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Halide perovskites have remarkable properties for relatively crudely processed 

semiconductors, including large optical absorption coefficients and long charge carrier 

lifetimes. Thanks to such properties, these materials are now competing with established 

technologies for use in cost-effective and efficient light harvesting and light emitting 

devices. Nevertheless, our fundamental understanding of the behaviour of charge carriers 

in these materials – particularly on the nano-to micro-scale – has on the whole lagged 

behind the empirical device performances. Such understanding is essential to control 

charge carriers, exploit new device structures, and push devices to their performance 

limits. Among other tools, optical microscopy and spectroscopic techniques have revealed 

rich information about charge carrier recombination and transport on important length 

scales. In this Progress Report, we detail the contribution of time-resolved optical 

microscopy techniques to our collective understanding of the photophysics of these 

materials. We discuss ongoing technical developments in the field that are overcoming 

traditional experimental limitations in order to visualise transport properties over 

multiple time and length scales. Finally, we propose strategies to combine optical 

microscopy with complementary techniques in order to obtain a holistic picture of local 

carrier photophysics in state-of-the-art perovskite devices.   
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Over the last decade, there has been a dramatic rise in the efficiencies of light harvesting[1,2],   

and light emitting[3,4] devices based on halide perovskite materials, with performances already 

rivalling existing commercial technologies. Perovskites are high-quality semiconductors with 

remarkable optoelectronic properties including an apparent defect tolerance[5], long charge-

carrier lifetimes[6], long charge-carrier diffusion lengths[7,8] and sharp absorption edges[9]. 

However, they also exhibit complex heterogeneous morphological, chemical, structural and 

photo-physical properties across multiple length scales[10] arising from combinations of their 

hybrid organic-inorganic nature[11,12], mixed chemical compositions[13] and their polycrystalline 

structure[14], presenting challenges for rigorous charaterisation. A broad range of experimental 

techniques[10] has been employed to provide insight into their structural, chemical, 

morphological and macroscopic device operation properties, including electrical devices, 

diffraction, and electron microscopy characterization approaches, but these tools fall short in 

elucidating critical processes impacting device operation, namely the dynamics of photo-

excited species and the transport of energy on all length scales. Optical spectroscopy techniques 

[15–19] directly probe the photophysics of materials and devices (see Figure 1a and b) making 

them powerful tools to establish and contextualise important properties such as absorption and 

photoluminescence[15] (PL) spectra[20,21], exciton binding energies[22], PL or device quantum 

efficiencies[4,23], defect concentrations[24,25] and the degree of sub-gap disorder[9,26] (via 

measurement of the Urbach tail). In particular, techniques employing time-resolved optical 

spectroscopy coupled with optical microscopes allow us to probe local photophysical 

phenomena such as the recombination and transport of charge carriers over a range of temporal 

(from seconds to femtoseconds) and spatial (from centimetres to nanometres) scales (see 

summary in Figure 1a). In this Progress Report, we will outline the use of these local 

spectroscopic techniques in revealing critical information about charge carrier behaviour in 

halide perovskite materials. We will discuss key capabilities and limitations of these 

approaches to ascertain important device-relevant information. Finally, we will highlight the 
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need to exploit in operando optical microscopy techniques concomitant with multimodal 

microscopy approaches to gain a broad perspective of these complex local phenomena under 

true device operating conditions. Such developments will allow us to uncover the fundamental 

science that will directly steer future device improvements, reversing the way the field has 

primarily proceeded to date whereby empirical device improvements have preceded 

fundamental studies.  

 

     Figure 1: Charge carrier processes in perovskites and the corresponding tools to study 

these effects. a) Schematic highlighting key photophysical phenomena related to carrier 

transport that can occur following photoexcitation of the perovskite. b) Table summarising the 

main experimental techniques mentioned in this Progress Report that are employed to study 

the recombination and diffusion of charges carriers in perovskites. These techniques are sorted 

as a function of three criteria: their level of technical advancement, and their relevant length 

and time scales accounting for typical resolution limits. CW denotes continuous wave 

illumination, CL is Cathodoluminescence and SNOM is Scanning Near-field Optical 

Microscopy. 
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1. General recombination and transport considerations 

When an optical beam impinges on a perovskite material, a cascade of physical effects will 

occur over different timescales (see summary schematic in Figure 1 a). If the energy of the 

photon exceeds the bandgap, this begins with the creation of hot carriers that can rapidly diffuse 

over hundreds of nanometres (within hundreds of femtoseconds[27]). These carriers will also 

interact with the lattice (carrier-phonon interaction), leading to a progressive cooling of the 

carriers down to the lattice temperature and the band edge normally within a few 

picoseconds[28,29]. Once at the band edge (cold), carriers continue to spatially diffuse through 

the perovskite material until they undergo a recombination event or are extracted from the 

system (e.g. at a device contact); these processes occur over the tens of picoseconds to 

microsecond time scales. Recombination can occur via several pathways, either radiatively 

through emission of a photon, or non-radiatively, such as through carrier-carrier 

interactions[30,31] or carrier trapping[15,31,32]. The emitted photon may then escape the film or be 

re-absorbed by the material, generating another photo-excited electron and hole at the band 

edge that can undergo further diffusion and/or recombination processes (i.e. photon 

recyling[33,34]). Each of these processes impacts the time- and spatially dependent population of 

charge carriers and can therefore in principle be probed through time-resolved (TR) 

spectroscopy techniques (summarised in Figure 1b).  

To understand these competing processes, one must first consider the rate equation employed 

to express the local evolution of carrier density n(r,t), which depends both on time t and 3D 

spatial coordinate r. Most halide perovskites investigated to date are near-intrinsic 

semiconductors in which the number of electrons and holes are comparable, and thus n 

represents the density of either electrons or holes. Upon photoexcitation, n follows the rate 

equation [6,34]:  
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𝑑𝑛

𝑑𝑡
= 𝐺 −  𝑘1𝑛 − 𝑘2𝑛2 − 𝑘3𝑛3 + 𝐷𝛻2𝑛            (1), 

where G(r,t) represents the charge generation term (through optical or electrical injection), k1 

is the non-radiative recombination coefficient due to carrier trapping, k2 represents the radiative 

recombination of electrons and holes and k3 represents multiple-carrier (non-radiative) Auger 

processes that have an appreciable impact at high carrier densities (typically above ~1018 cm- 3). 

The term 𝐷𝛻2𝑛 corresponds to the ambipolar diffusion of charge carriers, quantified through 

the diffusion coefficient D. Note that equation (1) is an approximation that is valid for many 

3D perovskites, such as MAPbI3 (MA= CH3NH3), while a different system of equations[15] will 

be required in materials where other effects strongly impact the transport such as competing 

excitonic[31,35,36] effects or trapping/detrapping equilibria[37,38]. Optical spectroscopy 

measurements, such as TRPL or transient absorption (TA), are practical tools to evaluate the 

temporal and spatial evolution of the carrier density (see Figure 1b), n, and the different 

processes that will influence these populations (cf. Figure 1a). One can use for instance fluence-

dependent measurements to isolate processes in different recombination regimes, by moving 

from a trap-limited regime (low carrier density) in which non-radiative trap recombination 

dominates, to a high carrier density regime in which traps are filled but Auger effects become 

increasingly important[15].  

In many reports, the diffusion term in equation (1) is considered negligible or averaged out, 

though this assumption is not always valid. In particular, the in-depth diffusion[6,34] will 

inevitably play an important role in perovskite materials (regardless of the excitation beam 

size); the high absorption coefficient[39] means that carriers are predominantly generated in the 

first ~50-100 nm of the sample for most optical excitation wavelengths typically employed in 

time-resolved measurements, leading to subsequent diffusion of carriers further into the film 

(typically ~500 nm thick) or crystals (>>10 m thick). Due to the high diffusion coefficients 

(~1 cm2s-1) measured in perovskite materials, charges will have distributed uniformly 
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throughout a film after a few nanoseconds [40,41]. In that case, the diffusion term may indeed 

then be negligible in macroscopic measurements at longer time scales. In general, this term will 

need consideration, particularly over the early time scales and when considering local effects. 

A variety of macroscopic optical measurements have been used to measure the carrier mobility 

and hence diffusion properties of carriers in halide perovskites. A straight-forward method to 

optically measure the diffusion coefficient and the diffusion length is to model the decrease of 

the TRPL lifetime in the presence of a quenching layer using equation (1) [6,8,42]. These diffusion 

parameters have also been extracted using time-resolved microwave photoconductance[35,43,44] 

and optical-pump terahertz-probe[30] spectroscopies [45]. Using these macroscopic techniques, 

charge-carrier diffusion lengths under solar-relevant carrier densities between several hundreds 

of nanometres[42,46,47] to several micrometres[8,48,49] have been reported, highlighting the broad 

distribution of values between different perovskite samples that depend on degrees of film 

quality, composition and passivation. 

We emphasise here that diffusion properties are influenced by both competing physical 

processes and experimental factors. Thus, measured diffusion coefficients and lengths vary 

with excitation conditions or temperature. These values will also differ for each carrier type for 

cases where carrier transport is not ambipolar. In addition, diffusion is a microscopic process 

that depends strongly on the local quality and structural properties of the material, and thus 

such macroscopic measurements won’t capture important local variations. Indeed, the values 

for diffusion coefficient determined macroscopically are spatially averaged and may differ 

significantly from values determined locally. For instance, local variations of the perovskite 

microscopic properties such as trap density and grain boundaries can lead to distinctly different 

local and macroscopic diffusion coefficients and lengths (further discussed below). Therefore, 

D in Equation (1) needs to be considered a function of spatial coordinate, i.e. D(r). Another 

source of discrepancy between the local and macroscopic diffusion coefficient values arises 

from contributions by photonic transport in which emitted photons propagate some distance 
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and are reabsorbed in other regions of the sample (cf. Figure 1a)[34,50–52]. To account for 

photonic transport in equation (1), the charge generation term g(r,t) must include a contribution 

from photons that are locally re-absorbed, which will in turn depend on a number of parameters 

including the distance the photon has travelled (dictated by the emission wavelength and 

absorption coefficient) and the angular distribution of emission accounting for waveguiding 

and photon outcoupling effects. This photonic effect can modify the apparent diffusion 

coefficient with respect to the purely electronic value. In polycrystalline 3D perovskite films, 

studies have shown that the photonic transport is non-negligible, while the purely electronic 

diffusion coefficient may be orders of magnitude lower than the apparent one[34]. In 2D 

perovskite single crystals, Gan et al. have shown that this photonic effect can enable the out of 

plane transport of carriers between lead halide sheets[53], while purely excitonic diffusion in the 

plane is highly improbable due to the dielectric confinement effect of the organic layers.  

2. Time-resolved PL microscopy to measure diffusion over micrometers and nanoseconds 

TRPL microscopy is the most widely used and versatile tool to measure local diffusion 

properties. One advantage over other local spectroscopic techniques is that TRPL systems are 

compatible with measurements under realistic device-relevant excitation conditions such as 

with low photo-excited charge carrier densities relevant to solar cell devices (~1015 cm-3, 

fluences of < 0.1 μJ/cm2/pulse in visible excitation wavelengths), and can easily cover many 

relavant temporal decades (10 ps to 100 μs). To quantify diffusion, a classical TRPL 

microscope needs to be adapted to spatially separate the excitation and collection areas (see 

Figure 2a). This can be achieved by using a local excitation and a widefield collection of the 

emitted light[54–56], or by raster scanning the collection (in a confocal configuration) while the 

local excitation is fixed[40,57]. Using either of these configurations, one can measure the 

evolution of the TRPL intensity as a function of distance from the excitation location. To study 

the diffusion process and extract the diffusion coefficient, the obtained TRPL results are fitted 
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using an appropriate approach which also takes into account the finite diffraction-limited spatial 

excitation profile. Several fitting or simulation methods have been proposed, all based on 

variations of equation (1)[41,58,59]. This process generally requires a preliminary estimation of 

injected carrier density n and of the value of the k1 and k2 coefficients[41]. Indeed, each type of 

recombination will also decrease the local n(r,t) and therefore impact the measurement of 

diffusion, for example by generating an apparent broadening of the PL profile as a function of 

time that must be distinguished from true carrier diffusion. An example of a TRPL approach is 

the work from Tian et al. [7] (seen in Figure 2b-d), where an intense PL signal is observed 

several microns (point A) away from the excitation location in perovskites single crystals 

confirming the long (i.e. micrometre scale) diffusion length in such materials. They then 

quantified the TRPL intensity originating from diffusion (in red in Figure 2d) by removing the 

contribution from waveguided (WG) photons and applying a fitting process. Using an 

excitation fluence of 5.3 μJ.cm-2 at 1 MHz, they evaluated the diffusion coefficients to be ~ 

1 cm2s- 1 for MAPbBr3 and ~2 cm2s- 1 for MAPbI3 crystals and the corresponding diffusion 

length under these excitation conditions to be ~1 μm. In another study, the characteristic 

Gaussian width σ(t) of the measured carrier distribution was shown to follow a classical 

diffusion law[40]: 

σ2(t) = σ2(0) + 2Dt       (2) 

where t is the time after the optical excitation of a local area of the sample, and σ(0) is the initial 

Gaussian spatial distribution. Stavrakas et al. used a two-photon photoluminescence 

microscopy configuration[19,60] to study the diffusion process in the bulk of a MAPbBr3 crystal. 

While the mean value of the diffusion coefficient (~1.4 cm2s- 1, yellow dash line in Figure 2e) 

is similar to the value cited above, this study reveals that there is a large spread of local  

diffusion coefficients in both lateral dimension and depth, which is attributed to local 

heterogeneities in trap densities and defects in the crystal[40] (see Figure 2e).   
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     Figure 2: TRPL microscopy to assess the local diffusion of carriers. a) Schematic detailing 

the use of TRPL microscopy to probe the diffusion of carriers. b-d) Carrier diffusion over 

several microns within a single crystal probed by TRPL microscopy. The TRPL signal is 

analysed (d) and modelled against equation (1) to decouple the two major contributions: 

photon waveguiding (WG, in green) and carrier diffusion (in red) for a distance of 6 microns 

between the excitation and the point of collection of the PL signal (see c). Adapted with 

permission from [7]. Copyright (2019) American Chemical Society. e) Distribution of local 

diffusion coefficients measured within the bulk of MAPbBr3 single crystals using a two-photon 

TRPL microscope [40]. f-h) TRPL microscopy measurements exhibiting the diffusion of carriers 

within a MAPbI3 large grain sample, showing that the lateral spreading of the PL profiles due 

to carrier diffusion as a function of time is confined to one grain, while the grain boundaries 

(visible in f or with the dashed lines in g and h) inhibit the diffusion of carriers. Adapted with 

permission from [41]. Copyright (2019) American Chemical Society.  

 

Although carriers follow a classical diffusive behaviour in perovskite single crystals, this does 

not appear to be the case in polycrystalline films in which grain boundaries are prevalent. 

Ciesielski et al[41] used TRPL microscopy to show that grain boundaries in the MAPbI3 films 
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they considered act as barriers inhibiting carriers from diffusing efficiently over large distances 

in polycrystalline perovskites films (see Figure 2 f-h). However, carriers could efficiently 

diffuse within grains (within dashed lines in Figure 2 g-h) as a function of time, and the 

diffusion coefficient they obtained (~1 cm2s- 1) was similar to those measured in other single 

crystals studies. Using similar methods, other groups have reported diffusion coefficient values 

that are two orders of magnitude lower in polycrystalline perovskites thin films than single 

crystals, despite long carrier lifetimes in the former[6,34]. This is likely because these 

microscopic measurements probe several grains together, hindering any observable broadening 

with time of the PL spatial profile. This effect can be particularly exaggerated if the lateral size 

of grains is smaller than the optical beam diameter (~ 600 nm), as it is for state-of-the-art mixed 

halide triple cation perovskites samples, for example[13]. Sridharan et al. [58]  have shown that 

the diffusion coefficient in perovskite polycrystalline films (with various compositions) 

decreases significantly over time, with values similar to single crystals on the picosecond 

timescale (~1 cm2s-1) but decreases to ~10-3 cm2s- 1  after hundreds of nanoseconds. This effect 

could be explained by the confinement of carriers within grains allowing fast initial intra-grain 

transport but the inhibition of the larger-scale diffusion of carriers at longer decay times. 

Alternatively (or additionally), carrier trapping [15,61] of one or both carrier species will 

detrimentally influence carrier transport, an effect which may be more pronounced at longer 

times (and/or at further distance from the excitation spot) when carrier densities are lower and 

thus traps may not be locally saturated by carriers. In any case, these studies highlight that the 

relationship between the carrier lifetime and the diffusion process is complex in polycrystalline 

materials; in particular, one cannot assume that a longer PL lifetime always implies a more 

efficient diffusion of charges across the perovskite thin film.  
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3. Studying inter- and intragrain energetic transport with pump-probe microscopy  

TRPL microscopy is a practical tool for evaluating diffusion properties but it suffers from 

several limitations. Such measurements exclusively probe the radiative recombination of 

electrons and holes, meaning that only ambipolar diffusion can be measured. As a consequence, 

TRPL is not able to directly probe non-radiative recombination events that have an important 

impact on diffusion[58]. When electrons (holes) are trapped locally, it is difficult to study the 

diffusion of remaining free holes (electrons) using TRPL because such transport will not 

necessarily result in photon emission. Due to the high absorption coefficients of perovskite 

samples, PL is also mostly sensitive to radiative events occurring near the surface because 

photons emitted deeper in the crystal have a higher probability of being reabsorbed before 

escaping and ultimately not leading to a photon emitted externally from the film (cf. Figure 1a). 

Transient absorption (TA) spectroscopy is one of the fundamental pump-probe techniques that 

has become ubiquitous in the photophysical characterisation of semiconductors, particularly 

organic[62] and, more recently, halide perovskite systems[33,63–65]. Transient absorption 

microscopy (TAM) is a powerful variant used to spatially image the transient energetic 

distribution of excited species within a sample, with time resolution down to the femtosecond 

regime, and with spatial precision that can far surpass the diffraction limit[66–68]. This 

information comes without relying on the radiative efficiency of the sample. Of the possible 

modalities of TAM, the two most widely adopted for diffusion studies are fixed pump/scanned 

probe (as illustrated in Figure 3a) and fixed pump/wide-field probe. In both cases, pump and 

probe bandwidths can vary but spectral selectivity will become limited by the time-bandwidth 

product when pulses are sufficiently temporally compressed[69]. As a transmission 

measurement, TAM yields a convolution of the excited state dynamics throughout the whole 

sample thickness and is therefore complementary to more-surface-sensitive PL measurements. 

Combining both measurements in situ, Simpson et al. detect significant variation in PL maps 
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despite TAM revealing a relatively uniform carrier population, emphasising the need to locally 

isolate variations in recombination kinetics and transport in light of relevant experimental 

factors[70]. 

 

 

 

 

 

 

 

 

 

Figure 3: Energetic transport visualised with pump-probe and PL microscopy. (a) Schematic 

of Transient Absorption Microscopy (TAM) showing the local photogeneration of excited 

species. The transport of excited species can be tracked by scanning a local probe (shown) or 

using a wide-field probe. (b) Wide-field TAM image (630 nm pump, 755 nm probe) at pump-

probe delay time of 10 ps, revealing MAPbI3 sample morphology. The white dashed circle 

indicates the location of the pump spot. (c)-(e) Diffusion across grain boundaries, visualised 

with TAM with local pump (white circle in (b)) and raster-scanned probe at delay times of 10 

ps, 2.5 ns and 5 ns, tracking carrier diffusion between grains. Panels b-e are adapted from [71]. 

Copyright (2018) American Chemical Society. (f) & (g) Stroboscopic scattering microscopy 

images at 0 and 5 ns pump-probe delay (scale bars 1 µm). Maps of magnitude and phase of 

scattering contrast yield information about lateral and depth-dependent carrier density. 

Negative contrast (black) represents a photoexcited population within ~30 nm of the film 

surface and positive contrast (white) delineates considerable carrier density at a depth of ~50 
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nm. (h) 2D simulation of diffusive carrier population accounting for influence of observed 

morphological boundaries. Panels f-h are adapted from [72]. Copyright (2019) Springer Nature. 

(i) Map of TRPL intensity from a MAPbBrxI3-x nanowire (scale bar 2 µm). (j) TRPL decays 

from local spots on the nanowire, labelled in (i), showing a ~150 ns rise time at the iodine-rich 

region, caused by the energetic funnelling of carriers along the bandgap gradient. Panels i & 

j adapted from [73]. Copyright (2017)  American Chemical Society. 

 

Katayama et al. used spatially resolved TA measurements to identify local variations in the 

excited carrier relaxation in mesoporous MAPbI3 films[74]. Early work on these systems by Guo 

et al.[75] utilised TAM to observe the diffusive expansion of a carrier population with ~50 nm 

spatial precision. In calculating exceptionally high diffusion coefficients for solution-processed 

films at the time (up to 0.08 cm2s-1, 1 ns after excitation), they identified grain boundaries as 

the discrepancies between their own measurements of intragrain diffusion, and literature values 

obtained via quenching contact methods[8]. Recent TAM developments have subsequently 

enabled direct examination of diffusion across grain boundaries. Snaider et al. measured the 

diffusion coefficient for transport across a boundary to be ~0.12 cm2s-1, compared with ~0.20 

cm2s-1 in the grain interior[71]. On identifying the grain morphology (Figure 3b) they 

additionally observe disparate rates of carrier transport between neighbouring grains (see 

Figures 3c-e). The moderate suppression of transport across boundaries is consistent with 

TRPL studies[76] and again reiterates the limitations of bulk measurements that will spatially 

average out such behaviour. The observation of spatially varying diffusion motivates local 

sampling of diffusion coefficients to build up statistics of transport properties[77,78]. However, 

these results also underline the comparatively benign effect that grain boundaries have on 

lateral carrier diffusion in perovskites, in contrast with polycrystalline silicon whose inter-grain 

mobility can be crippled by deep traps formed at boundaries[79–81].  
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Delor et al. resolve both lateral and vertical motion of carriers in polycrystalline MAPbI3 using 

a state-of-the-art scattering-based pump-probe microscope.[72] Figures 3f and g respectively 

show the scattering signal portraying the initial pump-induced carrier distribution and the 

subsequent dispersal after 5 ns. The depth-dependent phase of the interferometric signal allows 

the authors to identify and model (Figure 3h) a carrier population which diffuses away from 

the sample surface when navigating grain boundaries. Despite pump and probe 1/e penetration 

depths of only ~50-70 nm in MAPbI3, the technique provides unique insight into the vertical 

distribution of carriers that would not be available in conventional local PL or TAM 

measurements. Furthermore, another dimension has been added to the complexity of grain 

boundary effects: lateral transport also depends on depth, and the potential barriers presented 

by boundaries vary both in width and depth; this is also seen through two-photon measurements 

in MAPbBr3 single crystals, where transport varies significantly at different depths in the 

crystal[40]. It remains to be seen whether such vertical heterogeneity in transport will be present 

in state-of-the-art perovskite solar cell absorber films.  

Optical spectroscopy can be complemented by other techniques to study local photophysics 

under the influence of compositional heterogeneity, such as the spatially varying distribution 

of halide ions in alloyed perovskite materials[82,83]. Tian et al. combine energy-dispersive X-

ray spectroscopy (EDS) with time-resolved PL microscopy to visualise the funnelling of 

carriers along an energy gradient in single-crystalline perovskite nanowires[73]. The energy 

funnel is set up by a varying ratio of halide ions along the MAPbBrxI3-x wire, such that excited 

carriers will cascade down to the lower bandgap, iodine-rich region. Increased PL emission is 

observed from the iodine-rich end of the nanowire, fed by carriers transferring from the 

bromine-rich end on on which the local TRPL signal is rapidly quenched (Figure 3i). A 

comparison between the TRPL rise time (up to 150 ns, as shown in figure 3j) and bandgap 

variation along the wire allows the authors to decouple carrier motion due to energetic 

funneling from carrier diffusion. The calculated diffusion coefficient of ~1.2 cm2s-1 lies 
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between values measured for pure MAPbBr3 and MAPbI3 single crystals[7]. Carrier transfer to 

the surface of perovskite thin films can be similarly driven by light-induced halide 

segregation[84,85] and such energy funnelling is common in 2D perovskites in which phases of 

different bandgap coexist[86]. This funelling is exploited in LEDs based on quasi-2D layered 

perovskite[23], and on perovskite nanograins[87], which are respectively engineered to 

concentrate and confine injected carriers, yielding high radiative efficiencies. In inorganic 2D 

materials, strain-induced bandgap engineering[88] has been employed to induce charge 

funnelling, and similar behaviour has been explored in halide perovskites[89]. 

 

4 Ultrafast Processes & Hot Carrier Diffusion      

Recent applications of TAM are uncovering the increasingly complex role that ultrafast 

processes play in dictating local carrier recombination and transport. The ability to spatially 

resolve carrier cooling processes is one such valuable insight, not least because hot carrier solar 

cells have the potential to in principle push the theoretical power conversion efficiency limit to 

66%[90,91]. Hot carriers in MAPbI3 have been shown to exhibit remarkable long-range 

(~600 nm) diffusion on picosecond timescales[27]. The hot carrier population undergoes rapid 

expansion, with the apparent diffusion coefficient exceeding 450 cm2s-1 upon photoexcitation 

at approximately twice the bandgap energy (see Figure 4a). The diffusion coefficient decays 

on the tens of picoseconds timescale to 0.7 cm2s-1, a value in line with reported diffusion 

coefficients for cold carriers[7]. This timescale is attributed to the slow formation of polarons 

which are predicted to affect charge transport[92,93]. Studying MAPbI3 films formed via different 

fabrication methods, Sung et al. [66] utilised TAM with higher temporal resolution to observe 

the ballistic transport of carriers on an even shorter timescale. The super-diffusive motion of 

the carrier population occurs over distances of up to 150 nm within 20 fs of photoexcitation 

(see Figure 4b), and has a spatial variance, σ2, that grows quadratically with time unlike the 

linear dependence of a standard diffusive process represented by equation 2. Together, these 
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works emphasise that ballistic and quasi-ballistic transport occur over distances that are 

significant relative to device dimensions (~500 nm thickness) and could directly contribute to 

carrier extraction at contacts. Moreover, while carrier-carrier interactions are seen to mitigate 

ballistic diffusion at high carrier densities, the transport-limiting factor at typical solar fluence 

is most likely carrier-lattice interactions dictated by energetic disorder within the material[66,77]. 

While grain boundaries in polycrystalline films undoubtedly contribute to this disorder, it is as 

yet unclear whether the increased kinetic energy of ballistic and hot carriers allows them to 

more easily negotiate the potential barriers presented by boundaries.  

 

Figure 4: Femtosecond TAM measurements to study hot carrier dynamics and ballistic 

motion. (a) Evolution of diffusion coefficient during slow carrier cooling process in 

polycrystalline MAPbI3. Adapted from [27]. Copyright (2017) American Association for the 

Advancement of Science. (b) Variation of ballistic carrier transport length, l(t), during ultrafast 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 

(h) 

(i) 



     

17 

 

expansion in MAPbI3 films with different morphology. Lateral diffusion of 150 nm within 20 fs 

is observed in the film showing least energetic disorder (black line), while ballistic expansion 

is curtailed in more heterogenous films (blue and red lines). Adapted from [66]. Copyright 

(2019) Springer Nature. (c) & (d) Spatially resolved carrier cooling rate maps of 

polycrystalline MAPbI3 samples at excitation powers of 0.26 µW and 1.08 µW. (e) & (f) 

Histograms of pixel decay times at corresponding excitation powers. Increased fluence leads 

to larger average cooling rate and an increased spread with more locations exhibiting 

extremely slow cooling. Panels c-f adapted from [91]. Copyright (2019)American Chemical 

Society. (g) SEM image of MAPbI3 crystallite with grain boundaries highlighted. (h) Map of 

calculated hot carrier relaxation rate with outlines of grain structure overlaid (scale bars 1 

µm). (i) Evolution of carrier temperature at grain interiors (GI) and grain boundaries (GB), 

showing accelerated cooling at boundaries. Panels g-i adapted from [94]. Copyright (2019) 

American Chemical Society. 

 

In 3D perovskites such as MAPbI3 it is widely reported that hot carriers undergo slow cooling 

at high excitation densities due to processes such as the hot phonon bottleneck effect[29,63].  

Using TAM, Nah et al. reveal a broad distribution of spatially varying carrier cooling rates 

across micron-scale MAPbI3 crystals upon above-bandgap excitation (see Figures 4c & d)[91]. 

They observe that the mean cooling rate decreases with increasing excitation fluence (see 

Figures 4e & f), matching earlier macroscopic studies, but additionally find that the variance in 

local cooling rates significantly increases with fluence, indicating that the onset of the hot 

phonon bottleneck effect is changeable spatially across the sample. Larger crystal domains are 

observed to facilitate faster cooling, suggesting that carriers that experience localisation or 

confinement exhibit a stronger hot phonon bottleneck effect[95]. Interestingly, Jiang et al. image 

polycrystalline perovskite particles with SEM-correlated TAM (see Figures 4g & h) and report 

faster cooling rates at grain boundaries compared with grain interiors, which they propose is 
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due to an energy exchange process mediated by sub-bandgap states (see Figure 4i)[94].The 

proposed trapping and de-trapping of photoexcited holes will likely saturate at moderate 

excitation densities[15], such that small grains still experience a prolonged elevated carrier 

temperature due to confinement, despite an increased surface-to-volume ratio. Additionally, 

such grain boundary interactions (effectively scattering processes) will likely obstruct carrier 

diffusion across grain boundaries, providing another explanation for the differing intra- and 

inter-grain diffusion coefficients reported earlier. It is apparent that initial carrier temperatures 

and the time evolution of relaxation processes can be directly linked to the early time diffusion 

of excited species and their eventual fate. Such measurements therefore provide an alternative 

lever with which to study transport and uncover valuable information about the local energetic 

landscape of perovskite materials. 

In the context of optical studies, it should be noted that TAM could be particularly susceptible 

to experimental artefacts and ambiguities, and thus analysis must be performed with extreme 

care. For instance, acquiring accurate steady state absorption spectra of perovskite films is 

challenging due to light scattering, and heterogeneity in sample morphology and optical 

density[59]. This issue extends to TA measurements where the transient transmission signal is a 

convolution of time-dependent changes in absorption and reflectance[96]. The relatively high 

refractive index of perovskites poses additional problems in that transient reflectance 

contributions can dominate the observed TA signal[63,97]. To obtain a rigorously representative 

picture of carrier diffusion, one needs to locally identify the pump-induced change in the full 

complex refractive index, covering both variations in absorption and reflectance[98]; achieving 

this on the micro- or nano-scale will be challenging but may prove to be very fruitful.  

Artefacts in transport behaviour caused by spot-to-spot morphological variation can be 

accounted for by measuring at multiple locations[66] but this procedure cannot mitigate signals 

which arise due to optical effects linked to the pump and probe beams. Coherent artefacts can 

afflict TA signals on very short timescales and are the result of interference interactions 
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between the ultrafast pump and probe pulses[99,100]. Since TAM studies of early-time ballistic 

transport are already being carried out on femtosecond timescales, it is important to be able to 

identify and correct for these effects[69]. A focussed pump beam, as is commonly used for TAM 

diffusion measurements, can create a highly localised refractive index variation which acts as 

an aperture for the pursuing probe, complicating the issue. The focussed excitation can also 

cause non-linear optical effects such as two-photon absorption which influence pump-probe 

measurements carried out at high fluence[101]. There is therefore additional motivation to move 

TAM studies of diffusion to lower fluence, on top of the already appreciable risk of sample 

deterioration that is reported under intense pump beams[91].  

 

5 Outlook 

i. Gaining further insight into the nature of local heterogeneities 

From the atomic-scale up to grain-sized domains, our understanding of what drives spatial 

heterogeneity in carrier dynamics is limited. While optical microscopy techniques are suitable 

to probe the presence of such heterogeneities, for example local surface morphological features 

or indirect information on local trap states, they cannot provide information about the physico-

chemical nature or mechanism that induces these properties. To address this issue a multimodal 

approach could be adopted, where local optical probes are correlated with nanoscopic probes 

of structural and chemical information. These local characteristics of the perovskite (e.g. 

stoichiometry, doping, crystalline phase, defect density) will directly impact local 

recombination and transport. The structural and compositional nature of the grain boundaries 

and the prevalence of multigrain crystalline order also remain uncharacterised and their effects 

present additional questions. For such studies, suitable structural microscopy techniques[10] that 

could be applied in conjunction with optical methods include nanoscale X-Ray diffraction[102] 

and/or electron microscopy diffraction techniques. 



     

20 

 

Cathodoluminescence[103] (CL) has been effectually used to study the luminescence properties 

of materials such as GaAs[104] and GaN[105,106] on the nanoscopic scale. Since CL detectors are 

often incorporated into scanning electron microscope (SEM) systems, in situ correlation of 

luminescence with surface morphology from SEM is straight forward[107,108]. The application 

of CL to inorganic perovskites has yielded luminescence maps with ~10 nm spatial 

resolution[109] (see Figure 5 a-b). However, the high electron beam doses required (typically in 

vast excess of the damage thresholds for MAPbI3 of 100 electrons/Å2[110,111]) are irreversibly 

destructive to hybrid organic perovskite materials which are in general very beam sensitive. 

Transient luminescence can also be probed on picosecond timescales (comparable to fast TRPL 

measurements acquired with streak cameras) using time-resolved CL[50,104]. Complementary 

TRPL and TRCL measurements have been employed to investigate the heterogeneous 

formation of multidimensional Ruddlesden-Popper perovskites[109]. By varying the voltage in 

a CL measurements, one can also controllably excite the perovskites at different depths to 

monitor the effects of reabsorption on the PL signal[50]. If CL and TRCL collection can be 

continually optimised for lower electron doses (available via technical advancements in pulsed 

excitation, for example) then this technique promises unrivalled spatially resolved 

luminescence as part of a powerful multi-modal toolbox.  

 

To circumvent the diffraction limit, another classical approach is to use near field optical 

techniques, such as Scanning Near‐field Optical Microscopy (SNOM)[112–114]. This technique 

could measure local heterogeneities in PL with a resolution of ~10-50 nm, within single 

perovskite grains[115]. It can also be employed to monitor carrier diffusion, for instance using 

two different near field probes: one fixed to provide local excitation, and one scanning to collect 

information about mobile carriers[116,117]. The near field geometry can also be very valuable 

when applied to Terahertz spectroscopy[30,118] which is used to study the charge carrier mobility 

and lifetimes in perovskites. In a near field configuration, these measurements could achieve 
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spatial precision below 1 μm (much smaller than the wavelengths associated with THz which 

are typically between 50 μm and 1mm), providing another perspective from which to study 

local carrier behaviour. 

 

Photoemission electron microscopy (PEEM) measurements can identify local sub-bandgap 

states on the nanoscale, thus allowing one to directly image non-radiative recombination 

centres in the sample. In addition to identifying trap states, PEEM is also suitable for imaging 

carrier motion in semiconductor materials[119,120] at the very local scale, since its spatial 

resolution is only limited by electron optics (~10 nm). Man et al. demonstrate the spatial and 

temporal resolution of time-resolved PEEM in their study of charge transport across a 

staggered-gap 2D heterostructure formed by an InSe/GaAs interface, allowing visualisation of 

charge flow across the heterojunctions[103]. Our group has recently applied PEEM to 

polycrystalline perovskite films to identify local surface trap clusters[121]. Figure 5c shows a 

PEEM image of local hotspots of photoemission from within the mid-gap of the perovskite 

band structure, which represent trap-rich local sites (white spots). These images reveal clusters 

of defects typically less than 100-nm in size that are in general smaller than morphological 

grains (of order hundreds of nanometres) that are resolved in a PEEM map using a higher 

energy probe (Figure 5d). Such nanoscale measurements of the sub-gap states give 

complementary information to the carrier transport and recombination measurements discussed 

above, and rich information will come from multimodal correlations between these 

measurements and optoelectronic, structural, morphological and chemical properties. Further, 

time-resolved PEEM measurements will allow one to assess the impact of these states on carrier 

diffusion on the nanoscale, complementing local TRPL and TAM measurements. 
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Figure 5: Cutting edge experimental developments that could further enhance our 

understanding of carrier recombination and transport in halide perovskites. (a) SEM image 

of an inorganic polycrystalline perovskite film and (b) complementary CL map of the region 

highlighted with a red dashed line in (a). Each colour map in (b) corresponds to a different 

wavelength range: 530–590 nm (green) and 590–640 nm (red). Adapted from [109]. Copyright 

(2017) Wiley. Photoemission electron microscopy (PEEM) images of a polycrystalline 

perovskite film (Cs0.05MA0.17FA0.78PbBr0.17I0.83) probed with (c) 4.65 eV pulses and (d) 6.2 eV 

pulses. The latter high energy probe predominantly photoemits valence band electrons, 

revealing the surface morphology of the film. The low energy probe photoemits exclusively 

from mid-gap states, revealing discrete defect-rich locations on the sample surface. The Au 

particle in the image is a fiducial surface marker. Adapted from[121]. Copyright (2018) Institute 

of Electrical and Electronics Engineers. (e) Schematic of optical microscopy in operando 

device measurements probing diffusion under applied bias.  

 

ii. Studying carrier photophysics in operating devices 

It is evident that microscopic studies of carrier dynamics must be extended to devices 

(summarised in schematic in Figure 5e), in which excited species can experience markedly 
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different conditions from those typically encountered during idealised spectroscopic 

measurements. For instance, the addition of a device contact creates an interface with the 

perovskite layer which has consequences for local transport properties that are not yet 

understood. As mentioned earlier, early time diffusion will homogenise the charge distribution 

within each grain (size ~ 500 nm) within a few nanoseconds. Beyond this, the presence of 

extraction layers will progressively modify the charge distribution, either because of additional 

non-radiative surface recombination events[6,122–124] or because of the depletion of a particular 

type of charge at each end of the device[125]. It is also important to understand why extraction 

efficiency is seen to vary spatially in some devices[126], despite relatively homogenous 

intragrain diffusion[127], and surface-sensitive imaging tools will be particularly valuable for 

such investigations. Macroscopic transient reflectance measurements have been utilised to 

decouple bulk and surface recombination in both perovskite single crystals and thin films[128,129] 

Steady-state reflectance microscopy is a staple of morphological characterisation and has been 

utilised as part of multimodal apparatus[76] but, to our knowledge, differential reflectance 

microscopy has yet to be applied to perovskites despite being demonstrated on other 

materials[130]. Again, multimodal measurements between local electrical and optical 

measurements will provide complementary information to assess the interplay between local 

extraction and recombination, properties which have been shown to vary on the 

nanoscale[131,132]. 

Future studies should also focus on isolating the diffusion properties of electrons from those of 

holes[6]. To do so, one could exploit the local depletion of electrons (holes) induced by a 

selective extraction layer in order to measure the diffusion of holes (electrons). Tainter et al.[125] 

utilised this approach using a back contact architecture where electron and hole selective layers 

are positioned next to each other (rather than in a vertical stack), revealing particularly long 

hole diffusion lengths of 13 μm following removal of electrons. Such studies are crucial to 
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better our understanding of individual carrier mobilities, but also in the design of advanced 

devices that could exploit such long and/or selective carrier diffusion behaviour. 

Critical insight into how device operating conditions modify carrier dynamics could be gained 

from performing optical microscopy measurements under different bias conditions (e.g. short 

circuit, open circuit, maximum power point). When a voltage is applied to the device, a vertical 

drift of charge may occur due to any net electric field across the device; in this case, Equation 

(1) would need to be modified to account for drift motion of charges. One could use time-

resolved optical microscopy to unveil how this drift competes or coexists with diffusion 

processes. By way of example, Yang et al. studied the dependence of carrier transport on the 

electric field applied across MAPbBr3 microplates, observing a clear shift from diffusion-like 

to drift-like transport at higher fields[133]. The impact of ionic transport in the perovskite 

structure on the screening of the electric field felt by the charges must also be considered in 

such device-like measurements[134,135]. If this screening effect is strong, it could supress the 

drift current in perovskite solar cells, in which case diffusion would remain the dominant 

mechanism for the efficient transport of charges in devices even at high bias; this has important 

ramifications for optoelectronic device design. In LED devices, the voltages applied are much 

stronger (up to several volts) and, unless the device design is controlled to mitigate this, drift is 

likely the main charge transport mechanism. Such bias-dependent local measurements provide 

ways to distinguish these competing mechanisms and will be critical for further spectroscopic 

insights into real, operating devices. 

Finally, the optical techniques described in the previous sections reveal rich information about 

carrier dynamics in perovskites but most are performed under excitation conditions that do not 

represent those found in operational device stacks. Efforts are needed to further develop the 

techniques to allow study of samples with excitation densities and carrier injection levels that 

best match realistic device operating conditions (for example, typical carrier densities of 1013-

1015 cm-3[15] for solar cells and 1017-1019 cm-3 for LEDs). Numerous works on photovoltaic 
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materials (particularly those employing pump-probe techniques) use excitation densities that 

are well above solar fluences, typically due to requirements for sufficient signal-noise ratios; 

such high carrier densities may also bring with it sample heating and degradation issues[91]. 

This is not to undermine the value of such high fluence and carrier-density-dependent 

measurements, which when performed carefully reveal valuable information that fit into our 

collective understanding. We reiterate that extracted transport and recombination properties 

need to be reported together with the excitation and bias conditions, and there should be active 

push towards including realistic device-like excitation conditions. As has become standardised 

for reports on device characteristics, the publication of carrier transport parameters under 

common excitation conditions would greatly simplify the comparison of perovskite materials 

and devices within the literature and would expedite our understanding of their limitations and, 

ultimately, their optimisation for end device use. The toolsets described above could provide a 

facile means to do so and, with continued ongoing developments, will continue to push the 

traditional experimental limits to extract critical information about these intriguing 

semiconductors.  

 
Conclusion 

We have explored the use of local time-resolved optical spectroscopy as a toolset to visualise 

carrier recombination and transport in halide perovskite materials. The versatility of these all-

optical techniques reveals a plethora of competing photophysical processes including transport 

and recombination across multiple length and timescales. However, these processes need to be 

decoupled from each other as well as from experimental artefacts in order to isolate electronic 

transport processes, and the use of complementary techniques such as time-resolved 

photoluminescence and pump-probe microscopy methods can help to do so. The temporal 

evolution of the measured transport mechanisms has been discussed, with ballistic transport 

occurring at early times (picoseconds) followed by the progressive decrease of the diffusion 
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coefficient at later times during carrier cooling. Local sample heterogeneities including traps 

and grains boundaries have an important inhibiting effect on carrier transport, and further 

understanding of the nature of these sites will be critical for our understanding and ultimately 

control of these heterogeneities. This motivates the use of multimodal techniques to assess how 

the local transport (optical and electronic measurements) relates to local chemical and structural 

properties, as well as further developing new measurement techniques that continue to push the 

limit on spatial and temporal resolution and/or provide complementary insight into the 

processes such as low-dose time-resolved cathodoluminescence and photo-emission 

microscopy measurements. Finally, measurements must move towards in operando device 

characterisation to truly understand how the recombination and transport properties are 

modified in operational devices under device-relevant excitation and bias conditions, which 

will in turn guide material and device design. The cutting edge technical developments made 

in this field will be applicable to a wide range of established and emerging semiconductor 

systems including during the development of new perovskite-inspired materials that may 

exhibit similar defect tolerance to the metal halide perovskites. 
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