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A corrected formulation for
marginal inference derived
from two-part mixed models
for longitudinal semi-continuous
data
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Abstract

For semi-continuous data which are a mixture of true zeros and continuously distributed positive values,

the use of two-part mixed models provides a convenient modelling framework. However, deriving

population-averaged (marginal) effects from such models is not always straightforward. Su et al.

presented a model that provided convenient estimation of marginal effects for the logistic component

of the two-part model but the specification of marginal effects for the continuous part of the model

presented in that paper was based on an incorrect formulation. We present a corrected formulation and

additionally explore the use of the two-part model for inferences on the overall marginal mean, which may

be of more practical relevance in our application and more generally.
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1 Introduction

In Su et al.,1 we described a two-part marginal model for longitudinal semi-continuous data that are
a mixture of true zeros and continuously distributed positive values. Our likelihood-based model
had an underlying two-part mixed model, where, in the random effects logistic regression for the first
part (i.e. the binary part), the random intercept was assumed to follow the bridge distribution of
Wang and Louis.2 A zero-mean normal random intercept was included into the linear mixed
modelling structure of the second part (i.e. the continuous part).

Our primary focus was to ensure that the regression parameters in the binary part of the two-part
marginal model were interpretable after integration over the random effects distribution. Marginal
covariate effects on the expected value of the response for the population of observed non-zero
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responses may, however, also be of interest. These arise directly from the approaches in Moulton
et al.,3 Lu et al.,4 Hall and Zhang5 and Yang and Simpson6 and involve well-defined integrations
(see refs7,8).

However, when discussing the continuous part of our model, we assumed, as did Tooze et al.,9

that integrating out the random effects was straightforward, and that the form of the relationship
between covariates and the marginal mean of the response, given that it is positive, was the
same as the conditional mean given a positive response and random effects. Unfortunately,
this is not the case. This paper rectifies this error and explores the use of the proposed model
when the target of inference is the overall marginal mean, which may be of most practical
relevance.

2 Marginal inference from two-part models

2.1 Model

Our two-part marginal model1 is based on the original two-part mixed modelling framework
introduced in Olsen and Schafer10 and Tooze et al.9 and the random effects specifications in Lin
et al.11

Briefly, let Yij be a semi-continuous variable for the ith (i ¼ 1, . . . ,N) subject at time tij
(j ¼ 1, . . . , ni). Let Xij and X�ij be the covariate vectors (possibly overlapping) associated with the
ith subject at time tij in the two parts of the two-part mixed model. Let Bi and Vi be correlated
subject-level random intercepts, which are independent of the covariates. Define also
�ij ¼ fBi,Vi,Xij,X

�
ijg and �ij ¼ fXij,X

�
ijg.

Yij can be represented by two variables, the occurrence variable Zij ¼ IðYij 4 0Þ and the intensity
variable gðYijÞ given that Yij 4 0, where gð�Þ is a (monotonic) transformation making YijjYij 4 0
normally distributed with a subject–time-specific mean.

The distribution of Yij is formulated by assuming, firstly, that Zij is specified by a random effects
logistic regression with logitfPrðZij ¼ 1j�ijÞg ¼ Xij

e� þ Bi, where Xij is a 1� q covariate vector, e� is a
q� 1 regression coefficient vector and Bi is the subject-level random intercept in this first part (i.e.
the binary part) assumed to follow the (symmetric) mean zero bridge distribution of Wang and
Louis2 with unknown parameter ’ (05 ’5 1). Next, the intensity variable gðYijÞ given Yij 4 0 is
assumed to have the linear mixed modelling structure described by gðYijÞj�ij,Yij 4 0 ¼
X�ij�þ Vi þ �ij, where X�ij is a 1� p covariate vector, � is a p� 1 regression coefficient vector and
Vi is the subject-level random intercept for the second part (i.e. the continuous part) assumed
Nð0, �2v Þ. The error term �ij is assumed to be Nð0, �2e Þ and independent of the random effects. The
random effects, Bi and Vi are assumed to be correlated with their joint distribution specified through
a Gaussian copula transformation model, where the correlation of the underlying Gaussian random
variables is � (see Supplementary Material). The covariate vectors Xij, X

�
ij may coincide, but this is

not required.

2.2 Marginal covariate effects

The main benefit of the bridge density, stressed in Su et al.,1 is that after integration over the random
intercepts, ðBi,ViÞ, the marginal probability PrðZij ¼ 1j�ijÞ relates to the linear predictors through
the same logit link function as for the corresponding conditional probability, PrðZij ¼ 1j�ijÞ.
Furthermore, if we specify the marginal regression structure of the binary part as
logitfPrðZij ¼ 1j�ijÞg ¼ Xij�, then the marginal covariate effects � are proportional to the subject-
specific conditional covariate effects e�, with � ¼ ’e�.
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However, although in Su et al.1 we claimed that the marginal mean of gðYijÞj�ij,Yij 4 0, found
after integrating gðYijÞj�ij,Yij 4 0 over ðBi,ViÞ, is X�ij�, this is not the case generally. The correct
form of the marginal mean of gðYijÞj�ij,Yij 4 0 is

EfgðYijÞj�ij,Yij 4 0g ¼ X�ij�þ EðVij�ij,Yij 4 0Þ ð1Þ

which will be dependent on the impact of covariates, Xij, on the marginal and conditional
probabilities of occurrence (see Supplementary Material).

As the integral given by EðVij�ij,Yij 4 0Þ has no closed-form solution, an exact analytical
expression for (1) is not available. However, bounds on (1) are available. Specifically, we can
show, after some algebraic manipulations (see Supplementary Material), that for � � 0

X�ij� � Eð gðYijÞj�ij,Yij 4 0Þ � X�ij�þ
�v�
ffiffiffiffiffiffi
2�
p ð1þ e�Xij�Þ

and for � � 0

X�ij� � Eð gðYijÞj�ij,Yij 4 0Þ � X�ij�þ
�v�
ffiffiffiffiffiffi
2�
p ð1þ e�Xij�Þ

Although an exact analytical expression is not available, numerically solving (1) at the maximum-
likelihood estimates is straightforward as only a single integral is involved. This integral can be
evaluated using adaptive Gaussian quadrature techniques. The estimation of the parameters
�, �, �2b , �

2
v , �

2
e and � is based on maximizing the likelihood presented in Su et al.1

2.3 Interpretation of the marginal effects in the continuous part

As noted earlier and in Su et al.,1 the interpretation of � is straightforward as these parameters are
simply (population-averaged) log-odds ratios. In contrast, assessment of the impact of a covariate
on the marginal mean (given being positive), EðYijj�ij,Yij 4 0Þ, depends on whether or not that
covariate is also involved in the binary part of the two-part model. If the covariate is not included in
the binary part or Bi and Vi are uncorrelated (i.e. � ¼ 0), then the interpretation of its effect on
EðYijj�ij,Yij 4 0Þ can be quantified through just the appropriate element of �. However when Bi and
Vi are correlated and, in addition, the covariate of interest is in both regression components of the
model, then a simple interpretation is not readily obtainable because of the non-linearity of (1) in
this covariate.

In such a case, the impact of a covariate could be assessed through plotting the relationship
between this covariate and EðYijj�ij,Yij 4 0Þ, with other covariates held fixed, or alternatively by
describing the local changes (i.e. through the derivative or the difference) in EðYijj�ij,Yij 4 0Þ with
respect to the covariate.7 However, the clinical relevance of EðYijj�ij,Yij 4 0Þ has been questioned,
as discussed by Albert12 in light of work by Lu et al.4 and Williamson et al.13 On the other hand, the
overall marginal mean of Yij as the target of inference is more easily justified clinically. The
calculation of this overall mean is addressed in Section 2.4 and Section 2.5 illustrates its use.

2.4 Overall marginal mean

When gð�Þ is the identity function, the overall marginal mean, EðYijÞ � EðYijj�ijÞ, is given by

EðYijjYij ¼ 0ÞPrðYij ¼ 0Þ þ EðYijjYij 4 0ÞPrðYij 4 0Þ ¼ EðYijjYij 4 0ÞPrðYij 4 0Þ
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where we have suppressed the dependence on the covariate vectors, �ij, for convenience. Although a
closed form for the overall marginal mean is not available, the analyst can easily numerically
evaluate it (as is done in the subsequent Health Assessment Questionnaire (HAQ) analysis).

From Section 2.2, bounds on the overall marginal mean can be obtained as

PrðYij 4 0ÞX�ij� � EðYijÞ � PrðYij 4 0ÞX�ij�þ
�v�
ffiffiffiffiffiffi
2�
p

when � � 0, and

PrðYij 4 0ÞX�ij� � EðYijÞ � PrðYij 4 0ÞX�ij�þ
�v�
ffiffiffiffiffiffi
2�
p

when � � 0, where PrðYij 4 0Þ ¼ ð1þ e�Xij�Þ
�1. Similar bounds can be derived for other common

monotonic transformation functions for gð�Þ. For example, bounds on EðYijj�ijÞ when gð�Þ is
logarithmic are shown in the Supplementary Material.

3 The HAQ data revisited

In this section, we revisit the HAQ data described in Su et al.1 The objective is to examine the
association between alleles that code for human leukocyte antigen (HLA) proteins and disability
level in a psoriatic arthritis (PsA) patient cohort. R code for this new analysis is located in the
Supplementary Material.

Table 2 of Su et al.1 presented results from fitting the two-part mixed model to the data,
where the third column shows the conditional covariate effects in the continuous part. As noted
earlier, the corresponding marginal covariate effects are generally not equal to these conditional effects.

In this particular application, it is perhaps more natural to examine the association between the
HLA alleles and the overall expected disability level of the patients over the study period, instead of
the association when some disability is present. This is because disability, as measured by HAQ, for
patients can vary over time and, for example, at one visit a patient can have mild disability, but at
the next visit his/her situation may be improved resulting in a zero value of HAQ. We conjecture
that it will often be felt to be clinically more informative to present the marginal covariate effects on
the overall expected disability level together with the marginal covariate effects on the probability of
having any level of disability.

For the HAQ example, we sample from the asymptotic distribution of the parameters based on
the estimates in Table 2 of Su et al.1 and calculate the contrasts of overall expected HAQ with and
without specific HLA alleles, controlling for other covariates. For presentation purposes, we fix the
age at PsA diagnosis at 35 years and disease duration at 15 years, which correspond to zero values in
standardized versions of the two variables. These contrasts represent the effects of HLA alleles on
the overall expected disability level (controlling for other covariates) in the PsA patient cohort.

The top panels of Figure 1 show the HLA-B27 effects given other alleles, sex, age at diagnosis and
disease duration. Because the overall mean of HAQ is not directly parametrized in the fitted model,
the corresponding covariate effects are not the same for all values of the other variables. However,
the HLA-B27 effects are approximately the same across different combinations of other covariates,
and the 95% confidence intervals do not include zero. This demonstrates a significant association
between HLA-B27 and overall expected HAQ.

In Su et al.,1 we found a significant interaction between the effects of HLA-DQW3 and HLA-
DR7 in the binary part of the two-part mixed model (p ¼ 0:035), while the same interaction was
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non-significant in the continuous part (p ¼ 0:85). The estimated marginal (log-odds ratio) effect of
this interaction in the binary part was 0.8089 with 95% confidence interval [0.0565, 1.5613].

The middle and bottom panels of Figure 1 reflect the possible interaction between HLA-DQW3
and HLA-DR7 on the overall marginal mean of HAQ stratified by gender and absence/presence of
the HLA-B27 allele. Age at PsA diagnosis is fixed at 35 years and disease duration at 15 years.

For illustrative purposes, considering the left middle (or bottom) panel of Figure 1 for females
with the presence of HLA-B27, we estimate that the difference in the HLA-DQW3 (or, alternatively,
HLA-DR7) effects on the overall marginal mean of HAQ between those with the presence of
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Figure 1. Contrasts (with 95% confidence intervals) of overall mean of HAQ for different combinations of the

covariates (controlling for being 35 years old at PsA diagnosis and having a disease duration of 15 years).

HAQ: Health Assessment Questionnaire.
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HLA-DR7 (or HLA-DQW3) allele and those with it absent (i.e. contrast D–B in figure) is 0.0564
with 95% confidence interval [–0.2062, 0.3232]. For females with HLA-B27 absent, the estimate of
this difference in the HLA-DQW3 (or, alternatively, HLA-DR7) effects on the overall marginal
mean of HAQ between those with and without the HLA-DR7 (or HLA-DQW3) allele (i.e. contrast
C–A) is 0.0648 with 95% confidence interval [–0.1971, 0.3158]. These estimates of the HLA-DQW3
and HLA-DR7 interaction for females, with and without HLA-B27 present, are similar and both
non-significant statistically. Conclusions based on these results are similar to those found for the
continuous part in the two-part marginal model (data not shown).

4 Discussion

In this article, we have corrected the formulation for the continuous part of the two-part marginal
model presented in Su et al.1 We show that the (marginal) mean of gðYijÞj�ij,Yij 4 0 is not the fixed
effects predictor, X�ij�, as originally reported, but is non-linear in the covariates included in the
binary part of the model. Thus, interpretation of the impact of a covariate on the marginal mean
given being positive cannot be made from only considering the relevant component of � when the
random effects are correlated and that covariate is also included in the binary part.

In some contexts, the logit may not be the preferred link function in the binary part. For example,
in dilution and serological studies the cloglog link may be more appropriate. In psychometrics, the
probit may be more convenient. For either of these alternatives, a two-part marginal formulation
can be derived. For instance, if the logit link is replaced with the probit and Bi is assumed Nð0, �2bÞ
instead of from the bridge distribution when formulating the binary part of the two-part mixed
model, then the link function of the marginal regression structure for the binary part, after
integrating out Bi, remains probit.2 Furthermore, in the binary part, the marginal covariate
effects are proportional to their subject-specific conditional covariate effects, with constant of
proportionality 1=

ffiffiffiffiffiffiffiffi
1þ�2

b

p
. Under the same linear mixed effects structure considered earlier for the

continuous part (i.e. Vi normal and gð�Þ the identity function), a closed-form solution for the
marginal mean of Yij, given Yij 4 0, (and therefore for the overall marginal mean) can be derived
in terms of the standard normal density and cumulative distribution function (see Supplementary
Material). Unfortunately, this closed-form solution is again non-linear in the covariates associated
with the binary part, and therefore interpretation of marginal covariate effects on the continuous
part (and on the overall marginal mean) will not generally be straightforward.

In conclusion, care should be taken when using two-part models for semi-continuous data that
are longitudinal or otherwise clustered. Both the specification of random effects structures, as
discussed in Su et al.,14 and the interpretation and calculation of marginal effects, as discussed in
this paper, require careful attention to assumptions.
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