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Abstract: Background: Genetic susceptibility to insulin resistance is associated with lower
adiposity in adults. Insulin resistance, and therefore adiposity, may alter sensitivity to
Growth Hormone (GH). We aimed to determine the relationship between adiposity,
genetic susceptibility to insulin resistance or insulin secretion, and response to GH
treatment in short children born small for gestational age (SGA).
Methods: In 89 (55 boys) short prepubertal SGA children (age,6.2±1.6years) treated
with GH for one year in a multicentre study, body fat percentage was estimated at
baseline and 1-year using DXA. The main outcome measures were treatment-related
changes in height, IGF-1 standard deviation scores (SDS), insulin sensitivity, insulin
secretion and disposition index. Combined multiallele gene scores based on single
nucleotide polymorphisms with known associations with lower insulin sensitivity (GS-
InRes) and insulin secretion (GS-InsSec) were analysed for their relationships with
adiposity.
Results: Mean percentage body fat at baseline was low compared to normative data
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(p=0.045), and decreased even further on GH treatment (baseline vs 1-year z-scores, -
0.26±1.2 vs -1.23±1.54; p<0.0001). Baseline percentage body fat was positively
associated with IGF-1 responses (p-trends=0.042), first-year height gains
(B[95%CI]:0.61cm/year [0.28,0.95]; p<0.0001), insulin secretion at baseline (p-
trends=0.020) and at 1-year (p-trends=0.004), and disposition index at 1-year (p-
trends=0.024). GS-InRes was inversely associated with BMI (-0.13SDS per-allele [-
0.26,-0.01]; p=0.040), body fat (-0.49% per-allele [-0.97,-0.007]; p=0.047), and limb fat
(-0.81% per-allele [-1.62,0.00]; p=0.049) at baseline. During GH treatment, GS-InRes
was related to a lesser decline in trunk fat (0.38% per-allele [0.16,0.59]; p=0.001) and a
higher trunk-limb fat ratio at 1-year (0.04 per-allele [0.01,0.08]; p=0.008). GS-InSec
was positively associated with truncal fat (0.36% per-allele [0.09, 0.63]; p=0.009).
Conclusions: Adiposity in SGA children has favourable effects on GH sensitivity and
glucose metabolism. The associations with multiallele scores support a causal role of
insulin resistance in linking lower body fat to reduced sensitivity to exogenous GH.
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Abstract: 32 

Background: Genetic susceptibility to insulin resistance is associated with lower adiposity in adults. Insulin 33 

resistance, and therefore adiposity, may alter sensitivity to Growth Hormone (GH). We aimed to determine the 34 

relationship between adiposity, genetic susceptibility to insulin resistance or insulin secretion, and response to GH 35 

treatment in short children born small for gestational age (SGA). 36 

Methods: In 89 (55 boys) short prepubertal SGA children (age,6.2±1.6years) treated with GH for one year in a 37 

multicentre study, body fat percentage was estimated at baseline and 1-year using DXA. The main outcome 38 

measures were treatment-related changes in height, IGF-1 standard deviation scores (SDS), insulin sensitivity, 39 

insulin secretion and disposition index. Combined multiallele gene scores based on single nucleotide 40 

polymorphisms with known associations with lower insulin sensitivity (GS-InRes) and insulin secretion 41 

(GS-InsSec) were analysed for their relationships with adiposity.  42 

Results: Mean percentage body fat at baseline was low compared to normative data (p=0.045), and decreased even 43 

further on GH treatment (baseline vs 1-year z-scores, -0.26±1.2 vs -1.23±1.54; p<0.0001). Baseline percentage 44 

body fat was positively associated with IGF-1 responses (p-trends=0.042), first-year height gains 45 

(B[95%CI]:0.61cm/year [0.28,0.95]; p<0.0001), insulin secretion at baseline (p-trends=0.020) and at 1-year 46 

(p-trends=0.004), and disposition index at 1-year (p-trends=0.024). GS-InRes was inversely associated with BMI 47 

(-0.13SDS per-allele [-0.26,-0.01]; p=0.040), body fat (-0.49% per-allele [-0.97,-0.007]; p=0.047), and limb fat 48 

(-0.81% per-allele [-1.62,0.00]; p=0.049) at baseline. During GH treatment, GS-InRes was related to a lesser decline 49 

in trunk fat (0.38% per-allele [0.16,0.59]; p=0.001) and a higher trunk-limb fat ratio at 1-year (0.04 per-allele 50 

[0.01,0.08]; p=0.008). GS-InSec was positively associated with truncal fat (0.36% per-allele [0.09, 0.63]; p=0.009). 51 

Conclusions: Adiposity in SGA children has favourable effects on GH sensitivity and glucose metabolism. The 52 

associations with multiallele scores support a causal role of insulin resistance in linking lower body fat to reduced 53 

sensitivity to exogenous GH.  54 

55 
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Introduction: 56 

Increased body fat, in particular, central fat is thought to have a major role in the development of metabolic risk 57 

factors in children born small for gestational age (SGA) (1). However, in contrast to the majority of SGA children 58 

who undergo catch-up growth during infancy, short SGA children have significant deficits in body fat, mainly in 59 

the subcutaneous compartment compared with children born appropriate for gestation (AGA) (2,3). The phenotype 60 

of low adiposity is not an expected consequence of Growth Hormone (GH) deficiency or GH resistance (2) and 61 

therefore other mechanisms such as alterations in the neuroendocrine regulation of appetite and adipose tissue 62 

development may determine growth and body composition in these children (4). In short SGA children who fail to 63 

catch-up, GH treatment is licenced to improve linear growth (5). GH is a crucial regulator of substrate metabolism 64 

during fasting and its anabolic actions are tightly coupled with energy balance (6). Low adiposity in SGA children 65 

may reflect suboptimal energy balance and alter their sensitivity to GH.  66 

 67 

Developmental programming of multiple endocrine axes has been hypothesised to underlie the increased risk for 68 

development of type 2 diabetes (T2D) in low birth-weight individuals (7). The close relationship between the actions 69 

of GH/IGF-1 axis and glucose metabolism may explain the link between reduced statural growth and metabolic 70 

abnormalities in SGA children(6,7). In addition, lower insulin sensitivity and insulin secretion are associated with 71 

reduced responses to GH treatment in SGA children(8,9). We recently employed a Mendelian randomisation 72 

approach to illustrate the likely causal link between insulin resistance and GH sensitivity in short SGA children: 73 

multiallele scores indicative of insulin resistance were associated with lower IGF-1 and height responses to GH 74 

treatment(10). In adults, the same multiallele score is associated with a lesser body fat, particularly in the 75 

gluteofemoral region and limbs(11). Furthermore, the multiallele score indicative of lower insulin secretion was 76 

associated with a reduced spontaneous growth in SGA children and higher android fat in adults (10). Therefore, 77 

insulin resistance and/or insulin secretion could potentially link adiposity to GH-treatment responses in short SGA 78 

children. 79 
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The aim of the study was to test the hypothesis that variations in adiposity in short SGA children could be related 80 

to sensitivity to GH, and to explore whether the gene polymorphisms indicative of insulin sensitivity or insulin 81 

secretion are also associated with body composition in these children.  82 

Methods: 83 

Study Population: 84 

The subjects were from the North European Small for Gestational Age Study (NESGAS), a multi-centre study of 85 

GH treatment in short prepubertal SGA children involving 9 investigating centres in 4 North European countries 86 

(Denmark, Ireland, Sweden, and UK) and has been reported in detail previously (12). Briefly, the study population 87 

included prepubertal SGA children with persistent short stature at 4 years of age; the girls were aged between 4 and 88 

9 years and the boys between 4 and 10 years. During the first year, children were treated with a uniform high dose 89 

of GH (67µg/kg/day) to induce catch-up growth. The study (NESGAS EudraCT 2005-001507-19) was approved 90 

by the relevant ethics committees, institutional review boards and national drug authorities at each study centre and 91 

performed according to the Helsinki II declaration. Written informed consent was obtained from parents of the 92 

children before any study activities.  93 

 94 

Study assessments:  95 

The participants were assessed at study entry (baseline) and at every 3 months when anthropometry and pubertal 96 

assessments were undertaken and serum IGF-1 levels were measured. They also underwent a short intravenous 97 

glucose tolerance test (IVGTT) at baseline and at 1-year to evaluate insulin sensitivity and secretion (8).  98 

DXA scans: Body composition was assessed by dual-energy X-ray absorptiometry (DXA) scans using Hologic 99 

QDR-1000/W scanner (Hologic Inc., Waltham, MA) (3 centres, n=39) or Lunar Prodigy DXA system (GE Medical 100 

Systems) (6 centres, n=50) at baseline and at 1-year. In one centre, the Hologic scanner was replaced with a Lunar 101 

Prodigy system during the study period and data from the children who were evaluated by two different scanners 102 

(n=7) were transformed to Lunar Prodigy DXA values using a published method (13). These children were excluded 103 

when the changes in body composition from the baseline to 1-year were analysed to avoid confounding by the type 104 



5 

 

of scanner. Regional fat distribution was assessed using the default setting for segmental analysis in the scanners. 105 

The performance of the scanners was assessed using a phantom at the start of the study. The scanners showed a 106 

good level of agreement, and the difference in percentage body fat between centres were typically 1.5% with a 107 

maximum of 2.1%. Of the 110 children who participated in the study, data on body composition were available 108 

from 89 children at baseline (incomplete data: 4, scans not carried out: 17) and 85 children at 1-year (incomplete 109 

data: 1, scans not carried out: 24). 110 

Genotyping method: The cohort was genotyped using the Metabochip, a custom Illumina iSelect genotyping array 111 

that assays nearly 200,000 single nucleotide polymorphisms (SNPs) chosen on the basis of genome-wide association 112 

study meta-analyses as previously described (10,11). In each individual, combined multiallele gene scores for 113 

insulin resistance (GS-InRes) or insulin secretion (GS-InSec) were generated as the count of the insulin sensitivity 114 

decreasing alleles at 10 variants and the insulin secretion decreasing alleles at 18 variants respectively (supplemental 115 

table-1a and1b) (10). Both combined multiallele scores have been validated in large population-based studies (11). 116 

Assays: Serum levels of IGF-1, insulin and C-peptide were assayed centrally as previously reported (8). Plasma 117 

glucose and fasting lipid profile were measured locally.  118 

 119 

Calculations: 120 

Standard deviation scores (SDS) for height, weight and BMI were derived using country-specific references (8). 121 

Insulin sensitivity was estimated from fasting glucose and C-peptide levels using the homeostatic model (HOMA) 122 

as previously reported (8). Acute insulin response (AIR) was calculated from the area under the curve of insulin 123 

response above the baseline during the first 10 minutes of IVGTT and provides a measure of the first-phase insulin 124 

secretion (14). The disposition index provides an estimate of insulin secretion adjusted for the degree of insulin 125 

sensitivity and was calculated as the product of the two (14).  126 

 127 

To allow comparisons of adiposity of the subjects in relation to healthy children, we calculated z-scores of the 128 

percentage body fat using population based age- and gender-specific normative data on Caucasian children 129 

(z-scoresp) (15) after appropriate transformations to adjust for the scanner types (13,16). The limb fat was calculated 130 
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as the sum of fat (in kilograms) in arms and legs, and the trunk-limb fat ratio by dividing the trunk fat by limb fat. 131 

We expressed the body fat as the percentage of total mass as it provided an estimate of adiposity independent of 132 

body size and calculated using the formula: percentage fat in a region = fat mass of the region (kg) x100/ total mass 133 

of the region (kg).  134 

 135 

Statistics: 136 

The variables for insulin and C-peptide levels, insulin sensitivity, AIR and disposition index were log-transformed 137 

to normality. Although percentage body fat z-scoresp were derived using normative data, significant residual 138 

associations with age and gender were observed. Therefore, we derived ‘within-cohort’ z-scores of percentage body 139 

fat at baseline (z-scoresc) as an estimate of adiposity independent of these factors from a linear regression model 140 

with percentage body fat as the dependent variable, and age, gender and type of DXA scanner as covariants. To 141 

determine the associations of baseline adiposity, the children were categorised into tertiles of percentage body fat 142 

z-scoresc. The effect of baseline adiposity in predicting first-year height velocity was assessed by including 143 

percentage body fat z-scoresc in Ranke’s height prediction model for SGA children (17), which includes variables 144 

of age, weight SDS at start of treatment, GH dose and midparental height SDS. Associations between adiposity and 145 

multiallele scores were explored using regression models which also included age and gender to reduce the 146 

variability in the data. Statistical analyses were performed using the statistical package IBM SPSS statistics (version 147 

20; SPSS Inc.). The data are presented as mean (SD) unless otherwise specified. 148 

 149 

Results: 150 

The study included 89 Caucasian children (55 boys) with a mean age of 6.2±1.6 years. 151 

Baseline adiposity:  152 

At baseline, the children had lower mean percentage body fat (z-scoresp, -0.26±1.2, p=0.045) and BMI (-1.29±1.37 153 

SDS, p<0.0001) compared with healthy Caucasian children (12,15) (Table-1, Figure-1B). Although, percentage 154 

body fat z-scoresp were derived using age and gender-specific normative data, it showed residual associations with 155 
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age (r=-0.21, p<0.05) and male vs. female gender (r=0.66, p<0.0001). Percentage body fat and the z-scoresp were 156 

not associated with height SDS. The tertile groups for baseline percentage body z-scoresc were similar in age and 157 

height SDS (Table-2); but the highest tertile group had greater BMI SDS (p-trends=0.04), percentage fat in trunk 158 

and limbs (all p-trends <0.0001), and trunk-limb fat ratio (p-trends=0.019). The tertile groups had similar levels of 159 

IGF-1, glucose, insulin and C-peptide, and insulin sensitivity, however, the highest tertile group had greater AIR 160 

(p-trends=0.02) (Figure-2E). 161 

Changes in body composition and glucose metabolism during GH treatment:  162 

During the first year of GH treatment, catch-up growth was accompanied by increases in lean body mass (p<0.0001) 163 

and bone mineral content (p<0.0001) (Table-1). Conversely, total body fat mass and limb fat mass declined (both 164 

p<0.0001) whereas trunk fat mass remained unchanged resulting in an increased trunk-limb fat ratio at 1-year 165 

(Figure-1). The differential changes in fat mass compared to lean body mass and bone mineral content resulted in 166 

a markedly reduced percentage fat in the whole body, limbs and trunk (all p<0.0001) (Figure-1). GH treatment led 167 

to considerable increases in height SDS, BMI SDS, IGF-1 SDS, and fasting insulin and C-peptide levels (Table-1). 168 

Insulin sensitivity decreased substantially; however, a compensatory increase in insulin secretion resulted in an 169 

unchanged disposition index. Triglyceride levels also increased, but no changes in total, LDL or HDL- cholesterol 170 

were observed. 171 

 172 

Adiposity and response to GH treatment: 173 

Body composition: Children in the highest tertiles of percentage body fat z-scoresc showed the greatest loss of 174 

percentage body fat in the whole body (p-trends=0.005), trunk (p-trends=0.0001) and limbs (p-trends=0.002) 175 

(Table-2, Figure-2). Nevertheless, the baseline differences in adiposity between the groups persisted at 1-year of 176 

treatment, with the highest tertile group still having the greatest fat percentage in the whole body (p-trends=0.001), 177 

trunk (p-trends<0.0001) and limbs (p-trends=0.057). 178 

Height and IGF-1 response: Increase in height SDS was positively associated with baseline percentage body fat 179 

z-scoresc (p-trends=0.038). In this study, variance in the first-year height velocity on GH treatment predicted by 180 

Ranke’s model (R2=0.15) was relatively low because of the use of a fixed GH dose. The addition of percentage 181 
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body fat z-scoresc explained a further 12% variance in the first-year height velocity (p<0.0001, R2=0.27) (Table-3). 182 

We evaluated the associations of regional fat distribution on first-year height velocity by deriving z-scores for trunk 183 

and limb fat percentages at baseline (adjusted for age, gender, and scanner type). The addition of percentage limb 184 

fat z-scores explained a higher variance in the first-year height velocity (B [95 %CI]: 0.77cm/year [0.37, 1.17], 185 

p<0.0001, R2= 0.25) compared with trunk fat z-scores (0.61cm/year [0.24, 0.98], p=0.001, R2= 0.22) in the Ranke’s 186 

model. Furthermore, percentage limb fat z-scores explained an additional 5% variance when added to the model 187 

with percentage trunk fat z-scores (R2 increased from 0.22 to 0.27, p [R2 change]=0.031). Higher total body 188 

percentage body fat z-scoresc were associated with greater IGF-1 responses (p-trends=0.042) and IGF-1 levels at 189 

1-year (p-trends=0.036). The addition of changes in IGF-1 SDS from baseline to 1-year further increased the 190 

explained variance in the first-year height velocity from 27% to 33% (p [R2 change]=0.013) (Table-3), however, 191 

the effects of the baseline percentage body fat remained significant. Reductions in body fat percentage during GH 192 

treatment were strongly associated with increased height gains independent of the baseline body fat (r=0.47, 193 

p<0.0001), but they were not related to IGF-1 responses. Decreases in the limb fat percentage (r=0.41, p=0.001) 194 

were more strongly related to height gains compared with the decreases in the trunk fat percentage (r=0.25, p=0.053) 195 

independent of the corresponding fat percentages at baseline.  196 

Glucose and lipid metabolism: During GH treatment, changes in glucose, insulin and C-peptide levels, and insulin 197 

sensitivity were similar across the tertile groups. However, children in the highest tertile group had greater increases 198 

in AIR during treatment (p-trends=0.014) resulting in higher AIR (p-trends=0.004) and disposition index (p=0.024) 199 

at 1-year (Figure-2E&2F). No differences were observed in the changes in fasting lipids between the tertile groups 200 

(data not shown). 201 

 202 

Multiallele scores and body composition:  203 

Insulin sensitivity: At baseline GS-InRes was inversely related to BMI SDS (B [95 %CI]: -0.13 SDS per-allele 204 

[-0.26, -0.01], p=0.040) and percentage fat in the whole body (-0.49% per-allele [-0.97, -0.007], p=0.047) and limbs 205 

(-0.81% per-allele [-1.62, 0.00], p=0.049), but not in trunk (Table-4). During GH treatment, a higher GS-InRes was 206 

associated with lesser declines in total body fat (0.31% per-allele [0.10, 0.51], p=0.004) and trunk fat (0.38% 207 
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per-allele [0.16, 0.59], p=0.001), and therefore increases in trunk-limb fat ratio (0.03 per-allele [0.01, 0.05], 208 

p=0.003). At 1-year, GS-InRes was still inversely associated with percentage fat in the limbs (-0.81% per-allele 209 

[-1.49, -0.13], p=0.020) and positively associated with trunk-limb fat ratio (0.04 per-allele [0.01, 0.08], p=0.008). 210 

Insulin secretion: GS-InSec was positively associated with percentage trunk fat at baseline (0.36% per-allele [0.09, 211 

0.63], p=0.009) and at 1-year (0.25% per-allele [0.01, 0.50], p=0.045) (Supplemental Table-2). However, it was not 212 

associated with percentage fat in the whole body or limbs. 213 

214 
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Discussion: 215 

In this study of short SGA children, higher pre-treatment adiposity predicted greater height gains and IGF-1 216 

response during GH treatment and increased β-cell function. Consideration of the baseline whole body and regional 217 

adiposity substantially improved the prediction of first-year height responses. Analysis of informative multiallele 218 

scores supported the likely causal role of insulin resistance in linking reduced body fat, particularly the peripheral 219 

body fat, to lower sensitivity to GH treatment. 220 

 221 

In this large cohort, we confirmed the findings of reduced body fat in short SGA children (2,3,18). Previous studies 222 

using MRI scans (3,18) or skinfold thickness measurements (2,19) have reported deficits in subcutaneous fat both 223 

in the trunk and limbs, but similar visceral fat compared to AGA children (18). Alterations in adipose tissue 224 

development, adipokine signalling to the brain, and neuroendocrine regulation of appetite have been reported in 225 

animal models of intrauterine growth retardation associated with rapid catch-up growth (20,21). Conversely, similar 226 

mechanisms may be relevant in short SGA children with no catch-up growth, as they have a reduced appetite and 227 

food intake despite lower leptin levels compared with AGA controls (22). Nevertheless, the low adiposity reflects 228 

suboptimal energy stores and is consistent with the low levels of insulin and IGF-1 in short SGA children compared 229 

with weight-matched AGA controls (6). Anabolic actions of GH are closely linked to overall energy balance as 230 

shown by the increased IGF-1 responses in obesity and the low IGF-1 levels despite greater GH secretion during 231 

fasting (6,23). Our findings of lower IGF-1 and growth responses in children with lesser adiposity suggest that 232 

reduced sensitivity to exogenous GH related to suboptimal energy stores contributes to a poorer treatment effect. 233 

Alterations in GH/IGF-I axis ranging from relative GH deficiency to resistance may also explain these associations. 234 

However, overall leanness of these children as a group and that adiposity is unrelated to IGF-1 levels or insulin 235 

sensitivity suggest that they are less likely to have a primary role (2). Baseline adiposity predicted height gains 236 

independent of IGF-1 responses, which imply that pathways of GH action other than the hepatic IGF-1 generation 237 

are also influenced by the overall energy balance. The growth prediction models showed a substantial effect of 238 

baseline adiposity in promoting linear growth on GH treatment, however, the explained variance was insufficient 239 

(27%) for it to be used in clinical settings (24).  240 
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 241 

The energy balance is probably important in other childhood disorders treated with GH and may explain the 242 

inclusion of weight in the height prediction models for GHD patients (24). However, it is particularly relevant to 243 

SGA children who have low adiposity(17). Our observations of preferential loss of peripheral body fat during GH 244 

treatment support previous reports(2,19,25) and contrast the predominant effect on central fat in GHD patients 245 

(6,26). We postulate that the pattern of fat loss in SGA children results from further declines in energy stores as the 246 

limb depots are primarily related to long-term fat storage(27). A stronger relationship between growth response and 247 

limb fat at baseline compared to the trunk fat support this hypothesis. Furthermore, we found strong associations 248 

between first-year height gains and declines in body fat, particularly in the limbs, which suggests that rapid growth 249 

occurs at the expense of energy stores. The reduction of percentage body fat in our study (29%) on a higher GH 250 

dose (67µg/kg) was greater than that (21%) reported on the more common lower GH dose (35µg/kg), and is 251 

consistent with dose-dependent effects of GH on growth and lipolysis(6,17). 252 

 253 

The findings of a relationship between lower adiposity, lesser insulin secretion and disposition index before and 254 

during GH treatment could reflect a physiological adaptation to prevent hypoglycaemia as seen during fasting and 255 

other suboptimal nutritional states (28,29). These associations may be mediated through alterations in the IGF-1 256 

generation, which is important for maintaining β-cell function (30). The reduced β-cell function associated with 257 

lower adiposity could have long-term implications as thinness during childhood is related to an increased risk for 258 

T2D (31).  259 

 260 

Following an initial marked decrease, body fat is reported to return to pre-treatment ranges in subsequent years 261 

when growth velocity declines(25). However, young SGA adults after stopping GH treatment have a tendency for 262 

a lesser limb fat percentage despite a higher total body fat percentage compared to AGA adults (32). Recently, fat 263 

depots in limbs and gluteofemoral region are shown to store triglycerides long-term more efficiently compared with 264 

the trunk fat and linked to favourable metabolic outcomes (11,27). The total number of adipocytes, which is fixed 265 

by late childhood, may also be a critical factor in determining the expandability of subcutaneous adipose tissue and 266 
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metabolic decompensation in response to nutrient excess(21,33,34). Based on our findings of a positive relationship 267 

between adiposity, responses to GH treatment and β-cell function, conserving peripheral body fat could form the 268 

target for nutritional interventions to optimise energy balance in SGA children treated with GH. 269 

 270 

Recent findings that common genetic variants for insulin resistance are related to lesser gluteofemoral and limb fat 271 

suggest an important role of expandability of regional subcutaneous adipose tissue in metabolic outcomes (11). We 272 

have observed for the first time the same relationship (with larger observed effect sizes) in a selected group of SGA 273 

children already present before GH treatment, which persisted at 1-year on treatment. The observed associations 274 

here, between lower adiposity and both genetic susceptibility to insulin resistance and lower growth response to GH 275 

treatment, complement our reported associations between the same alleles and lower growth and IGF-1 responses 276 

to GH treatment in the same cohort(10). Although Mendelian Randomisation analyses cannot formally model causal 277 

mediation, these findings support a causal role for insulin resistance in mediating the effects of lower adiposity on 278 

lesser GH action (Supplementary Figure-1). We speculate that these pathways could be linked to the hepatic IGF-1 279 

generation and IGF-1 sensitivity. Reported effects of metformin treatment on improving linear growth despite lower 280 

IGF-1 levels in low birth-weight girls with premature adrenarche support this hypothesis (35,36). During treatment, 281 

the insulin resistance alleles were inversely related to reductions in body fat further suggesting reduced sensitivity 282 

to GH. However, the alleles were related to lesser reductions in the trunk fat and, therefore, an increased trunk-limb 283 

fat ratio at 1-year. We speculate that these changes could be due to the reduced function of peripheral adipose tissue 284 

and preferential fat storage centrally when lipid turnover is increased by GH treatment (6). The association between 285 

insulin secretion lowering alleles and higher trunk fat been reported in adults (11). Although its significance is not 286 

clear, this association could provide a link between a phenotype resulting from prenatal growth restraint with a 287 

tendency for central fat deposition and an increased risk for T2D (27,37). 288 

 289 

Our study has some drawbacks. Although percentage body fat is a commonly used measure of adiposity in children, 290 

it is limited by the potential association with height(38). However, height was unrelated to adiposity in our selected 291 

group of lean subjects. The reasons for the residual associations between population derived z-scores for percentage 292 
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body fat, and age and gender in the study were not clear(15). We speculate that comparisons to normative data from 293 

a different type of DXA scanner is an important reason and may underlie the higher pre-treatment body fat 294 

percentage in our study compared to previous reports (z-scores, -0.26 vs -0.6 to -1.2) (19,39). We used the within-295 

cohort z-scores for percentage body fat in the calculations rather than further adjusting population derived z-scores 296 

for age and gender to avoid complex models in this modestly sized study. The associations between multiallele 297 

scores and body composition were modest; however, they were consistent when assessed at both baseline and at 298 

1-year, and support similar findings in adults. Long-term illness may confound our observations, however, we 299 

excluded children with syndromes, severe learning difficulties or other disorders that may influence growth (8). We 300 

did not measure adipokines; further studies evaluating these and epigenetic changes in adipose tissue will be 301 

valuable to delineate the pathways underlying our findings. 302 

  303 

In conclusion, our findings suggest that greater adiposity has beneficial effects on responses to GH treatment and 304 

glucose metabolism in short SGA children. Mechanisms associated with insulin resistance link lower adiposity and 305 

reduced response to GH treatment in these children. While the association between genetic susceptibility to insulin 306 

resistance and lower adiposity appears to be generalizable across adults and children, the conclusions linking these 307 

factors to GH treatment responses are limited to the population studied here. 308 

 309 
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Figure Legends 439 
 440 

Figure-1: Changes in body fat during Growth Hormone treatment.  441 

Total body fat percentage (A), z-scores for total body fat percentage (D), trunk fat mass in grams (B) and as 442 

percentage of total trunk mass (C) , limb fat mass in grams (E) and as percentage of total limb mass (F). Bars 443 

represent means and error bars the standard error of means. Black and empty bars represent measurements at 444 

baseline and 1-year respectively; # z-scores for total body fat percentage are based on normative data (z-scoresp); 445 

p-values (*) are from the comparison between baseline and 1-year measurements; **, p<0.001 and ***, p<0.0001; 446 

 447 

Figure-2: Changes in body fat, height, IGF-1 and measures of glucose metabolism in the tertile groups for 448 

percentage body fat z-scores at baseline during 1 year of Growth Hormone treatment.  449 

Total body fat percentage (A), change in IGF-1 SDS (B) and height SDS (C), insulin sensitivity as HOMA % (log) 450 

(D), insulin secretion as log of acute insulin response (E) and Disposition Index (log) (F). Bars represent means and 451 

error bars the standard error of the means. Black and empty bars represent measurements at baseline and 1 year 452 

respectively; grey bars represent changes in measurements from baseline to 1 year. # tertiles of z-scores for total 453 

body fat percentage derived within the cohort (z-scorec), * represents p-trends across the tertile groups; *, p<0.05, 454 

**, p<0.01 and ***, p<0.001. In y-axes with log-transformed values, a break has been introduced (Figures E-F) to 455 

display the error bars and trends more clearly. 456 

 457 
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Table -1: Body composition and metabolism during first year of Growth Hormone treatment 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data presented as means (SD) 

* Z-scores for percentage body fat calculated based on normative data (z-scorep) 

 

 

 

  

 Baseline 1-year P value 

Anthropometry    

Height SDS -3.35 (0.74) -2.31 (0.69) <0.0001 

Weight SDS -3.10 (1.03) -2.12 (1.00) <0.0001 

BMI (kg/m2) 14.16 (1.49) 14.68 (1.62) <0.0001 

BMI SDS -1.34 (1.38) -0.96 (1.29) <0.0001 

Body Composition (DXA)    

Total lean mass  (kg) 11.5 (2.66) 15.6 (3.45) <0.0001 

Bone Mineral Content (g) 457 (166) 606 (188) <0.0001 

Total body fat mass (kg) 2.26 (1.06) 2.06 (1.12) 0.007 

Trunk fat mass (kg) 0.68 (0.37) 0.72 (0.41) 0.13 

Limbs fat mass (kg) 1.10 (0.68) 1.00 (0.67) 0.0002 

Total body fat (%)  15.8 (5.80) 11.2 (4.70) <0.0001 

total body fat % (z-score) * -0.26 (1.21) -1.23 (1.54) <0.0001 

Trunk fat (%) 10.6 (4.66) 8.63 (4.03) <0.0001 

Limb fat (%) 23.1 (9.70) 14.6 (7.70) <0.0001 

Trunk-limb fat ratio 0.61 (0.20) 0.84 (0.32) <0.0001 

Biochemistry    

IGF- I (SDS) -1.09 (1.28) 2.88 (1.52) <0.0001 

Glucose (mmol/l) 4.32 (0.66) 4.70 (0.55) <0.0001 

Insulin (pmol/l) (log) 1.19 (0.28) 1.59 (0.22) <0.0001 

C-peptide (pmol/l) (log) 2.30 (0.24) 2.61 (0.17) <0.0001 

Insulin sensitivity (HOMA) 

(log) 2.38 (0.25) 2.06 (0.17) <0.0001 

Acute Insulin Response (log) 3.13 (0.24) 3.39 (0.26) <0.0001 

Disposition Index (log) 5.51 (0.24) 5.46 (0.23) 0.11 

Total Cholesterol (mmol/L) 3.94 (0.72) 3.88 (0.70) 0.38 

LDL Cholesterol (mmol/L) 2.23 (0.63) 2.15 (0.58) 0.11 

HDL Cholesterol (mmol/L) 1.47 (0.35) 1.42 (0.33) 0.070 

Triglycerides  (mmol/L) 0.64 (0.33) 0.83 (0.40) 0.001 

Table Click here to download Table DXA analysis Results Table 1.125082015.docx 

http://www.editorialmanager.com/jcem/download.aspx?id=380022&guid=a8a48d0d-0eeb-47ad-9eb0-12fc2b996316&scheme=1
http://www.editorialmanager.com/jcem/download.aspx?id=380022&guid=a8a48d0d-0eeb-47ad-9eb0-12fc2b996316&scheme=1
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Table-2: Body composition, glucose metabolism and response to Growth Hormone treatment in patients categorised by tertiles of 

z-scores* for total body fat percentage at baseline 

Data presented as means (SD). * within cohort z-scores (z-scorec) for total body fat percentage at baseline adjusted for age, gender and 

type of scanner;  

 

 

 Tertiles of baseline total body fat 
P Trends 

 Low Middle High 

Baseline     
 n (male) 30 (19) 29 (19) 30 (17) NS 

Age (years) 6.04 (1.53) 5.95 (1.50) 6.50 (1.72) 0.36 

Height (SDS) -3.30 (0.60) -3.53 (0.85) -3.26 (0.73) 0.32 

Weight (SDS) -3.41 (0.79) -3.24 (0.93) -2.71 (1.23) 0.025 

BMI (kg/m2) 13.65 (1.12) 14.3 (0.91) 14.66 (2.06) 0.035 

BMI (SDS) -1.73 (1.14) -1.10 (0.91) -0.89 (1.69) 0.040 

Total body fat (%) 11.9 (4.90) 16.0 (4.20) 20.5 (4.80) <0.0001 

Total body fat % (z-score)* -0.88 (0.36) -0.17 (0.19) 0.89 (0.51) <0.0001 

Trunk fat (%) 7.27 (2.51) 9.72 (2.42) 15.8 (4.26) <0.0001 

Limb fat (%) 17.8 (8.80) 24.0 (8.60) 28.0 (7.90) <0.0001 

Trunk-limb fat ratio 0.59 (0.18) 0.56 (0.19) 0.70 (0.20) 0.019 

IGF-I (SDS) -1.12 (1.09) -1.18 (1.35) -1.00 (1.40) 0.87 

Glucose (mmol/L) 4.17 (0.61) 4.34 (0.64) 4.47 (0.72) 0.22 

Insulin (pmol/L) (log) 1.15 (0.26) 1.26 (0.23) 1.27 (0.26) 0.14 

C-peptide (pmol/L) (log) 2.26 (0.24) 2.35 (0.23) 2.32 (0.23) 0.41 

HOMA Insulin sensitivity (%) (log) 2.42 (0.26) 2.33 (0.24) 2.36 (0.25) 0.38 

Acute insulin response (log) 3.04 (0.23) 3.18 (0.20) 3.21 (0.26) 0.020 

Disposition index (log) 5.46 (0.26) 5.51 (0.21) 5.57 (0.26) 0.29 

1-year     

Height (SDS) -2.36 (0.56) -2.42 (0.81) -2.17 (0.70) 0.36 

Weight (SDS) -3.41 (0.79) -3.24 (0.93) -2.71 (1.23) 0.010 

BMI (kg/m2) 14.1 (1.20) 14.6 (1.17) 15.3 (2.13) 0.017 

BMI (SDS) -1.30 (1.16) -1.04 (0.96) -0.47 (1.69) 0.12 

Total body fat (%) 8.97 (4.06) 11.1 (4.19) 13.8 (4.77) 0.001 

Trunk fat (%) 6.13 (1.82) 8.73 (4.41) 11.1 (3.82) <0.0001 

Limb fat (%) 12.1 (7.60) 14.6 (7.70) 17.2 (7.30) 0.057 

Trunk-limb fat ratio 0.85 (0.38) 0.81 (0.31) 0.85 (0.26) 0.87 

IGF-I (SDS) 2.57 (1.34) 2.63 (1.61) 3.46 (1.47) 0.036 

Glucose (mmol/L) 4.62 (0.49) 4.64 (0.60) 4.78 (0.58) 0.48 

Insulin (pmol/L) (log) 1.54 (0.23) 1.59 (0.20) 1.65 (0.21) 0.19 

C-peptide (pmol/L) (log) 2.58 (0.16) 2.62 (0.17) 2.63 (0.19) 0.59 

HOMA Insulin sensitivity (%) (log) 2.09 (0.17) 2.05 (0.17) 2.03 (0.19) 0.55 

Acute insulin response (log) 3.27 (0.22) 3.45 (0.22) 3.48 (0.28) 0.004 

Disposition index (log) 5.36 (0.23) 5.50 (0.22) 5.52 (0.22) 0.024 

Changes from baseline to 1-year     

Delta Height (SDS) 0.94 (0.33) 1.04 (0.22) 1.14 (0.31) 0.038 

Delta Weight (SDS) 1.02 (0.40) 1.03 (0.34) 1.05 (0.49) 0.96 

Delta BMI (kg/m2) 0.46 (0.46) 0.47 (0.80) 0.72 (0.72) 0.064 

Delta BMI (SDS) 0.48 (0.45) 0.45 (0.46) 0.40 (0.54) 0.84 

Delta total body fat (%) -2.94 (1.38) -3.88 (1.61) -5.30 (2.99) 0.001 

Delta trunk fat (%) -0.90 (1.56) -1.76 (1.79) -3.61 (2.83) <0.0001 

Delta limb fat (%) -5.47 (2.90) -7.80 (3.36) -9.33 (4.88) 0.003 

Delta trunk-limb fat ratio 0.27 (0.33) 0.18 (0.18) 0.11 (0.18) 0.19 

Delta IGF-I (SDS) 3.69 (1.32) 3.80 (1.45) 4.17 (1.35) 0.042 

Delta glucose (nmol/L) 0.45 (0.55) 0.30 (0.48) 0.38 (0.46) 0.49 

Delta insulin (pmol/L) (log) 1.99 (0.09) 1.98 (0.09) 2.02 (0.08) 0.27 

Delta C-peptide (pmol/L) (log) 2.81 (0.15) 2.73 (0.49) 2.84 (0.09) 0.47 

Delta HOMA- Insulin Sensitivity (%) (log) 3.21 (0.10) 3.24 (0.05) 3.23 (0.04) 0.35 

Delta Acute Insulin Response  (Log) 3.27 (0.29) 3.40 (0.21) 3.48 (0.18) 0.014 

Delta Disposition Index (Log) 5.74 (1.10) 5.99 (0.08) 5.96 (0.15) 0.43 
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Table- 3: Effect of baseline total body fat on Ranke’s Prediction model for the first-year height response in SGA children  
 

Models B 95% CI P value 
Partial 

Correlation 

Collinearity 

(Tolerance) 
R2 

P value  

(R2 change)    

1 

Constant 13.7 11.5, 15.8 <0.0001     

Age (year) -0.31 -0.54, -0.09 0.008 -0.30 0.97   

Midparental height (SDS) 0.46 0.07, 0.85 0.022 0.26 0.96   

Weight at baseline (SDS) 0.12 -0.26, 0.50 0.52 0.07 0.93 0.15 0.008 

2 

Constant 13.04 11.1, 15.0 <0.0001     

Age (year) -0.29 -0.50, -0.08 0.008 -0.31 0.97   

Midparental height (SDS) 0.47 0.11, 0.84 0.012 0.29 0.96   

Weight at baseline (SDS) -0.04 -0.40, 0.33 0.84 -0.02 0.88   

Baseline total body fat % 

(z-score)* 
0.61 0.28, 0.95 <0.0001 0.39 0.94 0.27 0.001 

3 

Constant 10.9 8.36, 13.5 <0.0001     

Age (year) -0.19 -0.41, 0.03 0.096 -0.19 0.85   

Midparental height (SDS) 0.45 0.10, 0.79 0.012 0.28 0.95   

Weight at baseline (SDS) -0.13 -0.49, 0.23 0.48 -0.08 0.83   

Baseline total body fat % 

(z-score)* 
0.59 0.26, 0.92 0.001 0.38 0.91   

Delta IGF-1 SDS (0 to 1-yr) 0.30 0.07, 0.54 0.013 0.28 0.82 0.33 0.013 

 

* within cohort z-scores for total body fat percentage at baseline adjusted for age, gender and type of scanner (z-scorec) 

Dependent Variable: Height velocity (cm/year); B, unstandardized coefficient; CI, confidence interval 

Model 1: Ranke’s Model for prediction of first-year height velocity in SGA children; Growth Hormone dose is not included in the 

model as a fixed dose was used in the study 

Model 2: The effect of total body fat percentage on Ranke’s Prediction Model 

Model 3: Effect of the addition of change in IGF-I SDS (0 to 1-year)  
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Table 4: Associations between multiallele scores for insulin sensitivity and body composition# 

 

 
Effect size per 

allele (B) 
95 % CI P value* 

 Baseline       

BMI (SDS) -0.13 -0.26, -0.01 0.040 

Body fat (%) -0.49 -0.97, -0.01 0.047 

Limb fat (%) -0.81 -1.62, 0.00 0.049 

Arm fat (%) -1.19 -2.31, -0.06 0.038 

Leg fat (%) -0.76 -1.55, 0.03 0.060 

Trunk fat (%) -0.33 -0.77, 0.12 0.16 

Trunk-limb fat ratio 0.01 -0.01, 0.03 0.49 

 1-year    

BMI (SDS) -0.07 -0.22, 0.09 0.40 

Body fat (%) -0.39 -0.81, 0.02 0.064 

 Limb fat (%) -0.81 -1.49, -0.13 0.020 

Arm fat (%) -1.04 -1.95, -0.13 0.026 

Leg fat (%) -0.59 -1.27, 0.09 0.087 

Trunk fat (%) -0.03 -0.43, 0.37 0.88 

Trunk-limb fat ratio 0.04 0.01, 0.08 0.008 

 Changes from baseline to 1-year    

Delta body fat (%) 0.31 0.10, 0.51 0.004 

Delta limb fat (%) 0.28 -0.11, 0.68 0.16 

Delta arm fat (%) 0.18 -0.41, 0.78 0.54 

Delta leg fat (%) 0.27 -0.16, 0.70 0.22 

Delta trunk fat (%) 0.38 0.16, 0.59 0.001 

Delta trunk-limb fat ratio 0.03 0.01, 0.05 0.003 

         

# higher scores associated with lower insulin sensitivity; B, unstandardized coefficient; CI, confidence interval 

* P-values and B are derived from regression models with age and gender as covariants 
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