
MEMS-based low-cost and open-source accelerograph for earthquake

strong-motion

M. A. Bravo-Haro*, X. Ding & A.Y. Elghazouli

Department of Civil and Environmental Engineering, Imperial College London, UK

*Corresponding author: mab214@imperial.ac.uk

Abstract

This paper describes a sensing technique that has been entirely built from off-the-shelf electronic components,
with the aim of providing its construction and programming guidelines as an open-source platform which can
be continuously updated. The assessments carried out in this investigation indicate that the proposed sensor is
suitable for deployment as an accelerograph for seismic monitoring of structural systems. The results show low
levels of self- noise, considering the nature of the MEMS analogue accelerometer embedded in the sensor. The
amplitude transfer functions exhibit a flat behaviour for the full range of frequencies tested, whose boundaries
were limited by the installed capacity within the laboratory. However, this flat behaviour is expected to be
coherent up to the resonant frequency of the MEMS accelerometer, whose absolute value is much higher than
the bandwidth of frequencies of interest for seismologists and structural earthquake engineers. The clipping tests
demonstrate a high linearity, of the amplitude transfer function from low acceleration levels, up to the vicinity
of the maximum nominal recordable acceleration of ±3g, at which a typical roll-off is observed. Under long-time
operations, the sensor produces a robust performance, maintaining a steady pace of sampling. The performance
of the sensor was finally tested considering non-stationary signals, using a linear shake table to reproduce a wide
ensemble of strong-motion recordings from actual earthquakes. Intensity measures of strong-motion commonly
used in earthquake engineering were appraised, such as horizontal spectral acceleration, Arias Intensity, and
transient peaks of response.

1 Introduction

The ever-increasing precision and ever-decreasing cost of Micro Electro-Mechanical Systems (MEMS), espe-
cially MEMS accelerometers, have enabled their implementation in a variety of industrial and scientific fields,
serving a wide range of tasks that were usually solved by traditionally expensive and large devices. In the
realm of seismology and earthquake engineering, MEMS accelerometers, able to record ground accelerations
produced by earthquakes, have resulted in several prototypes of low-cost sensors and subsequent arrangement
of seismic networks completely based on MEMS sensors. This has been recently referred to as a ‘revolution in
seismic detection technology’ [1] that may transform earthquake science due to the affordability of the sensors
themselves and the maintenance of a network of this nature, among others. Early experiences include ‘The
Quake-Catcher Network’ where MEMS accelerometers, able to detect vibrations within 0.1-20 Hz and accelera-
tions usually within ±2g, behave as a strong-motion seismic station [2, 3]. Another similar network is the ‘Home
Seismometer for Earthquake Early Warnings’, initiated by the Japan Meteorological Agency, where a tri-axial
in-house MEMS sensor is used, able to record ground accelerations within a range of ±2g at 500 Hz (i.e., 500
samples per second) [4]. More recent examples include ‘The Palert Network of Taiwan’ for early earthquake
warning, whose MEMS sensors record ground accelerations within ±2g at 100 samples per second [5]. The first
European Urban Seismic Network was developed in Acireale, Italy [6], in addition to pioneering local arrays of
accelerographs developed in Lefkada, Greece [7]. It is also worth noting the exploration of MEMS accelerome-
ters embedded in smartphones, either used as fixed sensors, as in the United States Geological Survey (USGS)
project for earthquake and tsunami early warning system deployed in Chile [8], or as freely moving devices
where human-induced sources of acceleration such as walking, are identified and removed from quake-induced
accelerations powered by machine learning methods [9]. Ultimately, the performance of a Raspberry Shake
4D low-cost seismograph and accelerometer [10] was recently shown to be good enough to use as a sensor to
densify regional networks designed for studies of local and regional events [11]. Therefore, as discussed above,
the potential of MEMS accelerometers for the measurement of ground motion induced by earthquakes has been
demonstrated and documented internationally.
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Similar to earthquake studies in seismology, structural engineering has also begun to consider using MEMs-
based sensors to investigate the motions of buildings. Nonetheless, several differences need to be accounted
for, with the range of the amplitude of the accelerations being one of the most significant. For instance, the
Community Seismic Network [2] has been instrumenting buildings in California, USA, using the same sensor
described above initially designed to record free-field strong-motion at the ground level. The low-cost of the
sensors and their maintenance have enabled unprecedented dense arrays in tall buildings, when compared to
existing instrumented buildings (e.g., [12, 13]). Moreover, sensors based on MEMS accelerometers have been
developed in Structural Health Monitoring (SHM), for tracking various structural typologies and sorting differ-
ent needs, such as in bridges [14, 15, 16, 17]; and powered by different sensors [18, 19, 20].

In order to illustrate some key aspects that differentiate the peak ground acceleration (PGA) and the response
acceleration of a structure, Figure 1 shows the 5%-damped elastic response spectra of two recordings from recent
earthquakes in Chile (2010) and Mexico (2017), respectively. The response spectrum provides a summary of the
peak response of all possible linear single-degree-of-freedom systems when subjected to a particular component
of ground motion [21]. It can be observed here that the maximum acceleration experienced by a wide range of
structural systems (i.e., different periods of vibration), is significantly higher than the PGA (i.e., period equal
to zero), normally recorded by strong-motion seismic stations. In spite of the dissimilar characteristics of both
recordings, in terms of seismogenesis and soil conditions, it is interesting to observe the ratios between the peak
acceleration experienced by the structure and the PGA, whose values attain 5.10 and 5.31 for the Maule and
Puebla recordings respectively, for a 5%-damped spectral response. Therefore, when significant values of PGA
are recorded, as for instance, in the case of the Maule Earthquake recording (Figure 1a) whose PGA is equal to
0.697g, a building might undergo a peak acceleration of 3.549g, if the fundamental period of vibration is tuned
to 0.17s. This level of acceleration is typically higher than the maximum range or clipping level of existing
MEMS accelerometers or strong-motion seismic stations. In addition, it is important to mention that strength
reduction factors are frequently applied to the elastic spectrum, and therefore lower design forces are considered
for structural design, mostly due to the inelastic deformations allowed to take place in the structural system.
However, focusing the attention in the peak structural response exhibited by the roof of a multi-storey building,
response accelerations up to 18 times higher than the PGA might be attained [22], increasing even further in
the case of sensitive non-structural elements that are placed within the floor.
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Figure 1: (a) Elastic response spectrum from the 2010 Maule Earthquake in Chile, Mw = 8.8 , Channel 1, E-W,
Angol station. (b) Elastic response spectrum from the 2017 Puebla Earthquake in Mexico, Mw = 7.1, Channel
1, N-E, JC54 station. Damping ratio of 0.05 for both spectra.

This paper presents an assessment of the performance of an open-source low-cost accelerograph, built with off-
the-shelf electronic components. This is executed throughout standard tests and metrics commonly employed to
evaluate the performance of sensors for measuring vibrations, such as seismographs [23]. Suggestions for further
development of the sensor are drawn, towards real-time data collection, connectivity, power supply possibilities,
and general maintenance of a fully operational sensor.
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2 Methodology

2.1 Stationary input motion

In order to enable the use of a sensor as a reliable recorder of induced accelerations, it is essential to understand
the behaviour of the final configuration of the device, which usually comprises a MEMS accelerometer attached
to a Micro-Controller or to a small Motherboard, in addition to wiring, batteries, and often other sensors to
collect additional information (e.g., humidity, temperature). For these type of sensors, individual characterisa-
tions are recommended, given that sensors with identical off-the-shelf electronic components, produced by the
same manufacturer, may exhibit different performance [6]. Hence, if possible, in the case of MEMS sensors this
variability should be taken into account and not only for specific aspects, such as the self-noise, but as thorough
as possible (e.g., transfer functions under dynamic inputs, etc).

To characterise the actual performance of an accelerograph based on a MEMS accelerometer, standardised tests
are undertaken, as listed below:

1. Self-noise test, to determine the lowest limit of accelerations that the sensor is capable of recording under
normal conditions.

2. Box flip test, to observe potential offset and to estimate the static sensitivity of the sensor.

3. Dynamic sine waveform inputs, to build amplitude transfer functions.

4. Dynamic sine waveform inputs, to determine the highest bound of acceleration, or clipping levels, in
addition to sensor linearity.

5. Single and double integration test to recover mostly transient time-histories of velocity and displacement.

Dynamic tests were performed herein using a linear servo-controlled actuator, by attaching the sensors to the
head of the jack. In addition, for these dynamic tests, a high-accuracy commercial accelerometer (model: PCB
ICP 393B04) was used to obtain an individual reference of the output signal of the actuator. This represents
vital standard practice that, besides ascertaining the actual response of the mechanical system used for the
tests, helps to identify external sources of mechanically-induced noise. As discussed further below, the linear
actuator used for the tests, introduces some mechanical noise, in addition to some spurious behaviour in the
closed-loop feedback of the control system, mostly at the peaks of the sine wave, for high levels of induced accel-
eration. Hence, the maximum reliable frequency attained by the linear actuator was 17 Hz for sine waves with
low amplitudes, which defines the maximum frequency tested and used for the construction of the amplitude
transfers functions of the sensor. To gain insight on the robustness and variability of the proposed sensor’s
response, two identical prototypes (i.e. same electronic configuration) are subjected to the set of dynamic input
motion test (i.e., test 3 and 4).

2.2 Non-stationary input motion

A set of 52 earthquake strong-motion recordings are used to carry out dynamic analysis in a shake table, and
are then measured by the prototyped sensor and the standard commercial accelerometer described above. The
records were selected to have a wide range of key features, such as: PGA, peak acceleration, duration and
energy content. To facilitate the interpretation of results, the suite of records is divided into three sets grouped
as: far-field records, near-field with velocity pulses and near-field with no velocity pulses. A full description of
the characteristics of the recordings is presented in Section 5.1 and the recorded data are utilised to undertake
the following quantitative and qualitative assessments:

1. Accuracy assessment of the raw recorded acceleration signal, as well as velocity and displacement signals
obtained by integration of the processed recorded acceleration.

2. Error in the computation of Fourier Amplitude Spectra (FAS).

3. Precision of the 5% damped acceleration response spectrum computed using the recorded acceleration
signal.

4. Error in the computation of Arias Intensity (IA) computed using the recorded acceleration signal.

5. Reliability, robustness and bias of recorded data.
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3 Characteristics of the Sensor

This paper presents only one prototyped sensor configuration, based on an open-source Arduino UNO micro-
controller and a 3-axis analogue MEMS Adafruit accelerometer ADXL 335, whose characteristics are shown
in Table 1. This arrangement of elements has been selected due to its simplicity and robustness compared
to several other prototypes tested during this study. The simplicity can be appreciated in Figure 2 where a
schematic configuration of the sensor is drawn, and the robustness is judged by several factors, such as the
quality of the recorded data due to the timestamp stability of the sampling, or the steady uninterrupted con-
tinuous operation during long-time recording tests as presented below in detail. The micro-controller nature of
the Arduino board enables the execution of loops and feedback with a high level of precision, making it suitable
as a data acquisition (DAQ) system. The total cost of the sensor components, including: micro-controller,
MEMS accelerometer, Li-Po battery, case, and cables; amounts to less than £100. It is important to note that
although the clipping limit (i.e., ±3g) of the chosen ADXL 335 MEMS accelerometer is not particularly high, it
was selected to be consistent with the limitations of the laboratory testing equipment employed (i.e., dynamic
actuator and linear shake-table), and serves to examine the concept and methodology adopted. Figure 3 shows
a modified configuration of the sensor that was used during the tests in order to facilitate the data acquisition
process, in addition to offering access to the microcontroller during the tests. As shown in the figure, the MEMS
accelerometer is wired and encased out of the box to be attached to the linear actuator.

Interestingly, there are other configurations, although not included in this study, but that may offer powerful
capabilities to a sensor of this nature, and could be the subject of further consideration. These include the use of
a Raspberry Pi single-board micro-computer, that offers the whole environment of an operating system, among
peripheral ports and embedded sensors, such as LAN and/or wireless connectivity for transferring recorded
data. A Raspberry Pi can be used as replacement of an Arduino board, or jointly in order to exploit the micro-
controller quality of the latter and hence reducing the overheads in the Raspberry. This configuration was found
to be ideal because when a Raspberry Pi is used alone as the DAQ, 3-component sample rates are limited to 100
samples per second. In addition, several MEMS accelerometer options were tested as well, given the wide range
of off-the-shelf, low-cost devices. Here, the most significant difference rests in the analogue or digital nature of
the sensor. In the latter case, such as the digital ADXL 326 MEMS accelerometer explored within the study,
the analogue-to-digital converter is embedded in the accelerometer and allows different pre-defined ranges of
maximum recordable acceleration, up to ±16g, where the sensitivity drops as the acceleration range increases.
However, because the Arduino board can be easily configured to log voltages at 10-bit resolution, we selected
the analog ADXL 335 accelerometer for use in our proposed accelerograph.

For this prototype, various levels of sampling rates were considered, where the performance sought is the stability
of the timestamp at each recorded sample or, in other words, that the differential of time between consecutive
samples has to be constant. In addition, this needs to hold true for longer windows of time, where usually the
final timestamp is lagged due to the error accumulation. This is of particular importance in order to record
reasonable waveform and thus avoid distortions in the spectral analyses. It was found that the Arduino board
is capable of recording three input channels at 400 samples per second, plus a timestamp mark. It is interesting
to note that if only one axis of the accelerometer is recorded, 1000 samples per second can be attained with
robust performance. However, the capability of recording 3-axis at the same time is appealing for a sensor as
this, coupled with the fact that the range of frequencies of interest is much lower than the Nyquist frequency
of the rates just mentioned above. As a result, the recorded accelerations during the tests undertaken for this
research are fixed at a rate of 200 samples per second. In contrast, the commercial transducer used to compare
and validate the results is fixed at a rate of 1000 samples per second, due to the capacity of the sensor and the
data acquisition system used to handle it (i.e., National Instruments NI-9234 vibration input mode).

Table 1: MEMS accelerometer nominal characteristics

Parameter Nominal value

Nominal Maximum acceleration ±3g

Bandwidth for X and Y axis 1600Hz

Bandwidth for Z axis 550Hz

Acceleration sensitivity 300mV/g ± 30

Noise Density X and Y axis 150µg/
√
Hz rms

Noise Density Z axis 300µg/
√
Hz rms

Sensor Resonant Frequency 5.5kHz
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Figure 2: Schematic configuration of the sensor and general wiring between the Arduino board and the MEMS
accelerometer.

Figure 3: Sensor configuration used during the tests to facilitate the collection of data and final experimental
setup.

4 General Performance of the Prototyped Sensor

4.1 Sensor Self-noise

The level of inherent noise produced by the sensor enables the estimation of the weakest motion signal that can
be recorded by the device [24]. There are several methods to quantify the self-noise of a sensor, yet for this
research the Power Spectral Density (PSD) method is selected. On the one hand, the PSD is formally defined
as shown in Equation 1 as follows

Sxx =

∫ −∞
−∞

Rxx(τ)e−iwτdτ (1)

Where Sxx is the two-side PSD of the signal x(t) and Rxx is the auto-correlation function of the signal. The
self-noise of the MEMs accelerometer as a function of frequency was attained by taking the PSD of 12 hours
of data recorded by our system, as shown in Figure 4 for all 3-axes. It was assumed that the PSD of an
ambient ground motion signal was suitable low to characterise the overall system self-noise of a low-cost sen-
sor to be used exclusively for recording strong-motion acceleration signals, such as those considered in Section 5.

The acceleration PSD curves are shown in Figure 5 based on data collected with sensor 1. These were calcu-
lated using the Welch method [25], using 32 Hanning windows and an 50% overlap within these, which were set
based on sensitivity tests. In general, the three axes present a similar response and shape across the frequency
range. However, this trend remains valid for the bandwidth of frequencies higher than about 1.0 Hz since, for
lower frequencies, axis Z shows a 4 to 5 times higher acceleration PSD with respect to convergent behaviour
of axes X and Y . The typical specifications for RMS noise given by the manufacturer (see Table 1) are shown
in dashed lines. In the relevant bandwidth of frequencies for earthquake engineering (∼ 0.2s − 20s), the three
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Figure 4: Excerpt of a 12 hours continuous recording under no excitation of the sensor, for all three axes of the
MEMS accelerometer.

axes show a relatively low self-noise PSD with respect to signals produced by moderate earthquakes (i.e., good
signal-to-noise ratio), hence enabling signal recording [26, 27]. The PSD displayed in Figure 5 are averaged
smoothed values estimated using a 10-point and 20-point mean moving algorithm, for frequencies lower and
higher than 1.0 Hz, respectively.

Figure 5: Averaged power spectral density of the acceleration recorded through 12 hours of motionless state of
the sensor, for every axis of MEMS accelerometer. Dashed lines show the RMS noise values provided by the
manufacturer.

Additionally, the 12 hours long samples were used to observe potential offsets or drifting over time, which were
estimated as the average of the signal x(t) over the window of time. The average of the 12 hours recording for
each individual axis are: 0.180 m/s2, 0.088 m/s2, and 0.118 m/s2 (−1g) for X, Y, and Z axes, respectively.
Correspondingly, the standard deviations per axis are: 1.441x10−3 m/s2, 2.848x10−3 m/s2, and 3.087x10−3
m/s2 for X, Y, and Z axis, respectively. It is important to note that the measured average in all axis is steady
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through time, and no irregular trends or time-dependant increasing average values are observed, enabling the
removal or detrending of these permanent offsets to calibrate the sensor. Additionally, the maximum absolute
acceleration of this input signal reached 0.06g. Finally, it should be noted that further self-noise tests on several
sensors would be needed in order to enable a more statistically refined assessment of the comparative reliability
and variability of the specific sensor response.

4.2 Box-flip tests

To appraise offset, axis orientation and static or 0Hz sensitivity of the sensor, a box-flip test was carried out.
Herein, the sensor is accommodated in a cubic box in such a way that the direction of axis of the MEMS ac-
celerometer are parallel to the edges of the box. This enables flipping of the box in turn through the 6 possible
positions, in order to use the gravitational acceleration as a reference for all axis in the upward and downward
orientation. Theoretically, this method allows estimation of the static sensitivity, offset, and orientation of
every axis, along with potential accumulated drifts once the box is set to the initial position [28]. Commonly,
a measure of the Earth’s static field (e.g., by using an absolute gravimeter) is used as a reference to estimate
the difference with the values recorded by the sensor. However, due to the unavailability of this measure, a
referential value of g equal to 9.806 m/s2 is used herein and the test is repeated 10 times, in order to assess the
variability of recorded values.

Figure 6 shows a full sequence of one of the box-flip tests based on the performance of sensor 1. Sequentially
from left to right, the orientation of the sensor is shown for the static position in the top plot. The pertur-
bations of the signal in between the static positions are due to the transient movement of the box to attain
the next position. A median of the values recorded during the zero movement window, bounded by the dashed
vertical lines, was used to compute the sensitivity and variability of the sensor. Additionally, negligible drifts
are observed at the end of the sequence with respect to the initial measure at the beginning of the test. The
latter is crucial to accurately retrieve displacements through double-integration of the acceleration recording,
as shown and discussed below in Section 4.5.

The computed static sensitivity, which can be seen as the slope of the calibration curve, is on average over the
three axes equal to 316.36mV/g. This value is in close agreement with the typical sensitivity reported by the
manufacturer, which is 300mV/g± 30. This was estimated using directly the raw data recorded during the zero
movement window within the box-flip test. It is noteworthy that low-cost commercially available MEMS ac-
celerometers are becoming more precise, even when compared with recently reported static sensitivity levels [28].
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Figure 6: Flip box test based on raw data recorded by the sensor. The sequence of positions of the sensor
during the test are shown at the top plot, where the arrow indicates the upward and downward position of the
axis with respect to a flat surface.
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4.3 Transfer function tests

A transfer function is the ratio of the output to the input of the system. In this case, it relates the amplitude and
the phase of the input signal applied to the dynamic jack to that recorded by the sensor. The attention is herein
focused on estimating the ratio of the amplitude response for a wide range of signals with different frequencies,
in order to establish the range of “flat-response” of the sensor. Towards this aim, a uniaxial dynamic actuator
was used to input sinusoidal waves with several amplitudes and frequencies, which were recorded at the same
time by the MEMS sensor and the transducer. As mentioned above, the input signal (i.e. ideal synthetic signal)
followed by the control system of the dynamic actuator, differs from the end actual performance of the jack,
hence the information recorded by the high fidelity transducer is used as a reference in the forthcoming analyses.

The computation of the amplitude ratios can be performed directly on the time-domain by a root-mean-square
(RMS) of the recorded accelerations, or it can be carried out on the frequency-domain through a spectral anal-
ysis. The main shortcoming of the former is the sensitivity of the RMS to noise from different sources that are
captured by the sensor [28], especially in the case of low frequency weak signals, that demand the maximum
length of the actuator stroke to achieve a minimum level of excitation in terms of acceleration, thus external and
internal noise is overcome. The latter spectral method is instead used in this study due to its robustness and
accuracy, and also because the recording sampling rate of the sensor is highly steady enabling frequency-domain
analyses. The methodology presented by [28] is followed to compute the total power of the dominant frequencies
of the signal. This is illustrated in Figure 7 and Figure 8 for a sine wave input with 10mm and 5Hz of nominal
amplitude and frequency respectively.

Figure 7 shows an excerpt of the measured acceleration by the MEMS sensor and the transducer, in addition to
the synthetic input signal, whose total response, of approximately 20s of duration, is then used in the spectral
analysis presented in Figure 8. The power of the signal is computed in a narrow band around the peak of the
dominant frequency which for the case of the sensor usually matches the reference input frequency; this enables
filtering-out the noise carried by frequencies out of the limits of the narrow band. To define this band, the 5
frequency points around the peak amplitudes reported by the sensor are used, and their FFT amplitudes are
employed to render a unique acceleration value through the root-mean square method.

Before discussing the amplitude ratios obtained from all wave sine input signals considered in the test, it is
worth noting that the sampling ratio of the sensor is fixed to 200 samples per seconds, whereas the transducer
is sampling at 1000 samples per second, given the capability of the DAQ system reported above. By using the
raw data of the transducer, a precise match of the synthetic sine wave input to the actuator is attained, as
shown in Figure 8.
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Figure 7: Excerpt of raw data from a sinusoidal input signal of 10 mm nominal amplitude and 5 Hz nominal
frequency.

By computing the amplitude ratios, using the spectral method on the input signals tested in the linear actuator,
the amplitude frequency response of the sensors can be obtained, as shown in Figure 9, for all axes of the MEMS
accelerometer. Specifically, 24 sine waves were considered, ranging from 0.1Hz to 0.5Hz with intervals of 0.1Hz,
and from 1Hz to 17Hz with intervals of 1Hz. In general, the amplitude ratio shows a good behaviour, given
the flatness of the amplitude response for the whole range of tested frequencies, which were limited by the
mechanical capacity of the linear actuator.

8



1 2 3 4 5 6 7 8 9
10

-3

10
-2

10
-1

10
0

10
1

Figure 8: Excerpt of raw data from a sinusoidal input signal of 10 mm nominal amplitude and 5 Hz nominal
frequency.
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Figure 9: Computed amplitude ratios versus frequency. The high fidelity transducer is used as a signal reference
instead of the synthetic signal input to the dynamic jack. (a) Sensor 1 and (b) Sensor 2

4.4 Clipping behaviour and sensor linearity

The linearity means that there is a linear relationship between the input and output signals [29]. The extent
of sensor linearity is usually computed for a given frequency at various levels of amplitude or, in other words,
a fixed frequency and variable acceleration. For sensors designed to measure strong ground-motion, a 1% of
linearity is commonly accepted as a satisfactory level, as pointed out by [29]. It is interesting to note that the
level of linearity is rarely specified, thus making comparison among sensors more difficult. The clipping is a
form of distortion in the recorded signal with respect to input signal, once a certain threshold is surpassed. In
the case of accelerometers, this threshold is commonly drawn by the mechanical capacity of the sensor, which
corresponds to ±3g for the MEMS ADXL 335 accelerometer. However, the behaviour of the distortion can vary
significantly from sensor to sensor, especially in the case of MEMS as shown by [28], where for instance, some
devices actually do not clip the recorded signal but instead blow it up producing highly distorted patterns. The
latter inappropriate clipping behaviour is undesirable, and may limit the capacities of the sensor; such as in
the double integration processes aiming at obtaining the displacement demand from the recorded acceleration
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signal, as discussed below in Section 4.5.

To appraise linearity and clipping, the same methodology of inputting sine-wave signals through the linear
actuator is used, and response amplitudes are estimated using spectral analysis, as discussed in the previous
section. In this case, the input frequency is fixed at 9 Hz, considered to be moderate-to-high in the frequency
band of interest, and the amplitude is variable in order to attain a range of acceleration ranging from 0.2g to
3.5g. The smooth clipping behaviour shown by sensor 1 is depicted in Figure 10 for a sequence of increasing
accelerations, around the nominal clipping level of the MEMS accelerometer, contrasted to the output signal
recorded by the transducer. From Figure 10 a to 10 d, the clipping of the sensor is pointed at the peak of the
sine waves, where the sensor output signal tends to flatten whilst the transducer still captures the increase in
acceleration of the input wave. A similar smooth clipping behaviour was observed by sensor 2. By computing the
amplitude ratios obtained from the tests, through the spectral method, the amplitude ratio versus acceleration
levels is assembled and shown in Figure 11, for both tested sensors. The three axis of the sensor clip in a
well-behaved manner, as noted by [28], given their smooth attenuation over their nominal clip threshold, that
for a sine wave is commonly estimated as the RMS of the signal, which is shown in the plot with a vertical
dashed line.
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Figure 10: Sequence of tests for accelerations in the neighbourhood of the nominal clipping level of ±3g (all
excerpts of recorded data correspond to the x-axis of the sensor at fixed nominal 9Hz frequency).
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Figure 11: Linearity and clipping for the three axes of the sensor (dashed horizontal lines show ±1% of the
expected ratio at unity). (a) Sensor 1 and (b) Sensor 2
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4.5 Single and double integration tests

The capability of retrieving permanent or transient displacements from the acceleration recording is paramount
during the monitoring of a building or structural system. In earthquake engineering, local drift ratios are
typically the most important parameters to appraise the performance of a structure [30], given that they can
be readily related to a damage state of the system, which is usually predefined based on the structural con-
figuration of the system. Residual or permanent drifts deserve a special attention given their crucial role in
post-earthquake assessment, where structural losses are estimated, and decisions are made based on the state
of the structure, such as demolition or retrofitting [31, 32]. Single and double integration process are commonly
used to retrieve velocity and displacement time-histories from acceleration recordings, respectively. However,
this is an underdetermined problem [28], where usually nonphysical waveforms are obtained for the velocity
and displacement. The nature of these spurious results is partially explained by various sources of error, such
as unknown boundary conditions for the velocity and displacement, offset of the baseline, and low-frequency
noise or artifacts [33, 34]. Several methods have been proposed to individually remedy these sources of error,
such as various baseline corrections, filtering and zero-padded sections, among others; some of these are used
subsequently below.

The same dynamic tests using sine waves as input signals described in previous sections are used herein. Note
that these tests were not designed to induce residual displacements that can later be retrieved, thus the main
focus here is to estimate velocity and displacement transient waveforms through time-histories. First, a baseline
correction was performed through fitting a cubic polynomial function to the acceleration record, which is subse-
quently subtracted from the recorded acceleration. Second, zero padded sections are added to the beginning and
end of the record, whose adequate length depends on the order and corner frequency of the filter to be applied
afterwards [33]. Third, a band-pass Butterworth filter of order 3, and whose corner filter frequencies are 0.1 Hz
and 25 Hz, is applied. The lower limit was decided to reflect typical limits of long-period structural systems,
whereas the upper limit was chosen based on mechanical noise observed in the collected signals attributed to
the actuator operation. Finally, the acceleration record is numerically integrated to obtain the velocity and
displacement time-histories. The same methodology was applied to the data collected by the transducer, in
order to compare results based on the actual output of the actuator. The results of the single and double
integration procedures are shown in Figure 12, for two different levels of nominal amplitude and frequency of
the sine wave input signal. In general, step amplitudes and waveforms are well recovered by the sensor, which is
an important feature in this exploratory stage, partially due to the stable sample-rate recording. It is noticeable
that, for both recovered displacement time-histories, some non-steady behaviour occurs at the beginning of
the motion, before reaching a steady state. This behaviour was initially attributed to the processing of the
signal; however, the transducer coherently captured this as well, even when different processing methods were
used before the integration (e.g., length of the zero-padded regions, and other filters such as Chebyshev). In
addition, a similar behaviour was observed consistently for various input signals, thus explained by the control
system of the actuator at the beginning of the motion, especially in the case of the highest frequencies tested.
Particularly noteworthy is the fact that when residual displacement needs to be retrieved by double-integration
of the acceleration record, low-cut filters cannot be used [28]; nevertheless, this needs further consideration in
the assessment of the sensor, preferably by having independently-measured offsets or residual displacements in
the actual response of structural systems.

5 Seismic Performance of the Prototyped Sensor

This section presents the results of the analyses conducted based on data collected using a shake table to repro-
duce actual earthquake strong-motion signals. During shake table tests, the sampling ratio of the sensor was
set to 200 sps, whereas the transducer or reference sensor recorded the signal at 1000 sps due to the constraints
of the data acquisition system. Therefore, to carry out the analysis above-listed in Section 2.1, the acceleration
signal recorded by the reference sensor was down-sampled to 200 sps using the Matlab functions ”decimate”
and ”downsample”, which deliver identical results when properly tuned. It is worth mentioning that the main
difference between these methods is that ”decimate” uses a finite impulse response (FIR) low-pass filter before
simply down sampling the signal at a sample rate x, equal to 5 herein. The decimate function was used with a
filter order of 3.

5.1 Input and response parameters

The main characteristics of the ensemble of earthquake records used in the shake table tests are presented in the
following. Figures 13 (a) - (c) show the 5%- damped acceleration response spectra of the three sets of earthquake
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Figure 12: Single and double integration test for 2 input signals: (a) Nominal amplitude = 10 mm and nominal
frequency 5 Hz. (b) Nominal amplitude = 2.5mm and nominal frequency 11 Hz. Dashed horizontal lines at
bottom panels signal the nominal displacement of input signal.

records, which are categorised as far-field (Set-a), near-field with no velocity pulse (Set-b), and near-field with
velocity pulse (Set-c), compounded by 12, 20 and 20 records respectively. The pulse-like ground motions are
judged by the wavelet transform analysis classification proposed by [35]. The differences in the response spectral
shape are clear, as expected due to the content of frequency and other distinctive key characteristics of far-field
and near-field records. The PGA ranges between 0.21g and 0.84g, and the peak ground velocity (PGV) ranges
between 19 cm/s and 115 cm/s. The far-field records were recorded at site classes C (very stiff soil sites) and D
(stiff soil sites), and the near-field records were recorded at site classes B (rock sites), C, and D; according to the
NEHRP site classification [36]. Figure 13 (d) shows the IA time-history [37] or Husid plots [38] for the entire
suite of records, which is used in subsequent analyses as an intensity measure of the records, because it has a
particular interest for civil engineers. The latter is due to its capacity to condensate several key ground motion
characteristics, such as duration, frequency content and intensity, in a single parameter that serves as a proxy
for the destructiveness potential of an earthquake. All selected earthquake records were scaled to match the
maximum displacement attainable by the shake table. A summary of source and site data of the ground motions
can be seen in Table 2, 3, and 4, for each set of records respectively. The depth and epicentral distance are inKm.

Table 2: Summary of source and site data for the far-field record set

Name of event Year Latitude Longitude Depth Magnitude Recording Station Latitude Longitude Distance

Friuli, Italy 1976 46.345 13.240 5.10 6.5 Tolomezzo 46.382 12.982 20.2

Hector Mine 1999 34.574 -116.291 5.00 7.1 Hector 34.829 -116.335 26.5

Manjil 1990 36.810 49.353 19.00 7.4 Abbar 36.920 48.950 40.4

Northridge 1994 34.231 -118.475 13.09 6.7 Beverly Hills - 12520 Mulhol 34.127 -118.405 13.3

Northridge 1994 34.231 -118.475 13.09 6.7 Canyon Country-WLC 34.419 -118.426 26.5

Maule 2010 -36.170 -73.140 30.10 8.8 Angol -37.790 -72.710 184.1

The raw time-acceleration signals recorded by the sensor and the reference accelerometer rigidly attached to the
surface of the shake table, were firstly processed following the procedure detailed in Section 4.5. Two represen-
tative responses are shown in Figure 14 for an individual far-field record and in Figure 15 for a single near-field
record, in terms of acceleration, velocity, displacement and FAS. To synchronise the waveforms several methods
were used to compare results, and among these the cross-correlation method was selected. This enables the
computation of the signals correlation (i.e., maximum equal to 1.0) versus a lag time vector, rendering the lag
time corresponding to the largest correlation, which is used to only shift the time of one the waveforms. In
general, the sensor produces a good performance with respect to the response of the reference signal, when
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Table 3: Summary of source and site data for the near-field with no pulse effects record set

Name of event Year Latitude Longitude Depth Magnitude Recording Station Latitude Longitude Distance

Cape Mendocino 1992 40.334 -124.229 9.60 7.0 Cape Mendocino 40.348 -124.352 10.4

Chi-Chi, Taiwan 1999 23.860 120.800 6.76 7.6 TCU067 22.999 120.184 28.7

Gazli, USSR 1984 40.350 63.470 15.00 6.8 Karakyr 40.350 63.470 12.8

Imperial Valley-06 1979 32.644 -115.309 9.96 6.5 Bonds Corner 32.693 -115.338 6.2

Kocaeli, Turkey 1999 40.727 29.990 15.00 7.5 Yarimca 40.764 29.762 19.3

Imperial Valley-06 1979 32.644 -115.309 9.96 6.5 Chihuahua 32.484 -115.240 18.9

Nahanni, Canada 1985 62.187 -124.243 8.00 6.8 Site 1 62.202 -124.370 6.8

Northridge-01 1994 34.206 -118.554 17.50 6.7 LA - Sepulveda VA 34.249 -118.478 8.5

Nahanni, Canada 1985 62.187 -124.243 8.00 6.8 Site 2 62.234 -124.168 6.5

Loma Prieta 1989 37.041 -121.883 17.48 6.9 Corralitos 37.050 -121.803 7.2

Table 4: Summary of source and site data for the near-field with pulse effects record set

Name of event Year Latitude Longitude Depth Magnitude Recording Station Latitude Longitude Distance

Chi-Chi, Taiwan 1999 23.860 120.800 6.76 7.6 TCU065 24.059 120.691 26.7

Chi-Chi, Taiwan 1999 23.860 120.800 6.76 7.6 TCU102 24.249 120.721 46.5

Duzce 1999 40.775 31.187 10.00 7.1 Duzce 40.844 31.149 1.6

Imperial Valley-06 1979 32.644 -115.309 9.96 6.5 El Centro Array #6 32.839 -115.487 27.5

Imperial Valley-06 1979 32.644 -115.309 9.96 6.5 El Centro Array #7 32.829 -115.504 27.6

Irpinia, Italy-01 1980 40.840 15.28 10.00 6.9 Sturno 41.021 15.115 30.4

Loma Prieta 1989 37.041 -121.883 17.48 6.9 Saratoga - Aloha 37.255 -122.031 27.2

Northridge-01 1994 34.206 -118.554 17.50 6.7 Rinaldi Receiving Sta 34.281 -118.478 10.9

Northridge-01 1994 34.206 -118.554 17.50 6.7 Sylmar - Olive View 34.326 -118.444 16.8

Superstition Hills-02 1987 33.022 -115.831 9.00 6.5 Parachute Test Site 32.929 -115.701 16

assessed in terms of wave form, PGA, PGV and Peak Ground Displacement (PGD). This remains valid in the
computation of FAS, where the sensor performs well, capturing amplitude and distribution of frequency. A
closer look is shown in Figure 16 where both waveforms are superimposed with a zoom in on the time and
frequency range respectively.

The same pair of records used above for assessing the time-history response, are used herein to appraise the 5%-
damped acceleration response spectrum and IA through Husid plots. In general, the response spectrum of the
sensor behaves well when compared to the reference signal, as shown in Figure 17 (a) and (c) for a far-field and
near-field record respectively. In contrast, there is a poorer sensor performance during the computation of IA,
whose selected results are presented in Figures 17 (b) and (d). In general, the sensor tends to underestimate the
IA of the recording with respect to the value reported by the reference signal. Given that the computation of

IA involves the numerical time-integral of the whole acceleration signal (i.e., IA = π
2g

∫ Td

0
a(t)2dt), there seems

to be an accumulated error of the small differences in individual acceleration peaks (positive and negative)
between the sensor and reference signal. Although the reference signals used in these analyses, correspond to a
down-sampled one (i.e., 200 sps) in order to properly compare to the sensor signal, if the sensor sampling rate
is increased, the computation of the IA improves. However, as discussed above, the control of the sensor can
be easily modified to increase the sampling rate of one specific axis at the cost of reducing the sampling rate of
the others, because of the micro-controller processing capacity.

5.2 Errors in acceleration signal, Arias Intensity and spectral response

The computation of ground motion intensity measures are generally based on the whole processed recorded signal
of acceleration, therefore it is relevant to quantify the quality of the full time-history acceleration recording,
in contrast to solely individual peak values. To this end, the mean squared error (MSE) of the acceleration
recorded by the sensor with respect to the reference signal was computed as follows:

MSE(asensor) =

∑N
i=1[asensor(ti)− areference(ti)]2

N
(2)

Where asensor and areference are the acceleration time-history recorded by the sensor and transducer respec-
tively for an individual ground motion record. N corresponds to the number of samples recorded in the signal.
To prevent small peaks controlling the results (i.e., non strong-motion or pseudo motionless sensing), only ac-
celeration peaks above an amplitude cut off corresponding to 0.2 times the PGA was used to compute MSE.
The results are shown in Figure 18 (a) as a function of the PGA of the ground motion record. The minimum
computed MSE value was 4.088x10−3g2, and the maximum reached 0.021g2. Most of the values are concen-
trated towards the lower end, however for seven individual earthquakes, the MSE exceeds 0.01g2, which is a
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Figure 13: 5%- damped acceleration response spectra of the input motion of: (a) Set-a of far-field records
(b) Set-b of near-field records with no-pulse (c) Set-c of near-field records with pulse. Subfigure (d) shows
cumulative Arias Intensity time-history for all input motions.
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Figure 14: Time-history response and FAS of a representative record from Set-a recorded with the prototyped
sensor and transducer referred to as ‘reference’. Input motion is Cape Mendocino 04/25/92 1806, Rio del
overpass FF, 270 (CDMG Station 89324).

common upper limit for higher fidelity sensors.
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Figure 15: Time-history response and FAS of a representative record from Set-c recorded with the prototyped
sensor and transducer referred to as ‘reference’. Input motion is Irpina, Italy 11/23/1980, (Sturno Station, 270).

Figure 16: Zoom in on time-history and FAS response. Top panels correspond to far-field record considered in
Figure 14 and bottom panels correspond to near-field record considered in Figure 15. Solid blue line for the
sensor and dashed red line for the transducer.

Regarding the error in the computation of IA, first it is important to mention that several earthquake intensity
measures, such as Sa(T ) and IA are approximately log-normally distributed (e.g., [39, 40]). Hence, the error
in IA obtained from the sensor signal with respect to the reference signal, is computed in logarithmic space, as
follows:

ErrorIA = log(
IAsensor

IAreference

) (3)

The errors in log(IA) results are shown in Figure 18 (c) as a function of PGA for the whole ensemble of ground-
motions tested. In general there is a flat behaviour of the error across the PGA levels considered in the study,
with an average absolute error around 0.07 log(m/s), and one outlier point that reached 0.16 log(m/s). These
errors show a small magnitude, and their uniform flat behaviour with regard to PGA can be used to quantify
their general magnitude and trend in order to make correction in the calculation of IA.

With respect to the error in the computation of the ordinates of the acceleration response spectrum, a more
probabilistic approach may be considered. The difference between the 5%− damped acceleration response
spectra computed from the sensor and the reference data, may be quantified through the ”goodness-of-fit”
method presented by [41]. These can shed some light on the sensor’s bias and uncertainty. Thus, if a model is
assumed, the residual r (i.e., observed - predicted), is defined as follows:

rim(Tk) = log(SrefAim
)(Tk)− log(SsensorAim

(Tk)) (4)

Where Tk is the period used to calculate the ordinates of the acceleration response spectrum SrefAim
(Tk), and
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Figure 17: 5%- damped acceleration response spectra and Husid plots. Top panel: Cape Mendocino 04/25/92
1806, Rio del overpass FF, 270 (CDMG Station 89324), and bottom panel: Irpina, Italy 11/23/1980, (Sturno
Station, 270).

SsensorAim
(Tk); k is the period index, i is the earthquake index, and m is the component of the motion. Given rim,

the bias can be estimated at each considered period Tk, as follows:

bias(fk) =

∑Ni

i=1 rim(fk)

NmNi
(5)

In this particular case, Ni is the number of tests per given strong-motion, and Nm is the number of ground-
motion components considered, which in this cases is equal to unity. Thus, the variance in the error term and
the standard error of the bias may be estimated as follows:

σ2
sensor(fk) =

∑Ni

i=1[rim(fk)− bias(fk)]2

Ni − 1
(6)

σbias(fk) =

√
σ2
sensor(fk)√
Ni

(7)

Figure 18 (c) shows the computed bias in the 5% damped acceleration response spectrum using the 54 earth-
quakes records, as a function of period (i.e., Tk). The absolute maximum bias estimated corresponds to 0.045
log(g), and exhibits a relatively flat behaviour across the periods considered to obtain bias, variance and standard
error of the bias.
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Figure 18: (a) Mean Squared Error (MSE) of acceleration records versus PGA for all individual input motions
tested in the shaking table. (b) Error in the computation of the Arias Intensity (log(AI)) versus PGA for all
individual input motions tested in the shaking table. (c) Bias and standard error in 5% damped acceleration
response spectra for all tested ground-motion records.

5.3 Data reliability

To investigate and quantify the reliability of the data that can be recorded by the sensor, two ground-motion
records from the tests conducted above were selected and subsequently used in the linear shake table. Each
individual record was repeated 7 times, in order to assess the scattering and robustness of the sensor in the
calculation of MSE of the time-acceleration series, the half-length of 90% confidence interval, and the ”goodness-
of-fit” of the response spectral acceleration. Figure 19 shows the acceleration response spectra obtained for
both repeated pairs of earthquake records, along with the mean and standard deviation of spectral ordinates
considering all seven samples. The bottom panels in Figure 19 show the bias of the spectral accelerations,
computed by means of Equation 5. To calculate the MSE of time-acceleration series recorded by the sensor
with respect to the reference signal, Equation 2 is used. The reliability of the collected experimental data, at any
given time ti, is estimated through the probability β of the mean value (msensor) of the accelerations recorded
by the sensor (asensor) to be within the confidence interval of length 2b which is centered at the acceleration of
the reference signal areference for a given time ti [42, 43], expressed as follows:

β = P [areference − b ≤ msensor ≤ areference + b] (8)

To undertake this analysis, the following assumptions are considered [43]:

1. All experiments are conducted under identical conditions, hence implying that the expected value E(asensor−i)
= E(asensor) and standard deviation σsensor−i = σsensor are identical in all cases, with i = 1, 2, ..., 7.

2. No mutually independent relationship between results, which means bias can be ignored. Hence all the
expected values E(asensor) are equal to a constant parameter msensor.
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3. All experimental results follow a normal distribution, indicating that the mean values of the seven asensor
measurements at any given time ti follow a normal distribution. (i.e., āsensor = (

∑n
i=1 asensor−i)(1/n)

with n=7 ).

4. It was assumed that the low-cost sensor and the reference sensor were recording an identical signal, given
that no differential motions across the shake table were observed, mostly due to the small dimensions of
the table.

Based on the above assumptions a new random variable can be defined, which follows a Student’s t distribution
with n− 1 degrees of freedom [44, 43] expressed as follows:

T =
(āsensor −msensor)

√
n

asensor
(9)

Assuming that TN−1 can represent the cumulative distribution, then by replacing msensor in Equation 8 by T
in Equation 9, the confidence interval can be solved through the following equations:

β = P [x1 ≤ T ≤ x2] = TN−1(x2)− TN−1(x1) (10)

x1, x2 =
(āsensor − areference ± b)

√
n

σsensor
(11)

Where b is the half-length of the confidence interval. Thus, Equation 10 can be solved numerically in order to
obtain bi, for any given time ti. Moreover, a time independent average index of bi can be used by computing
the average across the entire acceleration time-series: b̄ = (1/N)

∑N
i=1(bi) [42]. These two indexes convert the

information embedded in the measurements into a single metric, enabling a comparison between the low-cost
sensor signal and the reference signal from the transducer. For the sake of brevity, Table 5 shows the estimated
half-width b̄ of the 90% confidence interval, whose magnitudes are moderate.

Table 5: Averaged half-length of 90% confidence interval for both considered earthquake records measurements

Metric Earthquake 1 Earthquake 2

b̄ 0.0813g 0.0897g

MSEacc 0.0075g2 0.008g2

6 Concluding Remarks

An open-source low-cost sensing system for recording accelerations has been proposed in this study and its
performance has been assessed through a series of comparative validation tests. The sensor has been entirely
built from off-the-shelf electronic components, whose construction and controlling guidelines will be provided
as an open-source platform which will be continuously updated.

The assessments carried out in this investigation suggest that the proposed sensing technique is suitable for
deployment as an accelerometer for seismic monitoring of structural systems. Based on standardised tests,
the results demonstrate low levels of self-noise, considering the nature of the MEMS analogue accelerometer
embedded in the sensor. The amplitude transfer functions exhibit a flat behaviour for the full range of frequen-
cies tested, whose boundaries were limited by the installed capacity within the laboratory. However, this flat
behaviour is expected to be coherent up to the resonant frequency of the MEMS accelerometer, whose absolute
value is much higher than the bandwidth of frequencies of interest for seismologists and structural earthquake
engineers. The clipping tests indicate a flat behaviour (i.e., high linearity) of the amplitude transfer function
from low acceleration levels, up to the vicinity of the maximum nominal recordable acceleration of ±3g, at which
a typical roll-off is observed. Under long-time operations, the micro-controller exhibits a robust performance,
maintaining a steady pace of sampling. The reliability of the sensor under non-stationary excitations was ex-
amined and quantified by testing over 50 strong-motion recordings from actual earthquakes in a linear shake
table. In general, the sensor was shown to produce good performance in terms of measuring strong-motion
intensity metrics, such as PGA, PGV and PGD. An average MSE of the full time-acceleration series of 0.0036
g2 was obtained when compared to the data observed by the reference accelerometer. Spectral acceleration
ordinates were found to be in a close match with the accelerations reported by the reference signal, with a
horizontal spectral acceleration bias within 0.025 - 0.045 log(g) and relatively flat across the range of periods
under consideration. Less accurate estimations were however obtained for the computation of IA, where the
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Figure 19: 5%- damped acceleration response spectra for the pairs of repeated input motion selected to conduct
the reliability analyses.

sensor underestimated the magnitudes. The half-width of the 90% confidence interval was used to quantify the
reliability of the measurements, and a moderate average value of 0.086 g was obtained.

The work carried out within this study opens the door for several future prospects and further natural develop-
ments of this type of sensing techniques, towards obtaining a standalone real-time data collection sensor. The
sensor performance could be improved by testing a wider range of MEMS accelerometers, particularly aiming at
covering a wider range of absolute acceleration and reducing the self-noise levels. Future efforts will be focused
towards the advancement in connectivity and communication protocols, power supply possibilities, and general
maintenance procedures of an autonomous operating sensor.
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