpenFlow Operations Per Second
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Fig. 5: OFLOPS platform architecture

OFLOPS is a modular software framework that provides
a unified API to interact with the data, the control and
the management plane of an OpenFlow switch, and log its
behavior. By describing flow-level traffic characteristics, users
can define test cases which abstracts the complexity to realize
the respective functionalities across different platforms, i.e.,
OSNT, pktgen and libpcap kernel modules. This is done
by compiling the experiment into dynamic libraries that are
loaded at run-time by the OFLOPS software.

OFLOPS follows a 3-layer architecture, depicted in Fig-
ure 5. The bottom layer consists of a set of services enabling
interaction with a switch across different control and data
channels. Access to the different information and control
channels is unified and abstracted by the middle layer of the
platform. Finally, the top layer of the OFLOPS architecture
consists of measurement modules which implement the inter-
action scenarios. The system is designed to minimize packet
processing overheads and uses a multi-threaded architecture to
parallelize event processing, in an effort to minimize packet
loss and measurement noise. At boot time, the process initial-
izes five threads, each responsible of managing specific event
types, namely (i) traffic generation, (ii) traffic capture, (iii) OF
message parsing, (iv) SNMP responses and (v) time events.
To avoid synchronization overheads, OFLOPS provides a non
thread-safe event API. Module developers are responsible
of implementing custom synchronization mechanisms within
their test logic.

Currently, OFLOPS supports the most widely adopted OF
versions: 1.0 and 1.3. The OFLOPS code base contains a set
of reference test modules supporting all elementary protocol
interactions, like flow table manipulation and traffic monitor-
ing.

C. OFLOPS-SUME in action: using the platform

Listing 1 presents the most important APIs (from now on we
call them event handlers) available. In OFLOPS-SUME, each
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test needs to comply with the same life cycle: initialization,
measurement and termination.

During the initialization stage, OFLOPS-SUME of-
fers the ability to (1) access configuration parameters
(handle_module_init), (2) bootstrap both traffic gen-
eration processes (handle_traffic_generation) and
capture filters (handle_pcap_filter), and (3) finally
initialize switch state (handle_module_start). In terms
of traffic generation, a test must specify ranges of values
for each packet field and the inter-packet delay. Similarly, a
test can specify wildcard field matching filters, which can be
offloaded to the NetFPGA hardware. As an example, the flow
insertion module used in § IV, during the initialization stage,
configures the traffic generator to emit traffic at a constant
rate targeting inserted flows in a round-robin fashion, while
the capture filter is configured to accept all packets. Finally,
the switch initialization callback inserts the various rules in
the switch forwarding table.

During the measurement phase of the experiment,
OFLOPS-SUME offers three major monitoring event
types: SNMP responses (handle_snmp_event), data
plane packet interceptions (handle_pcap_event)
and switch-to-controller OpenFlow message handlers
(handle_of_event_packet_in). The first one performs
asynchronous SNMP polling, the second exploit the OSNT
monitoring capabilities to access accurate per packet
transmission and receipt timestamps, and the third translates
OpenFlow packets to control events.

Finally, the OFLOPS-SUME APIs offer a function to termi-
nate an experiment. Once all monitoring processes are halted,
the handler handle_module_destroy is invoked to allow
the module to gracefully log information and release state. The
flow insertion module, for example uses this event to log all
packet timestamps in a text file, available for post-processing.

1 // module initialization callback
int handle_module_init(oflops_context *c, char *p)

;
3

//Traffic generation and monitor configuration
5 int handle_get_pcap_filter(oflops_context *c,

oflops_channel_name c, cap_filter **f);
int handle_traffic_generation(oflops_context *c);

7 int handle_cap_filter(oflops_context *c,
oflops_channel_name c, cap_filter **f);

9 //Switch initialization
int handle_module_start(oflops_context *c);

11

//Main thread event handlers
13 int handle_timer_event(oflops_context *c,

timer_event *t);
int handle_snmp_event(oflops_context *c,

snmp_event *s);
15 int handle_pcap_event(oflops_context *c,

pcap_event * pe, oflops_channel_name c);
//The OFLOPS API offers a range of OpenFlow

17 //message handlers similar to the following
int handle_of_event_packet_in(oflops_context *c,

ofp_packet_in *p);
19

//Module termination
21 int handle_module_destroy(oflops_context *c);

Listing 1: Sample OFLOPS module API.

Packet Size OVS-kernel OVS-DPDK
CPU load Packet Loss CPU load Packet Loss

96B 7.5 0.31 1 0.17
128B 6.0 0.24 1 0
256B 2.0 0.22 1 0
512B 0.3 0.01 0.93 0
1024B 0.3 0 0.80 0
1472B 0.3 0 0.56 0

TABLE I: Comparison between OVS-kernel and OVS-DPDK
in terms of CPU load and packet loss

IV. PERFORMANCE CHARACTERIZATION

In this section, we present a switch characterization study,
using the OFLOPS-SUME platform. In our analysis, we em-
ploy three representative OpenFlow switch types based on the
OpenVSwitch (OVS) [28] switch platform. Firstly, we employ
the software kernel-based OVS (OVS-kernel) switch, highly
popular in cloud infrastructures. Secondly, we employ a port
of the OVS platform on the DPDK framework (OVS-DPDK)4,
a high-performance zero-copy packet processing framework
used extensively to implement network function applications.
Finally, we used a white-box hardware switch (EdgeCore
AS5812-54X) running an OpenFlow-enabled firmware (Pi-
caOS), a common design choice for ToR switches. The switch
offers an Intel Atom quad-core co-processor, which runs a
modified OVS version capable to offload data plane processing
to a Broadcom ASIC (BCM56854) supporting up to 1.28Tbps
throughput and a 32k entry TCAM module.
Our measurement study focuses on switch forwarding per-
formance (§ IV-A), the flow table management capabilities,
and the consistency characteristics during forwarding policy
reconfiguration (§ IV-B). Figure 3 depicts our measurement
setup. The OFLOPS-SUME runs on an Ubuntu server (quad-
core Intel E5-1603, 16 GB RAM) equipped with a NetFPGA-
SUME card and programmed with the OSNT bitfile. The
software OVS instances (v2.8.1) run on an Ubuntu server (16-
core Intel E5-2630, 32 GB RAM) equipped with a dual-port
10G Intel NIC (82599ES). For all the figures, unless stated
otherwise, we present the median value over 20 experiment
repetitions alongside the minimum and the 90th percentile.

A. Data plane performance

Figure 8 depicts the forwarding latency of each OpenFlow
switch for varying packet sizes at low (100Mbps) and line
rate (10Gbps) traffic rates. Figure 6a reports the results for the
Edgecore, when no specific packet modification is requested,
i.e., only simple forwarding. We observe that packet size
variations have a negligible impact on the median latency,
which remains stable around 2.5µs. Nonetheless, increasing
packet sizes inflate significantly the 90th percentile of the
forwarding latency, which is 66% higher for maximum size
packets in comparison to 128-byte sized packet.
Software switch forwarding latency, depicted in Figure 6b, is
approximately one order of magnitude higher than the hard-
ware switch. In addition, OVS-kernel exhibits higher latency
variability than OVS-DPDK. The forwarding latency inflation

4http://docs.openvswitch.org/en/latest/intro/install/dpdk/
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Fig. 6: Data plane performance analysis for Edgecore, OVS-kernel and OVS-DPDK.

is further exacerbated when switching line rate traffic. Both
software solutions inflict two orders of magnitude higher la-
tency for small packets (< 256 bytes), which can be attributed
to the extensive packet queuing required to cope with the high
packet rate. Nonetheless, OVS-DPDK exhibit better scaling
capabilities for large packet sizes, since it avoids unnecessary
kernel packet processing. Figure 6c depicts the increase of the
median latency caused by a packet manipulation operation5.
While the EdgeCore (not shown in the figure) and OVS-DPDK
remain unaffected, OVS-kernel experiences a median latency
increase of 12µs in the worst case. Such forwarding latencies
have been reported to significantly affect the performance
of several common datacenter applications [29]. The impact
of packet modification is more pronounced for small pack-
ets. This can be attributed to the NAPI interrupt mitigation
mechanism used by the OVS-kernel switch, which switches
between interrupt-driven and polling-based modes depending
on the incoming packet rate. In contrast, OVS-DPDK uses
exclusively a poll-based packet fetching mechanism, which
minimizes the impact of the packet size on forwarding latency,
but increases the CPU utilization.
These design differences are observable in Table I, which
reports the CPU utilization and packet loss for OVS-kernel
and OVS-DPDK6 when switching line rate traffic. OVS-kernel
used up to 8 softirq kernel threads in order to cope with
the processing load for small packets, and still experienced
significant packet losses. In contrast OVS-DPDK was able
to switch line rate traffic using a single core with no packet
loss for packet sizes greater than 128 bytes and the system
was capable to offer better processing performance that the
OVS-kernel configuration. These performance characteristics
align with the design philosophy of each platform; OVS-
kernel is designed for cloud frameworks and offers a flexible,
backwards compatible and low overhead packet processing
platform for low and medium traffic rates, but its performance
scales poorly at high data rate. OVS-DPDK on the other
hand is designed for NFV environments and offer excellent

5In the test, we considered a layer 4 port rewriting.
6The OVS-DPDK process used 4 CPU cores, which were excluded from the

OS scheduler. OVS-DPDK uses the DPDK poll mode driver (PMD) to process
packets, which runs an continuous polling loop that saturates the allocated
CPU resources. During our experiment OVS-DPDK was running at 100%
utilization on the assigned cores and for the CPU utilization measurement
we used statistics from the OVS-DPDK process, which report the number of
CPU cycles used to process packets from each NIC queue.

forwarding performance for any traffic rate, but its resource
utilization scales poorly.

B. Control plane performance

Figure 7 shows the results of our control plane performance
analysis. We characterize the amount of time needed to insert
new flow rules or modify existing ones. In addition, we also
focus our attention on assessing the reliability of the barrier
primitive, compared to the actual rule installation.
Figure 7a presents the rule update latency of the Edgecore
switch for a varying number of rules, using two measurement
metrics. The control plane latency represents the time between
the FLOW_MOD message transmission and the reception of the
BARRIER_REPLY by the switch through the control plane
channel (see Figure 3). In contrast, the data plane latency mea-
sures the time between the FLOW_MOD message transmission
and the time when at least one packet has been received with
the new configuration by OFLOPS-SUME on one of the data
channels (see Figure 3). The significant difference between the
two measurements (Figure 7a) can be attributed to the behavior
of the switch OpenFlow agent. Specifically, we notice that
the switch OpenFlow agent transmits the BARRIER_REPLY
as soon as the flows are received and processed by the co-
processor, without checking if the updates have been applied
to the ASIC lookup modules. The reported result has a
major implication: for a few seconds, control and data plane
experience a policy inconsistency which can lead to thousands
of mis-routed packets in high performance networks.
Figure 7b shows the performance of the Edgecore switch
when we insert an increasing number of rules. Similarly to
the flow modifications, the discrepancy between control and
data plane is pretty clear. In addition, the increased rule
insertion latency, in comparison to flow modifications, can
be attributed to the TCAM reordering operation, required
to effectively manage TCAM entries. Since our test inserts
rule batches with an increasing priority, the switch OpenFlow
agent has to re-order the entries every time we add new
TCAM rules, to guarantee correct hardware behavior, thus
increasing the switch reconfiguration latency. On the contrary,
if the new rules were added with a random priority, the agent
would have to re-order only some of them, with a consequent
decrease of the reconfiguration latency. We do not observe a
similar behavior for flow modifications (Figure 7a), since such
operations require switch RAM memory writes only and they
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Fig. 7: Control plane performance analysis for Edgecore, OVS-kernel and OVS-DPDK.

do not require any TCAM modifications(§II-B). Moreover, it
is worth noting the big difference between flow modification
and flow addition latencies. The former, for 1400 rules, is
approximately 70% faster than the latter. This is again a
consequence of the TCAM reordering: a single rule installation
can cause many writes in the TCAM and associated RAM.
Finally, Figure 7c shows the behavior of rule addition latency
for a software OpenFlow switch. Note the almost three orders
of magnitude difference with respect to the hardware case. We
omit the flow modification results, since they exhibit the same
pattern as the flow additions. Effectively, software switches
use in-memory data structures to perform the lookup process
which have a low update complexity. This makes the rule
addition or rule modification processes almost similar: the
latency increases linearly with the number of rules changed. In
contrast, as discussed in the challenges section (§II), hardware
solutions employ TCAMs and RAMs lookup modules which
exhibit different update latency characteristics and lead to dif-
ferent behavior during flow additions and flow modifications.
In order to get more insights on the behavior of hardware
switches during flow modifications, we show in Figure 8a
the total number of modified flows over time when running
our flow insertion and update measurement modules against
the Edgecore switch for 1k flows. Understanding the flow
processing behavior of an OpenFlow switch allows SDN
developers to improve the control and responsiveness of their
applications during large flow table modifications, by control-
ling the flow transmission rate. From the measurement results,
we highlight that flow insertions and flow modifications exhibit
a batching behavior, where some flows are inserted during a
small time interval followed by a long quiet period (as shown
at approximately 530ms). This behavior can be attributed
to the design of the underlying ASIC driver, which batches
flow updates in order to improve the overall completion time.
Similar performance characteristics have been observed with
similar hardware switches for PACKET_IN messages [30],
[31].
Update policy consistency has been an important challenge for
OpenFlow [32] switches. Unlike traditional control protocols,
OpenFlow offers direct control of the switch forwarding table
and thus is prone to access-control policies violations and
routing anomalies (e.g. blackholes). Figure 8b explores policy
consistency during large flow table updates (1k flows), by
comparing the desired flow ordering and the real one obtained

through data-plane measurements. From the figure we note
that they are not consistent. Indeed, in an ideal scenario where
rules are inserted following the original order, a straight line
would have been expected. On the contrary, our measurements
show that rules are not only inserted in batches but also follow
a random ordering. This can be explained by the architecture
of the OVS vswitchd software, used by the PicOS firmware
on the Edgecore switch. All flow table entries are stored by
default in the vswitchd daemon running in the switch co-
processor and flows are installed in the control plane only
if the ASIC propagates to the daemon a matching packet.
After that, the vswitchd daemon will install the flow in
the ASIC TCAM. Nonetheless, during large policy updates
the interconnect between the ASIC and the co-processor is
saturated and packets are pushed to the co-processor in a best
effort fashion, thus randomizing the flow insertion order.

V. RELATED WORK

The SDN community has developed a wide range of valida-
tion and testing tools. OFtest [33] is a standards conformity
evaluation framework for OpenFlow switches. The suite offers
tests to verify the conformance of a switch implementation
against a specific OpenFlow standard. In parallel, Cbench [6],
OFLOPS [10] and OFLOPS-TURBO [34] are focused primar-
ily on the performance side. Cbench evaluates the performance
of a controller by emulating a number of switches generating
PKT_IN messages and measuring its responsiveness. The
OFLOPS and OFLOPS-Turbo platforms concentrate on switch
performance evaluation. While OFLOPS is a pure software
solution limited to 1 GbE devices and supporting the 1.0
OpenFlow protocol version, OFLOPS-Turbo integrates an old
version of NetFPGA to support higher throughput. However,
its limited hardware resources make the solution unattractive
to enable the support of new OpenFlow versions as well as
more refined data plane tests.
Switch characterization studies have also aimed to identify
the impact of SDN technologies on network performance.
Bianco el al. [35] conducted the first data plane performance
study of software OpenFlow switches. In their study, they
highlighted the performance improvements of Open vSwitch
over traditional Linux bridging, and showed the performance
improvement of NAPI interrupt mitigation on network per-
formance. Starting from their lessons learned, in this paper,
we also show the impact of emerging fast I/O frameworks,
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Fig. 8: Flow insertion and modification analysis .

such as DPDK, on software switching performance. Huang el
al. [30] benchmarked OpenFlow-enabled switches and illus-
trated how their implementation can significantly impact data
plane latency and throughput. They also presented a mea-
surement methodology and emulator extension, to reproduce
these control path performance characteristics, restoring the
fidelity of emulation. While the authors focused primarily
on vendor-specific variations in the control plane, in this
paper, we propose a benchmark for both control and data
plane, taking advantage of the OSNT system. Tango [36]
is a controller design capable of evaluating the performance
profile of a network switch. The controller uses control plane
traffic injection and capture during a training phase, to evaluate
the performance characteristics of a network switch. The
controller uses these results at run-time to adapt the policy
deployment strategy. Unfortunately, the precision of the result-
ing system remains poor, as the control channel offers pretty
limited performance and precision guarantees. Furthermore,
Curtis el al. [37] discussed the switch specific limitations
to support OpenFlow functionality in large network deploy-
ments. Their measurement study highlighted the impact of
the channel between the co-processor and the ASIC in policy
reconfiguration. Finally, Jarschel el al. [38] employed a DAG-
based network environment to measure the flow manipulation
performance of OpenFlow switches, and presented a markov
model for the forwarding speed and blocking probability of

OpenFlow devices.

VI. CONCLUSIONS

We presented OFLOPS-SUME, a performance characteriza-
tion platform for OpenFlow switches. OFLOPS-SUME com-
bines the advanced hardware capabilities of OSNT, imple-
mented on the NetFPGA-SUME, with the extensibility of the
OFLOPS software framework to enable switch characteriza-
tion at 40Gbps and beyond.
Using OFLOPS-SUME, we evaluated both software and hard-
ware switches. The performed measurement campaign exposes
the sometimes undesirable impact of barrier primitives, poten-
tial misbehaviors when adding or modifying a batch of rules
and the cost in terms of added latency of simple operations,
such as packet modification. OFLOPS-SUME can be used
with any hardware/software device that uses OpenFlow as a
control plane. Thus, it can be also be exploited by highly
programmable devices, such as P4-enabled ones, as long as
they are managed with an OpenFlow control plane. We release
the code publicly as open source to promote experiments re-
producibility, as well as to encourage the network community
to evolve our solution.
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