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Abstract

In this thesis, we study finitely generated subgroups of the matrix group SL2 (over

various locally compact fields) which are both discrete and free.

We first examine the existing literature on two- and three-generated subgroups

of SL2(R) and SL2(C). Some such subgroups are known to be free, and this can be

proved by applying a ‘combination’ theorem (such as Klein’s Combination Theorem,

or the Ping Pong Lemma) to the action of these groups by Möbius transformations on

the Riemann sphere Ĉ. It remains, however, an open problem to determine freeness of

such subgroups in general. On the other hand, applying the Ping Pong Lemma to the

action of SL2(R) by Möbius transformations on the hyperbolic plane H2 is known to

give necessary and sufficient conditions for a two-generated subgroup of SL2(R) to be

both discrete (with respect to the topology inherited from R4) and free of rank two.

This forms the basis of an existing practical algorithm which, given a two-generated

subgroup G ≤ SL2(R), determines after finitely many steps whether or not G is both

discrete and free of rank two.

We then look at two-generated subgroups of SL2(K), where K is a non-archimedean

local field (such as the p-adic numbers Qp). Such groups act by isometries and without

inversions on a locally finite regular simplicial tree, called the Bruhat-Tits tree. We

demonstrate that applying the Ping Pong Lemma to this action gives a practical

algorithm which, given a two-generated subgroup G ≤ SL2(K), determines after

finitely many steps whether or not G is both discrete (with respect to the topology

inherited from K4) and free of rank two. The basis of this algorithm involves computing

and comparing various translation lengths.
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Finally, we show that similar techniques can be used to give another algorithm

which, given a three-generated subgroup G ≤ SL2(K), determines after finitely many

steps whether or not G is both discrete and free of rank three. We demonstrate that

both algorithms can be applied more generally in the setting of two- or three-generated

subgroups of the isometry group of any locally finite simplicial tree (when equipped

with the topology of pointwise convergence, and a method of computing translation

lengths) and have relevance to the constructive membership problem.
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Chapter 1

Introduction

1.1 Background

The problem of deciding whether or not two elements of SL2(R) or SL2(C) generate

a free group of rank two has been considered in the literature for many years. One

approach to this problem is to study the action of these groups (as subgroups of

GL2(C)) by homeomorphisms on the Riemann sphere Ĉ = C ∪ {∞}. This action is

via Möbius transformations:

 a b

c d

 ∈ GL2(C) acts on z ∈ Ĉ by

z 7→ az + b

cz + d
,

where ∞ 7→ ∞ if c = 0, and ∞ 7→ a
c

and −d
c

7→ ∞ otherwise.

It is well-known that two matrices A, B ∈ SL2(C) have a common fixed point in Ĉ

if and only if the trace of the commutator [A, B] = A−1B−1AB is 2; see [8, Theorem

4.3.5(i)]. The proof uses the following trace identity, which is straightforward to verify:

tr([A, B]) = tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB) − 2. (1.1)

If A, B ∈ SL2(C) do have a common fixed point in Ĉ, then (by conjugation) one

can assume this point to be ∞, which is also fixed by every element in the subgroup



2 Introduction

G = ⟨A, B⟩ ≤ SL2(C) generated by these two matrices. Hence G is conjugate to a

group of upper triangular matrices, and is therefore soluble. This shows the following

lemma; see also [17, Lemma 3.4 (b)].

Lemma 1.1.1. Let A, B ∈ SL2(C). If tr([A, B]) = 2, then G = ⟨A, B⟩ ≤ SL2(C) is

not free of rank two.

Demonstrating that a pair of matrices in SL2(R) or SL2(C) do generate a free group

is a little more complicated. One of the most widely studied examples is the subgroup

Fα,β ≤ SL2(C) which, given α, β ∈ C, is generated by the matrices

A =

 1 α

0 1

 and B =

 1 0

β 1

 .

In 1947, Sanov proved that F2,2 is free of rank two and, in 1955, Brenner showed that

the subgroup Fα,α ≤ SL2(R) is free of rank two whenever α ∈ R and α ≥ 2; see [51]

and [10] respectively. Chang, Jennings and Ree observed in 1958 that, if α, β, γ, δ ∈ C

satisfy γδ = αβ ̸= 0, then conjugation gives an isomorphism between Fα,β and Fγ,δ. In

particular, if λ = αβ
2 ̸= 0, then

Fλ =
〈 1 2

0 1

 ,

 1 0

λ 1

〉
∼= Fα,β,

which is free of rank two whenever λ ∈ C satisfies |λ| ≥ 1, |λ − 1| ≥ 1 and |λ + 1| ≥ 1;

see [13, Theorem 2].

In the late 1960’s, Lyndon and Ullman observed in [38, 39] that all these results

follow from a theorem of Macbeath (see [40, Theorem 1]). This ‘combination’ theorem

gives set-theoretic conditions for a group to be a free product of certain subgroups,

and first appeared in an 1883 paper of Klein (see [35]) in the context of groups of

Möbius transformations; see also [18, Chapter II, Theorem 13]. We present below a

more general version of this theorem:
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Theorem 1.1.2 (Klein’s Combination Theorem). Let G be a group of permutations

of a set Ω, and let G1 and G2 be non-trivial subgroups of G. Suppose that Ω1 and Ω2

are non-empty disjoint subsets of Ω such that, for all g1 ∈ G1\{1} and g2 ∈ G2\{1},

g1Ω1 ⊆ Ω2 and g2Ω2 ⊆ Ω1.

Then the subgroup H = ⟨G1, G2⟩ ≤ G generated by the subgroups G1 and G2 is either

the free product G1 ∗ G2, or |G1| = |G2| = 2 and H is dihedral.

Proof. If G1 = {1, x} and G2 = {1, y}, then either there are no relations between x

and y (in which case H ∼= C2 ∗ C2), or there are only relations of the form (xy)n = 1

(in which case, if n is minimal, then H is the dihedral group of order 2n).

Hence we may suppose that |G1| ≥ 3. Let w = g1 . . . gk be a reduced word in

H (that is, each gi alternately lies in G1\{1} or G2\{1}). After conjugating by an

appropriate element of G1, if necessary, we can assume that g1, gk ∈ G1\{1}. Then

wΩ1 ⊆ g1 . . . gk−1Ω2 ⊆ · · · ⊆ g1Ω1 ⊆ Ω2.

Since Ω1 ∩ Ω2 = ∅, this implies that w ≠ 1 in H. Thus H ∼= G1 ∗ G2; see [37,

Proposition 12.2] for further details.

By considering the action of the matrices

 1 α

0 1

 and

 1 0

α 1

 (with α ∈ C)

on the subsets {z ∈ C : |z| < 1} and {z ∈ C : |z| > 1} of Ĉ , one can use Klein’s

Combination Theorem to verify the work of Sanov and Brenner, and further show that

Fα,α is free whenever |α| ≥ 2. This method leads to an alternative proof of the theorem

of Chang, Jennings and Ree, and also gives further values of λ ∈ C for which Fλ is

free; for instance, see [24, 25, 39]. In fact, the values of λ for which Fλ is free are dense

in C; see [13, Theorem 3].

On the other hand, there are many values of λ ∈ C for which Fλ is not free. (Note

that Lemma 1.1.1 is not applicable here, since the commutator of the generators has
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trace 2 + 4λ2 ̸= 2.) Chang, Jennings and Ree constructed infinitely many such values

of λ in Theorem 4 of [13], and Ree proved in Corollary 1 of [47] that the values of λ for

which Fλ is not free are dense in the disk {z ∈ C : |z| ≤ 1
2}. This is done by finding

matrices in Fλ which can be diagonalised to have roots of unity as the diagonal entries.

Alternatively, if some matrix C ∈ Fα,β\⟨B⟩ is lower triangular (where A and B denote

the generators of Fα,β
∼= Fλ as above), then C−1BC and B commute, and hence Fα,β is

not free. This method is used in [7] and [39] to find additional values of α and β such

that Fα,β is not free: for instance, if α = β = p
q
, where p and q are integer solutions to

Pell’s equation p2 − Nq2 = 1 (with N being some non-square positive integer), then

Aq2
BNA−1 is lower triangular. Further values of λ ∈ C for which Fλ is not free were

given in [6, 11, 21, 25–27] and, more recently, in [33].

Despite this progress, there remain many values of α, β ∈ C for which it is unknown

whether or not Fα,β is free of rank two. For instance, it is still an open question to

decide if Fα,α ≤ SL2(R) is not free for every rational number α ∈ (−2, 2); see [32,

Problem 15.83]. Bearing in mind that this is just one particular class of subgroups,

it seems a very difficult problem, in general, to determine freeness of two-generated

subgroups of SL2(R) or SL2(C).

This open problem also extends to subgroups of higher rank. Some three-generated

subgroups of SL2(C) are known to be free: in 1976, Bachmuth and Mochizuki used a

variant of Klein’s Combination Theorem to prove that, for α, β, γ ∈ C, the subgroup

Fα,β,γ =
〈 1 α

0 1

 ,

 1 0

β 1

 ,

 1 − γ −γ

γ 1 + γ

〉

of SL2(C) is free of rank three whenever |α|, |β|, |γ| ≥ 4.45, and is not contained in

any known (at that time) free subgroup of rank two; see [5]. This was strengthened

by Merzljakov in 1978, who showed that Fα,β,γ is also free when |α|, |β|, |γ| ≥ 3; see

[41]. This agrees with the work of Scharlemann, who proved in 1979 (using similar

methods) that Fα,β,γ ≤ SL2(R) is free of rank three whenever α, β, γ ∈ R are such

that 1
α

+ 1
β

+ 1
γ

≤ 1; see [52, Theorem 2.2]. It is, however, an open question to decide
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whether or not there are rational numbers satisfying |α|, |β|, |γ| < 3 for which Fα,β,γ is

free of rank three; see [32, Problem 15.84]. Besides this class of examples, it does not

appear that many other subgroups of SL2(R) or SL2(C) are known to be free on three

or more generators.

Restricting to the real case, a much simpler problem is to determine whether or

not a given two-generated subgroup of SL2(R) is both discrete (with respect to the

topology inherited from R4) and free of rank two. As first observed by Newman in

1968, many examples of two-generated free subgroups of SL2(R) are also discrete; see

[43]. As noted by Lyndon and Ullman in [38], this can be seen by applying a particular

variant of Klein’s Combination Theorem (known as the Ping Pong Lemma) to the

action of SL2(R) by Möbius transformations on the hyperbolic plane H2.

In 1972, Purzitsky and Rosenberger each used this idea to give necessary and

sufficient conditions, depending on matrix trace, for any two elements of PSL2(R) to

generate a discrete and free group; see [45, Section 4] and [48, Satz 1]. It is observed in

both papers that these conditions can be checked systematically by using a sequence

of ‘trace minimising’ Nielsen transformations on the generators of G. In 2014, Eick,

Kirschmer and Leedham-Green formalised this by giving a practical algorithm that

takes as input a two-generated subgroup G of SL2(R) (or, equivalently, of PSL2(R))

and determines after finitely many steps whether or not G is both discrete and free of

rank two; see [17, Algorithm 2]. This algorithm can be used to solve the constructive

membership problem for discrete and free two-generated subgroups of SL2(R) or

PSL2(R): given such a subgroup G, and an element h in the corresponding overgroup,

one can determine algorithmically whether or not h is an element of G and, if it is,

give an explicit expression of h as a word in the generators of G.

Determining whether or not a given two-generated subgroup of SL2(C) is both

discrete and free of rank two is a much harder problem. It is known that the subgroup

Fλ is both discrete and free for every λ in a subset of C known as the Riley slice;

see [30]. However, to construct analogues of the results in [17, 45, 48] would likely

involve studying the action of SL2(C) by extended Möbius transformations on three-
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dimensional hyperbolic space H3, and this is much more intricate than the real case;

see [8, Section 4.1] for details. Some progress has been made in this area (see [9], for

instance), but we will not discuss this here.

It also seems a very difficult problem to determine whether or not a given subgroup

of SL2(R) or SL2(C) is both discrete and free on at least three generators: there is very

little existing literature (if any) on such subgroups. Similarly, the study of discrete

and free subgroups of SL2 over infinite fields other than R or C is not at all prominent

in the literature. In this thesis, we will consider subgroups of SL2(K), where K is

a non-archimedean local field (for instance, the p-adic numbers Qp), and show that

a method exists to determine whether or not a two- or three-generated subgroup of

SL2(K) is both discrete and free.

The group SL2(K) acts continuously by isometries and without inversions on a

locally finite regular simplicial tree (called the Bruhat-Tits tree), and applying the

Ping Pong Lemma to this action yields an analogue of the discrete and free algorithm

for two-generated subgroups of SL2(R). Namely, given a two-generated subgroup G of

SL2(K) (or, equivalently, of PSL2(K)), we show that ‘translation length minimising’

Nielsen transformations can be performed on the generators of G in order to determine

after finitely many steps whether or not G is both discrete and free of rank two. This

method, introduced by the author in [14], also gives rise to algorithms deciding whether

or not three-generated subgroups of SL2(K), or two- or three-generated subgroups

of the isometry group of any locally finite simplicial tree (when equipped with an

appropriate topology and a method of computing translation lengths) are both discrete

and free. All of these algorithms have applications to the constructive membership

problem.

1.2 Chapter summary

In Chapter 2, we present an original version of the Ping Pong Lemma and discuss

how it can be applied to the action of SL2(R) on the hyperbolic plane H2. We show
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that our version of the Ping Pong Lemma can be used to reconstruct necessary and

sufficient conditions (given in [45] and [48], in the context of two-generated subgroups

of PSL2(R)) for a two-generated subgroup of SL2(R) to be both discrete and free of

rank two, and we present the resulting algorithm from [17].

In Chapter 3, we give an overview of local fields and describe the action of the group

SL2(K) on the Bruhat-Tits tree. We discuss aspects of groups acting by isometries

and without inversions on a simplicial tree. In particular, we use a theorem of Morgan

and Shalen (see [42, Proposition II.3.15]) to classify elements of SL2(K) based on their

translation length. We also prove some important translation length formulae, one of

which provides a correction to a theorem of Paulin (see [44, Proposition 1.6]), and we

prove that a discrete and free subgroup of SL2(K) cannot contain any elliptic isometries

of the Bruhat-Tits tree. At the end of the chapter, we show how translation length

can be used to determine if two hyperbolic elements of SL2(K) satisfy the hypotheses

of the Ping Pong Lemma. This gives rise to an algorithm which determines after

finitely many steps whether or not any given two-generated subgroup of SL2(K) is

both discrete and free of rank two. We discuss the implementation of this algorithm

and give some examples which compare and contrast it with the algorithm from [17].

In Chapter 4, we generalise the methods used in Chapter 3 and show how translation

length can be used to determine if three hyperbolic elements of SL2(K) satisfy the

hypotheses of the Ping Pong Lemma. This leads to an algorithm which determines

after finitely many steps whether or not a given three-generated subgroup of SL2(K)

is both discrete and free of rank three. The algorithm gives a constructive method of

deciding between the two outcomes of a theorem of Weidmann (see [55, Theorem 7]).

Finally, in Chapter 5, we demonstrate that both these algorithms generalise to

two- or three-generated subgroups of the isometry group of a locally finite simplicial

tree, equipped with the topology of pointwise convergence (which, in this setting, is

equivalent to the compact-open topology) and a method of computing translation

lengths. Given a subgroup which is verified by any of these algorithms to be both

discrete and free, we discuss how the constructive membership problem can be solved.





Chapter 2

Discrete and free two-generated

subgroups of SL2(R)

In this chapter, we summarise some existing theory of discrete and free two-generated

subgroups of SL2(R). We show that any two-generated subgroup of SL2(R) is discrete

and free if and only if the corresponding subgroup of PSL2(R) is, and we present

necessary and sufficient conditions (in the form of [45] and [48]) for such subgroups to

be both discrete and free of rank two. Sufficiency of these conditions can be shown

directly by applying the Ping Pong Lemma to the action of these groups on the

hyperbolic plane H2. We give an original version of the Ping Pong Lemma that we

use throughout this thesis, and summarise the practical algorithm from [17] which

uses these conditions to determine whether or not a given two-generated subgroup of

SL2(R) is both discrete and free of rank two.

2.1 The Ping Pong Lemma

Recall that SL2(R) acts by homeomorphisms on the Riemann sphere Ĉ. Restricting to

the upper half plane {z ∈ C : Im(z) > 0} (or, equivalently, the hyperbolic plane H2)

gives an action by isometries. It is well-known that elements of SL2(R) can be classified
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by the number of fixed points of this action on the boundary ∂H2 ∼= R̂ = R ∪ {∞},

and this corresponds to the trace of each matrix:

Definition 2.1.1. A matrix ±I2 ̸= A ∈ SL2(R) is said to be

• elliptic if |tr(A)| < 2;

• parabolic if |tr(A)| = 2;

• hyperbolic if |tr(A)| > 2.

Elliptic matrices fix no point of the boundary ∂H2 ∼= R̂, and are conjugate to

rotation matrices of the form

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 for some angle θ. On the other

hand, parabolic and hyperbolic elements respectively fix one and two points of the

boundary ∂H2 ∼= R̂; see [29, Section 2.1] for further details.

Recall that a topological group is a group equipped with a topology with respect

to which the inversion and multiplication maps are continuous. The group SL2(R),

viewed as a subset of R4, is a topological group via the subspace topology. Similarly,

PSL2(R) is a topological group, with the quotient topology inherited from SL2(R).

A topological group is said to be discrete if the corresponding topology is discrete.

Given a topological group G, and any y ∈ G, the map x 7→ xy is a homeomorphism

from G to itself. To determine discreteness of G, it therefore suffices to check that the

singleton set {1} is open. Hence any metrisable topological group G (in particular,

this includes SL2(R) and PSL2(R)) is discrete if and only if any sequence of elements

in G converging to the identity is eventually constant. This observation leads to the

following lemma:

Lemma 2.1.2. If G ≤ SL2(R) is discrete and free, then it contains no elliptic elements.

Proof. Suppose that X ∈ G is elliptic. If X has finite order, then G is not free, so

suppose that X has infinite order. Since X is conjugate to a rotation matrix, it follows

that G is not discrete. See also [29, Theorem 2.2.3].
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On the other hand, as mentioned in the introduction, a variant of Klein’s Combi-

nation Theorem (known as the Ping Pong Lemma) can be used to show that certain

subgroups of SL2(R) are both discrete and free. As stated below, our original version

of this lemma applies only to metrisable topological groups acting continuously on

a topological space. This makes it more specialised than other variants of Klein’s

Combination Theorem (see [17, 38, 40], for instance), but it differs from these by

additionally proving discreteness.

By a continuous action of a topological group G on a topological space X, we will

mean that the map G × X → X (given by (g, x) 7→ gx) is continuous with respect

to the product topology. For example, the action of the group SL2(R) (and also

that of PSL2(R)) on the hyperbolic plane H2 by Möbius transformations is given by

polynomials and is therefore continuous.

Lemma 2.1.3 (The Ping Pong Lemma). Let G be a metrisable topological group

acting continuously on a topological space X, and let g1, . . . , gn ∈ G\{1}. Suppose that

X+
1 , X−

1 , . . . , X+
n , X−

n are non-empty, closed and pairwise disjoint subsets of X, which

do not cover X and for all 1 ≤ i ≤ n satisfy

gi(X\X−
i ) ⊆ X+

i and g−1
i (X\X+

i ) ⊆ X−
i .

Then the subgroup H = ⟨g1, . . . , gn⟩ ≤ G is both discrete and free of rank n.

Proof. We first fix some x ∈ D = X\(X+
1 ∪ X−

1 ∪ · · · ∪ X+
n ∪ X−

n ) ̸= ∅.

To show freeness, suppose that w ∈ H is a non-trivial word in g1, . . . , gn. Then

w(x) ∈ X\D. In particular, w ̸= 1 in H and so H is free of rank n. Note that if

n = 2, then freeness also follows from Theorem 1.1.2 by setting G1 = ⟨g1⟩, G2 = ⟨g2⟩,

Ω1 = X−
2 ∪ X+

2 and Ω2 = X−
1 ∪ X+

1 .

On the other hand, suppose that H is not discrete. Then one can find a sequence

(hn)n∈N of non-identity elements of H which converges to 1 ∈ H. Since hn(x) ∈ X\D

for each n ∈ N, and G acts continuously on X, this gives a sequence (hn(x))n∈N of
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elements of X\D which converges to x ∈ D. But X\D is closed, so this is impossible.

Thus H is discrete and free of rank n. (See Figure 2.1 for an example when n = 2.)

x
g1 g2

X+
1

X−
1

X+
2

X−
2

Figure 2.1: The Ping Pong Lemma (n = 2).

We conclude this section by noting that the problem of determining whether or not

a finitely generated subgroup of SL2(R) is both discrete and free is equivalent to the

same problem for the corresponding subgroup of PSL2(R) .

Proposition 2.1.4. Let G ≤ SL2(R) be n-generated. Then G is both discrete and free

of rank n if and only if the corresponding subgroup G ≤ PSL2(R) (its image under the

quotient map) is both discrete and free of rank n.

Proof. By the remarks preceding Lemma 2.1.2, G is discrete if and only if G is. On the

other hand, if either G or G is free of rank n, then the quotient map SL2(R) → PSL2(R)

restricts to an isomorphism G ∼= G; see [17, Lemma 4.1] for further details when

n = 2.
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2.2 Deciding whether a two-generated subgroup of

SL2(R) is discrete and free

We now discuss the work of Purzitsky and Rosenberger from [45] and [48], and explain

how this leads to the practical algorithm from [17] which determines whether or not a

two-generated subgroup G ≤ SL2(R) is both discrete and free of rank two. The key

idea is to apply certain Nielsen transformations (defined below) to the generators of

G. Nielsen transformations arise naturally in the study of free groups: given any two

distinct generating sets of a free group of finite rank, there is a Nielsen transformation

between them; see [37, Chapter I, Proposition 4.1].

Definition 2.2.1. Given n elements (g1, . . . , gn) of a group, a Nielsen transformation

is some finite sequence of the following operations:

• Swap gi and gj (for i ̸= j);

• Replace gi by g−1
i ;

• Replace gi by g−1
j gi (for i ̸= j).

Note that Nielsen transformations preserve generation of the subgroup generated

by g1, . . . , gn. Since any pair of matrices A, B ∈ SL2(C) satisfies Equation (1.1) and

the well-known trace identity

tr(A)tr(B) = tr(AB) + tr(A−1B), (2.1)

it follows that applying Nielsen transformations to a pair of matrices A, B ∈ SL2(R)

also preserves the trace of the commutator tr([A, B]).

It is observed in [45] and [48] that, given a two-generated subgroup G ≤ PSL2(R),

Nielsen transformations can be performed on the generators of G in a ‘trace minimising’

manner in order to determine whether or not G is both discrete and free of rank two.

This idea of systematically reducing trace via Nielsen transformations also appears
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in [20, 22, 34, 46, 50], in the context of algorithms for determining discreteness of

two-generated subgroups of SL2(R) and PSL2(R).

The following is a slight reformulation of necessary and sufficient conditions, given

in Section 4 of [45] and Satz 1 of [48], for a two-generated subgroup of PSL2(R) to be

both discrete and free of rank two. In both papers, it is shown that condition (i) can

be tested by performing these ‘trace minimising’ Nielsen transformations.

Theorem 2.2.2. Let A, B ∈ SL2(R). Then G = ⟨A, B⟩ ≤ SL2(R) is discrete and free

of rank two if and only if one of the following holds:

(i) tr([A, B]) > 2, and there exist X, Y ∈ SL2(R) (whose images X, Y ∈ PSL2(R)

generate G ≤ PSL2(R)) which satisfy tr(X), tr(Y ) ≥ 2 and tr(X−1Y ) ≤ −2;

(ii) tr([A, B]) ≤ −2.

Proof. First note that, by Proposition 2.1.4, G is discrete and free if and only if

G = ⟨A, B⟩ ≤ PSL2(R) is. Moreover, it follows from Lemma 4.3 of [17] that, for

any X, Y ∈ SL2(R) whose images X, Y ∈ PSL2(R) generate G, we have tr([A, B]) =

tr([X, Y ]). Hence these conditions follow directly from those for discrete and free

two-generated subgroups of PSL2(R) in Section 4 of [45] and Satz 1 of [48].

For a proof of (i) in the setting of PSL2(R), see [45, Theorems 2-7] or [48, Satz 1(i)].

For a proof of (ii) in the setting of PSL2(R), see [48, Satz 1(ii)] or, after observing

from Equation (1.1) that A and B must both be hyperbolic of positive trace, see [45,

Theorem 8]. Note also that sufficiency of these conditions can be proved more directly

by applying the Ping Pong Lemma to the subsets of H2 constructed in Sections 5.1

and 5.2 of [17].

We now present Algorithm 2 of [17], slightly adapting the steps so that they better

align with the algorithms we introduce in future chapters. For completeness, we also

include a proof that the algorithm is correct and terminates after finitely many steps;

see also [17, Theorem 4.6], and the ideas used in [31, 49].
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Algorithm 2.2.3. Given A, B ∈ SL2(R), we proceed as follows: If the subgroup

G = ⟨A, B⟩ ≤ SL2(R) is discrete and free of rank two, then the algorithm will return

true and output representatives in SL2(R) of a generating pair for G ≤ PSL2(R) which

satisfies the hypotheses of the Ping Pong Lemma, and otherwise it will return false.

(1) Set X = A and Y = B. If |tr(X)| < 2, |tr(Y )| < 2 or tr([X, Y ]) ∈ (−2, 2], then

return false.

(2) If tr([X, Y ]) ≤ −2, then return true and the pair (X, Y ).

(3) If tr(X) < 0, then replace X by −X. If tr(Y ) < 0, then replace Y by −Y .

(4) If tr(X) > tr(Y ), then swap X and Y .

(5) Compute m = min{tr(XY ), tr(X−1Y )}. If |m| < 2, then return false.

(6) If m ≥ 2, then replace Y by the element from {XY, X−1Y } which has trace m

and go back to (4).

(7) If m < tr(X−1Y ), then replace X by X−1.

(8) Return true and the pair (X, Y ).

Theorem 2.2.4. Algorithm 2.2.3 terminates after finitely many steps and produces

the correct output.

Proof. If step (1) returns false, then G is not both discrete and free by either

Lemma 1.1.1 or Lemma 2.1.2. If step (2) returns true, then G is both discrete

and free of rank two by Theorem 2.2.2 (ii). Moreover, the images A, B ∈ PSL2(R) gen-

erate G and they satisfy the hypotheses of the Ping Pong Lemma; see [17, Section 5.1]

for the relevant subsets of H2. The replacements in step (3) preserve both generation

of G and the equality tr([A, B]) = tr([X, Y ]). Hence if the algorithm reaches step (5),

then we must have 2 ≤ tr(X) ≤ tr(Y ) and tr([X, Y ]) = tr([A, B]) > 2.

If step (5) returns false, then G is not both discrete and free by Lemma 2.1.2.

Otherwise we continue through steps (6) and (7), performing Nielsen transformations
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which preserve both the equality tr([A, B]) = tr([X, Y ]) and generation of G by

the images X, Y ∈ PSL2(R). Finally, once step (8) is reached, we necessarily have

m = tr(X−1Y ) ≤ −2. Thus G is discrete and free of rank two by Theorem 2.2.2

(i). Moreover, the elements X, Y ∈ PSL2(R) satisfy the hypotheses of the Ping Pong

Lemma; see [17, Section 5.2] for the relevant subsets of H2.

To prove that the algorithm terminates after finitely many steps, we consider the

trace triples (x, y, z) = (tr(X), tr(Y ), tr(XY )), and show that the sequence of triples

obtained by performing steps (4) − (6) cannot continue indefinitely. We start by

assuming (swapping X and X−1 if necessary) that 2 ≤ tr(X−1Y ) ≤ tr(XY ). Using

Equation (2.1), this implies z ≥ xy
2 and 2 ≤ x ≤ y ≤ z. If y ≤ xy − z, then viewing

Equation (1.1) as a quadratic in z = tr(XY ) gives

y ≤ xy − z = xy

2 −
√

x2y2

4 − x2 − y2 + 2 + tr([X, Y ]).

Rearranging and squaring gives y2(x − 2) ≤ x2 − 2 − tr([X, Y ]) < x2 − 4, which implies

that x2 ≤ y2 < x + 2. This is a contradiction because x ≥ 2. Hence we must have

y > xy − z, that is, tr(X−1Y ) < tr(Y ). Since step (6) replaces the triple (x, y, z) with

(x, xy − z, y), after returning to and performing step (4), one obtains a component-wise

decreasing sequence (xn, yn, zn) of trace triples for which 2 ≤ xn ≤ yn ≤ zn for each

n ∈ N.

If this sequence were to continue indefinitely, then each component would converge

to some real number - say to x0, y0 and z0, respectively. It follows from observing the

replacements in step (6), and taking limits, that y0 = z0 and x0 + y0 = x0y0 − z0 + x0,

which implies that x0 = 2. Since Equation (1.1) is also satisfied by each triple, we get

4 < 2 + tr([X, Y ]) = x2
0 + y2

0 + z2
0 − x0y0z0 = 4,

which is a contradiction. Thus the algorithm must eventually terminate.
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As an example to illustrate Algorithm 2.2.3, we verify the theorem of Sanov (from

[51]) mentioned in the introduction. Let

A =

 1 2

0 1

 and B =

 1 0

2 1

 ,

so that tr(A) = tr(B) = 2, tr([A, B]) = 18 and −2 = tr(A−1B) < tr(AB) = 6. Then

the algorithm will return true and the pair (A, B) at step (8). On the other hand,

A =

 1 1

0 1

 and B =

 1 0

1 1


do not generate a discrete and free subgroup of SL2(R). In this case, tr(A) = tr(B) = 2,

tr([A, B]) = 3 and 1 = tr(A−1B) < tr(AB) = 3, so these elements return false at step

(5) of the algorithm.

We conclude this chapter by noting that Algorithm 2.2.3 has been implemented in

the software package magma for pairs of matrices in SL2 over any subfield of R where,

for each element x, it is computationally possible to test whether x > 0 (for instance,

finite extensions of Q); see [17, Section 6] for further details. The algorithm can also

be applied to two-generated subgroups of PSL2(R): by Proposition 2.1.4, one can run

the algorithm for any representatives of the generators in SL2(R) to determine whether

or not the given subgroup is both discrete and free of rank two.





Chapter 3

Discrete and free two-generated

subgroups of SL2(K)

In this chapter, we define the class of local fields and summarise some properties of

non-archimedean local fields. Given a non-archimedean local field K, we describe the

action of SL2(K) by isometries and without inversions on the corresponding Bruhat-

Tits tree. Isometries that act without inversions on a simplicial tree are very well

understood: in particular, they can be classified as either elliptic or hyperbolic, based

upon their translation length. We present a key theorem of Morgan and Shalen (see

[42, Proposition II.3.15]) which relates the translation length of matrices in SL2(K) to

their trace, and we show that discrete and free subgroups of SL2(K) cannot contain

any elliptic elements.

We also prove some important formulae for the translation length of the product

and commutator of two hyperbolic elements. The product formulae provide a correction

to those given by Paulin in Proposition 1.6 of [44] and, combined with the Ping Pong

Lemma, they give rise to a simple condition for two hyperbolic elements of SL2(K)

to generate a discrete and free group of rank two. This forms the basis of a practical

algorithm which, given a two-generated subgroup G ≤ SL2(K), uses ‘translation length

minimising’ Nielsen transformations on the generators of G in order to determine

after finitely many steps whether or not G is both discrete and free of rank two; see
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[14, Algorithm 4.1]. We discuss the implementation of this algorithm, and give some

examples which compare and contrast it to the discrete and free algorithm in [17].

3.1 Local fields and the Bruhat-Tits tree

Recall that an absolute value on a field K is a function | − | : K → R such that

(1) |x| ≥ 0,

(2) |x| = 0 if and only if x = 0,

(3) |xy| = |x||y|, and

(4) |x + y| ≤ |x| + |y|

for all x, y ∈ K. For example, the trivial absolute value is given by |x| = 1 for all

x ∈ K×. Defining a distance function d(x, y) = |x − y| for all x, y ∈ K gives K

the structure of a metric (and hence topological) space, so one can associate various

topological properties to K.

Definition 3.1.1. A local field is a field K which is locally compact with respect to

some non-trivial absolute value | − |. Such a field K is said to be non-archimedean

if the corresponding absolute value | − | is non-archimedean, meaning it satisfies the

ultrametric inequality

|a + b| ≤ max{|a|, |b|}

for all a, b ∈ K. Otherwise, K is said to be archimedean.

The ultrametric inequality is a strengthened version of the triangle inequality (see

condition (4) above), and it is known that equality holds whenever |a| ≠ |b|; see [12,

Chapter 2, Lemma 1.4]. Moreover, every archimedean local field is isomorphic to either

R or C, with the same topology as the one induced by the standard absolute values;

see [12, Chapter 3, Theorem 1.1]. Hence we restrict our interest to non-archimedean

local fields, which have an equivalent characterisation in terms of discrete valuations.
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Definition 3.1.2. A valuation on a field K is a group homomorphism v : K× → R

such that, when extended by defining v(0) = ∞, the ultrametric inequality

v(x + y) ≥ min{v(x), v(y)}

holds for all x, y ∈ K. Additionally, we say that v is discrete if v(K×) ∼= Z.

Given any valuation v on a field K, the ring of integers O = {x ∈ K : v(x) ≥ 0}

is a principal ideal domain with unique maximal ideal P = {x ∈ K : v(x) > 0}. The

quotient k = O/P is called the residue field of K. Furthermore, setting |x|v = c−v(x)

for some c ∈ (1, ∞) defines a non-archimedean absolute value on K. Any field K with

discrete valuation v which is complete with respect to | − |v and has finite residue

field k is a non-archimedean local field. The converse also holds, giving two equivalent

definitions of a non-archimedean local field; see [12, Chapter 4] for further details.

For a non-archimedean local field K, the maximal ideal P is generated by a

uniformiser π ∈ O (that is, any element of K with v(π) = 1), and hence the residue

field k is of the form O/πO. For a fixed finite set S of coset representatives of πO in

O, every a ∈ K× can be uniquely expressed as a sum

a =
∞∑

i=N

aiπ
i (3.1)

for some integer N = v(a) such that aN ̸= 0, and with ai ∈ S for all i ≥ N ; see

[12, Chapter 4, Lemma 1.4]. Note also that non-archimedean local fields satisfy the

Bolzano-Weierstrass property: every bounded sequence (in terms of the corresponding

absolute value) has a convergent subsequence.

Example 3.1.3. An important example of a non-archimedean local field is the field of

p-adic numbers, defined using the p-adic valuation vp on Q: if p is a prime and x ∈ Q

is of the form pr a
b

with p ∤ a, b, then vp(x) = r. The corresponding absolute value is

usually defined to be |x|p = p−r, and the p-adic numbers Qp are the completion of Q

with respect to | − |p. In fact, every non-archimedean local field is isomorphic to either
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a finite extension of Qp, or the field of formal Laurent series Fpr((t)), for some prime p

and positive integer r; see [12, Exercise 25 of Chapter 4 and Lemma 1.1 of Chapter 8].

For the remainder of this thesis, we let K be a non-archimedean local field with

discrete valuation v. We denote its ring of integers by O = {x ∈ K : v(x) ≥ 0} and its

residue field by k = O/πO, for some fixed uniformiser π. Given such a field K, there is

a (|k|+1)-regular (and hence locally finite) simplicial tree Tv, known as the Bruhat-Tits

tree, upon which the group GL2(K) acts. The vertices of Tv are equivalence classes

of free O-modules of rank two (called lattices), where lattices L and L′ are equivalent

if L = xL′ for some x ∈ K×. Furthermore, given a lattice L, each equivalence class

of lattices has a unique representative L0 ⊆ L for which L/L0 is isomorphic (as an

O-module) to O/πnO for some n ∈ Z≥0. This gives rise to the edge structure of Tv:

there is an edge between the vertices represented by L and L0 if and only if n = 1. For

further details, see [53, Chapter II, Section 1].

Note that GL2(K) (and hence SL2(K)) inherits the structure of a metrisable

topological group from K4.

Proposition 3.1.4. The group SL2(K) acts continuously by isometries and without

inversions on the Bruhat-Tits tree Tv.

Proof. There is a natural action of GL2(K) on the set of lattices, and this gives rise

to an isometric action of GL2(K) on the tree Tv (where we use the standard path

metric on Tv). This action is given by polynomials and is therefore continuous (see also

the discussion in Section 5.1), so it remains to show that SL2(K) acts on Tv without

inversions. Note that GL2(K) acts with inversions on Tv (see [53, Chapter II, Section

1.3]), so this does not immediately follow. We outline the proof of Corollary II.3.14 of

[42]; see also the corollary to Proposition 1 of [53, Chapter II, Section 1].

Given A =

 a b

c d

 ∈ SL2(K), choose an entry α with minimal valuation. Since

ad − bc = 1, the ultrametric inequality implies that v(α) ≤ 0. Perform the elementary

row (respectively column) operation that adds an appropriate multiple of the row

(respectively column) containing α to the other row (respectively column), in order to
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clear out the rest of the column (respectively row) containing α. By minimality of v(α),

this process gives matrices B, C ∈ SL2(O) for which A = BMC, where M is (without

loss of generality) of the form

 α 0

0 α−1

. Note that d(p, Ap) = d(B−1p, MCp) =

d(p, Mp) = −2v(α), where d denotes the standard path metric on Tv and p is the

vertex of Tv representing the standard lattice O2, which is preserved under the action

of SL2(O). Thus

d(p, Ap) = −2 min{v(a), v(b), v(c), v(d)}. (3.2)

Now, given an arbitrary vertex x of Tv, there exists D ∈ GL2(K) for which Dx = p. It

follows from Equation (3.2) that d(x, Ax) = d(Dx, DAx) = d(p, DAD−1p) ≡ 0 mod 2,

and hence SL2(K) acts on Tv without inversions.

It is a consequence of Proposition 3.1.4 that the Ping Pong Lemma can be applied

to the action of SL2(K) on Tv. Moreover, it also enables us to classify matrices of

SL2(K) based upon their translation length: given an isometry g that acts without

inversions on a simplicial tree T , this is the integer

l(g) = min
x∈V (T )

d(x, gx),

where V (T ) denotes the vertex set of T and d is the standard path metric on T . Note

that l(g) = l(g−1) and l(hgh−1) = l(g) for all such isometries g, h of T .

Definition 3.1.5. An isometry g of a simplicial tree T which acts without inversions

is said to be:

• elliptic if l(g) = 0;

• hyperbolic if l(g) > 0.

Every elliptic isometry fixes some vertex of T . On the other hand, it is well-known

that a hyperbolic isometry g acts by translations of length l(g) on a straight path

{p ∈ V (T ) : d(p, gp) = l(g)}, called the axis of g.
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Proposition 3.1.6. Let g be a hyperbolic isometry of a simplicial tree T . If a vertex

p ∈ V (T ) is at distance k from the axis of g, then d(p, gp) = l(g) + 2k. Moreover, an

edge p − q of T is contained in the axis of g if and only if d(p, gp) = d(q, gq).

Proof. See Proposition 24 (iv) of [53, Chapter I] and its corollary.

We now give a key theorem of Morgan and Shalen, showing that the translation

length of a matrix in SL2(K) (with respect to the Bruhat-Tits tree) depends only on

the valuation of its trace.

Proposition 3.1.7. If A ∈ SL2(K), then l(A) = −2 min{0, v(tr(A))}.

Proof. Recall from the proof of Proposition 3.1.4 that, for any vertex x of Tv, we have

d(x, Ax) = d(Dx, DAx) = d(p, DAD−1p), where d is the standard path metric on Tv,

the vertex p corresponds to the standard lattice O2, and D ∈ GL2(K) is such that

Dx = p. Since trace is preserved under conjugacy, it follows from Equation (3.2) and

the ultrametric inequality that

d(x, Ax) = −2 min{v(a), v(b), v(c), v(d)} ≥ −2v(a + d) = −2v(tr(A)),

where DAD−1 =

 a b

c d

. Hence l(A) ≥ −2 min{0, v(tr(A))}.

On the other hand, any ±I2 ≠ A ∈ SL2(K) is conjugate (via some matrix D̃ ∈

GL2(K)) to a matrix in rational canonical form

 0 −1

1 tr(A)

. It then follows from

Equation (3.2) that d(x, Ax) = d(p, D̃AD̃−1p) = −2 min{0, v(tr(A))}, where x = D̃−1p.

If A = ±I2, then clearly the same equality holds for any vertex x of Tv, and this

completes the proof. See [42, Proposition II.3.15] for further details.

Using Proposition 3.1.7, elements of SL2(K) can be classified as elliptic or hyperbolic.

We conclude this section by giving an analogue of Lemma 2.1.2, which shows that

discrete and free subgroups of SL2(K) contain no elliptic elements. Recall that SL2(K)

inherits the structure of a metrisable topological group from K4, so we can use the

same criterion for discreteness as in the previous chapter.
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Proposition 3.1.8. Let A ∈ SL2(K). Then the subgroup ⟨A⟩ ≤ SL2(K) is discrete if

and only if either A has finite order, or v(tr(A)) < 0.

Proof. Let A =

 a b

c d

 and t = tr(A). If A has finite order, then it generates a

discrete group, so suppose that v(t) < 0, that is, |t|v > 1. Using the ultrametric

inequality, without loss of generality, we may assume that |a|v > 1.

For each n ∈ N, let an denote the top left entry of the matrix An. By the Cayley-

Hamilton Theorem, we have An = tAn−1 − An−2. If |an−1t|v > |an−2|v, then the

ultrametric inequality implies that

|ant|v > |an|v = |an−1t − an−2|v = |an−1t|v > |an−1|v.

Since |a1t|v > 1 = |a0|v, this inductively proves that |ant|v > |an−1|v, and hence that

|an+1|v = |ant|v, for all n ∈ N. Therefore |an|v tends to ∞ as n does, so the subgroup

⟨A⟩ ≤ SL2(K) is discrete.

On the other hand, suppose that A (with entries a, b, c and d, as above) has infinite

order and v(t) ≥ 0, that is, |t|v ≤ 1. For each n ∈ N, let an, bn, cn and dn denote

the corresponding entries of the matrix An. Note that if both |an−1|v and |an−2|v are

bounded above, then so is |an|v by the ultrametric inequality and the Cayley-Hamilton

Theorem. It follows by induction that |an|v is bounded above for all n ∈ N. Similarly,

|bn|v, |cn|v and |dn|v are bounded above for all n ∈ N. The Bolzano-Weierstrass property

then implies that the subgroup ⟨A⟩ ≤ SL2(K) is not discrete.

Corollary 3.1.9. If G ≤ SL2(K) is both discrete and free, then it contains no elliptic

elements.

Proof. Suppose that g ∈ G is elliptic. Then either g has finite order, in which case

G is not free, or otherwise Proposition 3.1.7 implies that v(tr(A)) ≥ 0. But then G

cannot be discrete, by Proposition 3.1.8.
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3.2 Translation length formulae

In this section, we prove some formulae for computing the translation length of both

the product and the commutator of two hyperbolic isometries of a simplicial tree. The

product formulae will be particularly useful later, when deciding whether or not certain

two- or three-generated subgroups are both discrete and free.

Similar formulae appear in independent papers of Alperin and Bass, and Culler and

Morgan, in the context of isometries of Λ- and R-trees (where distances take values in

some totally ordered abelian group Λ, or R, instead of Z as in the case of simplicial

trees); see [2, Section 8] and [16, Section 1] respectively. These formulae were refined

and made more transparent by Paulin in Proposition 1.6 of [44], but there is an extra

case that was not considered - this is given by case (3)(iii) below.

We now present a full, corrected version of these product formulae, with additional

details about how the axes of various products interact. For completeness, we also

provide an independent proof, in the context of simplicial trees. An alternative version

of this (established in joint work with the author of [44], and in the context of R-trees)

can be found in the appendix of [14].

Proposition 3.2.1. Let A and B be hyperbolic isometries of a simplicial tree, such

that AB and BA act without inversions. Then precisely one of the following holds:

(1) The axes of A and B do not intersect, are separated by a path P of minimum

distance k, and

l(AB) = l(BA) = l(A) + l(B) + 2k.

The axes of AB and BA intersect with opposite orientations exactly along P .

(2) The axes of A and B intersect with the same orientation along a (possibly infinite)

path P and

l(AB) = l(BA) = l(A) + l(B).

The axes of AB and BA intersect with the same orientation exactly along P .
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(3) The axes of A and B intersect with opposite orientations along a (possibly infinite)

path P of length ∆ = ∆(A, B) ≥ 0 and one of the following holds:

(i) ∆ < min{l(A), l(B)} and l(AB) = l(BA) = l(A) + l(B) − 2∆. The axes of

AB and BA do not intersect and are distance ∆ apart;

(ii) ∆ > min{l(A), l(B)} and l(AB) = l(BA) = |l(A) − l(B)|. If l(A) ̸= l(B),

then the axes of AB and BA either do not intersect and are distance

2 min{l(A), l(B)} − ∆ apart (if ∆ < 2 min{l(A), l(B)}), or intersect with

the same orientation only along a subpath of P (if ∆ ≥ 2 min{l(A), l(B)}),

which is of length ∆−2 min{l(A), l(B)} if ∆ is finite, and infinite otherwise;

(iii) ∆ = min{l(A), l(B)}, either the axes of B and A−1BA (if l(A) ≤ l(B))

or the axes of A and B−1AB (if l(A) > l(B)) intersect along a (possibly

infinite) path of length ∆′ ≥ 0, and

l(AB) = l(BA) =

 |l(A) − l(B)| − 2∆′ if ∆′ < |l(A)−l(B)|
2

0 otherwise.

If ∆′ < |l(A)−l(B)|
2 , then the axes of AB and BA do not intersect and are

distance ∆ + 2∆′ apart.

Proof. For each case, we follow the same general argument: we find edges x − x′ and

y − y′ of the tree for which

d(x, ABx) = d(x′, ABx′) = m, and

d(y, BAy) = d(y′, BAy′) = m

for some non-negative integer m. If m = 0, then clearly l(AB) = l(BA) = 0. If

m ̸= 0, then AB and BA are both hyperbolic and it follows from Proposition 3.1.6

that l(AB) = l(BA) = m. Moreover, the axis of AB contains the edges x − x′ and

ABx − ABx′ (and the path between them), and the axis of BA contains the edges

y − y′ and BAy − BAy′ (and the path between them).
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For case (1), suppose that the axes of A and B do not intersect, and that P is the

path of minimum distance k between them, with endpoints p (on the axis of A) and q

(on the axis of B). Choose some edge p′ − p′′ contained in P , such that the vertex p′ is

closer to p than p′′ is. Then

d(B−1p′, Ap′) = d(B−1p′′, Ap′′) = l(A) + l(B) + 2k, and

d(A−1p′′, Bp′′) = d(A−1p′, Bp′) = l(A) + l(B) + 2k,

so AB and BA are both hyperbolic with l(AB) = l(BA) = l(A) + l(B) + 2k. Moreover,

the axis of AB contains the path from B−1p′ to Ap′′, and the axis of BA contains

the path from A−1p′′ to Bp′. Hence the axes of AB and BA intersect with opposite

orientation exactly along the path P ; see Figure 3.1.

Axis(A)

Axis(A)

p

Ap

A−1p

k

Axis(B)

Axis(B)

q

Bq

B−1q

p′ p′′

Ap′

Ap′′Axis(AB)

A−1p′

A−1p′′
Axis(BA)

Bp′′

Bp′ Axis(BA)

B−1p′′

B−1p′
Axis(AB)

Figure 3.1: The axes of A and B do not intersect.

For case (2), suppose that the axes of A and B intersect with the same orientation

along a path P and, without loss of generality, that l(A) ≤ l(B). If P is of infinite

length, then either the axes of A, B, AB and BA are all given by P (with identical

orientations), in which case the conclusions are clear, or otherwise there is one endpoint

p of P . In this latter case, we may suppose (by swapping A and B with their inverses,

if necessary) that A and B both translate p onto P . Denote by p′ and p′′ the vertices
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immediately preceding p on the axes of A and B respectively. Then

d(B−1p′, Ap′) = d(B−1p, Ap) = l(A) + l(B), and

d(A−1p′′, Bp′′) = d(A−1p, Bp) = l(A) + l(B),

so AB and BA are both hyperbolic with l(AB) = l(BA) = l(A) + l(B). Moreover, the

axis of AB contains the path from B−1p′ to Ap, and the axis of BA contains the path

from A−1p′′ to Bp. It follows that the axes of AB and BA intersect with the same

orientation exactly along the path P ; see the left-hand diagram of Figure 3.2.

Axes(A, B, AB, BA)

p

Ap′

Ap

Bp′′

Bp

p′ p′′

B−1p

A−1p
A−1p′′

B−1p′

Axis(A) Axis(B)

Axis(BA)

Axis(AB)

∆

Axis(A) Axis(B)

Axis(A) Axis(B)

p′ p′′

q′ q′′

p

q

B−1p

A−1p
A−1p′′

B−1p′

Axis(BA)

Axis(AB)

Bq

Aq
Aq′′

Bq′

Axis(AB)

Axis(BA)

Figure 3.2: The axes of A and B intersect with the same orientation.

To finish case (2), we suppose that P is of finite length, and that p and q are its

initial and terminal vertices respectively. Define p′ and p′′ as the vertices immediately

preceding p on the axes of A and B respectively. Similarly, define q′ and q′′ as the

vertices immediately following q on the axes of A and B respectively. By the same

argument as before, AB and BA are both hyperbolic with l(AB) = l(BA) = l(A)+l(B).

Moreover, the edge A−1p′′ − A−1p lies on the axis of BA and the edge B−1p′ − B−1p

lies on the axis of AB. By symmetry, the edge Bq − Bq′ lies on the axis of BA and the
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edge Aq −Aq′′ lies on the axis of AB. This shows that the axes of AB and BA intersect

with the same orientation exactly along the path P ; see the right-hand diagram of

Figure 3.2.

For case (3), suppose that the axes of A and B intersect with opposite orientations

along a path P of length ∆ = ∆(A, B) ≥ 0. Let us again assume, without loss of

generality, that l(A) ≤ l(B). If P is of infinite length, then it is straightforward to

check that l(AB) = l(BA) = l(B) − l(A) and, if l(A) ̸= l(B), then the axes of AB and

BA coincide with the axis of B along an infinite subpath of P . This proves part of

subcase (3)(ii).

We now suppose that P has finite length, with endpoints p and q. If p = q, then

the result follows from case (2), since two axes which intersect at a single vertex have

no relative orientations. We can therefore assume that P has finite and positive length

and, without loss of generality, that A translates p towards q. Define p′ (respectively p′′)

to be the vertex immediately preceding p on the axis of A (respectively, immediately

following p on the axis of B). Similarly define q′ (respectively q′′) to be the vertex

immediately following q on the axis of A (respectively, immediately preceding q on the

axis of B). We consider three subcases, depending on the value of ∆.

For subcase (3)(i), we suppose that ∆ < min{l(A), l(B)} = l(A). Then

d(B−1p′, Ap′) = d(B−1p, Ap) = d(B−1p′′, Ap′′) = l(A) + l(B) − 2∆, and

d(A−1q′′, Bq′′) = d(A−1q, Bq) = d(A−1q′, Bq′) = l(A) + l(B) − 2∆,

so AB and BA are both hyperbolic with l(AB) = l(BA) = l(A)+ l(B)−2∆. Moreover,

the axis of AB contains the path from B−1p′ to Ap′′, and the axis of BA contains the

path from A−1q′′ to Bq′. Therefore the axes of AB and BA do not intersect and are

distance ∆ apart; see Figure 3.3.
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∆ < l(A)

Axis(A) Axis(B)

Axis(A) Axis(B)

p′ p′′

q′ q′′

p

q

Bq

A−1q Bq′′

A−1q′

A−1q′′

Bq′

Axis(BA)

Axis(BA)

B−1p

Ap B−1p′′

Ap′

Ap′′

B−1p′

Axis(AB)

Axis(AB)

Figure 3.3: The axes of A and B intersect with opposite orientations along a path of
length ∆ < min{l(A), l(B)} = l(A).

For subcase (3)(ii), we suppose that ∆ > min{l(A), l(B)} = l(A). As in subcase

(3)(i), the edge Ap − Ap′′ lies on the axis of AB and the edge A−1q′′ − A−1q lies on the

axis of BA. In this case, however, the vertices Ap and A−1q lie on the path P . Also

d(B−1A−1q′′, q′′) = d(B−1A−1q, q) = l(B) − l(A), and

d(p, BAp) = d(p′′, BAp′′) = l(B) − l(A).

Hence, if l(A) ̸= l(B), then AB and BA are both hyperbolic with l(AB) = l(BA) =

l(B) − l(A). In this situation, the axis of AB contains the path between B−1A−1q′′

and Ap′′, and the axis of BA contains the path between A−1q′′ and BAp′′. Therefore,

depending on the relative positions of A−1q and Ap along P , the axes of AB and BA

either do not intersect and are distance 2l(A) − ∆ apart (if ∆ < 2l(A)) or intersect

with the same orientation along a subpath of P of length ∆ − 2l(A) (if ∆ ≥ 2l(A));

see the left- and right-hand diagrams of Figure 3.4 respectively.
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Axis(BA)
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Figure 3.4: The axes of A and B intersect with opposite orientations along a path of
length ∆ > min{l(A), l(B)} = l(A).

Finally, for subcase (3)(iii), we suppose that ∆ = min{l(A), l(B)} = l(A). The

axes of B and A−1BA (that is, Axis(B) and A−1 · Axis(B)) intersect along a path of

length ∆′: this path is between the vertex p and some other vertex further along the

axis of B, which we will denote by r. (Note that r could coincide with p if ∆′ = 0.)

If l(B)−l(A)
2 ≤ ∆′ < l(B) − l(A), then it follows that BAr lies on the path between

p and r. Moreover, (BA)2r = r and BA inverts the path between r and BAr; see

the left-hand diagram of Figure 3.5. Since BA acts without inversions, this path

between r and BAr must have even length and hence BA fixes its midpoint, giving

l(BA) = l(AB) = 0. Similarly, if ∆′ ≥ l(B) − l(A), then BAp lies on the path between

p and r, and BA inverts the path between p and BAp; see the right-hand diagram of

Figure 3.5. Since BA acts without inversions, it follows that the path between p and

BAp has even length and BA fixes its midpoint, giving l(BA) = l(AB) = 0.
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p

q = Ap

ABAr
Ar

BAr
r = (BA)2r

Axis(B)

Axis(B)

Axis(A)

Axis(A)

∆′ < l(B) − l(A)

l(A) = ∆

(BA)2p = p

q = Ap

ABAp
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BAp
r

Axis(B)

Axis(B)

Axis(A)

Axis(A)

∆′ ≥ l(B) − l(A)

l(A) = ∆

Figure 3.5: The axes of A and B intersect with opposite orientations along a path of
length ∆ = min{l(A), l(B)} = l(A). The axes of B and A−1BA intersect along a path
of length ∆′ ≥ l(B)−l(A)

2 .

On the other hand, if ∆′ < l(B)−l(A)
2 , then let r′ denote the vertex immediately

following r on the axis of B, and let r′′ be the vertex such that Ar′′ immediately

precedes Ar on the axis of B. Then

d(B−1r′′, Ar′′) = d(B−1r, Ar) = d(B−1r′, Ar′) = l(B) − l(A) − 2∆′, and

d(r′′, BAr′′) = d(r, BAr) = d(r′, BAr′) = l(B) − l(A) − 2∆′,

so AB and BA are both hyperbolic with l(AB) = l(BA) = l(B)−l(A)−2∆′. Moreover,

the axis of AB contains the path from B−1r′′ to Ar′, and the axis of BA contains the

path from r′′ to BAr′. Therefore the axes of AB and BA do not intersect and are

distance ∆ + 2∆′ apart; see Figure 3.6. This completes the proof.
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Figure 3.6: The axes of A and B intersect with opposite orientations along a path of
length ∆ = min{l(A), l(B)} = l(A). The axes of B and A−1BA intersect along a path
of length ∆′ < l(B)−l(A)

2 .

We note that the missing case from Proposition 1.6 of [44] was discovered when

considering various examples in SL2(Q7). Specifically, given the matrices

X =

 73 0

0 1
73

 and Y =


2
77 73

1
73 77

 ,

setting A = XY and B = X3Y 3 yields hyperbolic elements with respective translation

lengths on the Bruhat-Tits tree of 8 and 32. Moreover, the axes of A−1 and B overlap

with opposite directions of translation. But l(A−1B) = 16, and this is inconsistent

with Proposition 1.6 (2)(ii) of [44]: this value is neither l(B) − l(A), nor of the

form l(A) + l(B) − 2∆ for some ∆ < 8. On the other hand, this does agree with

Proposition 3.2.1 (3)(iii) if ∆′ = 4. Proposition 1.6 of [44] has also been referred to in
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some other papers (for instance, [19] and [23]), but our correction does not appear to

affect the results that depend on it.

We conclude this section with an application of Proposition 3.2.1 to finding the

translation length of the commutator [A, B] = A−1B−1AB of two hyperbolic isometries

A and B of a simplicial tree. This extends the formulae given (in the context of

isometries of R-trees) in Lemma 3.4 and Remark 3.5 of [16].

Proposition 3.2.2. Let A and B be hyperbolic isometries of a simplicial tree such

that AB (and hence also BA) is hyperbolic. Then precisely one of the following holds:

(1) The axes of A and B do not intersect, are distance k apart and

l([A, B]) = 2l(A) + 2l(B) + 4k.

(2) The axes of A and B intersect along a path of length ∆ = ∆(A, B) ≥ 0 and

l([A, B]) =

 2l(A) + 2l(B) − 2∆ if ∆ < l(A) + l(B)

0 otherwise.

Proof. The general method of proof is as follows: We first apply Proposition 3.2.1 to

the isometries A and B to determine how the axes of AB and BA (and hence (BA)−1)

interact. Since [A, B] = (BA)−1AB, we can again apply Proposition 3.2.1, in this case

to the axes of (BA)−1 and AB, in order to evaluate l([A, B]).

In case (1), the axes of A and B do not intersect. If P denotes the path of minimum

distance k between the axes of A and B, then it follows from Proposition 3.2.1 (1) that

l(AB) = l(BA) = l(A) + l(B) + 2k, and the axes of (BA)−1 and AB intersect with

the same orientation exactly along this path P ; see Figure 3.1. Proposition 3.2.1 (2)

(applied to the axes of (BA)−1 and AB) then gives

l([A, B]) = l(BA) + l(AB) = 2l(A) + 2l(B) + 4k.
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For case (2), the axes of A and B intersect along a (possibly infinite) path P of

length ∆ = ∆(A, B). If ∆ ≥ l(A) + l(B), then it is straightforward to find a vertex x

on the path P such that ABx = BAx, so [A, B] is elliptic. Hence, for the remainder of

the proof, we may assume that the axes of A and B intersect along a path P of length

∆ < l(A) + l(B).

If the orientations of the axes of A and B agree, then Proposition 3.2.1 (2) gives

l(AB) = l(BA) = l(A) + l(B). Moreover, the axes of (BA)−1 and AB intersect with

opposite orientations exactly along the path P ; see the right-hand diagram of Figure 3.2.

Since ∆((BA)−1, AB) = ∆ < min{l(BA), l(AB)}, it follows from Proposition 3.2.1

(3)(i) (applied to the axes of (BA)−1 and AB) that

l([A, B]) = l(AB) + l(BA) − 2∆ = 2l(A) + 2l(B) − 2∆.

If the orientations of the axes of A and B do not agree, then we consider the various

subcases given in Proposition 3.2.1 (3). If ∆ < min{l(A), l(B)}, then subcase (3)(i)

of Proposition 3.2.1 implies that l(BA) = l(AB) = l(A) + l(B) − 2∆, and the axes

of (BA)−1 and AB do not intersect and are distance ∆ apart; see Figure 3.3. Thus

Proposition 3.2.1 (1) (applied to the axes of (BA)−1 and AB) gives

l([A, B]) = l(AB) + l(BA) + 2∆ = 2l(A) + 2l(B) − 2∆.

Similarly, if ∆ > min{l(A), l(B)}, then Proposition 3.2.1 (3)(ii) implies that

l(AB) = l(BA) = |l(A) − l(B)|. Since AB is hyperbolic, l(A) ̸= l(B). Therefore the

axes of (BA)−1 and AB either do not intersect and are distance 2 min{l(A), l(B)} − ∆

apart (if ∆ < 2 min{l(A), l(B)}) or intersect with opposite orientations exactly along a

subpath of P which has length ∆ − 2 min{l(A), l(B)} (if ∆ ≥ 2 min{l(A), l(B)}); see

the left- and right-hand diagrams of Figure 3.4 respectively.
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In the first situation, ∆ < 2 min{l(A), l(B)}, and it follows from Proposition 3.2.1

(1) (applied to the axes of (BA)−1 and AB) that

l([A, B]) = l(AB) + l(BA) + 2(2 min{l(A), l(B)} − ∆) = 2l(A) + 2l(B) − 2∆.

On the other hand, if ∆ ≥ 2 min{l(A), l(B)}, then (since ∆ < l(A) + l(B)) we

have ∆((BA)−1, AB) = ∆ − 2 min{l(A), l(B)} < min{l(BA), l(AB)}. It follows from

Proposition 3.2.1 (3)(i) (applied to the axes of (BA)−1 and AB) that

l([A, B]) = l(AB) + l(BA) − 2(∆ − 2 min{l(A), l(B)}) = 2l(A) + 2l(B) − 2∆.

Finally, we consider the case that ∆ = min{l(A), l(B)}. In this situation, since AB

is hyperbolic, Proposition 3.2.1 (3)(iii) gives l(AB) = l(BA) = |l(A) − l(B)| − 2∆′ for

some 0 ≤ ∆′ < |l(A)−l(B)|
2 . Moreover, the axes of (BA)−1 and AB do not intersect and

are distance ∆ + 2∆′ apart; see Figure 3.6. Proposition 3.2.1 (1) (applied to the axes

of (BA)−1 and AB) then implies

l([A, B]) = l(AB) + l(BA) + 2(∆ + 2∆′) = 2 max{l(A), l(B)} = 2l(A) + 2l(B) − 2∆,

which completes the proof.

3.3 Deciding whether a two-generated subgroup of

SL2(K) is discrete and free

We conclude this chapter by presenting a practical algorithm which, given any two-

generated subgroup G ≤ SL2(K), determines after finitely many steps whether or

not G is both discrete and free of rank two. The key idea is to perform Nielsen

transformations on the generators of G until this produces either an elliptic element or

two hyperbolic elements satisfying the Ping Pong Lemma.
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We begin by showing that the translation length formulae in the previous section

can be used to determine whether or not two hyperbolic elements of SL2(K) generate

a subgroup which is both discrete and free of rank two. This relies on the fact that two

hyperbolic isometries of a tree generate a free group when the intersection between

their axes is sufficiently small. This observation has been made in Lemma 2.6 of [16]

(in the context of R-trees) and Lemma 3.2 of [54] (in the context of Λ-trees). Here we

use our version of the Ping Pong Lemma to give a similar, yet stronger, result in the

context of simplicial trees.

Proposition 3.3.1. Let G be a metrisable topological group acting continuously by

isometries and without inversions on a simplicial tree T . Suppose that A, B ∈ G are

hyperbolic, and that their axes are either disjoint or intersect along a path of length

0 ≤ ∆(A, B) < min{l(A), l(B)}. Then the subgroup ⟨A, B⟩ ≤ G is both discrete and

free of rank two.

Proof. First of all, if the axes of A and B are disjoint, then there is a unique path P of

minimum distance between the two axes. Suppose that this path is between a vertex p′

on the axis of A and a vertex q′ on the axis of B. Choose vertices p and q (on the axes

of A and B respectively) so that the interior of the path between p and Ap contains p′,

and the interior of the path between q and Bq contains q′; see the left-hand diagram

of Figure 3.7. (Note that if either A or B has translation length one, then it may be

necessary to subdivide each edge of T at its midpoint in order to find such vertices.)

On the other hand, if the axes of A and B intersect along a common subpath P

of length ∆(A, B) < min{l(A), l(B)}, then choose vertices p and q (on the axes of

A and B respectively) such that the interiors of the paths between p and Ap, and

between q and Bq, both contain P ; see the right-hand diagram of Figure 3.7 for the

case when the axes of A and B have the same orientation. (Note that if either A or B

has translation length ∆(A, B) + 1, then it may be necessary to subdivide each edge of

T at its midpoint in order to find such vertices.)

In either case, define X+
1 (respectively X−

1 ) to be the maximal subtree of T

containing all vertices on the axis of A from Ap onwards (respectively, up to and
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Figure 3.7: Applying the Ping Pong Lemma to a pair of hyperbolic isometries of a tree.

including p), with respect to the direction of translation, but no other vertices on the

axis of A. Similarly define X+
2 (respectively X−

2 ) as the maximal subtree containing all

vertices on the axis of B from Bq onwards (respectively, up to and including q), but no

other vertices on the axis of B. Then X+
1 , X−

1 , X+
2 and X−

2 are non-empty, closed and

pairwise disjoint subsets that do not cover T . Moreover, Proposition 3.1.6 implies that

A(T\X−
1 ) ⊆ X+

1 , A−1(T\X+
1 ) ⊆ X−

1 , B(T\X−
2 ) ⊆ X+

2 and B−1(T\X+
2 ) ⊆ X−

2 . The

conclusion then follows from the Ping Pong Lemma.

Corollary 3.3.2. Let G be a metrisable topological group acting continuously by

isometries and without inversions on a simplicial tree. If A, B ∈ G are hyperbolic and

|l(A) − l(B)| < min{l(AB), l(A−1B)}, then A and B satisfy the hypotheses of the Ping

Pong Lemma and the subgroup ⟨A, B⟩ ≤ G is both discrete and free of rank two.

Proof. We consider the cases given in Proposition 3.2.1. If the axes of A and B do not

intersect, then

l(AB) = l(A−1B) ≥ l(A) + l(B) > |l(A) − l(B)|.
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If the axes of A and B intersect along a path of length ∆(A, B) < min{l(A), l(B)},

then

min{l(AB), l(A−1B)} = l(A) + l(B) − 2∆(A, B) > |l(A) − l(B)|.

Otherwise the axes of A and B intersect along a path of length ∆(A, B) ≥ min{l(A), l(B)}

and

min{l(AB), l(A−1B)} ≤ |l(A) − l(B)|.

Hence |l(A) − l(B)| < min{l(AB), l(A−1B)} if and only if the axes of A and B either

do not intersect, or intersect along a path of length 0 ≤ ∆(A, B) < min{l(A), l(B)}.

By Proposition 3.3.1, this implies that ⟨A, B⟩ ≤ G is discrete and free of rank two.

We now present a practical algorithm (see [14, Algorithm 4.1]) that takes as input

a two-generated subgroup of SL2(K) and determines whether or not it is both discrete

and free of rank two. Note that (with the same method of proof as Proposition 2.1.4)

it can be shown that an n-generated subgroup G ≤ SL2(K) is discrete and free of rank

n if and only if the corresponding subgroup G ≤ PSL2(K) is discrete and free of rank

n. Thus our algorithm can also be applied to two-generated subgroups of PSL2(K), by

taking representatives of the generators in SL2(K).

Recall that Proposition 3.1.7 gives the translation length of a matrix in SL2(K), and

that SL2(K) is a metrisable topological group which acts continuously by isometries

and without inversions on the Bruhat-Tits tree Tv.

Algorithm 3.3.3. Let K be a non-archimedean local field. Given A, B ∈ SL2(K), we

proceed as follows: If G = ⟨A, B⟩ ≤ SL2(K) is both discrete and free of rank two, then

the algorithm will return true and output a generating pair for G which satisfies the

hypotheses of the Ping Pong Lemma, and otherwise it will return false.
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(1) Set X = A, Y = B. If l(X) = 0, or l(Y ) = 0, then return false.

(2) If l(X) > l(Y ), then swap X and Y .

(3) Compute m = min{l(XY ), l(X−1Y )}.

(4) If m = 0, then return false.

(5) If m ≤ l(Y ) − l(X), then replace Y by the element from {XY, X−1Y } which has

translation length m and return to (2).

(6) Return true and the pair (X, Y ).

Theorem 3.3.4. Algorithm 3.3.3 terminates after finitely many steps and produces

the correct output.

Proof. If at any point the algorithm encounters an elliptic element, then it follows from

Corollary 3.1.9 that G is not both discrete and free. So suppose that the algorithm only

ever encounters hyperbolic elements. Then it must reach step (5). If m > l(Y ) − l(X),

then G is discrete and free by Corollary 3.3.2, and the elements X and Y satisfy the

hypotheses of the Ping Pong Lemma. Hence the algorithm is correct.

On the other hand, if m ≤ l(Y ) − l(X), then the algorithm performs a Nielsen

transformation and outputs a new pair of generators for G on which to run the algorithm.

If this sequence of Nielsen transformations never terminates, then there is an infinite

sequence (xn, yn) = (l(Xn), l(Yn)) of integral translation length pairs with the property

that 0 < xn ≤ yn for all n ∈ N, and which is decreasing in each component; such a

sequence must converge. Moreover, for each pair (Xn, Yn) of generators of G, we are

in either case (3)(ii), or the first subcase of (3)(iii), of Proposition 3.2.1. Therefore

step (5) replaces (xn, yn) by (xn, yn − xn − kn), where kn is either 0 or 2∆′ (as given in

cases (3)(ii) and (iii) of Proposition 3.2.1 respectively). In particular, this implies that

xn+1 + yn+1 = yn − kn for all n ∈ N. After rearranging, and taking limits, it follows

that lim
n→∞

xn = − lim
n→∞

kn ≤ 0. This is a contradiction since each xn is a positive integer,

and hence this algorithm must eventually terminate.
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Recall that one of the key steps in Algorithm 2.2.3 involved the commutator

[A, B] = A−1B−1AB of the generating pair A, B ∈ SL2(R): if tr([A, B]) ∈ (−2, 2], then

the algorithm returned false, and otherwise two subcases were considered depending on

whether tr([A, B]) > 2 or tr([A, B]) ≤ −2. In the case of Algorithm 3.3.3, one could

analagously consider l([A, B]), but the value of this does not affect the remainder of

the algorithm. In particular, if l([A, B]) = 0, then one could immediately return false

at step (1).

In fact, Corollary 3.3.2 could be rephrased in terms of the translation length of the

commutator. Indeed, it follows from Proposition 3.2.2 and Proposition 3.3.1 that, if A

and B are hyperbolic elements of a group G (which acts continuously by isometries

and without inversions on a simplicial tree) whose product AB is hyperbolic and

l([A, B]) > 2 max{l(A), l(B)}, then the subgroup ⟨A, B⟩ ≤ G is both discrete and free

of rank two. However, replacing either A or B by [A, B] is not a Nielsen transformation,

and hence this alternate version of Corollary 3.3.2 is not as useful algorithmically.

We conclude this chapter by discussing the implementation of Algorithm 3.3.3,

and giving some examples which compare and contrast it with the discrete and free

algorithm for two-generated subgroups of SL2(R) from [17].

In terms of implementing Algorithm 3.3.3 in a computational package such as

magma, the software needs to be able to perform matrix multiplications over K, and

compute traces and valuations. Since each non-zero element of K can be expressed

uniquely in the form a =
∞∑

i=N
aiπ

i for some integer N = v(a) with aN ̸= 0, and some

uniformiser π (see Equation (3.1)), computing valuations and performing both addition

and multiplication over K is straightforward. However, there is a clear obstacle in the

computational storage space needed for elements of K with an infinite expression of

the above form. This can theoretically be overcome by storing elements of K in terms

of the data {π; aN , aN+1, . . . , aM} up to some appropriate integer M . Indeed, given

A =

 a b

c d

 and B =

 e f

g h

 ,
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one iteration of Algorithm 3.3.3 first requires computing l(A) = −2 min{0, v(a + d)}

and l(B) = −2 min{0, v(e + h)}. Since any non-negative valuation gives a translation

length of 0, calculating these accurately requires storing the entries of A and B only

up to the coefficient of π0 (in other words, M = 0 will suffice). On the other hand,

when 0 < l(A) ≤ l(B), the first iteration of Algorithm 3.3.3 will also require computing

l(AB) = −2 min{0, v(ae+bg+cf +dh)} and l(A−1B) = −2 min{0, v(de−bg−cf +ah)}.

Storing the entries of A and B up to the coefficient of π− min{0,v(a),v(b),...,v(h)} is sufficient

to compute these valuations accurately. It follows inductively that storing the entries

of A and B up to the coefficient of π−r min{0,v(a),v(b),...,v(h)} is enough to correctly apply

r iterations of Algorithm 3.3.3. Hence, given any two matrices A, B ∈ SL2(K) as

above, choosing large enough M (compared with − min{0, v(a), v(b), . . . , v(h)}) allows

the algorithm to run correctly. If at any point the number of iterations exceeds
M

− min{0,v(a),v(b),...,v(h)} , then a higher bound M will need to be chosen and the algorithm

restarted.

The examples we discuss below avoid this issue entirely for the case where K = Qp

for some prime p. By restricting our interest to pairs of matrices in SL2(Q), we

can perform matrix multiplication and compute traces in the usual sense, and then

consider p-adic valuations separately. In this particular case, it is interesting to view

the subgroups generated as subgroups of both SL2(Qp) and SL2(R), and then compare

the properties of each. For instance, we showed in the previous chapter that

A =

 1 2

0 1

 and B =

 1 0

2 1


generate a discrete and free subgroup of SL2(R), whereas the matrices

A =

 1 1

0 1

 and B =

 1 0

1 1


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do not. However, neither of these pairs of matrices generate a discrete and free subgroup

of SL2(Qp) since any matrix of the form

 1 ∗

∗ 1

 is elliptic.

One iteration of Algorithm 3.3.3 also shows that, for any prime p ≠ 2, the matrices

A =

 p p − 1

−1
p

1
p2

 and B =


2
p4 p3

1
p3 p4


generate a subgroup of SL2(Qp) which is discrete and free of rank two, because

l(A) = 4, l(B) = 8 and min{l(AB), l(A−1B)} = 6. Using the same matrices as input

for Algorithm 2.2.3 shows that they do not generate a free and discrete subgroup of

SL2(R) (this follows since tr(AB) = p+1
p3 < 2, so AB is conjugate to a rotation matrix).

On the other hand, for any prime p ̸= 2, the matrices

A =

 p p − 1

−1
p

1
p2

 and B =


2
p3 p4

1
p4 p3


generate subgroups of both SL2(Qp) and SL2(R) which are discrete and free of rank

two. This follows respectively from Corollary 3.3.2 (since l(A) = 4, l(B) = 6 and

min{l(AB), l(A−1B)} = 8) and Theorem 2.2.2 (i) (since, after replacing A by A−1, we

have tr(A), tr(B) ≥ 2 and tr(A−1B) = −p3 + p + 2
p2 + 1

p3 − 1
p4 ≤ −2).

Each of these examples requires only one iteration of Algorithm 3.3.3, but this is

certainly not always the case. Indeed, given a prime p ̸= 2 and a positive integer r, it

requires r + 2 iterations of Algorithm 3.3.3 to show that

A =

 p3 0

0 1
p3

 and B =


2

p3r+1 p3

1
p3 p3r+1


generate a discrete and free subgroup of SL2(Qp).



Chapter 4

Discrete and free three-generated

subgroups of SL2(K)

Building upon the methods used in the previous chapter, we now show how the

translation length of the product of three hyperbolic elements of SL2(K) can be used

to determine whether or not these elements satisfy the hypotheses of the Ping Pong

Lemma. This leads to a generalisation of Algorithm 3.3.3: given a three-generated

subgroup G ≤ SL2(K), we give an algorithm that determines after finitely many steps

whether or not G is both discrete and free of rank three.

4.1 Translation length conditions

As in the case of SL2(R) and SL2(C), finitely generated subgroups of SL2(K) on three or

more generators have not been extensively studied. The following theorem of Weidmann

(which we present in the form of [1, Theorem 4]) is applicable but non-constructive,

since it does not give an explicit method to determine if no such elliptic element exists.

Theorem 4.1.1. Let G = ⟨g1, . . . , gn⟩ be a finitely generated group acting by isometries

and without inversions on a simplicial tree. Then either G is free of rank n, or there is

a Nielsen-equivalent generating set (g′
1, . . . , g′

n) of G with some g′
i elliptic.

Proof. See Theorem 7 of [55], and set each Si = ∅.
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Note that generalisations of Theorem 4.1.1 exist for groups acting by isometries on

any hyperbolic metric space, in the sense that any such group generated by n elements

is either free of rank n or contains an element of ‘small’ translation length; see both [4]

and [28] for independent proofs of this.

If n = 2 and g1, g2 ∈ SL2(K), then Algorithm 3.3.3 can be used to decide between

the two possible outcomes of Theorem 4.1.1. In particular, if ⟨g1, g2⟩ ≤ SL2(K) is

not free of rank two, then one can track the Nielsen transformations performed in

Algorithm 3.3.3 to obtain a specific elliptic element (as a word in g1 and g2) which

causes the algorithm to return false.

In the following section, we introduce a practical method of deciding between the

two possible outcomes of Theorem 4.1.1 in the case that n = 3 and g1, g2, g3 ∈ SL2(K).

We first show in this section how translation length can be used to determine whether

or not three hyperbolic elements of SL2(K) satisfy the hypotheses of the Ping Pong

Lemma, and hence if they generate a subgroup that is both discrete and free of rank

three.

Definition 4.1.2. Let gi and gj be hyperbolic isometries of a simplicial tree, with

axes denoted by γi and γj. Following the notation used in [1], we define the projection

of γi onto γj to be

Projγj
(γi) = {x ∈ γj : d(x, γi) = d(γi, γj)}.

Note that Projγj
(γi) is either the unique vertex of γj that is closest to γi (when γi

and γj do not intersect), or the path γi ∩ γj (when γi and γj intersect). This gives the

following reformulation of the Ping Pong Lemma, in the context of simplicial trees:

Proposition 4.1.3. Let G be a metrisable topological group acting continuously by

isometries and without inversions on a simplicial tree. Suppose that g1, . . . , gn ∈ G are

hyperbolic, and that for each 1 ≤ j ≤ n there is a subpath Pj ⊆ γj of length ∆j < l(gj)

such that ⋃
i ̸=j

Projγj
(γi) ⊆ Pj.
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Then g1, . . . , gn satisfy the hypotheses of the Ping Pong Lemma, and the subgroup

⟨g1, . . . , gn⟩ ≤ G is both discrete and free of rank n.

Proof. After subdividing each edge of the tree T at its midpoint, if necessary, for

each 1 ≤ j ≤ n choose a vertex pj ∈ γj such that the interior of the path between

pj and gjpj contains Pj. Define X+
j (respectively X−

j ) to be the maximal subtree of

T containing all vertices of γj from gjpj onwards (respectively, up to and including

pj) with respect to the direction of translation, but no other vertices of γj. Then the

subtrees X±
1 , . . . , X±

n satisfy the hypotheses of the Ping Pong Lemma, which completes

the proof. See also [36, Proposition 1.6].

We now show how, in the case that n = 3, translation length can be used to

determine whether or not the hypotheses of Proposition 4.1.3 (and hence of the Ping

Pong Lemma) are satisfied. Given hyperbolic isometries g1, g2 and g3 of a simplicial

tree, with axes denoted by γ1, γ2 and γ3, we define m123 to be the minimum translation

length of all products of the form g±1
1 g±1

2 g±1
3 or g±1

2 g±1
1 g±1

3 and their cyclic permutations.

Since conjugation and inversion preserves translation length, we have

m123 = min

 l(g1g2g3), l(g−1
1 g2g3), l(g1g

−1
2 g3), l(g−1

1 g−1
2 g3),

l(g2g1g3), l(g−1
2 g1g3), l(g2g

−1
1 g3), l(g−1

2 g−1
1 g3)

 .

Theorem 4.1.4. Let G be a metrisable topological group acting continuously by isome-

tries and without inversions on a simplicial tree. Suppose that g1, g2, g3 ∈ G are

hyperbolic elements which satisfy both of the following conditions:

(i) m123 = l(g1g2g3);

(ii) min{l(gigj), l(g−1
i gj)} > |l(gi) − l(gj)| for all distinct i, j ∈ {1, 2, 3}.

Then g1, g2, g3 satisfy the hypotheses of Proposition 4.1.3 if and only if

m123 > max{|l(g1g2) − l(g3)|, |l(g3g1) − l(g2)|, |l(g2g3) − l(g1)|}. (∗)



48 Discrete and free three-generated subgroups of SL2(K)

Proof. Firstly, recall from Corollary 3.3.2 that condition (ii) implies that each pair of

axes γi and γj either do not intersect and l(gigj) = l(g−1
i gj) = l(gi) + l(gj) + 2d(γi, γj),

or intersect along a path of length ∆(γi, γj) < min{l(gi), l(gj)}. If the axes γi and

γj intersect with opposite orientations, then l(gigj) = l(gi) + l(gj) − 2∆(γi, γj), and

l(gigj) = l(gi) + l(gj) otherwise.

We split the proof of the theorem into five cases, depending on how the axes γ1, γ2

and γ3 interact. In each case, we use Proposition 3.2.1 to choose relative orientations

of the axes such that g1g2g3 has minimal translation length among all products of the

pairs of elements (g±1
1 g±1

2 , g3) and (g±1
2 g±1

1 , g3), as this ensures that m123 = l(g1g2g3).

In the first case, suppose that none of the axes intersect. If the shortest path

between each pair of axes does not intersect the remaining axis, then it follows from

Figure 3.1 (applied to g1 and g2) that the axis of any product of the form g±1
1 g±1

2 or

g±1
2 g±1

1 is the same distance k = d(γ1, γ3)+d(γ2, γ3)−d(γ1, γ2) from γ3; see the left-hand

figure of Figure 4.1. Note that g1, g2, g3 satisfy the hypotheses of Proposition 4.1.3,

and applying Proposition 3.2.1 (1) to the elements g1g2 and g3 gives

m123 = l(g1g2) + l(g3) + 2k.

Thus m123 > |l(g1g2) − l(g3)| and, by symmetry, condition (∗) holds.

γ3γ3

x yγ1

γ1 γ2

γ2

k

g1x g−1
2 y

Axis(g1g2)Axis(g1g2)

g1y g−1
2 x

γ3 γ3

γ1

γ1 γ2

γ2x y

∆3

g1x g−1
2 y

Axis(g1g2)Axis(g1g2)

g1y g−1
2 x

Figure 4.1: None of the axes γ1, γ2 and γ3 intersect.

Therefore we may suppose, without loss of generality, that the shortest path between

γ1 and γ2 intersects γ3. It follows from Figure 3.1 (applied to g1 and g2) that the axis
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of any product of the form g±1
1 g±1

2 or g±1
2 g±1

1 intersects γ3 along the same subpath. If

we additionally suppose that g3 translates γ1 towards γ2, then the axis of any product

of the form g±1
1 g±1

2 intersects γ3 with opposite orientations, and this ensures that

m123 = l(g1g2g3); see the right-hand diagram of Figure 4.1. Now consider the length

∆3 of the path Axis(g1g2) ∩ γ3, and note that ∆3 < l(g1g2). Observe that g1, g2, g3

satisfy the hypotheses of Proposition 4.1.3 if and only if ∆3 < l(g3). If ∆3 < l(g3),

then applying Proposition 3.2.1 (3)(i) to the elements g1g2 and g3 gives

m123 = l(g1g2) + l(g3) − 2∆3

= l(g3g1) + l(g2) + 2d(γ2, γ3)

= l(g2g3) + l(g1) + 2d(γ1, γ3),

and it follows that condition (∗) holds. On the other hand, if ∆3 ≥ l(g3), then

Proposition 3.2.1 (3)(ii) and (3)(iii) (applied to g1g2 and g3) give m123 ≤ |l(g1g2)−l(g3)|,

whereby (∗) cannot hold.

In the second case, we suppose that exactly two of the axes γ1, γ2 and γ3 intersect;

without loss of generality, this is γ1 and γ3. If the vertex Projγ3(γ2) lies on γ1 ∩ γ3, then

it bisects γ1 ∩ γ3 into two subpaths and we may further assume that g1 translates the

shorter of these subpaths towards the longer one. It follows from Figure 3.1 (applied

to g1 and g2) that, among all products of the form g±1
1 g±1

2 and g±1
2 g±1

1 , the axes of

g1g
±1
2 and g±1

2 g−1
1 intersect γ3 along the longest possible subpath. If, in addition,

γ1 and γ3 are oppositely oriented, then this ensures that m123 = l(g1g2g3); see the

left-hand diagram of Figure 4.2. It is clear that g1, g2, g3 satisfy the hypotheses of

Proposition 4.1.3, since ∆(γ1, γ3) < min{l(g1), l(g3)}. Moreover, if δ3 denotes the length

of the path Axis(g1g2) ∩ γ3, then δ3 ≤ ∆(γ1, γ3) < min{l(g1g2), l(g3)} and applying
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Proposition 3.2.1 (3)(i) to the elements g1g2 and g3 gives

m123 = l(g1g2) + l(g3) − 2δ3

= l(g3g1) + l(g2) + 2d(γ1, γ2) + 2∆(γ1, γ3) − 2δ3

= l(g2g3) + l(g1) − 2δ3.

Since δ3 < l(g2g3), it follows that condition (∗) holds.

γ3 γ3

γ1γ1

γ2 γ2

x

y

∆(γ1, γ3)

δ3

g1x

Axis(g1g2)

g1y

g−1
2 y

g−1
2 x

Axis(g1g2)

γ3 γ3

γ1γ1

γ2

γ2

x

y

∆(γ1, γ3)
∆3

g1x
g−1

2 y

Axis(g1g2)

Axis(g1g2)

g1y

g−1
2 x

Figure 4.2: One pair of the axes γ1, γ2 and γ3 intersect.

Therefore we may suppose that the vertex Projγ3(γ2) does not lie on γ1 ∩ γ3. We

may also assume that g3 translates γ1 towards γ2 and that γ1 and γ3 are oppositely

oriented; see the right-hand diagram of Figure 4.2. It follows from Figure 3.1 (applied

to g1 and g2) that, among all products of the form g±1
1 g±1

2 and g±1
2 g±1

1 , the axes

of g1g2 and g1g
−1
2 intersect γ3 with opposite orientations along the longest possible

subpath, and this ensures that m123 = l(g1g2g3). Consider the length ∆3 of the

path Axis(g1g2) ∩ γ3, and note that ∆3 < l(g1g2). Observe that g1, g2, g3 satisfy the

hypotheses of Proposition 4.1.3 if and only if ∆3 < l(g3). If ∆3 < l(g3), then applying
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Proposition 3.2.1 (3)(i) to the elements g1g2 and g3 gives

m123 = l(g1g2) + l(g3) − 2∆3

= l(g3g1) + l(g2) + 2d(γ2, γ3)

= l(g2g3) + l(g1) − 2∆(γ1, γ3),

and since ∆(γ1, γ3) < min{l(g1), l(g2g3)}, it follows that condition (∗) holds. On the

other hand, if ∆3 ≥ l(g3), then Proposition 3.2.1 (3)(ii) and (3)(iii) (applied to g1g2

and g3) give m123 ≤ |l(g1g2) − l(g3)|, whereby (∗) cannot hold.

In the third case, we suppose that exactly two pairs of the three axes γ1, γ2 and

γ3 intersect. Without loss of generality, we can assume that γ3 intersects both γ1 and

γ2. Suppose additionally that g3 translates γ1 towards γ2, and that γ3 intersects both

of these axes with opposite orientations; see Figure 4.3. It follows from Figure 3.1

(applied to g1 and g2) that, among all products of the form g±1
1 g±1

2 and g±1
2 g±1

1 ,

the axis of g1g2 intersects γ3 with opposite orientations along the longest possible

subpath, and this ensures that m123 = l(g1g2g3). Again consider the length ∆3 of the

path Axis(g1g2) ∩ γ3, and note that ∆3 < l(g1g2). Observe that g1, g2, g3 satisfy the

hypotheses of Proposition 4.1.3 if and only if ∆3 < l(g3). If ∆3 < l(g3), then applying

Proposition 3.2.1 (3)(i) to the elements g1g2 and g3 gives

m123 = l(g1g2) + l(g3) − 2∆3

= l(g3g1) + l(g2) − 2∆(γ2, γ3)

= l(g2g3) + l(g1) − 2∆(γ1, γ3),

and since ∆(γ2, γ3) < ∆3−∆(γ1, γ3) < l(g3g1) and ∆(γ1, γ3) < ∆3−∆(γ2, γ3) < l(g2g3),

it follows that condition (∗) holds. If, however, ∆3 ≥ l(g3), then Proposition 3.2.1

(3)(ii) and (3)(iii) (applied to g1g2 and g3) give m123 ≤ |l(g1g2) − l(g3)|, whereby (∗)

cannot hold.
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γ3 γ3

γ1γ1 γ2γ2

x y

∆(γ1, γ3) ∆(γ2, γ3)
∆3

g1x g−1
2 y

Axis(g1g2)Axis(g1g2)

g1y g−1
2 x

Figure 4.3: Two pairs of the axes γ1, γ2 and γ3 intersect.

Finally, we consider the situation where all three pairs of the axes γ1, γ2 and γ3

intersect. By Helley’s Theorem, γ1 ∩ γ2 ∩ γ3 ≠ ∅. This leads to two possible cases,

depending on whether or not one of the axes contains all three of the paths γ1∩γ2, γ1∩γ3

and γ2 ∩ γ3.

In the fourth case, we suppose that one axis contains each of γ1 ∩ γ2, γ1 ∩ γ3 and

γ2 ∩ γ3; without loss of generality, we can assume that this axis is γ3 and that γ1 and γ2

are both oppositely oriented to γ3. Note that (as opposed to the previous cases) γ1 and

γ2 agree in orientation, so l(g1g2g3) is at most 2∆(γ1, γ2) larger than it would be if the

orientation of either γ1 or γ2 was reversed. If we were to reverse the orientation of either

γ1 or γ2, then (by inspecting the right-hand diagram of Figure 3.2 and Figure 3.3) the

overlap between the axis of g1g2 and γ3 would be decreased by at least ∆(γ1, γ2), and

consequently l(g1g2g3) would be increased by at least 2∆(γ1, γ2). Therefore, choosing

the orientations of γ1 and γ2 so that they disagree with the orientation of γ3, but agree

with each other, helps to ensure that m123 = l(g1g2g3).

Let us first consider the subcase where one of the paths γ1 ∩γ3 or γ2 ∩γ3 is contained

in the other. Without loss of generality, we may suppose that γ1 ∩ γ3 contains γ2 ∩ γ3

(and hence also γ1 ∩ γ2); see the top diagram of Figure 4.4. Then (γ1 ∩ γ3)\(γ2 ∩ γ3)

is the disjoint union of two subpaths and we may further assume that g1 translates

the shorter of these subpaths towards the longer one. It follows from the right-hand

diagram of Figure 3.2 (applied to g1 and g2) that, among all products of the form g±1
1 g±1

2

and g±1
2 g±1

1 , the axis of g1g2 intersects γ3 with opposite orientations along the longest
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possible subpath, and this ensures that m123 = l(g1g2g3). Moreover, g1, g2, g3 satisfy the

hypotheses of Proposition 4.1.3 since ∆(γ1, γ2) = ∆(γ2, γ3) < min{l(g1), l(g2), l(g3)}

and ∆(γ1, γ3) < min{l(g1), l(g3)}. Now consider the length δ3 of the path Axis(g1g2)∩γ3,

and note that δ3 ≤ ∆(γ1, γ3) < min{l(g1g2), l(g3)}. Applying Proposition 3.2.1 (3)(i)

to the elements g1g2 and g3 gives

m123 = l(g1g2) + l(g3) − 2δ3

= l(g3g1) + l(g2) + 2∆(γ1, γ3) − 2δ3

= l(g2g3) + l(g1) + 2∆(γ2, γ3) − 2δ3.

Since δ3 − ∆(γ2, γ3) < l(g3) − ∆(γ2, γ3) < l(g2g3), it follows that condition (∗) holds.

In the other subcase, we assume that neither γ1 ∩ γ3 nor γ2 ∩ γ3 contains the other.

We can further assume that g3 translates γ1 towards γ2; see the bottom diagram of

Figure 4.4. It follows from the right-hand diagram of Figure 3.2 (applied to g1 and g2)

that, among all products of the form g±1
1 g±1

2 and g±1
2 g±1

1 , the axis of g1g2 intersects γ3

with opposite orientations along the longest possible subpath, and this ensures that

m123 = l(g1g2g3). Consider the length ∆3 of the path Axis(g1g2) ∩ γ3, and note that

∆3 < l(g1g2). Observe that g1, g2, g3 satisfy the hypotheses of Proposition 4.1.3 if and

only if ∆3 < l(g3). If ∆3 < l(g3), then applying Proposition 3.2.1 (3)(i) to the elements

g1g2 and g3 gives

m123 = l(g1g2) + l(g3) − 2∆3

= l(g3g1) + l(g2) + 2∆(γ1, γ2) − 2∆(γ2, γ3)

= l(g2g3) + l(g1) + 2∆(γ1, γ2) − 2∆(γ1, γ3).

Since ∆(γ2, γ3) − ∆(γ1, γ2) = ∆3 − ∆(γ1, γ3) < l(g3) − ∆(γ1, γ3) < l(g3g1), and

similarly ∆(γ1, γ3)−∆(γ1, γ2) < l(g2g3), it follows that condition (∗) holds. If, however,

∆3 ≥ l(g3), then Proposition 3.2.1 (3)(ii) and (3)(iii) (applied to g1g2 and g3) give

m123 ≤ |l(g1g2) − l(g3)|, whereby (∗) cannot hold.
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Figure 4.4: All three axes γ1, γ2 and γ3 intersect, and the axis γ3 contains each of
γ1 ∩ γ2, γ1 ∩ γ3 and γ2 ∩ γ3.

For the fifth and final case, we suppose that all three axes γ1, γ2 and γ3 intersect

with each other, but none of them contains each of the paths γ1 ∩γ2, γ1 ∩γ3 and γ2 ∩γ3.

Denote the length of Projγ1(γ2) ∪ Projγ1(γ3) by ∆1 = ∆(γ1, γ2) + ∆(γ1, γ3). Similarly,

denote the length of Projγ2(γ1) ∪ Projγ2(γ3) by ∆2 = ∆(γ1, γ2) + ∆(γ2, γ3), and the

length of Projγ3(γ1) ∪ Projγ3(γ2) by ∆3 = ∆(γ1, γ3) + ∆(γ2, γ3). Note that γ1 ∩ γ2 ∩ γ3

is a single vertex and ∆(γ1, γ2), ∆(γ1, γ3), ∆(γ2, γ3) > 0, for otherwise we would be in

the previous case.

Suppose that all three axes are oppositely oriented, and that g3 translates γ1 towards

γ2. It follows from Figure 3.3 (applied to g1 and g2) that, among all products of the

form g±1
1 g±1

2 and g±1
2 g±1

1 , the axis of g1g2 intersects γ3 with opposite orientations along
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the longest possible subpath, and this ensures that m123 = l(g1g2g3). Observe that

g1, g2, g3 satisfy the hypotheses of Proposition 4.1.3 if and only if ∆r < l(gr) for all

r ∈ {1, 2, 3}; see the top diagram of Figure 4.5, under the additional assumption that

∆3 < l(g3). If this does occur, then Axis(g1g2) ∩ γ3 has length precisely ∆3, where

∆3 < l(g1g2). Applying Proposition 3.2.1 (3)(i) to the elements g1g2 and g3 then gives

m123 = l(g1g2) + l(g3) − 2∆3.

Thus m123 > |l(g1g2) − l(g3)| and, by symmetry, condition (∗) holds.

γ3 γ3

γ2γ1 γ2γ1

x

∆3

l(g1) > ∆1 ∆2 < l(g2)g1x g−1
2 x

Axis(g1g2)Axis(g1g2)

γ3 γ3

γ2γ1 γ2γ1

x

∆3

l(g1) ≤ ∆1 ∆2 ≥ l(g2)

g1x g−1
2 x

Axis(g1g2)Axis(g1g2)

Figure 4.5: The three axes γ1, γ2 and γ3 intersect with each other, but with none of
them containing each of γ1 ∩ γ2, γ1 ∩ γ3 and γ2 ∩ γ3.

On the other hand, suppose that ∆r ≥ l(gr) for some r ∈ {1, 2, 3}. If ∆r ≥ l(gr)

holds for precisely one value of r ∈ {1, 2, 3}, then without loss of generality let us

suppose that it holds for r = 3 only; see the top diagram of Figure 4.5, under the

additional assumption that ∆3 ≥ l(g3). Here Axis(g1g2) ∩ γ3 has length precisely ∆3,

so it follows from Proposition 3.2.1 (3)(ii) and (3)(iii) (applied to g1g2 and g3) that
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m123 ≤ |l(g1g2) − l(g3)| and hence condition (∗) does not hold. If ∆r ≥ l(gr) holds for

at least two values of r ∈ {1, 2, 3}, then without loss of generality let us suppose that it

holds for r = 1 and 2; see the bottom diagram of Figure 4.5. Here Axis(g1g2) ∩ γ3 has

length (at least) l(g1g2), so it again follows from Proposition 3.2.1 (3)(ii) and (3)(iii)

that condition (∗) does not hold. This proves the theorem.

We conclude this section by showing that if we strengthen condition (ii) of Theo-

rem 4.1.4, then the hypotheses of Proposition 4.1.3 are satisfied (and hence g1, g2, g3

generate a discrete and free subgroup) in all but a small number of cases.

Corollary 4.1.5. Let G be a metrisable topological group acting continuously by

isometries and without inversions on a simplicial tree. Suppose that g1, g2, g3 ∈ G are

hyperbolic elements which satisfy both of the following conditions:

(i) m123 = l(g1g2g3);

(ii) max{l(gi), l(gj)} ≤ min{l(gigj), l(g−1
i gj)} ≤ min{l(gkgig

−1
k gj), l(gkg−1

i g−1
k gj)} for

all distinct i, j, k ∈ {1, 2, 3}.

Then precisely one of the following holds:

(a) g1, g2, g3 satisfy the hypotheses of Proposition 4.1.3 and H = ⟨g1, g2, g3⟩ ≤ G is

discrete and free of rank three;

(b) m123 ≤ |l(gigj) − l(gk)| for some (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} and the

axes γi, γj and γk interact as in Figure 4.6.

Proof. First observe that the left-hand inequality of (ii) implies condition (ii) of

Theorem 4.1.4. Moreover, by Proposition 3.2.1, the right-hand inequality of (ii) ensures

that replacing gi by gkgig
−1
k (which has the effect of replacing γi by gk · γi) does not

strictly decrease the distance between γi and γj (when γi ∩ γj = ∅) or does not strictly

increase the length of γi ∩ γj (when γi ∩ γj ̸= ∅). We now consider the same five cases

given in the proof of Theorem 4.1.4, but under these strengthened conditions. Note

that it follows from Theorem 4.1.4 that conclusions (a) and (b) are mutually exclusive.
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Let us first assume that at most two pairs of the axes γ1, γ2 and γ3 intersect. If

no two of the axes intersect and the shortest path between each pair of axes does not

intersect the remaining axis, or if exactly two of the axes intersect and their path of

intersection contains the closest point of both axes to the third axis, then it is clear

that (a) holds; see the left-hand diagrams of Figure 4.1 and Figure 4.2.

Hence we can further assume that g3 translates γ1 towards γ2 and, if γ3 intersects

either γ1 or γ2, then it does so with opposite orientations; see the right-hand diagrams

of Figures 4.1 and 4.2, and Figure 4.3. Recall from the proof of Theorem 4.1.4 that

this ensures m123 = l(g1g2g3). In each of these cases, if the length ∆3 of the path

Axis(g1g2) ∩ γ3 is at least l(g3), then replacing g1 by g3g1g
−1
3 either strictly reduces the

distance between γ1 and γ2, or causes them to intersect when they did not previously.

This is a contradiction to the right-hand inequality of (ii). Thus ∆3 < l(g3), and it

follows that (a) holds in this case too.

We may now suppose that all of the axes γ1, γ2 and γ3 intersect with each other.

If one of the paths γ1 ∩ γ2, γ1 ∩ γ3 or γ2 ∩ γ3 contains each of the other two, then (a)

holds; see the top diagram of Figure 4.4. Otherwise, we can assume that g3 translates

γ1 towards γ2, and that γ3 is oppositely oriented to both γ1 and γ2. Recall from the

proof of Theorem 4.1.4 that this ensures m123 = l(g1g2g3). We consider two cases,

depending on whether or not γ1 ∩ γ2 is contained in γ3.

In the former case, we assume that γ1 ∩γ2 is contained in γ3; see the bottom diagram

of Figure 4.4. If the length ∆3 of the path Axis(g1g2) ∩ γ3 satisfies ∆3 < l(g3), then (a)

holds. Hence suppose that ∆3 ≥ l(g3). Then l(g3) ≤ 2 max{∆(γ1, γ3), ∆(γ2, γ3)}, with

equality occurring if and only if ∆(γ1, γ3) = ∆(γ2, γ3) = 1
2 l(g3) and ∆(γ1, γ2) = 0. If

these equalities do not hold, then either l(g3g1) = l(g1) + l(g3) − 2∆(γ1, γ3) is strictly

less than l(g1), or l(g2g3) = l(g2) + l(g3) − 2∆(γ2, γ3) is strictly less than l(g2), both of

which contradict the left-hand inequality of (ii). Thus γ1, γ2 and γ3 must interact as in

the top diagram of Figure 4.6 with (i, j, k) = (1, 2, 3). Note that m123 ≤ |l(gigj)− l(gk)|,

since Axis(gigj) ∩ γk has length at least ∆k = l(gk), and hence (b) holds.
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Figure 4.6: The two cases that may occur if conditions (i) and (ii) of Corollary 4.1.5
are satisfied, but m123 ≤ |l(gigj) − l(gk)| for some (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

In the latter case, we suppose that γ1 ∩ γ2 is not contained in γ3. Recall from the

proof of Theorem 4.1.4 that we defined three lengths ∆1, ∆2 and ∆3, and if ∆r < l(gr)

for all r ∈ {1, 2, 3}, then (a) holds; see the top diagram of Figure 4.5, under the

additional assumption that ∆3 < l(g3). Hence suppose without loss of generality that

∆3 ≥ l(g3). Then l(g3) ≤ 2 max{∆(γ1, γ3), ∆(γ2, γ3)}, with equality occurring if and

only if ∆(γ1, γ3) = ∆(γ2, γ3) = 1
2 l(g3). As before, this gives a contradiction to the

left-hand inequality of (ii) unless the specified equalities hold. This same argument

holds for g1 and g2, therefore we must have ∆1 ≤ l(g1), ∆2 ≤ l(g2) and ∆3 = l(g3), so

γ1, γ2 and γ3 interact as in the bottom diagram of Figure 4.6 with (i, j, k) = (1, 2, 3).

Note that m123 ≤ |l(gigj) − l(gk)|, since Axis(gigj) ∩ γk has length (at least) l(gk), and

hence (b) holds. This completes the proof.
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4.2 Deciding whether a three-generated subgroup

of SL2(K) is discrete and free

We conclude this chapter by presenting a practical algorithm which, given any three-

generated subgroup G ≤ SL2(K), determines after finitely many steps whether or

not G is both discrete and free of rank three. As with Algorithm 3.3.3, the key idea

is to perform Nielsen transformations in a ‘translation length minimising’ manner.

In this case, this eventually gives an elliptic element, or three hyperbolic elements

generating G and satisfying conditions (i) and (ii) of Corollary 4.1.5. If conclusion (b)

of Corollary 4.1.5 holds for these three elements, then we demonstrate that further

Nielsen transformations can be performed to ensure that the algorithm terminates.

Algorithm 4.2.1. Let K be a non-archimedean local field. Given A, B, C ∈ SL2(K),

we proceed as follows: If G = ⟨A, B, C⟩ ≤ SL2(K) is discrete and free of rank three, then

the algorithm will return true and output a generating triple satisfying the hypotheses

of the Ping Pong Lemma, and otherwise it will return false.

(1) Set g1 = A, g2 = B and g3 = C. If l(gi) = 0 for some i ∈ {1, 2, 3}, then return

false.

(2) For (i, j) ∈ {(1, 2), (1, 3), (2, 3)} do the following:

(i) Compute mij = min{l(gigj), l(g−1
i gj)}. If mij = 0, then return false.

(ii) If mij < max{l(gi), l(gj)}, then replace an element of {gi, gj} with maximal

translation length by the element of {gigj, g−1
i gj} that has translation length

mij and return to (2).

(iii) If mij > min{l(gkgig
−1
k gj), l(gkg−1

i g−1
k gj)} where k ̸= i, j, then replace gi by

gkgig
−1
k and return to (2).

(iv) If mij > min{l(gigkgjg
−1
k ), l(g−1

i gkgjg
−1
k )} where k ̸= i, j, then replace gj by

gkgjg
−1
k and return to (2).
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(3) Compute m123 = min

 l(g1g2g3), l(g−1
1 g2g3), l(g1g

−1
2 g3), l(g−1

1 g−1
2 g3),

l(g2g1g3), l(g−1
2 g1g3), l(g2g

−1
1 g3), l(g−1

2 g−1
1 g3)

 .

If m123 = 0, then return false.

(4) Relabel g1, g2 and g3 so that m123 = l(g1g2g3).

(5) If m123 ≤ |l(gigj) − l(gk)| for some (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, then

replace gj by gjgk and return to (2).

(6) Return true and the triple (g1, g2, g3).

Theorem 4.2.2. Algorithm 4.2.1 terminates after finitely many steps and produces

the correct output.

Proof. We first prove that the algorithm is correct. If at any point the algorithm

returns false, then G is not discrete and free of rank three by Corollary 3.1.9. Otherwise,

step (2) performs Nielsen transformations to give a generating triple for G that satisfies

condition (ii) of Corollary 4.1.5. If step (6) is reached, then g1, g2 and g3 additionally

satisfy m123 = l(g1g2g3) and conclusion (a) of Corollary 4.1.5 holds. Hence G is both

discrete and free of rank three.

We now prove that the algorithm terminates after finitely many steps. At each

step, we consider the integer sum

S123 = l(g1) + l(g2) + l(g3).

Note that Step (2)(ii) strictly reduces S123, and hence this step cannot be performed

indefinitely. On the other hand, Steps (2)(iii) and (iv) replace an element by its

conjugate, which does not change the value of S123. However, if Step (2) iterated itself

infinitely many times, then mij would eventually reach 0 and the algorithm would

return false. Thus Step (2) terminates after finitely many steps, giving a generating

triple for G which satisfies condition (ii) of Corollary 4.1.5.

The only other recursive step is Step (5). If m123 ≤ |l(gigj)−l(gk)| for some (i, j, k) ∈

{(1, 2, 3), (2, 3, 1), (3, 1, 2)}, then it follows from Corollary 4.1.5 (b) that the axes γi, γj
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Figure 4.7: How the axis γ̃j = Axis(gjgk) interacts with γi and γk in the situations
depicted by Figure 4.6.

and γk interact as in one of the two diagrams in Figure 4.6. In either situation, replacing

gj by g̃j = gjgk (which has translation length l(g̃j) = l(gj) + l(gk) − 2∆(γj, γk) = l(gj))

does not change S123, but changes the configuration of the axes. In particular, it follows

from Figure 3.3 (applied to gj and gk) that γ̃j = Axis(gjgk) interacts with γi and γk as

depicted in one of the two diagrams in Figure 4.7.

In the top diagram of Figure 4.7 (in which γi and γj intersect at a single vertex),

the right-hand inequality of Corollary 4.1.5 (ii) ensures that γ̃j cannot intersect γi

anywhere other than γi ∩ γk, for otherwise replacing gi by gkgig
−1
k causes γi and γj to

intersect along a non-trivial path. Hence the axes γi, γ̃j and γk satisfy the hypotheses

of Proposition 4.1.3, and one further iteration of Algorithm 4.2.1 would return true.
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In the bottom diagram of Figure 4.7, it is possible for γ̃j to intersect γi further

along (with respect to the direction of translation) than γi ∩ γk, and so the new triple

(gi, g̃j, gk) might not necessarily satisfy the hypotheses of Proposition 4.1.3. If this new

triple does satisfy the hypotheses of Proposition 4.1.3, then one further iteration of

Algorithm 4.2.1 will return true. Otherwise γi ∩ γ̃j is too large: it must be at least

min{l(gi), l(g̃j)}, and hence min{l(gig̃j), l(g−1
i g̃j)} ≤ |l(gi) − l(g̃j)| < max{l(gi), l(g̃j)}.

Therefore the sum S123 will be strictly decreased on the next iteration of step (2)(ii),

and so the algorithm must eventually terminate.

Note that if a three-generated subgroup G ≤ SL2(K) is not free, then (by keeping

track of the Nielsen transformations performed at each step) Algorithm 4.2.1 can be

used to explicitly find an elliptic element as a word in the generators of G. This gives a

constructive method of deciding between the two possible outcomes of Theorem 4.1.1,

in the case that n = 3 and g1, g2, g3 ∈ SL2(K).

By the same reasoning as detailed in Chapter 3, Algorithm 4.2.1 can also be applied

to three-generated subgroups of PSL2(K), by taking representatives of the generators

in SL2(K). Furthermore, Algorithm 4.2.1 can be implemented in a computational

package such as magma, so long as elements of K are stored in terms of the data

{π; aN , aN+1, . . . , aM} up to some appropriate integer M , and the number of enumera-

tions of the algorithm is closely monitored; this follows from a similar argument to the

discussion at the end of Chapter 3.

The author expects that the techniques used in this chapter should generalise to

give an algorithm that can decide whether or not any finitely-generated subgroup of

SL2(K) is both discrete and free. If G is generated by elements g1, . . . , gn ∈ SL2(K)

(for some n ≥ 4), and every triple (gi, gj, gk) of generators satisfies the hypotheses

of Proposition 4.1.3, then G is both discrete and free of rank n. At this stage,

however, some further analysis is required to consider the potential effects of the

Nielsen transformations specified in step (5) of Algorithm 4.2.1 on the interaction with

axes not involved in the relevant triple (gi, gj, gk).
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We conclude this chapter by giving some examples to illustrate Algorithm 4.2.1.

Recall from Chapter 1 that, for α, β, γ ∈ C, the subgroup

Fα,β,γ =
〈 1 α

0 1

 ,

 1 0

β 1

 ,

 1 − γ −γ

γ 1 + γ

〉

of SL2(C) is free of rank three whenever |α|, |β|, |γ| ≥ 3. If one instead views these

generating matrices as elements of SL2(Qp) (with α, β, γ ∈ Qp), then the corresponding

subgroup of SL2(Qp) is not both discrete and free as each generating matrix is elliptic;

see the discussion following Algorithm 3.3.3. Thus any of these matrices would return

false at step (1) of Algorithm 4.2.1.

On the other hand, recall the matrices

X =

 73 0

0 1
73

 and Y =


2
77 73

1
73 77


from the discussion following Proposition 3.2.1 (or set p = 7 and r = 2 in the example

at the end of Chapter 3). Then Algorithm 3.3.3 shows that H = ⟨X, Y ⟩ ≤ SL2(Q7) is

both discrete and free of rank two. Moreover, if A = XY, B = X2Y 2 and C = X3Y 3,

then the subgroup G = ⟨A, B, C⟩ ≤ H is both discrete and free of rank three. We will

show how this can be verified by Algorithm 4.2.1.

Indeed, the first step of Algorithm 4.2.1 sets g1 = A, g2 = B and g3 = C. Since

A =


2
74 76

1
76 74

 and B =


4
78 + 76 2 · 72 + 716

2
716 + 1

72
1
76 + 78

 ,

we have l(g1) = 8, l(g2) = 16 and m12 = l(g−1
1 g2) = 8, so step (2)(ii) of Algorithm 4.2.1

replaces g2 by g−1
1 g2. This gives m12 = l(g−1

1 g2) = 12, which is not reduced by

conjugating either g1 or g2 by g3. This completes step (2) for (i, j) = (1, 2), and at this

point (g1, g2, g3) = (A, A−1B, C).
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We next consider the pair (g1, g3), where l(g1) = 8, l(g3) = 32 and m13 = l(g−1
1 g3) =

16. On the next iteration of Algorithm 4.2.1, step (2)(ii) then replaces g3 by g−1
1 g3.

This gives m13 = l(g1g3) = l(g−1
1 g3) = 32, but conjugating g3 by g2 reduces this value

and so g3 is subsequently replaced by g2g3g
−1
2 . This completes step (2) for (i, j) = (1, 3),

and at this point (g1, g2, g3) = (A, A−1B, A−1BA−1CB−1A).

Finally, we consider step (2) for the pair (g2, g3). Note that l(g2) = 8, l(g3) = 16

and m23 = l(g−1
2 g3) = 8. Here, step (2)(ii) replaces g3 by g−1

2 g3 and it follows that

m23 = l(g−1
2 g3) = 12, which is not reduced by conjugating either g2 or g3 by g1.

This gives (g1, g2, g3) = (A, A−1B, A−1CB−1A). However, this replacement alters the

interaction between g1 and g3: l(g1) = l(g3) = 8 and m13 = l(g−1
1 g3) = 24, but

conjugating g3 by g2 reduces the value of m13. Hence we make one final replacement

of g3 by g2g3g
−1
2 , giving (g1, g2, g3) = (A, A−1B, A−1BA−1CB−1AB−1A) as a triple of

elements that generates G and satisfies condition (ii) of Corollary 4.1.5.

Moreover, l(g1) = l(g2) = l(g3) = 8, m12 = l(g−1
1 g2) = m23 = l(g−1

2 g3) = 12

and m13 = l(g1g3) = l(g−1
1 g3) = 16. By Proposition 3.2.1, this implies that γ1 ∩ γ3

is a single vertex, while γ1 ∩ γ2 and γ2 ∩ γ3 are both paths of length two. Such a

configuration satisfies the hypotheses of Proposition 4.1.3, and hence the Ping Pong

Lemma. This is detected in the final steps of the algorithm: replacing g2 by g−1
2 gives

m123 = l(g1g2g3) = 16, which is larger than |l(g1g2) − l(g3)| = |l(g2g3) − l(g1)| = 4 and

|l(g3g1) − l(g2)| = 8. Thus the algorithm reaches step (6) and returns true.



Chapter 5

Generalisations and applications

In this final chapter, we discuss some generalisations and applications of both Al-

gorithm 3.3.3 and Algorithm 4.2.1. We show that both these algorithms hold more

generally in the context of two or three-generated subgroups of the isometry group of a

locally finite simplicial tree, when equipped with the topology of pointwise convergence

and a method of computing translation lengths. We also discuss applications of these

algorithms to the constructive membership problem.

5.1 Isometry groups of locally finite simplicial trees

Given any proper metric space X (for instance, a locally finite simplicial tree), the

isometry group Isom(X) (viewed as a subspace of XX , the space of all continuous maps

X → X equipped with the product topology) is a metrisable topological group; see [15,

Lemmas 5.B.3 and 5.B.5]. This topology is often known as the topology of pointwise

convergence, in the sense that a sequence (fi) in Isom(X) converges to f ∈ Isom(X)

if and only if the sequence (fi(x)) converges to f(x) for each x ∈ X. Note that the

group PSL2(K), as a subgroup of the isometry group PGL2(K) of the corresponding

Bruhat-Tits tree, inherits the topology of pointwise convergence, and this coincides

with the standard topology on PSL2(K) used in this thesis (that is, the quotient

topology inherited from SL2(K)).
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In the setting of isometry groups, the topology of pointwise convergence is equivalent

to the well-known compact-open topology; see [15, Lemmas 5.B.1 and 5.B.2]. The

pointwise convergence property of these equivalent topologies leads to an analogue of

Corollary 3.1.9 for the isometry group of a locally finite simplicial tree. By subdividing

each edge of such a tree at its midpoint, if necessary, every element of the corresponding

isometry group can be assumed to act without inversions.

Proposition 5.1.1. Let T be a locally finite simplicial tree, and suppose that the

subgroup G ≤ Isom(T ) is both discrete (with respect to the topology of pointwise

convergence) and free. Then G contains no elliptic elements.

Proof. Suppose that G contains some elliptic element g, which fixes a vertex p of T .

There are only finitely many vertices adjacent to p, and g acts to permute these. This

implies that there is some integer n1 for which gn1 fixes p and all of its adjacent vertices.

One continues inductively to obtain a sequence (gni) of elements of Isom(T ), where

gni fixes all vertices at distance at most i from p. But then (gni(x)) converges to x

for each vertex x of T , and so (gni) converges to the identity. Thus either g has finite

order, or G is not discrete.

For any proper metric space X, the natural map Isom(X) × X → X (given by

(g, x) 7→ gx) is continuous; see [15, Lemma 5.B.4 (2)]. This implies that Corollary 3.3.2,

Theorem 4.1.4 and Corollary 4.1.5 can also be applied to the isometry group of a locally

finite simplicial tree, when equipped with the topology of pointwise convergence. Thus

we have the following generalisation of Algorithm 3.3.3 and Algorithm 4.2.1:

Algorithm 5.1.2. Let T be a locally finite simplicial tree, and let Isom(T ) be its

isometry group, equipped with the topology of pointwise convergence and a method of

computing translation lengths. Given A, B ∈ Isom(T ) (respectively A, B, C ∈ Isom(T )),

we proceed through steps (1) to (6) of Algorithm 3.3.3 (respectively Algorithm 4.2.1).

If G = ⟨A, B⟩ ≤ Isom(T ) (respectively G = ⟨A, B, C⟩ ≤ Isom(T )) is discrete and

free of rank two (respectively three), then the algorithm will return true and output
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a generating set for G which satisfies the hypotheses of the Ping Pong Lemma, and

otherwise it will return false.

Theorem 5.1.3. Algorithm 5.1.2 terminates after finitely many steps and produces

the correct output.

Proof. The only difference from the proofs of Theorem 3.3.4 and Theorem 4.2.2 is that,

if the algorithm encounters an elliptic element, then G cannot be both discrete and

free by Proposition 5.1.1, instead of Corollary 3.1.9.

Algorithm 5.1.2 can be applied, for instance, to certain amalgamated free products.

Suppose that Γ = H ∗C K is the amalgamated free product of groups H and K over

some subgroup C which has finite index in both H and K. It is well-known that,

given fixed transversals TH and TK of right coset representatives of C in H and K

respectively, each element g ∈ Γ has a unique normal form

g = cx1 . . . xn

for some integer n ≥ 0, where c ∈ C and, for each i ≥ 1, either xi ∈ TH and xi+1 ∈ TK ,

or vice versa. Moreover, Γ acts faithfully by isometries and without inversions on a

locally finite simplicial tree T , with vertices given by cosets of the form gH or gK, and

edges given by cosets gC (where g ∈ Γ); see [53, Chapter I, Section 4].

Consider the shortest normal form cx1 . . . xn0 of all conjugates of g in Γ. Such a

form is cyclically reduced in the sense that either n0 ∈ {0, 1}, or x1 and xn0 lie in

different transversals. If n0 is equal to 0 or 1, then g is conjugate into either A or B

and hence l(g) = 0. On the other hand, if n0 > 1, then l(g) = n0, and it follows from

Lemma 2.25 of [3] and Proposition 1.7 of [44] that this is an even integer. Thus, given

such a group Γ, and a method of computing a cyclically reduced normal form of each

element (which exist because the transversals TH and TK are finite), Algorithm 5.1.2

can be applied to determine whether or not any two or three-generated subgroup of Γ

is both discrete and free.
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5.2 The constructive membership problem

We conclude this thesis with an application of Algorithm 3.3.3 and Algorithm 4.2.1 to

the constructive membership problem. Given a group H and elements g1, . . . , gn, h ∈ H,

this involves determining whether or not h is an element of G = ⟨g1, . . . , gn⟩ ≤ H, and

if it is, then finding a word in g1, . . . , gn that evaluates to h.

In [17], it is discussed how Algorithm 2.2.3 can be applied to solve the constructive

membership problem for two-generated subgroups of SL2(R) which are both discrete

and free of rank two. This uses the following notion:

Definition 5.2.1. Given a group G acting on a topological space X, a fundamental

domain is an open set D ⊆ X (with closure in X denoted by D) such that both of the

following conditions hold:

(i) ⋃
g∈G gD = X;

(ii) gD ∩ hD = ∅ for all distinct g, h ∈ G.

In the proof of Proposition 3.3.1, given a metrisable topological group G (acting

continuously by isometries and without inversions on a simplicial tree T ) and two

hyperbolic elements A, B ∈ G, whose axes are either disjoint or intersect along a suffi-

ciently short path, we found vertices p and q (on the axes of A and B respectively) and

considered their images Ap and Bq in order to construct subtrees X+
1 , X−

1 , X+
2 , X−

2 ⊆ T

satisfying the hypotheses of the Ping Pong Lemma; see Figure 3.7. Note that, in each

case, if DA is defined as the interior of the path between p and Ap (which is isometric

to an open interval in R with integral endpoints, and is hence open in T ), then DA is

a fundamental domain for the action of ⟨A⟩ on Axis(A). Similarly the open set DB,

defined as the interior of the path between q and Bq, is a fundamental domain for the

action of ⟨B⟩ on Axis(B).

If the axes of A and B do not intersect, then define D as the union of DA and DB

with the path between p′ and q′; otherwise, define D = DA ∪ DB. In either case, the

union of images of D under the action of ⟨A, B⟩ forms a subtree S ⊆ T for which D



5.2 The constructive membership problem 69

is a fundamental domain for the action of ⟨A, B⟩ on S; see the proof of [16, Lemma

2.6] for further details. Then D = T\(X+
1 ∪ X−

2 ∪ X+
2 ∪ X−

2 ), where X+
1 , X−

1 , X+
2 , X−

2

are as in Figure 3.7 and S plays the role of T . Moreover, it follows from the proof of

Proposition 3.3.1 that there is at least one vertex in D.

More generally, recall the proof of Proposition 4.1.3, and note that for each 1 ≤ j ≤ n

the interior Dj of the path between pj and gjpj is a fundamental domain for the action

of ⟨gj⟩ on γj. Let D be the smallest subtree of T containing D1 ∪ · · · ∪ Dn. Then the

union of images of D under the action of ⟨g1, . . . , gn⟩ forms a subtree S ⊆ T with the

property that D is a fundamental domain for the action of ⟨g1, . . . , gn⟩ on S. Also

D = T\(X+
1 ∪ X−

1 ∪ · · · ∪ X+
n ∪ X−

n ), where each X+
j and X−

j is as in the proof of

Proposition 4.1.3 and S plays the role of T . Again there is at least one vertex in D.

These observations imply that there is an algorithm to solve the constructive

membership problem for two- or three-generated subgroups of either SL2(K), or the

isometry group of a locally finite simplicial tree T (equipped with the topology of

pointwise convergence and a method of computing translation lengths), which are

both discrete and free. Indeed, given such a subgroup G = ⟨A, B⟩ (respectively

G = ⟨A, B, C⟩), one can first run the appropriate algorithm (either Algorithm 3.3.3,

Algorithm 4.2.1 or Algorithm 5.1.2) to obtain generators g1 = g1(A, B) and g2 =

g2(A, B) (respectively g1 = g1(A, B, C), g2 = g2(A, B, C) and g3 = g3(A, B, C)) of G

satisfying the hypotheses of the Ping Pong Lemma. Then, following the discussion

above, one can also find a fundamental domain D = T\(X+
1 ∪ X−

1 ∪ · · · ∪ X+
n ∪ X−

n ) for

the action of ⟨g1, g2⟩ (respectively ⟨g1, g2, g3⟩) on a relevant subtree T . The following

algorithm, which is essentially Algorithm 1 of [17], can then be applied:

Algorithm 5.2.2. Let H be a metrisable topological group which acts continuously on

a topological space X. Suppose that g1, . . . , gn ∈ H and X±
1 , . . . , X±

n ⊆ X satisfy the

hypotheses of the Ping Pong Lemma, and that D = X\(X+
1 ∪X−

1 ∪· · ·∪X+
n ∪X−

n ) ̸= ∅

is a fundamental domain for the action of G = ⟨g1, . . . , gn⟩ ≤ H on X. Choose a point

z′ ∈ D and an element h ∈ H. If h ∈ G, then the algorithm will return true and
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output a word w = w(x1, . . . , xn) (where x1, . . . , xn are abstract elements generating a

free group F of rank n) such that w(g1, . . . , gn) = h, and otherwise it will return false.

(1) Set w = 1 ∈ F and z = Cz′.

(2) While z /∈ D:

(i) if z ∈ X+
i , then replace z by g−1

i z and w by wxi;

(ii) if z ∈ X−
i , then replace z by giz and w by wx−1

i .

(3) If w(g1, . . . , gn) = h and z = z′, then return true and the word w = w(x1, . . . , xn),

and otherwise return false.

This algorithm is correct and terminates after finitely many steps, as in the proof

following Algorithm 1 in [17]. In our context (where G is a two- or three-generated

subgroup of either SL2(K) or the isometry group of a locally finite simplicial tree),

this gives another practical algorithm which can be implemented, so long as there is a

method to determine whether or not a vertex lies in the fundamental domain D and,

if it does not, then which of the subtrees X±
1 , . . . , X±

n it belongs to. This is possible

in our setting, since Proposition 3.1.6 implies that for any hyperbolic isometry g of a

simplicial tree T , and any vertex p of T (for instance, in the Bruhat-Tits tree Tv, one

could take p to represent the standard lattice O2), the midpoint of the path between p

and gp lies on the axis of g. Hence one can find a specific vertex on each of the relevant

axes and, after translating these vertices along each axis by appropriate powers of the

generating elements and comparing distances between them, one can determine the

vertices lying on each axis. This gives a method of distinguishing between vertices in

X±
1 , . . . , X±

n and D.
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