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Abstract: Growth and nutrition during early life have been strongly linked to future health and 18 
metabolic risks. The Cambridge Baby Growth Study (CBGS), a longitudinal birth cohort of 2229 19 
mother-infant pairs, was set up in 2001 to investigate early life determinant factors of infant growth 20 
and body composition in the UK setting. To carry out extensive profiling of breastmilk intakes and 21 
composition in relation to infancy growth, the Cambridge Baby Growth and Breastfeeding Study 22 
(CBGS-BF) was established upon the original CBGS. The strict inclusion criteria were applied, fo- 23 
cusing on a normal birth weight vaginally delivered infant cohort born of healthy and non-obese 24 
mothers. Crucially, only infants who were exclusively breastfed for the first 6 weeks of life were 25 
retained in the analysed study sample. At each visit from birth, 2 weeks, 6 weeks, and then at 3, 6, 26 
12, 24, and 36 months, longitudinal anthropometric measurements and blood spot collections were 27 
conducted. Infant body composition was assessed using air displacement plethysmography (ADP) 28 
at 6 weeks and 3 months of age. Breast milk was collected for macronutrients and human milk oli- 29 
gosaccharides (HMO) measurements. Breast milk intake volume was also estimated, as well as ster- 30 
ile breastmilk and infant stool collection for microbiome study. 31 

Keywords: infant growth; breast milk; early life; cohort profile; infant nutrition; breast milk nutri- 32 
ents; human milk oligosaccharides; breastfeeding; childhood obesity; prevention 33 
 34 

 35 

1. Introduction 36 
The original Cambridge Baby Growth Study (CBGS) was set up in 2001 to examine 37 

the ante- and postnatal determinants of infant growth and body composition, including 38 
genetic and environmental factors1. The recruitment took place until 2009 among preg- 39 
nant mothers from a single maternity hospital in Cambridge. The study visits were con- 40 
ducted twice during pregnancy and 4 times postnatally at 3, 12, 18, and 24 months. The 41 
original CBGS has provided valuable insights into the maternal-foetal communication 42 
and pregnancy comorbidities2,3, infant growth and nutrition4–7 and its association to later 43 
childhood outcomes8, as well as growth and adiposity development of infants at risk9. 44 

The original CBGS and other studies have associated breastfeeding with slower sub- 45 
sequent growth and adiposity gains in infancy and childhood compared to formula feed- 46 
ing4,10–12, and thus support breastfeeding as a potential component in the early prevention 47 
against later obesity. It is conjectured that this difference in early growth rates may be due 48 
to the nutrient contents in human breast milk (BM). Accordingly, triglycerides, lactose, 49 
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protein, and SCFA contents in BM have been considered important for subsequent infants’ 50 
weight and adiposity gains4,5,13. However, BM nutrient concentrations do not necessarily 51 
reflect the amount consumed by infants. The measurement of infant’s nutritional intake 52 
from BM could provide a better mechanistic link between breastfeeding and infancy 53 
growth and adiposity. Additionally several studies have reported that the establishment 54 
of infant gut microbiota, which is associated with the BM microbiome and potentially with 55 
BM oligosaccharide composition, may influence childhood weight gain trajectories, early 56 
metabolic programming, and hence later obesity risk14,15. 57 

Therefore, the CBGS-Breastfeeding Study (CBGS-BF) was established in 2015 in col- 58 
laboration with the research division of Mead Johnson Nutrition, with the particular aim 59 
to identify factors in BM that are associated with infant growth and might reduce obesity 60 
risk later in life. In this study, parameters of BM intake and composition were studied 61 
more extensively, including BM intake volume using a deuterium-labelled water tech- 62 
nique, longitudinal BM collection and a more detailed BM composition including macro- 63 
nutrients, butyrate and human milk oligosaccharides (HMOs), and explorative analyses 64 
of microbiota in BM and infant gut.  65 

This study has been funded by Mead Johnson Nutrition with additional support from 66 
MRC Epidemiology Unit, NIHR Clinical Research Network, NIHR Cambridge Biomedi- 67 
cal Research Centre, Newlife, and Mothercare. 68 

 69 

2. Materials and Methods 70 

Mother-infant pairs were recruited at birth from the same single centre as the original 71 
CBGS, the Rosie Maternity Hospital, Cambridge (UK). Inclusion criteria were: healthy 72 
term vaginally delivered singletons of normal birthweight (defined as greater than -1.5 73 
SDS for gestational age, using British 1990 growth reference) and if the family intended to 74 
continue exclusive breastfeeding from birth until at least age 6 weeks. Exclusion criteria 75 
included mother’s age <16 years, or those unable to give informed consent. To allow for 76 
standardised microbiota sampling, further exclusion criteria were: maternal pre-preg- 77 
nancy body mass index (BMI) >30 kg/m2), any significant maternal illness or pregnancy 78 
comorbidity, use of antibiotics or steroids in 30 days before delivery, and regular con- 79 
sumption of probiotics. In total, 150 mother-infant pairs were recruited of whom 94 were 80 
exclusively breastfed for at least 6 weeks and were thus eligible for retention in the study. 81 
During that exclusive breastfeeding period, as defined by the WHO, infants received 82 
solely BM and no other liquid or solid food was given, except drops of multivitamin/min- 83 
eral supplements or medicines if indicated16. The CBGS-BF was approved by the National 84 
Research Ethics Service Cambridgeshire 2 Research Ethics Committee, and all mothers 85 
gave informed written consent. 86 

This study built on the same design and protocol as the original CBGS1 with extra 87 
visits and biological sample collections, including infant stool, dried milk spot (DMS), and 88 
both maternal and infant urine for BM intake volume measurement (Table 1, Figure 1). 89 
There was also an addition to body composition measurement by estimating infant total 90 
body fat- and fat-free mass. This was conducted using air-displacement plethysmography 91 
(ADP), Pea Pod system (Life measurement Inc, Concord, California, USA). 92 

 93 
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Figure 1 CBGS-BF study design 95 

 96 
 97 
Table 1 Data, anthropometry, and biological samples collection during each visit in the CBGS- 98 
BF  99 

 
Birth 2w 6w 3M 6M 12M 24M 36M 

Consent and recruitment + 
       

Collection of perinatal questionnaire and 
parental demographics 

+ 
       

Infant’s anthropometry and body composition 

Weight, length, head circumference, waist 
circumference 

+ + + + + + + + 

Skinfold thicknesses + + + + + + + 
 

Abdominal ultrasound 
  

+ + + + + 
 

ADP-Pea Pod 
  

+ + 
    

Infancy questionnaires         

Allergy, infection/antibiotics exposure, 
probiotic exposure, feeding history 

+ + + + + + 
  

Food diary 
    

+ + + + 

BIRTH 3M 12M

Infant anthropometry & blood sample in all visits

2w 6w 6M

Infant stool sample

PEA Pod

BM intake

Infancy visit

Liquid BM, DMS (0-12M)

Sterile 
BM

Saliva (DNA trio)
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Biological samples         

Infant’s stool sample for gut microbiota 
 

+ + + + + 
  

Sterile collection of BM for milk microbi-
ota 

  
+ 

     

Other (non-sterile collection of) BM liquid 
sample and DMS 

+ + + + + + 
  

Mother’s and infant’s urine for BM intake 
volume measurement 

  
+ 

     

   (4-6w)     

Infant’s blood sample (DBS and small 
amount of plasma) 

+ + + + + + 
  

Parents’ and infant’s saliva (DNA trio)     +    

w=weeks, M=months, BM=breastmilk, ADP=air displacement plethysmography, DMS=dried milk spot, 100 
DBS=dried blood spot 101 

 102 

Growth and adiposity measurement 103 

All anthropometry and body composition measurements were performed by three 104 
trained paediatric research nurses. 105 

Birthweight was taken from routine medical records of measurements by health pro- 106 
fessionals at delivery. Other birth measurements (Table 1) were conducted by the research 107 
team in the first 8 days of life. At all subsequent visits, weight, length, subcutaneous skin- 108 
folds, head circumference, and waist circumference were measured by the research team 109 
(Figure 1, Table 1). All of these measurements were done in triplicate and averaged. 110 

A Seca 757 electronic baby scale (Seca Ltd., Hamburg, Germany) was used to meas- 111 
ure infant weight to the nearest 1 g. Infants were weighed before feeding, naked without 112 
diapers, or alternatively the weight of the diaper was subtracted from the measured 113 
weight. A Seca 416 infantometer was used to measure supine length to the nearest 0.1 cm. 114 
Weight and length measurements were used to calculate body mass index (BMI) and pon- 115 
deral index (PI), a more accurate adiposity parameter during infancy, by dividing weight 116 
(kg) by length cubed (kg/m3). To measure head circumference (HC), a Seca 212 measuring 117 
tape was circled around the largest circumference of the head, i.e. from above the eye- 118 
brows and around the back of the head. 119 

Adiposity measurements included subcutaneous skinfolds thicknesses, waist cir- 120 
cumference (WC) and abdominal fat thickness (U/S), and accurate body composition esti- 121 
mation using air-displacement plethysmography (ADP)-Pea Pod. 122 

Skinfold thicknesses were measured at four sites, triceps, subscapular, flank, and 123 
quadriceps, using a Holtain Tanner/Whitehouse Skinfold Caliper (Holtain Ltd, Crymych, 124 
Wales, UK). Triceps skinfold was measured at the posterior surface of the arm, halfway 125 
between the acromial process (shoulder) and the olecranon (elbow); subscapular skinfold 126 
at the oblique angle below the scapula (upper back); flank skinfold in the posterior axillary 127 
line immediately posterior to the iliac crest, and quadriceps skinfold in the midline and 128 
halfway between the top of the patella and the inguinal crease. 129 
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WC was measured using a Seca 201 ergonomic circumference measuring tape. WC 130 
was taken at the end of a normal expiration midway between the lowest rib and the iliac 131 
crest as the minimum diameter, preferably before feeding. A standard ultrasound ma- 132 
chine (Logiq Book XP ultrasound with 3C MHZ-RS abdominal curved array transducer, 133 
GE Healthcare, Bedford, UK) was used to assess abdominal intra-abdominal (visceral/me- 134 
dial) and subcutaneous fat depth as parameters of abdominal fat deposition17. The infants 135 
were lying in the supine position on a flat surface and the ultrasound probe was placed at 136 
a point where the midline of the transverse plane used for WC measurement intercepts 137 
with the xiphoid line. To measure visceral depth, the probe was placed on the longitudinal 138 
plane with a probe depth of 6 or 7 cm, and was defined as the distance between the peri- 139 
toneal boundary and the lumbar vertebrae. Subcutaneous abdominal fat depth was meas- 140 
ured with the probe on the transverse plane with a probe depth of 4 or 5 cm, and defined 141 
as the distance between the bottom of the cutaneous layer and the linea alba, the fibrous 142 
sheath lining the anterior abdominal wall. 143 

To assess infant total body fat- and fat-free mass, ADP using the Pea Pod system (Life 144 
measurement Inc, Concord, California, USA) was performed at 6 weeks and 3 months. 145 
ADP Pea Pod is a safe and non-invasive procedure and infants were lain supine and naked 146 
inside the enclosed chamber (Figure 2). ADP Pea Pod assumes a two-component model 147 
of body composition (fat- and fat-free components) and is considered to be a criterion 148 

method for measuring infant body composition18. 149 

Figure 2 Infant body composition measurement using ADP-Pea Pod in CBGS-BF 150 

Biological sample collection 151 

Dried blood spots (DBS) and a small amount of blood for extraction of plasma were 152 
sampled from heel prick at all research visits. Stool samples were collected at each visit 153 
from 2 weeks until 12 months (in total 5 visits) for microbiota analysis. To allow consider- 154 
ation of modifiers of microbiota composition, detailed data were gathered via structured 155 
questionnaires on exposures to pro/prebiotics, antibiotics, antifungals, and steroids in the 156 
14 days before each stool sample. 157 
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Liquid hindmilk was collected at each visit from birth until 12 months of age if the 158 
mothers were still breastfeeding. Milk was hand- or pump-expressed after feeding the 159 
baby during the actual research visit, or in 7 days prior or after visit. To collect liquid BM 160 
for microbiota analysis at 6 weeks of the infant’s age, complete milk expression was taken 161 
place from one breast, using a breast pump and sterile milk collection unit provided by 162 
the research team. To ensure the sterile procedure, the breast was first cleaned using anti- 163 
septic soap and dried with sterile paper towels. 164 

Analysis of non-sterile collected BM composition included macronutrients (carbohy- 165 
drate, fat, protein), butyrate, and human milk oligosaccharides (HMOs). Dried milk spots 166 
(DMS) were also collected for lipidomics analyses in each visit until mothers stopped 167 
breastfeeding. 168 

BM intake volume measurement 169 

To measure the  amount of BM consumed by infants between 4-6 weeks of age, 170 
mother-infant deuterium-oxide (2H2O) turnover technique was employed19,20. Baseline 171 
urine samples from both mother and infant were collected on day 0, after which the 172 
mother received an oral dose of 50 g of this ‘heavy’ water. Further daily urine samples 173 
from mother and baby were collected over a 14-day period. 174 

The volume of BM intake was then determined by measuring transfer of isotope en- 175 
richment from mother to her baby. After being administered, the deuterium-enriched 176 
tracer water was incorporated into the mother’s total body water (TBW) pool and passed 177 
onto her baby as BM. The amount of BM consumed by the baby could be calculated by 178 
analysing the rate of deuterium (2H) appearance in the baby’s urine and disappearance 179 
from the mothers urine (Figure 3). 2H enrichment in the urine samples was measured by 180 
isotope ratio mass spectrometry. The formulas and assumptions used for calculating BM 181 
intake were following those of Haisma et al.20. The experiment was conducted in a collab- 182 
oration with the MRC Elsie Widdowson Laboratory and the results were displayed in 183 
L/day. 184 

 185 

Figure 3 Isotope enrichment of mother’s and infant’s total body water for an exclusively 186 
BF infant (representative example pattern) 187 

 188 
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BM macronutrient and butyrate analyses 189 

Macronutrients and butyrate were analysed following the same protocol as used in 190 
the original CBGS4,5. Defrosted and homogenised liquid BM samples were mixed with 191 
CDC13 solvent with 1:1 ratio. The resulting polar fraction was then used to measure bu- 192 
tyrate concentration while the non-polar fraction was used to measure lipid concentra- 193 
tions using 1H-Nuclear magnetic resonance (NMR) spectra. Triglyceride (TG) served as a 194 
surrogate for total fat content since it contributes 95-98% of total BM lipid content. Mean- 195 
while, the polar fraction of the BM sample was used to measure lactose, the most abun- 196 
dant BM carbohydrate, using 1H 1D nuclear Overhauser effect spectroscopy (NOESY). For 197 
protein, total nitrogen level was measured by the DUMAS method, and the protein factor 198 
conversion of 6.25 was used to calculate crude protein content. Atwater conversion factors 199 
were used to calculate the total metabolisable calorie content (TCC) of BM, taking energy 200 
contents of 4, 9, and 4 kcal/g for lactose, fat, and protein, respectively, and was expressed 201 
in kcal/100 mL. BM nutrient density was calculated as macronutrient content as % of TCC, 202 
i.e. %carbohydrate, %fat, %protein. 203 

Human milk oligosaccharides measurement 204 

Human milk oligosaccharides (HMOs) were quantified from liquid BM samples ob- 205 
tained from 2 weeks to 12 months of age. Briefly, each milk sample was diluted and fil- 206 
tered, and its oligosaccharides were quantified by high-pH anion-exchange chromatog- 207 
raphy using a Thermo Scientific Dionex ICS-5000+ system with a pulsed amperometric 208 
detector (HPAEC-PAD, https://barilelab.ucdavis.edu/)21. A selection of the most abundant 209 
and represented HMOs was chosen, consisting of 2’-fucosyllactose (2’-FL), 3-fucosyllac- 210 
tose (3-FL), lacto-N-fucopentaose I (LNFP I), lacto-N-tetraose (LNT), and lacto-N-neo- 211 
tetraose (LNnT) as neutral HMOs, and 3’-sialyllactose (3’-SL) and 6’-sialyllactose (6’-SL) 212 
as acidic HMOs. 213 

In brief, each sample was prepared using the “dilute-and-shoot” method and ana- 214 
lysed using HPAEC-PAD in duplicates. During sample dilution, five concentrations of the 215 
standards of each of the 7 HMO species being studied were spiked into a 6-week milk 216 
sample. Recovery was determined by calculating the ratio between the measured and the- 217 
oretical spiked quantities. To assess repeatability, the same samples were injected 5 times 218 
and the coefficient of variation was calculated. For each HMO species, the limit of detec- 219 
tion and the limit of quantification were empirically decided if the resulting concentration 220 
could produce a signal-to-noise ratio of 3:1 and 6:1, respectively21. 221 

Fucosyltransferase 2 (FUT2) genotyping study 222 

Fucosyltransferase 2 (FUT2) genotyping study was performed on maternal and infant 223 
saliva. The single nucleotide polymorphism (SNP) target used in this study was rs516246 224 
and the secretor phenotype was defined by homozygous G/G or heterozygous A/G geno- 225 
types, whereas homozygous A/A indicated the non-secretor phenotype22. 226 

Microbiota analysis 227 

Bacterial composition in maternal BM and infant stool was analysed by sequencing 228 
of the 16S ribosomal RNA (rRNA) genes. All procedures, including DNA extraction, PCR 229 
amplification, library preparation, and sequencing of the V3-V4 region of the 16S rRNA 230 
genes on a MiSeq sequencer (Illumina Inc.), were performed using a standard protocol 231 
with established quality control23. 232 

 233 
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3. Results 234 

This study recruited 119 infants at birth in total, of whom 94 were eligible for follow- 235 
up as receiving solely BM in the first 6 weeks of life. Of these, 14 infants were introduced 236 
to mixed-feeding between 6-12 weeks, 52 between 3-6 months, and the remaining 28 con- 237 
tinued exclusive breastfeeding for at least 6 months. Up to date, all infants have completed 238 
follow-up to 12 months. The 24- and 36 months visits are ongoing. 239 

The overall aim of the study is to assess the associations between human milk components 240 
and their intakes, with infant growth, weight gain and changes in body composition. The 241 
primary outcomes are changes in age- and sex-standardised scores for infant length, 242 
weight, fat mass and fat-free mass between birth to age 12 months. We highlight below 243 
some of the key questions to be addressed. 244 

The relationship between exclusive breastfeeding and infant growth 245 

We hypothesize that there is a bidirectional relationship between exclusive breast- 246 
feeding and infant growth. In this study, growth assessments and BM intake volumes 247 
were measured at age 6 weeks, while all infants were still exclusively breastfed. We con- 248 
jecture that slower weight between birth-6 weeks and lower BM intake volumes at 6 weeks 249 
will predict subsequent earlier introduction of infant formula and/or complementary 250 
foods. Conversely, we expect that earlier introduction of infant formula will predict sub- 251 
sequent faster weight gain. Few other infant cohort studies have collected sufficiently re- 252 
peated assessments of growth and feeding to address such questions. 253 

BM intake volume, BM macronutrient composition, and infant growth 254 

In line with the above findings, we speculate negative associations between BM in- 255 
take volumes at age 6 weeks and subsequent infant growth and adiposity gains, that could 256 
persist until 36 months. 257 

We will also explore specific BM nutrient intakes as potential regulators of infant 258 
weight gain. To do this, associations between each BM macronutrient and BM intake vol- 259 
ume will be investigated to highlight the importance of considering BM nutrient intakes 260 
when examining infant weight gain nutritional drivers, as opposed to simply BM nutrient 261 
contents. 262 

Our previous publication and other studies have reported positive associations bet- 263 
ween BM lactose (representing carbohydrate) and protein with infant weight gain and 264 
adiposity4,13,24–26. BM fat intakes were also inversely associated with those growth para- 265 
meters in the original CBGS4. We are inclined to reproduce the same examinations in the 266 
CBGS-BF, supplemented by BM nutrient intakes analyses. We predict similar results for 267 
lactose and protein in this study, but not with fat as we collected hind-milk samples that 268 
might reduce interindividual BM fat content variations. 269 

     Factors influencing HMOs abundance and its relation to infant growth 270 
By acting as act as soluble prebiotics and contributing to the establishment of desir- 271 

able infant gut microbiota, HMOs have been evidence to promote overall infant health and 272 
growth via protection from infections and obesity27,28. However, the evidence of HMOs 273 
determinant factors as well as their effects during infancy is still scarce, inconclusive, and 274 
confounded by many factors, especially the amount of intake by infants. 275 

Maternal FUT2 polymorphism is reported to be the major determining factor in 276 
HMOs diversity and abundance. FUT2 secretor and non-secretor mothers have distinct 277 
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HMO profiles, with predominant 2’fucosyllactose (2’FL) and lacto-N-fucopentaose I 278 
(LNFPI) among secretors27,29. 279 

In this study, we attempt to examine the pre-, ante-, and postnatal influencing factors 280 
of HMOs and the association of HMOs intake and infant growth in the first year of life. 281 

Infant gut and BM microbiota  282 

We are planning to observe the diversity and development of infant gut microbiota 283 
over time, especially in relation to BM microbiota, breastfeeding duration, and HMOs. 284 
We hypothesize that exclusive breastfeeding duration and HMOs intakes influence bac- 285 
terial abundance and diversity in infant gut microbiota, providing important insights 286 
into the relationship between mother’s milk and infant gut microbiome. 287 

 288 

4. Discussion 289 

Although data collection and sample analyses in the CBGS-BF are still ongoing, sev- 290 
eral findings have already emerged. 291 

First, HMO abundances were prominently affected by stages of lactation and mater- 292 
nal genotype. Two HMO species, 3-FL and 3’-SL, increased in concentration as the lacta- 293 
tion progressed while the others, including 2’-FL, LNFP I, LNT, LNnT and 6’-SL decreased 294 
with time. Maternal FUT2 genotype predicted the profile of oligosaccharides secreted in 295 
BM, with marked differences in BM concentrations of 2’-FL, 3-FL, LNFP I and LNT be- 296 
tween secretors and non-secretors21. 297 

Second, the use of ADP-PEA Pod in the study has enabled the derivation of new 298 
prediction equations to estimate body composition during infancy. Infant sex, postnatal 299 
age at measurement, weight, length, and skinfold thicknesses were modelled to develop 300 
infant fat- and fat-free mass prediction equations against ADP-PEA Pod as the criterion. 301 
Recently, these have been validated in an independent study. The new prediction equa- 302 
tions resulted in better validity and smaller bias compared to previously available equa- 303 
tions that were based on measurements made only at birth31. 304 

The main strength of the study is the design of CBGS-BF that involves comprehen- 305 
sive and longitudinal data collection, including prenatal questionnaires and food diaries, 306 
diverse biological sample collection, and thorough anthropometry and body composition 307 
measurements. Measurements of BM intake volume using deuterium-labelled water, de- 308 
tailed assessment of BM composition including oligosaccharides and other components, 309 
and BM and infant gut microbiota profiles allow a unique depth of investigation into the 310 
mechanisms that link breastfeeding to healthy patterns of infant growth and weight gain. 311 

Limitations of the study include the use of a single site with predominant White Cau- 312 
casian population, which could limit the applicability of the results to more diverse pop- 313 
ulations. The application of stringent recruitment criteria as well as exclusion of infant- 314 
mother pairs who did not exclusively breastfeed for at least 6 weeks has advantages and 315 
disadvantages. While this focussed study sample minimises the confounding effects of 316 
many environmental factors, it limited the number of subjects eligible for inclusion. 317 

5. Conclusions 318 

The CBGS-BF aimed primarily to carry out extensive profiling of breastmilk intakes 319 
and composition in relation to infancy growth. Anonymised data can be made available to 320 
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other researchers through collaborative agreements. The CBGS-BF investigators welcome 321 
formal or informal proposals and will consider these at their quarterly meetings. Prof Ken 322 
Ong (Ken.Ong@mrc-epid.cam.ac.uk). 323 

6. Patents 324 
No patents are resulting from the work reported in this manuscript. 325 
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