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Abstract 

Hyperspectral imaging (HSI) can measure both spatial (morphological) and spectral (biochemical) 

information from biological tissues. While HSI appears promising for biomedical applications, interpretation of 

hyperspectral images can be challenging when data is acquired in complex biological environments. Variations 

in surface topology or optical power distribution at the sample, encountered for example during endoscopy, can 

lead to errors in post-processing of the HSI data, compromising disease diagnostic capabilities. Here, we propose 

a background correction method to compensate for such variations, which estimates the optical properties of 

illumination at the target based on the normalised spectral profile of the light source and the measured HSI 

intensity values at a fixed wavelength where the absorption characteristics of the sample are relatively low (in this 

case, 800 nm). We demonstrate the feasibility of the proposed method by imaging blood samples, tissue-

mimicking phantoms, and ex vivo chicken tissue. Moreover, using synthetic HSI data composed from 

experimentally measured spectra, we show the proposed method would improve statistical analysis of HSI data. 

The proposed method could help the implementation of HSI techniques in practical clinical applications, where 

controlling the illumination pattern and power is difficult.  
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Introduction 

Hyperspectral imaging, originating from remote sensing applications[1], enables a combined 

simultaneous measurement of both spatial and spectral information from biological tissues. Analysis of the 

resulting 3D data set, or ‘hypercube’, enables spatial discrimination of healthy and abnormal tissues based on the 

rich morphological and biochemical information contained within the spatial and spectral features[2,3]. HSI has 

shown potential in a range of biomedical applications, from label-free tumour diagnoses[4-6] and detection of 

tumour margins during surgical operations[7-9], to quantification of blood oxygenation levels[10-12], and multi-

colour fluorescent imaging[12,13]. HSI methods have thus been developed for the fast and accurate analysis of 

biological samples ex vivo[14-17] as well as for diagnostic and intraoperative applications in vivo through 

endoscopy[16,18].  

The high complexity of handling the 3D hypercube requires careful consideration of appropriate analysis 

methods[3,19-21]. HSI data are commonly subjected to a normalisation procedure to calculate reflectance and/or 

absorbance of the sample using the following equations[3]: 

𝑅(𝑥, 𝑦, 𝜆) = )(*,+,,)-)./01
)2(*,+,,)-)./01

       (1) 

	𝐴(𝑥, 𝑦, 𝜆) = −𝑙𝑜𝑔9: ;
)(*,+,,)-)./01
)2(*,+,,)-)./01

<     (2) 

,where R(x,y,l) and A(x,y,l) are the reflectance and absorbance at a given spatial position (x, y) and wavelength 

(l), respectively. I, I0, and Idark are the intensities of the spectral signals measured from the sample, the background 

spectral signals recorded without the sample in place (also referred to as the “white” signals) and the dark signals 

recorded without any illumination, respectively. Reflectance and absorbance metrics thus indicate the true spectral 

features of a sample as these calculations correct for variations in illumination conditions and errors introduced 

by the optical components. These processed reflectance or absorbance signals can then be further subjected to 

statistical analyses such as principal component analysis (PCA)[22,23], spectral angle mapping (SAM)[24], or 

machine learning methods[5,25-27] to extract significant spectral features that can discriminate or classify the 

samples of interest.  

 A key limitation of these reflectance and absorbance calculations is the assumption of uniform sample 

illumination. Several methods are used in hardware to ensure that this assumption remains valid, including: 

uniform illumination instrumentation[28,29]; 3D shape measurement[30]; reference intrinsic / fluorescence 
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imaging[31-34]; and ratiometric measurements[35-37]. Uniform illumination instrumentation can be achieved 

with specialised devices such as ring illuminators or diffuse domes, however, there are difficulties in applying 

these for in vivo imaging, such as during endoscopy, due to the need for bulky illuminating units. In addition, 

uniform illumination instrumentation does not guarantee intensity homogeneity along the axial direction, which 

means illumination issues can still occur ex vivo when measuring most biological tissues due to their uneven 

surfaces. Estimating optical illumination power is possible using 3D shape measurement techniques and optical 

model-based analysis but predicting illumination conditions within shadowed regions is challenging. Intrinsic 

image or reference fluorescence signals measured by multimodal imaging systems have been used to provide a 

reference background (BG) that enables estimation of the optical power distribution of the light source and 

correction of sample signals but again, a complex optical system is required to measure reference BGs and 

additional errors are introduced by variations in tissue absorption or the concentration of fluorescence agents. 

Ratiometric measurements, such as narrow-band imaging, record spectral information from only a few spectral 

bands, displaying physiological information based on a (weighted) sum of the images. Although ratiometric 

imaging is usually insensitive to illumination conditions and sample morphology, only limited spectral 

information is recorded. 

 Here, we introduce a BG correction method that estimates the optical power of illumination at a sample 

by exploiting the normalised spectral profile of the light source and the hyperspectral signal of the sample. We 

experimentally demonstrate the proof-of-concept of the method using HSI data acquired via a hyperspectral 

endoscopy system from blood samples, tissue-mimicking phantoms, and ex vivo chicken tissue. Moreover, the 

importance and applicability of the proposed method to hyperspectral image analysis (PCA and SAM) and 

machine learning classification of hyperspectral data were tested using synthetic reflection and absorption 

hypercubes based on these experimentally measured spectra. The proposed BG correction method, referred to as 

retrieved background (RB), enables the estimation of optical characteristics of illumination at the sample, avoiding 

the need for additional complex hardware, and results in accurate hyperspectral data analysis and classification.  
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Materials and methods 

Hyperspectral imaging system 

 A hyperspectral imaging endoscopy system, reported previously[18], exploits a flexible CE-marked 

endoscope (Polyscope, PolyDiagnostics) and a line-scanning (pushbroom) method. Briefly, the endoscope 

consists of a reusable imaging fibre bundle with 10,000 individual fibrelets and a disposable sterile catheter that 

contains an imaging channel, an illumination fibre and an accessory channel. The proximal end of the imaging 

fibre bundle was imaged and magnified using an infinity corrected objective lens (40´, 0.6NA, Nikon) and a tube 

lens (L1, f = 75 mm), with the image being measured by an electron multiplying CCD camera (sCam, ProEM 

512, Princeton Instruments) combined with a spectrograph  (IsoPlane 160, Princeton Instrument) to obtain 

hyperspectral information. The spectrograph consisted of a mechanical entrance slit of manually adjustable width 

(10 µm – 3 mm) and a grating (150 lines/mm with 500 nm blaze, Princeton Instruments); thus a spectral image 

with a spectral bandwidth of 250 nm can be measured in a single image acquisition. The spectrograph and camera 

were controlled by LightField software v6.7 (Princeton Instrument). In order to obtain a wide-area hyperspectral 

image, the line-scanning was performed using a motorized translational stage (MTS50/M-Z8, Thorlabs). All 

equipment was synchronously controlled in Labview 2017 (National Instruments) environment. 

 A broadband light source (OSL2, Thorlabs) with a Halogen light bulb (OSL2bIR, Thorlabs) whose 

emission spectrum spanned across the visible to NIR (1050 nm) region was used to illuminate a sample either 

internally or externally, depending on experimental purposes. For internal illumination, the light source was 

directly coupled to the illumination fibre of the endoscope by using a collimating lens (L2, f = 150 mm) and an 

objective lens (60´, NA 0.9, Olympus). For external illumination, the light source was coupled to a large core 

fibre and the distal end of the fibre was placed 2 cm away from the sample at a tilted angle. 

Image acquisition 

Spectral image acquisition was performed after allowing 15 minutes for temperature stabilisation of the 

equipment. The image acquisition process consisted of three steps: (1) dark imaging; (2) white reflectance 

imaging; and (3) sample measurement. Dark imaging was performed under closed camera shutter conditions. 

White reflectance imaging was performed using a standard white reflectance target (Spectralon diffuse reflectance 

target, Labsphere) to obtain information of the spectral profile and intensity of the light source. All image 
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acquisition processes were performed under the same experimental conditions, including exposure time, gain and 

light source power. 

Hypercube reconstruction 

 The recorded 2D spectral image in a line-scan image contains one spatial coordinate and the spectral 

coordinate, because the grating inside the spectrograph disperses the image horizontally; hypercube reconstruction 

is required to retrieve the other spatial coordinate, obtained during the motorized translation. Before commencing 

hypercube reconstruction, the dark image was subtracted from the white reflectance and sample images. A single 

column of the corrected image, which contains information from a single wavelength, was selected and duplicated 

horizontally to match its image size to the physical slit width. For example, in hyperspectral imaging of the chicken 

tissue, line-scan hyperspectral images of the sample and white-reflectance target were measured with a step 

scanning size of 250 µm, which corresponds to 5 pixels. Thus, each processed image was placed 5 pixels apart 

from the previous image. By repeating this process for all column images, a slice of the hypercube at a single 

wavelength was created. The 3D hypercube was then reconstructed by repeating the process to create a wide-area 

spatial image at all wavelengths. Hypercubes of the sample and white-reflectance target were reconstructed 

separately, enabling the calculation of normalised reflectance and absorbance values by dividing the sample and 

white-reflectance hypercubes.  

Generation of a synthetic RGB image from the hypercube 

For visualization purposes, the hypercube can be converted to a synthetic RGB (colour) image using an artificially 

generated RGB filter based on a previously published method[18]. The spectrum of the RGB filter employed 

Rayleigh probability density functions (raylpdf function in Matlab R2018b), with centre wavelengths of each 

colour being set to 442, 518, and 579 nm, respectively. Amplitudes of each filter were determined such that 

saturation of the synthetic RGB image was avoided. The hyperspectral signal from the hypercube was multiplied 

by the artificially generated RGB filters, with the R, G and B values of the synthetic RGB image being determined 

by calculating the area-under-curve values of the filtered signals. Synthesized RGB images were displayed using 

imshow function in Matlab R2018b. 

Preparation of chicken tissue 
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A food-grade chicken drumstick purchased from a local grocery market was horizontally dissected using 

a knife. Local handling of the tissue was approved by our Biological Safety Committee. The test sample was then 

placed on a petri dish and measured by using the hyperspectral endoscope. To obtain background signals, a white-

diffuse-reflectance target was measured under the same experimental conditions as the sample measurement. The 

hyperspectral imaging was performed at a working distance of 7 cm with a step size of 250 µm on the motorized 

stage. A total of 150 spectral images were measured, resulting in a total scanning area of 31.56 mm ´ 37.50 mm, 

with an exposure time of 1s. The experiments were conducted within a 3 hour timeframe to ensure sample 

freshness.  

Preparation of tissue-mimicking phantom and blood samples 

For blood oxygenation measurements, fresh heparinized mouse blood was collected from deceased mice 

provided by the Biological Resources Unit of the Cancer Research UK Cambridge Institute (mice were not 

sacrificed for the purpose of this study). 1 mL of mouse blood was divided between two 1 mL Eppendorf tubes. 

To make a fully oxygenated blood sample, 1 µL of 30% hydrogen peroxide (Sigma-Aldrich) was added and the 

sample was gently mixed by inversion. 1.5 mg of sodium hydrosulphite (Sigma-Aldrich) was added to the other 

tube to make a completely deoxygenated blood sample, again mixing by inversion. The tubes were kept at room 

temperature for 10 mins and 20 µL of the oxygenated and deoxygenated blood samples were transferred to a petri 

dish and covered by a cover slip. As a reference target, 20 µL of distilled water was put on the petri dish and 

covered by the cover slip.  

To test the effects of scattering, absorption and fluorescence on the suggested method, tissue mimicking 

phantoms with defined optical properties that closely mimic biological tissue were fabricated using agar, 

intralipid, nigrosine and methylene blue[41]. All chemicals were purchased from Sigma-Aldrich. Before 

fabricating the tissue phantoms, two different concentrations of absorbance and fluorescence dyes were prepared. 

Nigrosin (0.1 and 0.05 g/mL) and methylene blue (0.1 and 0.05%) were prepared by diluting dyes using distilled 

water. 0.75 g of agarose was dissolved in 48.5 mL of distilled water and then heated to the boiling point using a 

microwave oven. The solution was left to cool to ~40°C, with 1 mL of 20% intralipid being added to the solution 

and gently mixed to induce optical scattering. 500 µL of the solution was transferred to 6 wells of an 8 well dish 

(µ-Slide 8 Well, ibidi GmbH) using a pipette and then 100 µL of the four prepared dyes were added to 4 of the 

cells. The dish was covered by plastic wrap and kept inside a refrigerator to set.  
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Creation of synthetic absorption and reflection hypercubes 

In order to test machine-learning methods, synthetic hypercubes that mimic experimental conditions, 

spectral signals from experimentally measured BG and samples (pork muscle tissue, oxygenated blood, methylene 

blue and nigrosin dyes) were used. All samples were measured four times under different experimental conditions 

to include noise generated by the optical systems and environment to synthetic hypercubes. To generate 

uncorrelated training and test hypercubes, three of the four measured data sets were used for training data and the 

other data set was used for test data. 

Synthetic reflection and absorption hypercubes were created by following four steps: (1) generation of a 

random illumination pattern; (2) creation of a GT reflectance hypercube based on four experimentally measured 

signals with an uncorrelated noise; (3) creation of SB and RB reflectance hypercubes by combining the GT 

hypercube with the random illumination pattern; and (4) applying a log-transformation of the produced reflectance 

hypercubes to generate absorbance hypercubes  

Step (1): 2D random Gaussian distributions, M, were used as ground-truth optical power distributions, 

with values were ranging between 0 and 1. Gaussian distribution was created using ‘mvnpdf’ function in Matlab, 

and its central location is randomly assigned using ‘rand’ function in Matlab.  (Fig 6a). Optical characteristics of 

the illumination conditions were decided by the following equation: 

𝐵𝐺(𝑥, 𝑦, 𝜆) = 𝑀(𝑥, 𝑦) × 𝑆BCDEF(𝜆) 

where BG(x,y,l) is light intensity at the wavelength of l at the point x,y in the image, M(x,y) is the optical power 

at the point x,y, and Slight(l) is the experimentally measured spectral intensity of the light source at the wavelength 

of l, respectively.  

Step (2): The GT reflectance hypercube was created by assigning experimentally measured hyperspectral 

signals of samples (pork muscle tissue, oxygenated blood, methylene blue, and nigrosine dye) with an uncorrelated 

noise obtained from independent experimental measurements of spectral signals from a colour chart 

(ColorChecker Classic Mini, x-rite) to each of the corresponding clusters in the spatial regions of the image (either 

circles or background region).  

𝐺𝑇(𝑥, 𝑦, 𝜆) = 𝑆HIJKBL(𝜆) + 𝛼 × 𝑁(𝜆) 
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where Ssample(l) is one the experimentally measured spectral intensity among the samples at the wavelength of l, 

a is randomly generated weighting factor between 0 to 0.1 (‘rand’ function in Matlab), and N(l) is an 

experimentally measured spectral intensity of the colour chart at the wavelength of l, respectively. The noise, 

a´N(l) has a scale less than 10% of sample signals, Ssample(l), and the range of the weighting factor, a, was 

determined to make the noise scale consistent with the scale of average experimental noise. The uncorrelated 

noise makes the training process more robust and reduces generalization error. 

Step (3): SB and RB reflectance hypercubes were created based on the GT hypercube from Step (2) and 

single and retrieved illumination conditions by following equations, respectively: 

𝑆𝐵(𝑥, 𝑦, 𝜆) =
𝐵𝐺(𝑥, 𝑦, 𝜆) × 𝐺𝑇(𝑥, 𝑦, 𝜆)

𝑆BCDEF(𝜆)
 

𝑅𝐵(𝑥, 𝑦, 𝜆) =
𝐵𝐺(𝑥, 𝑦, 𝜆) × 𝐺𝑇(𝑥, 𝑦, 𝜆)

𝑅𝑀(𝑥, 𝑦, 𝜆)  

where RM(x,y,l) is retrieved optical power at the wavelength of l at the point x,y obtained via the BG retrieval 

method. 

Step (4): Absorbance hypercubes were calculated by performing logarithmic transformation of the GT, 

SB and RB reflectance hypercubes. 

Principal component analysis 

A pixel-wise approach and singular value decomposition (SVD) were exploited to perform PCA of a 

hypercube[42]. Three pre-processing steps were required before calculating the SVD of the hypercube.  First, the 

3D hypercube was vectorised into a 2D matrix, consisting of pixels (vertical axis) and hyperspectral signals 

(horizontal axis). Then, hyperspectral data was centred by subtracting mean values of the hyperspectral signal of 

each pixel from its corresponding signal. Finally, the covariance matrix of the pre-processed hyperspectral data 

was calculated, which was used as an input of SVD. SVD was performed using svd function in Matlab R2018b. 

An NVIDA GeForce GTX 1080 graphical processing unit was exploited for fast SVD calculation. 

Specular angle mapping 
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For SAM analysis, the average hyperspectral signal of cluster i of each hypercube was used as a reference 

hyperspectral signal. Then, the spectral angles, a, between the hyperspectral signal of each pixel of a hypercube 

and the reference spectral signal were calculated using the following equation[24]: 

𝛼 =	 cos-9(
∑ FTUT
V
TWX

(∑ FTYV
TWX )2.[(∑ UTYV

TWX )2.[
)      (3),  

, where tl and rl are values of the target and reference spectral profiles at wavelength l, respectively and n 

indicates the total number of spectral channels.  

 

 Machine-learning based classification of emulated hypercube 

Learning algorithms were implemented in Python, with K-means clustering and SVM algorithms being 

implemented via the sklearn library and CNNs being implemented via Lasagne, a Theano supplementary library. 

Learning was performed on a machine with access to 16 GB RAM and a NVDIA GeForce GTX 1050Ti graphical 

processing unit. To validate the lack of overfitting of the classifiers, the synthetic data was split into training and 

testing datasets, with base spectral measurements for the simulations being independent of one-another. All results 

presented are based on the performance of the classifiers on the test data.  

A pixel-wise approach was used for learning and classification processes. A 3D hypercube, consisting 

of 256 ´ 512 spatial points and 300 spectral channels, was converted to a 2D image with sizes of 131072 ´ 300. 

Each row of the converted image with 300 spectral channels was then used as an input to the learning and 

classification processes. We found that twenty-five training datasets were sufficient to achieve 100% classification 

accuracy in the ground-truth data. For a better supervised learning process, fifty hypercubes were exploited to 

train supervised learning models (SVMs and CNNs). Due to the large data sizes and memory limitations, learning 

was performed incrementally in batches of one hypercube (131072 ´ 300). Thus, for the K-mean algorithm, the 

MiniBatchKMeans function was employed, with a 21 epochs early stopping decision and a target of 4 clusters. 

An incremental SVM algorithm has been implemented by employing the SGDClassifier function with a hinge 

loss function and l2 regularisers. For the CNN a six layered network was implemented with three convolutional 

layers, two fully connected layers and an output layer. Unlike in the previous two methods (K-means and SVM 

algorithms), a subset of a hypercube (200 ´ 300) was used as a batch size of CNN to facilitate a more effective 

learning process. 5-fold cross-validation was performed to test the accuracy of CNNs. 
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Software 

Matlab R2017b and Python were used for image processing. Lightfield v6.7 (Princeton Instrument) was used to 

control the spectrograph and EMCCD. Labview 2017 (National Instruments) was used for synchronized control 

of the wide-field camera, spectrograph and EMCCD, and motorized stage.  

Code availability 

All custom data analysis code will be made available online at: https://doi.org/10.17863/CAM.42338 

 

 

Results 

Background correction using the normalised source profile and target 

hyperspectral signals 

The influence of varying illumination power on the calculation of reflectance and absorbance spectra 

along with the proposed correction method is demonstrated in Fig 1. Experimentally measured hyperspectral 

signals were acquired from absorbing nigrosin black dye as the sample (Fig. 1a) and a standard diffuse reflectance 

target as the background (Fig. 1b, w = 1). To emulate varying illumination intensities, two weighting factors were 

multiplied with the ground-truth BG signal (Fig. 1b, w = 0.8, 1.2) and the resulting reflectance (Fig. 1c) and 

absorbance (Fig. 1d) spectra were calculated.  

𝑅(𝜆) = )(,)-)./01
\×()2(,)-)./01)

        (4) 

	𝐴(𝜆) = −𝑙𝑜𝑔9: ;
)(,)-)./01

\×()2(,)-)./01)
< = −𝑙𝑜𝑔9: ;

)(,)-)./01
()2(,)-)./01)

< +	 𝑙𝑜𝑔9:𝑤	    (5) 

 

Varying the intensity in this way resulted in the expected change in the scale of the calculated reflectance, since 

w is a multiplicative factor in eq. (4), and a change in the offset of the calculated absorbance, because w becomes 

an additive constant in eq (5) due to logarithm calculations. This simple illustration highlights how image 
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processing with incorrect BG data would cause errors in the interpretation of hyperspectral data. We propose 

instead to multiply the normalised spectrum of the light source (Fig. 1e) with the intensity ratio between the 

normalised spectral profiles of the light source (Cb) and the sample (Cs) at a wavelength of low absorbance in the 

sample to estimate the actual spectrum of the light source at the target (Fig. 1f). Here, we select 800 nm as the 

wavelength for comparison, since this is central in the near-infrared (NIR) tissue ‘optical window’ of low 

absorbance in biological tissues[38,39]. Moreover, there is an isosbestic absorption of haemoglobin at 800 nm 

meaning that any change in absorption due to haemoglobin oxygenation status would not affect the calculation 

and the loss of information at the normalisation is minimal since there are several other isosbestic points for 

haemoglobin within the visible spectral region.  

The proposed method calculates reflectance and/or absorbance of the sample using the following equations: 

𝑅(𝑥, 𝑦, 𝜆) = )(*,+,,)-)./01
^_(`,a)
^b(`,a)×cd(,)

        (6) 

	𝐴(𝑥, 𝑦, 𝜆) = −𝑙𝑜𝑔9: e
)(*,+,,)-)./01
^_(`,a)
^b(`,a)×cd(,)

f	    (7) 

, where NS(l) is the normalised spectrum of the light source, Cs(x,y) and Cb(x,y) are intensity values of I(800) at 

the point x,y, and NS(800), respectively. 

Fig. 1 The effect of illumination power on absorbance and reflectance spectra. Raw spectra of 0.05 g/mL nigrosin 

dye (a) and the background halogen light source (b, w = 1) were measured. To simulate the effects of the low and 

high illumination power, weighting factors (w = 0.8 and 1.2) were multiplied with the background spectrum. (c, 

d) Reflectance and absorbance were obtained for the three different weighting factors. Illumination power can be 

observed to change the scaling of reflectance spectra and the offset of absorbance spectra. (e, f) The proposed 

background retrieval method estimates the optical spectral power of the illumination at the sample by exploiting 

a normalised spectral profile of the light source (e) and the intensity ratio between the normalised spectral profile 

of the light source and sample data (Cs/Cb) at a wavelength displaying low absorbance in the sample of interest, 

here selected as 800 nm (f).  

 

 

Proof-of-concept using a standard reflectance target and phantoms 
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 In order to test the proposed method, hyperspectral imaging data were acquired via a hyperspectral 

endoscope (HySE) that consists of a line-scanning spectrograph and multi-core optical fibre endoscope (S1 Fig., 

see Methods)[18]. The endoscopy system can image the sample using light from an external fibre-coupled light 

source (referred to as ‘external illumination’) or using light delivered through an internal illumination fibre 

(referred to as ‘internal illumination’). We introduce external illumination here to provide light with an easily 

adjustable distance and angle relative to the sample. During clinical endoscopy, internal illumination is used, and 

the changing working distance and angle of endoscope lead to heterogeneous sample illumination.  

Data were first acquired from a standard white reflectance target that reflects 99% of illuminating light 

using external illumination (Fig. 2a), where a fibre coupled to a broadband light source was tilted to create a 

variation in the optical power distribution across the sample. Line-scanning HSI was performed at three different 

positions (indicated in Fig. 2a with coloured rectangles) and the resulting line-scan HySE image containing 1D 

spatial (vertical axis) and spectral (horizontal axis) information (Fig. 2b) was then processed at each position to 

retrieve the average spectral profiles (Fig. 2c). Min-max normalisation led to complete overlap of the spectra (Fig. 

2d), indicating that the light source illuminates each position with the same spectral profile but with different 

optical powers. Applying the proposed BG correction method, ratios of the intensity values of three hyperspectral 

signals (Fig. 2c; c1, c2, c3), and the normalised signal (Fig. 2d, cb) at 800 nm were taken (c1/cb, c2/cb, and c3/cb) and 

multiplied by the normalised spectrum (Fig. 2d) to successfully retrieve the original signal (Fig. 2e). Repeating 

the same process via internal illumination (Fig. 2f) also showed appropriate background retrieval (Figs. 2g-j). 

 

Fig. 2 Spectral profiles of different illumination conditions can be accurately retrieved through hyperspectral 

endoscopy by different illumination methods. (a) Schematic of the external illumination methods. Red, green, and 

blue lines indicate the hyperspectral imaging regions. (b) Representative spectral image from the hyperspectral 

endoscope during external illumination. (c) Average spectral signals of the three hyperspectral images measured 

at the different locations shown in (a) obtained from the white-dashed region in (b). (d) Min-max normalisation 

of spectral signals in (c) show complete overlap. (e) Spectra obtained (black dashed lines) using the normalised 

spectral profile in (d) and ratio of values at 800 nm (c1, c2, c3, and cb). (f-j) As above but for the internal 

illumination method.  

To compare our results to other BG correction methods when imaging a range of samples, we then 

defined three different BG conditions: ground-truth BG (GT); single BG (SB); and our retrieved BG method (RB). 
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GT was obtained by measuring HSI data from the standard white reflectance target under precisely the same 

conditions as the sample imaging (S2 Fig. a). For example, GT data was acquired at every working distance used. 

This is rarely feasible in practical clinical applications, such as during endoscopy, as a reference target cannot be 

introduced into the lumen being imaged nor are working distance variations normally accounted for. SB is the 

conventional background correction method commonly used in HSI and obtained by measuring HSI data from 

the standard white reflectance target prior to sample measurements under arbitrary illumination conditions and 

assuming this spectral profile to be representative of the illumination conditions during the sample imaging[3]. 

SB does not allow compensation of any variations that are introduced during the imaging condition, such as 

variations illumination power and working distance. In the present study, an arbitrary choice of a single GT HSI 

data sets was taken as SB. RB is calculated as described above (S2 Figs. b, c).  

 We then analysed blood samples, since blood has distinct absorption profiles depending on the level of 

oxygenation and provides relatively low absorbance at 800 nm[40]. Fully oxygenated and deoxygenated blood 

(see Methods) and distilled water (20 µL) were pipetted onto a plate, covered by a coverslip (Fig. 3a) and imaged 

immediately. HySE was applied using internal illumination at 3 working distances (Fig. 3b) and the spectral 

profile of distilled water was used as GT. The measured absorption spectra of the deoxygenated (Fig. 3c) and 

oxygenated blood (Fig. 3d) clearly show one (550 nm) and two (540 and 560 nm) peaks respectively, consistent 

with known blood absorption spectra[40]. The slightly different absorption values of three measurements might 

be originating from the varying imaging areas which are dependent on the working distance of the endoscope. 

The absorbance spectra calculated by using the retrieved BG are consistent with the GT results, albeit slightly 

lower in magnitude (8.73 ± 1.56% lower at 550 nm peak and 6.84 ± 1.22% lower at 560 nm peak of the absorption 

spectra of the deoxygenated and oxygenated blood, respectively), however, the conventional single BG method 

produces substantial differences.  

 

Fig. 3 Retrieved background (RB) signals enable accurate measurements of absorbance of deoxygenated and 

oxygenated blood compared to ground truth (GT). (a) Photograph of the experiment setup. Water (control) and 

blood (deoxygenation and oxygenation) were covered by a cover glass to prevent the sample from drying during 

the measurement. Hyperspectral imaging was performed using the internal illumination method at three working 

distances. (b) Experimentally measured reflectance signals of a control target (water) were used GT, with 

different optical illumination power according to working distance. Absorbance of deoxygenated (c) and 
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oxygenated (d) blood measured at three working distances were then calculated using GT, SB and RB methods, 

showing good agreement between GT and RB, but substantial deviation for SB method.  

 

As the proposed method only uses a single normalisation wavelength, the accuracy of the method may 

be affected by noise. The influence of noise levels to the retrieved signals was assessed via simulation (S3 Fig.). 

Four different noise levels (1%, 5%, 10%, and 20%) were added to the spectral profile of oxygenated blood (S3 

Fig. a) and absorbance was calculated based on simulated spectral signals with different noise levels and the 

proposed method (S3 Fig. b). S3 Fig. c shows that the error levels are 3.62 ± 0.31%, 4.35 ± 1.64, 4.98 ± 2.26%, 

and 7.81 ± 2.90% with increasing a noise level from 1% to 20%, respectively. This indicates that high noise levels 

could compromise the accuracy of the proposed method and care should be taken when applying the approach to 

noisy spectra.  

 To demonstrate that the BG correction method remains accurate under scattering, absorption and 

fluorescence conditions, a tissue-mimicking phantom was exploited. The phantom was made of agarose and 

intralipid with high and low concentrations of nigrosin and methylene blue dyes added to test the effects of 

absorption and fluorescence, respectively (Fig. 4a, see Methods). HySE was applied using internal illumination 

at 2 working distances; the spectral profile of agarose containing intralipid alone was used as GT (Fig. 4b). 

Absorbance spectra of nigrosin and methylene blue calculated using the GT, SB and RB methods (Figs. 4c, d) 

again show that GT and RB provide consistent spectral shapes, whereas SB has a substantial deviation in the 

profiles. The absorbance of nigrosin obtained using the retrieved BG is slightly lower in magnitude compared to 

GT, however, methylene blue is indistinguishable (0.83 ± 0.67% at peak 550 nm). This suggests that the 

underestimation observed in the blood and phantom experiments occurs because both haemoglobin and nigrosin 

have a small but finite absorption of light at 800 nm causing a slight inaccuracy in the BG estimation, whereas 

methylene blue has truly negligible absorption around 800 nm. Our RB method therefore leads to a slight 

underestimation of the actual absorbance values if light absorption around the chosen background wavelength is 

not negligible, though it does not change the absorbance spectrum itself.  

 

Fig. 4 Background correction using the retrieved background method performs favourably in measurement of the 

absorbance spectra of nigrosin and methylene blue (a) Photograph of tissue-mimicking phantoms with intralipid 
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(control), nigrosin (absorbing dye), and methylene blue (fluorescent dye). (b) Experimentally measured 

reflectance signals of the control phantom (intralipid only) at two different working distances gave the ground-

truth background. (c) Absorbance of low and high concentrations of nigrosin dye calculated using the ground 

truth background (GT), single background (SB) and our retrieved background (RB) method respectively. (d) 

Absorbance of low and high concentrations of methylene blue calculated using GT, SB and RB methods 

respectively. 

 

Application of the background correction method to biological tissue and 

endoscopic imaging conditions 

 To examine the practical application of the method, dissected chicken bone tissue, consisting of compact 

bone and bone marrow, was first measured (see Methods). A total of 150 spectral images of dissected chicken 

bone tissue were measured using the external illumination method to cast shadows across the topology of the 

sample, which can be seen in the synthetic RGB images (Fig. 5a), created by the convolution of emulated RGB 

filters and measured hyperspectral signals (see Methods). Before examining the proposed method, the raw spectral 

signals in two square areas (4 by 4 pixels) within each of bone marrow, compact bone, and shadowed regions 

were assessed (S4 Figs. a, b). The reflected signal at the normalisation wavelength under the same illumination 

conditions should be similar in order to use the proposed method. The two nearby small squares in each tissue 

type were selected because illumination conditions in these small areas could be considered as homogenous. S4 

Fig. 3c shows that raw reflected intensities at 800 nm of each tissue type are similar. There is no significant 

difference in the data recorded from the same tissue type. 

The synthetic RGB images of GT and RB methods clearly show the structure of the tissue with uniform 

brightness, but the SB image shows bright and dark regions arising due to the uneven illumination (Fig. 5a). 

Moreover, the shadowed region resulting from the sample morphology was restored to its original white colour 

only in the RB method. Representative absorbance images at three different wavelengths (456.1, 531.4 and 612.9 

nm; Fig. 5b) allow structures of the dissected chicken bone tissue to be visualised, showing qualitative similarity 

between GT and RB at all wavelengths, while the single BG reconstructions show different absorbance even in 

the same anatomical structures (solid and dashed white lines in Fig. 5b).  
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Fig. 5 HSI data from a chicken tissue sample obtained using the RB method agrees well with the GT (a) Synthetic 

RGB images of the sample were created from hypercubes obtained by exploiting ground truth, single, and 

retrieved backgrounds. (b) Representative slice images from each hypercube (GT, SB and RB) were illustrated at 

three wavelengths (456.1, 531.4 and 612.9 nm). Solid and dashed arrows indicate anatomically similar structures 

in the sample. (c) Average absorbance of the hypercube reconstructed by using the GT, SB and RB methods within 

solid and dashed squares shown in (a) were obtained. Gray shaded area indicates the standard deviation. Scale 

bars: 1 cm. 

 

In order to investigate spectral fidelity of the BG retrieval method, the average and standard deviation of 

the absorbance spectra in 6 different regions (red: bone marrow, orange: compact bone, and blue: white 

reflectance; indicated in Fig. 5a) were quantified (Fig. 5c). Spectral profiles of bone marrow and compact bone, 

in GT and RB show similar values and trends. In addition, our RB method brings the absorbance values on the 

left and right side of the white reflectance target closer compared to the result obtained by GT. The SB result, 

however, shows very different values and trends compared to the results obtained by the ground-truth and retrieved 

BG.  

HySE was then applied in a tubular tissue-mimicking phantom with homogeneous methylene blue 

concentration (S5 Fig. a) placed on a tilted surface (S5 Fig. b). HySE was advanced horizontally into the tube with 

a motorised stage, which leads to a gradual decrease in the working distance of the endoscope. While the SB 

spectra show an offset as a function of working distance (S5 Fig. c), the RB spectra show the consistent 

measurement of absorbance regardless of the working distance (S5 Fig. d). 

Investigating the influence of background correction on hyperspectral data 

classification  

To understand the extent to which incorrect background compensation influences HSI data classification, 

experimentally measured data obtained in the previous sections were composed into a set of 53 synthetic 

hypercubes in four steps: (1) generation of a random illumination pattern; (2) creation of a GT reflectance 

hypercube based on four experimentally measured signals (muscle tissue, oxygenated blood, methylene blue and 

nigrosine dyes) with an uncorrelated noise; (3) creation of SB and RB reflectance hypercubes by combining the 
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GT hypercube with the random illumination pattern; and (4) applying a log-transformation of the produced 

reflectance hypercubes to generate absorbance hypercubes (Fig. 6; see Methods).  

 

Fig. 6 Synthetic absorbance and reflectance hypercubes created based on experimentally measured hyperspectral 

signals and randomly generated illumination conditions. (a) Representative image of Gaussian illumination 

power. (b) Representative projection images of synthetic GT, SB, and RB hypercubes. (i)-(iv) indicate the areas 

with spectral profiles of corresponding signals shown in (c, d). Three circles in the same horizontal position had 

the same spectral profile and were defined as a cluster. (c, d) Four experimentally measured absorbance and 

reflectance spectra (muscle tissue, oxygenated blood, methylene blue, and nigrosin samples) were exploited to 

create synthetic absorbance and reflectance hypercubes. Scale bar: 100 pixels. 

 

The synthetic hypercubes were then subjected to PCA, SAM and machine learning classification. PCA 

is commonly used in HSI analysis for dimensionality reduction by finding a small number of orthonormal PCs 

that explain most of the variance of hyperspectral data, thus enabling simpler interpretation and classification. 

PCA was performed pixel-wise with singular value decomposition (SVD): hyperspectral data were centred by 

subtracting the mean values of each pixel from its corresponding signal, while the scaling (variance) was preserved 

due to the synthetic hypercubes being created under the same scale and unit conditions; the covariance matrix of 

the centred data was used as the SVD input. As the first and second PCs capture over 99% of the original variance, 

they were used to compare the influence of background correction methods. Scatter plots of PC2 against PC1 for 

GT, SB and RB in absorbance show no differences and 2D image of the scores on PC1 are also identical (S6 Fig. 

a). For reflectance, however, the scatter plots for SB show a dramatic elongation compared to the GT and RB 

methods and the 2D image of the SB PC1 scores clearly shows the power distribution of illumination (S6 Fig. b), 

indicating an incomplete correction of the BG. Such behaviour arises because the incorrect BG causes scaling and 

shifting of the ground-truth reflectance and absorbance signals, respectively. Scaling changes the variance of the 

hyperspectral data, which produces an incorrect PCA result for the reflectance hypercube, whereas shifting of 

absorption data does not change PCA results as the variance is preserved.  

SAM is widely used to evaluate the similarity between measured hyperspectral signals by calculating 

angles between them. Substantial differences in SAM analysis of the absorbance hypercube using the SB method 

were found compared to GT and RB and the SAM image again shows the power distribution of the illumination 
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indicating an incomplete correction of the BG (S6 Fig. c). The reflectance data are identical regardless of the BG 

correction used (S6 Fig. d). This is because the scaling factor of the reflectance signal is eliminated through the 

calculation of the spectral angle in eq. (3) so it does not affect the SAM results, but shifting the absorption signal 

changes the calculated spectral angle values.  

Finally, the effect of BG correction on machine learning-based data classification was evaluated through: 

classification based on the distance between the data and the centroid of each cluster by k-means clustering (K-

Means, k=4); maximising the distance between a decision boundary and members of different classes by support 

vector machines (SVMs); and training convolutional neural networks (CNNs). To enhance the learning process, 

min-max normalisation was employed with all three algorithms, as to constrain the data between -1 and 1. For 

SVMs and CNNs, the supervised learning approach was employed with ground-truth data of 50 training 

hypercubes produced for each of the three BG correction methods, whereas K-Means was performed in an 

unsupervised learning manner without using data reduction methods such as PCA or SAM.  

The test dataset was composed of three GT, SB, and RB hypercubes and the accuracy of all established 

classifiers was tested on all datasets (9 total comparisons). 100% classification accuracy is theoretically achievable 

due to the use of synthetic hypercubes, consisting of only four distinct spectral signals, for training and test. Using 

k-means clustering, the SB method showed accuracies of only 47.1% and 48.7%, respectively for the absorbance 

and reflectance hypercubes (Figs. 7a, b) when clustered using the SB method classifier, compared to over 97.0% 

for GT and RB method classifiers. The resulting segmented images again indicate incomplete background 

correction (Figs. 7c, d) for the SB method. SVMs successfully segmented the four clusters in absorption 

hypercubes with 100% accuracy under all BG corrections, however, the classification accuracy of SB reflectance 

hypercubes segmented by using the SVMs trained via GT and RB hypercubes dropped to 69.1% and 89.1%, 

respectively again with incomplete background correction (Figs. 7e, f). Lastly, CNNs were implemented via a six-

layered network, including three convolutional layers, two fully connected layers and a softmax layer (S7 Fig. ). 

Trained CNNs classified the hypercubes with 100% accuracy regardless of hypercube types and BG conditions.  

 

Fig. 7 Investigating the effect of background correction on the accuracy of machine learning-based hyperspectral 

imaging classification. Classification accuracy of three machine learning methods (k-means clustering, support 

vector machine and convolutional neural network) in absorbance (a) and reflectance (b) hypercubes obtained by 
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GT, SB and RB methods. (c - f) Representative images of classification results indicated by c–f in (a) and (b). 

Scale bar: 100 pixels. 

 

Discussion 

 Applications of HSI in biomedicine frequently calculate optical reflectance and absorbance spectra for 

tissue classification. The data processing procedures assume that the samples are uniformly illuminated and while 

several methods can be employed to ensure that this assumption holds, applications that encounter variations in 

surface topology or optical power distribution, such as endoscopy, may result in classification errors. Here, we 

demonstrated a simple background correction method that enables estimation of the spectral profile and optical 

power distribution of illumination across a sample by exploiting the normalised spectra of the light source and 

intensity values of the measured hyperspectral signals at a fixed wavelength with negligible absorbance. The 

advantage of the method is that it is applied in software, so it does not require any specialised equipment or 

application of contrast agents and can be applied to any HSI data where a wavelength of negligible absorbance is 

available. It is therefore practical for application in biomedical imaging, for example, during hyperspectral 

endoscopy as demonstrated here using the HySE system. It could also be easily applied to snapshot multispectral 

biomedical imaging applications, if one of the wavelength bands is located in the NIR or other minimally 

absorbing wavelength range, which could enable the fast acquisition and online post-processing of the data. 

We selected 800 nm as the wavelength for normalisation in these studies. The results suggest that in 

samples that are not absorbing at the selected normalisation wavelength, our retrieved background (RB) method 

accurately recovers the ground truth (GT) HSI data compared to the standard approach of using a single 

background (SB). The feasibility and applicability of the proposed RB method were demonstrated by measuring 

oxygenated and deoxygenated blood samples, a tissue-mimicking phantom with scattering, absorption, and 

fluorescence agents and ex vivo chicken tissue. These experiments indicated the importance of a complete 

background correction for analysis and interpretation of HSI data, with variations in optical power distribution 

causing rescaling of reflectance data and introducing offsets in absorbance data. Moreover, the importance of 

precisely retrieved and corrected background was assessed using HSI analysis methods and machine-learning 

based image classification techniques. In particular, the standard SB method led to erroneous findings for 

reflectance data in PCA and absorbance data in SAM. It also led to misclassification in both data types for k-
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means clustering and in reflectance data for SVMs, compromising their accuracy, however, well-trained CNNs 

were not vulnerable to changes in BG corrections or data types.  

Nonetheless, there remain some limitations to the present study. The proposed method assumes that 

absorption at the normalisation wavelength is negligible. Should there arise some non-negligible or spatially 

inhomogeneous absorption at the normalisation wavelength, the calculated reflectance and absorbance may be 

erroneous. For example, in our case using 800 nm as the normalisation wavelength, we saw in the blood samples 

and nigrosin dye samples, which do show some non-negligible absorption at 800 nm, the magnitude of the 

corrected spectrum could be up to 29.6 % lower than the GT, however, the shapes of the spectral profiles of the 

calculated reflectance and absorbance remained unaffected. Therefore, prior information about the absorbance of 

a given sample at the normalisation wavelength is necessary when making comparisons between the magnitude 

of the recorded spectra. While many biological tissues have little absorption at 800 nm [38,39] choosing this 

wavelength may produce problems for experiments that introduce NIR dyes for molecular imaging. Selecting a 

wavelength further into NIR tissue optical window could overcome this, though would require illumination of the 

tissue with further NIR/IR optical power and the associated thermal deposition characteristics should be carefully 

considered from a safety perspective.  

In addition, we examined the influence of noise on the study and found that the accuracy of the 

normalisation method decreases with increasing noise in the spectra. Care should therefore be taken when 

applying the method to a noisy spectral data set. Another consideration is the need for spectrally uniform 

illumination across the target, which is an important precondition for many experiments in HSI and also affects 

the proposed method. If multiple incoherent light sources are used, then spectral homogeneity should be checked 

before using the proposed method. A further consideration is that the effects of BG correction on HSI classification 

using machine learning algorithms were tested here using simple synthetic hypercubes composed of 

experimentally measured data from only four spectra components. While these serve to illustrate the potential of 

the method in cases where known ground truth is available, further experiments would be needed to establish the 

bounds of operation of the method in another chosen application. Finally, we focused on the influence of 

background correction on reflectance and absorbance hypercubes. Further work would be needed to understand 

how well the method could perform for other HSI applications, such as multiplexing of fluorescence contrast 

agents[12]. 
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Despite these limitations, the proposed background correction method allows for accurate and consistent 

measurement of HSI data, regardless of illumination methods and optical power distribution. Application of the 

method could facilitate further exploitation of multi- and hyperspectral imaging techniques in practical clinical 

applications, where controlling the illumination pattern and power are non-trivial.  
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Figure 7 

 

Supplementary Figure legends 

S1 Fig. Optical design of the line-scanning hyperspectral endoscope. The system is assembled using a CE-marked 

endoscope with an imaging fibre bundle and an integrated illumination fibre. A sample is illuminated either by 

coupling a halogen light source to the illumination fibre (internal illumination method) or by directly illuminating 

via the fibre-coupled halogen light source (external illumination method). Hyperspectral data is acquired using a 

CCD coupled to the spectrograph. For line-scanning hyperspectral imaging, a motorized translational stage is 

exploited to control imaging position in these studies. Abbreviations: CCD, charge coupled device; L1-2, lens; 

Obj1-2, objective lens.  
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S2 Fig. Schematic for obtaining the ground truth background (GT), single background (SB) and retrieved 

background (RB). (a) GT was obtained by measuring a white reflectance target under the same position and 

illumination conditions as the sample measurement. From the GT, the normalised spectral profile of the 

background was calculated by averaging across all spatial locations within the hyperspectral image frame. One of 

GTs was used as SB. (b) To obtain RB, the intensity ratio (Cs/Cb) at 800 nm and the normalised spectral profile 

of the background was calculated. The intensity ratio of each vertical pixel was calculated by dividing intensity 

values of a sample spectral image (Cs, red dashed line) at 800 nm by the intensity value of normalised background 

signal at 800 nm (Cb). (c) The spectrum of the RB used for correction at a specific vertical pixel was determined 

by multiplying the normalised background to the intensity ratio value corresponding to the pixel.   

 

S3 Fig. Influence of noise-to-signal ratio to the retrieved BG method (a) Simulation of raw spectral profiles of 

oxygenated blood with different signal-to-noise ratios (1%, 5%, 10%, and 20%). (b) Absorbance obtained using 

spectral signals in (a) and the retrieved BG method. Gray shaded area indicates the standard deviation. (c). Bar 

graphs show the average error percentages of absorbance at four different signal-to-noise ratios. Error bar indicates 

the standard deviation. 
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S4 Fig. Investigation of intensity variation at 800 nm (a) Left: Synthetic RGB image of chicken tissue. Right: 

Magnified image of the dashed square shown in left figure. Scale bars: 1 cm (b) Average measured spectral 

profiles of the bone marrow (BM), compact bone (C), and shade (S) areas within solid squares shown in (a) were 

obtained. Gray shaded area indicates the standard deviation. (c). Bar graphs show average intensities of six regions 

shown in (a) were calculated. Error bar indicates the standard deviation. Statistical analysis was performed using 

Student t-test. 

 

S5 Fig. The RB method enables the accurate measurement of absorbance in endoscopy conditions. (a) Photograph 

of the tubular tissue-mimicking phantom with homogeneous methylene blue concentration. (b) Schematic of the 

experiment. Absorbance of the tissue-mimicking phantom at three working distances was obtained using SB (c) 

and RB methods (d). The solid line and the gray shaded area indicate average absorbance and standard deviation, 

respectively. 
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S6 Fig. Assessment of background effects on hyperspectral image analysis via principal component analysis 

(PCA) and spectral angle mapping (SAM). (a, b) Scatter plots of 2nd principal component (PC) versus 1st PC (top) 

and representative images of 1st PC scores (bottom) of absorbance and reflectance hypercubes, respectively. Scale 

bar: 100 pixels. (c, d) Bar graphs indicate mean and standard deviation (error bars) of angle values for each cluster 

shown in the bottom image (top) and 2D images of spectral angle values (bottom) of absorbance and reflectance 

hypercubes, respectively.  SAM was performed using the average spectral profile of the cluster i of each 

hypercube. Scale bar is 100 pixels. 

 

S7 Fig. Schematic process for the application of convolutional neuronal networks. 

 

 

 

 


