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Abstract

Circulating metabolite levels are biomarkers for cardiovascular disease (CVD). Here we stud-

ied, association of rare variants and 226 serum lipoproteins, lipids and amino acids in 7,142

(discovery plus follow-up) healthy participants. We leveraged the information from multiple

metabolite measurements on the same participants to improve discovery in rare variant asso-

ciation analyses for gene-based and gene-set tests by incorporating correlated metabolites as

covariates in the validation stage. Gene-based analysis corrected for the effective number of

tests performed, confirmed established associations at APOB, APOC3, PAH, HAL and PCSK

(p<1.32x10-7) and identified novel gene-trait associations at a lower stringency threshold with

ACSL1, MYCN, FBXO36 and B4GALNT3 (p<2.5x10-6). Regulation of the pyruvate dehydro-

genase (PDH) complex was associated for the first time, in gene-set analyses also corrected

for effective number of tests, with IDL and LDL parameters, as well as circulating cholesterol

(pMETASKAT<2.41x10-6). In conclusion, using an approach that leverages metabolite measure-

ments obtained in the same participants, we identified novel loci and pathways involved in the

regulation of these important metabolic biomarkers. As large-scale biobanks continue to

amass sequencing and phenotypic information, analytical approaches such as ours will be

useful to fully exploit the copious amounts of biological data generated in these efforts.
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Author summary

Cardiovascular diseases (CVD) are the number one cause of death globally. Various meta-

bolic biomarkers including lipid and lipoprotein particles have been implicated as risk fac-

tors for the development of CVD. Understanding how these biomarkers are regulated can

lead to increased understanding of CVD aetiology and the potential identification of drug

targets. Here we take advantage of high resolution measurements on a large cohort of

7,142 healthy blood donors with whole-exome and whole-genome sequencing data to

explore the influence of rare variation on circulating metabolic biomarker levels. Using a

novel approach leveraging the information gained from various measurements on the

same participants we are able to identify a novel biological pathway involved in the regula-

tion of intermediate-density and low-density lipoproteins as well as circulating choles-

terol, confirm various established gene associations and identify potential novel gene

associations that merit further replication. This work highlights the advantages that can be

gained by combining high resolution genotypic and phenotypic measurements in one

large cohort.

Introduction

Metabolic measurements reflect an individual’s endogenous biochemical processes and envi-

ronmental exposures [1,2]. Many circulating lipids, lipoproteins and metabolites have been

previously implicated in the development of cardiovascular disease (CVD) [3–6] or used as

biomarkers for disease diagnosis or prognosis [7,8]. Understanding the genetic influence on

circulating levels of these metabolic biomarkers can help us gain insight into the biological

processes regulating these traits, lead to improved aetiological understanding of CVD and

identify novel potential therapeutic drug targets. Notable examples of candidate drug targets

with support from human genetics are LDLR [9,10], APOB [11,12] and PCSK9 [13,14].

Genome-wide association studies (GWAS) focusing on traditionally measured lipid traits

have greatly expanded our knowledge into lipid biology and to date more than 250 loci have

been robustly associated with total cholesterol (TC), high-density lipoprotein cholesterol

(HDL-C), low-density lipoprotein cholesterol (LDL-C), and/or triglycerides (TG) [15–23]. In

addition to this, more detailed metabolic profiling using high resolution nuclear magnetic res-

onance (NMR) measurements has proven helpful to find additional lipid and small molecule

metabolism-associated loci with smaller sample sizes, and to assess pleiotropic effects of previ-

ously established loci [24–26]. An example of this, is a novel link between the LPA locus and

very-low-density lipoprotein (VLDL) metabolism (measured by high resolution NMR), with

effect sizes twice as large as those found for traditionally measured lipid traits like LDL-C and

TC, suggesting these measurements are better at capturing underlying biological processes in

lipid metabolism than traditionally measured lipid traits [25]. In this same study, by construct-

ing a genetic risk score using variants associated with lipoprotein(a) levels and using a Mende-

lian randomisation approach the authors were able to determine a causal link between

increased lipoprotein(a) levels on overall lipoprotein metabolism [25].

Despite the at scale usage of exome arrays to capture low-frequency and rare coding varia-

tion contributing to lipid and amino acid metabolism [19–22,26], large-scale sequencing stud-

ies have the added value of assessing rare variation at single nucleotide resolution across the

whole genome, or exome, including the detection of private variants which could have large
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effects on protein function. These approaches enabled, for example, the discovery of inactivat-

ing variants in key proteins which are models for drug target antagonism [27,28].

In this study, we examined the contribution of rare variation (MAF <1%) to 226 serum

metabolic measurements in 3,741 participants with whole-exome sequence (WES) data and

3,401 participants with whole-genome sequence (WGS) data from the INTERVAL cohort,

which consists of generally healthy blood donors residing in the UK.

Results

Gene-based analyses

The sample size of this study gave us limited power to detect novel single variant associations

at rare variants (power 9.7% to find an association at p<5x10-8 with MAF 0.1% and beta =

1.1), but was well-powered for common variant analysis (power 86.41% to find an association

at p<5x10-8 with MAF 1% and beta = 0.55). Therefore, single variant analyses only confirmed

established associations at 34 unique loci after meta-analysis (Ndiscovery = 3,741, Nvalidation =

3,401, S1 Table, S1 Fig). Median correlation of betas for genome-wide significant hits between

WES and WGS was 0.97.

We then sought to discover new gene-trait associations for 226 NMR metabolic biomarkers

using rare-variant (MAF <1%) aggregate tests. For this analysis we used WES data from 3,741

healthy blood donors from the INTERVAL cohort as a discovery dataset (Methods). We per-

formed two nested approaches to group rare variants; first just loss-of-function (LoF) variants

and secondly, LoF variants plus variants predicted to be likely deleterious by their Mendelian

Clinically Applicable Pathogenicity (M-CAP) score (M-CAP score >0.025) [29] (MCAP+LoF)

(Methods). To try to minimise the inclusion of predicted deleterious missense variants with

no phenotypic consequences, we restricted these variants to those with MAF<1%. As we

expect the majority of LoF variants to have an effect on protein function, we did not filter by

MAF (however ~97% of LoF variants tested had a MAF<1%). Genes were taken forward for

validation if they reached an arbitrary threshold of p<5x10-3 in the discovery dataset (S2 and

S3 Tables). Validation was performed using whole-genome sequence (WGS) data from 3,401

independent participants from the same cohort, and we present results from meta-analysis of

discovery plus validation datasets (N = 7,142) that meet Bonferroni correction for the number

of genes in the genome (0.05/20,000 genes), i.e. gene-level significance [30–32] (p<2.5x10-6,

Table 1, Methods), without further adjustment for multiple traits. After meta-analysis, five

genes (APOB, APOC3, PCSK9, PAH, HAL) were associated with 92 different traits with

p<1.32x10-7, which is the stringent significance threshold after additionally correcting for the

effective number of tested phenotypes (Table 1, Methods, S1 Fig). All five have been previ-

ously associated with their respective traits [24,33,34]. As previously suggested, we used corre-

lated metabolic biomarkers as covariates to boost power [35,36]. These correlated biomarkers

were selected for each outcome based on their phenotypic correlation in our dataset, the

genetic correlation in publicly available datasets and the metabolic biomarker supergroup

(Methods). However, to minimise the possible collider bias this could incur, we only did this

at the validation stage. This was to ensure there was at least suggestive evidence for association

in the discovery stage without using any metabolite as a covariate (Methods). This resulted in

99 traits where using other metabolic biomarkers as covariates was possible (S4 Table). As

expected, we found a significant increase in the strength of the association signal (p-value) for

traits when we used other correlated traits as covariates compared to the unadjusted tests

[35,36], with the most notable example being a>30 order of magnitude increase in association

strength for PAH and phenylalanine (S2 and S3 Tables and S5 Table, Table 1). In total, 32 of
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the known gene-trait associations met our stringent significance threshold (p<1.32x10-7) only

after adjusting for correlated traits (S2 and S3 Tables).

In addition, we found 15 gene-trait associations in seven genes meeting standard gene-level

significance before adjusting for multiple traits (p<2.5x10-6) which also had nominal evidence

of association in the validation cohort (p<0.05). These associations also have an FDR adjusted

p-value <0.3% after removing well known genes from the results list. Nine of these were gene-

trait associations in three established genes (ALDH1L1, SCARB1, LIPC, Table 1), suggesting

that other results achieving this significance threshold may warrant being prioritised for addi-

tional follow-up to establish their validity (in these genes the results are not driven by LoF vari-

ants, S6 Table).

For the four potentially novel genes associated with lipid traits, gene-trait analysis for

LDL-C and triglycerides in UK Biobank participants with WES data provided suggestive evi-

dence of association between LDL-C and B4GALNT3 (p = 0.03) (S7 Table).

Gene-set analyses

To find links between predicted LoF variants and metabolic biomarker biology, we next

explored associations of these variants in 7,150 gene-sets. To this end, we used two biological

pathway databases (Reactome, KEGG) and one database that contains expert curated disease

associated genes (DisGeNET) (S8 Table, Methods). Gene-set analysis yielded 163 gene-set-

Table 1. Genes significantly associated (p<2.5x10-6) with at least one trait in gene-based analyses focusing on loss-of-function (LoF) or predicted deleterious mis-

sense by M-CAP plus loss-of-function (MCAP+LoF). Genes that meet gene-level significance after adjusting for multiple phenotypes (p<1.32x10-7) are highlighted in

bold. Top trait: trait with the smallest p-value after meta-analysis adjusting for correlated metabolites. p-value (covs): p-value of meta-analysis (WES+WGS) after adjusting

for correlated metabolites for top trait. If NA, this analysis was not performed for this trait due to no metabolic biomarkers meeting the criteria to be included as covariates

in meta-analysis. p-value (raw): p-value of meta-analysis without adjusting for correlated metabolites for top trait. N WES: number of tested variants in WES. N WGS:

number of tested variants in WGS. AC = Allele count. N overlap: number of variants present in both WES and WGS. N traits associated: number of traits that meet gene-

wide significance after adjusting for multiple phenotypes (p<1.32x10-7), traits meeting standard gene-wide significance (2.5x10-6) in parenthesis. Driven by single variant?:

Yes if after conditioning on top associated variant the meta-analysis association disappears (p>0.05). IDL-TG: Triglycerides in IDL. XS-VLDL-TG: Triglycerides in very

small VLDL. Phe: Phenylalanine. His: Histidine. IDL-FC: Free cholesterol in IDL. IDL-P: Concentration of IDL particles. M-VLDL-L: Total lipids in medium VLDL. Gly:

Glycine. XL-HDL-FC: Free cholesterol in very large HDL. IDL-CE %: Cholesterol esters to total lipids ratio in IDL. L-VLDL-FC %: Free cholesterol to total lipids ratio in

large VLDL. XXL-VLDL-C %: Total cholesterol to total lipids ratio in extremely large VLDL.

LoF

Gene Top trait p-value

(covs)

p-value

(raw)

N WES

(AC)

p-value

(WES)

N WGS

(AC)

p-value

(WGS)

N

overlap

N traits

associated

Driven by single

variant?

APOB IDL-TG 3.20x10-13 1.72x10-10 6 (6) 2.11x10-10 5 (9) 1.97x10-3 0 45 (57) No

APOC3 XS-VLDL-TG 6.10x10-13 3.58x10-12 3 (18) 7.83x10-6 2 (23) 1.00x10-7 2 46 (56) No

MCAP+LoF

Gene Top trait p-value

(covs)

p-value

(raw)

N WES

(AC)

p-value

(WES)

N WGS

(AC)

p-value

(WGS)

N

overlap

N traits

associated

Driven by single

variant?

PAH Phe 8.33x10-63 1.67x10-28 39 (81) 1.93x10-14 41(79) 1.68x10-14 18 1 (1) No

HAL His NA 3.72x10-42 48 (177) 5.65x10-23 37 (159) 7.80x10-20 22 1 (1) No

APOC3 XS-VLDL-TG 5.46x10-11 2.15x10-10 6 (23) 1.72x10-5 6 (30) 2.91x10-7 3 26 (40) No

PCSK9 IDL-FC 2.39x10-10 1.11x10-7 15 (38) 1.70x10-4 17 (33) 3.21x10-5 3 29 (34) No

ACSL1 IDL-P 1.82x10-7 1.76x10-4 4 (5) 4.52x10-3 6 (6) 2.68x10-3 2 0 (1) Yes

MYCN M-VLDL-L 6.20x10-7 3.97x10-6 7 (8) 8.25x10-4 8 (14) 7.44x10-4 3 0 (5) No

ALDH1L1 Gly NA 4.56x10-7 33 (132) 4.34x10-5 38 (128) 2.89x10-3 19 0 (1) No

SCARB1 XL-HDL-FC% NA 4.30x10-7 24 (38) 2.90x10-4 18 (40) 7.56x10-4 10 0 (6) No

FBXO36 IDL-CE % NA 1.98x10-6 5 (62) 1.62x10-5 2 (43) 2.56x10-2 1 0 (1) Yes

B4GALNT3 L-VLDL-FC % NA 7.59x10-7 27 (721) 1.07x10-4 22 (697) 1.61x10-3 13 0 (1) No

LIPC XXL-VLDL-C

%

NA 9.04x10-7 27 (46) 1.94x10-4 29 2.53x10-3 11 0 (2) No

https://doi.org/10.1371/journal.pgen.1008605.t001
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trait associations with 14 unique gene-sets meeting Bonferroni corrected gene-set-wide signifi-

cance threshold (pmeta<2.41x10-6, Methods, S9 Table). Given that 143 gene-set-trait associa-

tions were with 13 gene-sets that included two genes with well-established roles in lipid

biology (APOB and APOC3), we repeated the test removing variants in these genes. After

removal, there was residual evidence of association (pmeta<0.05) in 102 of 143 gene-set-trait

signals representing 12 of 13 gene-sets. Of the 163 gene-set-trait associations, the remaining 20

gene-set-trait associations (in gene-sets not containing either APOB or APOC3) represent

associations of various lipoprotein-related metabolic biomarkers with the “regulation of

pyruvate dehydrogenase (PDH) complex” pathway in REACTOME (R-HSA-204174, min

p = 7.85x10-7, trait = phospholipids in intermediate density lipoproteins (IDL-PL), S9 Table).

These associations encompassed 12 LoF (allele count [AC] = 12) variants in WES and four in

WGS (AC = 6) (Fig 1). Upon further inspection, we found that the optimal rho(ρ) value in the

SKAT-O test was one, in both the WES and the WGS analyses. This is equivalent to a burden

test and suggests most variants tested in this pathway contribute to the association (i.e the sig-

nal was not driven by a single gene) [37] (S10 Table). Two variants were of particular interest

as they were present in both WES and WGS datasets, rs113309941 in Pyruvate Dehydrogenase

Complex Component X (PDHX) and rs201013643 in Pyruvate Dehydrogenase Phosphatase

Regulatory Subunit (PDPR). In PDHX, rs113309941 leads to a premature stop mutation

(Gln248Ter). It has an AC of one in both WES and WGS, and is very rare in the Genome

Aggregation Database (gnomAD) (AC = 3, allele number (AN) = 246,116). rs201013643 in

PDRP also leads to a premature stop (Arg714Ter) and is present in a single heterozygous par-

ticipant in the WES dataset and two heterozygous participants in the WGS. This variant is also

rare in gnomAD (AC = 141, AN = 275,988). The five participants carrying these two variants,

who are all unrelated (PI_HAT<0.01) to carriers of the same variant, had higher than average

values for biomarkers including cholesterol in intermediate-density lipoproteins (IDL-C) and

LDL-C (lying in upper percentile range from 44.1% to 0.03% for both traits). Additionally,

there are four unrelated heterozygous carriers of these variants in the European ancestry, UK

Biobank participants with WES data (N = 36,769), of whom three had LDL-C measured at the

baseline visit using a conventional enzymatic assay. Two of these individuals were in the upper

quartile of LDL but the third one was in the bottom 1%” (S11 Table). These results suggest

that the variants may have a deleterious but not fully penetrant impact on lipid metabolism, or

that differences between the assay platforms across the studies may lead to heterogeneous asso-

ciations. Future analyses of NMR assay measures in the UK Biobank may help to clarify this.

None of the genes in this pathway has been previously associated with these traits and there-

fore this study links these genes collectively to IDL and LDL metabolism and circulating cho-

lesterol for the first time.

Enrichment of rare variant associations in genes near established GWAS

signals in lipoprotein related metabolic biomarkers

Next, we conducted analyses to investigate whether genes near GWAS index variants associ-

ated with traditional lipid traits (HDL-C, LDL-C, TC and TG) were enriched for rare variant

associations with high resolution lipoprotein measurements, which could suggest enrichment

of effector transcripts in the gene-set. Given that this was a hypothesis-driven approach using

established signals, to boost discovery power we pooled together both WES and WGS data

into a single dataset of 7,142 participants. First, we extracted from the GWAS catalog (release

27-09-2017) the “reported genes” near signals that have been associated with HDL-C, LDL-C,

TC or TG and created four gene-sets (S12 Table). We only focused on genes that were

reported unambiguously (i.e. where only one gene is reported) since for associations where
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more than one gene is reported, it is possible that only one will be the effector gene and rare

variants from the non-effector genes will only add noise to the analysis and therefore reduce

power. We grouped rare variants in the gene-set using two nested approaches (LoF and

MCAP+LoF) and ran SKAT-O on the gene-sets for 157 lipoprotein and lipid traits. Using this

approach we found associations (p<0.005 correcting for effective number of tests, Methods)

for genes near HDL-C GWAS signals with 18 HDL-related traits (S13 Table), the strongest

association being with esterified cholesterol in extra-large HDL (XL-HDL-CE, p = 2.83x10-5,

MCAP+LoF). Associations (p<0.005, Methods) in two XL-HDL-C related traits remained

after removing variants in genes known to be involved in conditions leading to abnormal lipid

levels or genes where functional work has shown an effect on HDL-C (S14 Table, Methods),

and after conditioning on associated common variants near reported genes (XL-HDL-CE,

p = 0.002 and XL-HDL-C, p = 0.004). These findings suggest that there is a contribution to the

phenotypic variance of these traits by rare coding variants in genes near GWAS signals without

a known role in HDL metabolism, which may represent novel effector transcripts.

Fig 1. Loss-of-function (LoF) variants in regulation of pyruvate dehydrogenase (PDH) complex pathway. a) Figure adapted from REACTOME pathway browser

[77]. Highlighted in red are protein complexes that carry LoF variants in INTERVAL WES or WGS. b) List of genes, consequences and allele count (AC) of LoF

variants in the different protein complexes in the pathway.

https://doi.org/10.1371/journal.pgen.1008605.g001
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Enrichment of rare variation in tails of the phenotypic distribution of

lipoprotein and glyceride related traits

Finally, we aimed to investigate whether participants at the extreme tails of the phenotype dis-

tribution for 106 lipoprotein and lipid traits harboured rare coding variants likely to be con-

tributing to their phenotype. We used the WES dataset as a discovery dataset and the WGS

dataset for validation. An arbitrary cut-off of 10 participants at each tail was used to define the

tails for all of the 106 traits (Methods). After meta-analysis, we found an enrichment of delete-

rious rare variation (validation ppermutation<0.05, meta-analysis ppermutation<0.00037, Methods,

Table 2, S15 Table) in hyperlipidaemia related genes in the lower tail of cholesterol in small

VLDL (S-VLDL-C), esterified cholesterol in small VLDL (S-VLDL-CE) and concentration of

extra small VLDL particles (XS-VLDL-P), and rare variation in HDL remodelling related

genes in the lower tail of concentration of small HDL particles (S-HDL-P). We still observed

nominal evidence of association in the WES and WGS datasets for the S-VLDL-C and

XS-VLDL-P results using a 0.5% percentile cut-off for the tails but no evidence of association

was found when using a 1% percentile cut-off (S16 Table). This is likely due to the fact that by

increasing the number of participants taken from the tails, we are decreasing the average dis-

tance to the mean of the trait distribution and diluting signal coming from true extreme

values.

Discussion

Exploring rare coding variation provides an opportunity to gain insights into biological pro-

cesses regulating the circulating levels of metabolic biomarkers. Here we take advantage of the

combination of sequencing data and high-resolution NMR measurements to elucidate how

this variation influences multiple metabolic measurements in a healthy cohort of UK blood

donors.

To identify genes and gene-sets associated with metabolic biomarkers, we used a two-stage

gene-based analysis using WES data for discovery (Ndiscovery = 3,741) and WGS data for valida-

tion (Nvalidation = 3,401). Rare-variant aggregation tests were used to identify genes harbouring

multiple rare coding variants associated with metabolic biomarkers. To gain power at the vali-

dation stage we adjusted analyses for correlated traits, an approach previously described for

single variant analysis [36]. This yielded significant power gains, notably for the known associ-

ation of PAH with phenylalanine levels, where adjusting for 71 phenotypically correlated traits

resulted in a greater than 30-fold magnitude change in the statistical evidence of association

after meta-analysis. Overall, this approach yielded 4,114 gene-trait associations taken forward

for validation (pdiscovery<5x10-3). After meta-analysis, besides recapitulating previous associa-

tions in eight known genes (APOB, APOC3, PAH, HAL, PCSK9, ALDH1L1, SCARB1 and

LIPC, Table 1), this method also identified four genes (ACSL1, MYCN, B4GALNT3, FBXO36)

that met standard gene-level significance (p<2.5x10-6, Table 1) in at least one gene-trait asso-

ciation test. Of these, ACSL1 and MYCN have been previously linked to lipid metabolism [39–

41], and therefore will merit additional follow-up. Of these four genes only B4GALNT3 had

evidence of association with a traditional lipid trait (LDL-C, p<0.05) in UK Biobank although

it is important to note that the lead associations in the INTERVAL study for these genes were

with specific lipoprotein parameters and none of these genes except ASCL1 (serum triglycer-

ides, p = 0.03) showed evidence of association with a traditional lipid trait in the INTERVAL

NMR data.

ACSL1, which codes for long-chain-fatty-acid—CoA ligase 1, is the predominant isoform

of ACSL in the liver. The gene was associated with concentration of IDL particles in this study

(p = 1.82x10-7), and its deficiency in the liver has been shown to reduce synthesis of
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triglycerides and beta oxidation, and alter the fatty acid composition of major phospholipids

[42]. An intronic variant (rs60780116) in ACSL1 has been associated with risk of Type 2 diabe-

tes [43] and elevated expression of ACSL1 has been shown to be an independent risk factor for

acute myocardial infarction after taking into account conventional risk factors [44].

MYCN encodes N-myc proto-oncogene protein and its amplification can lead to tumori-

genesis [45,46]. Previous animal studies have shown that inhibition of MYCN can lead to accu-

mulation of intracellular lipid droplets in tumour cells [41]. Here we find association between

MYCN and concentration of lipids, phospholipids and triglycerides in medium VLDL, total

particle concentration of medium VLDL and triglycerides in small VLDL (min p = 6.20x10-7,

Table 1, S3 Table).

The other two genes do not have any obvious link to lipid metabolism. B4GALNT3 encodes

beta-1,4-N-acetyl-galactosaminyl transferase 3. This protein mediates the N,N’-diacetyllactose-

diamine formation on gastric mucosa [47]. Mouse knockouts have been associated with

abnormal tail movements, abnormal retinal pigmentation and increased circulating alkaline

phosphatase levels [48] and variants near the gene have been associated with height and hip

circumference adjusted for BMI in human GWAS [49,50]. FBXO36 is a member of the F-

box protein family, a family known to be involved in protein ubiquitination [51]. Replication

of these signals in additional studies would represent a novel link between these genes and

lipid metabolism.

In gene-set analysis, the “regulation of pyruvate dehydrogenase (PDH) complex” pathway

was newly associated with 20 traits, mostly related to IDL and LDL lipoproteins. None of the

genes in this pathway have been previously linked to any of these phenotypes, and our data

suggest the signal arises from a cumulative effect of LoF variants in different genes in the path-

way (Fig 1), which represents a novel link between this pathway and lipoprotein metabolism.

Notably, one of the carriers of the PDHX Gln248Ter variant was in the top 0.03% for LDL-C

in the whole INTERVAL cohort (4.1 mmol/l, 158.0 mg/dl) and had no predicted deleterious

missense mutations in known hypercholesterolemia genes (PCSK9, APOB or LDLR) suggest-

ing this novel protein-truncating variant may be a genetic cause for their high LDL-C levels.

The other carrier of this variant was in the top 19.3% percentile of the whole cohort

(N = 46,083), but within the normal clinical range (1.8 mmol/l). Since we lack information on

participants’ use of lipid-lowering medication, the degree to which this variant influences the

observed LDL-C levels is difficult to assess. The PDH complex has been shown to be crucial

Table 2. Gene-sets where there is a nominally significant enrichment of rare variation in the tails of a lipid or lipoprotein measurement (p>0.05) in both WES and

WGS. – Highlighted in bold are gene-sets that are significant after meta-analysis using Stouffer’s method [38] and after adjusting for multiple traits (p< = 0.00037). WES

P: permutation p in WES. WGS P: permutation p in WGS. Meta-P: p after meta-analysis using Stouffer’s method. S-VLDL-FC: Free cholesterol in small VLDL.

XS-VLDL-C: Cholesterol in very small VLDL. S-VLDL-C: Cholesterol in small VLDL. XS-VLDL-P: Concentration of very small VLDL particles. S-VLDL-CE: Cholesterol

esters in small VLDL. S-HDL-P: Concentration of small HDL particles.

Upper tails

Trait WES P WGS P Meta-P Gene-set

S-VLDL-FC 3.3x10-2 2.37x10-2 3.45x10-3 Hypertriglyceridemia_HPO

XS-VLDL-C 3.3x10-2 2.37x10-2 3.45x10-3 Hypertriglyceridemia_HPO

Lower tails

Trait WES P WGS P Meta-P Gene-set

S-VLDL-C 5.8x10-3 2.31x10-3 7.61x10-5 Hyperlipidaemia

XS-VLDL-P 1.85x10-2 7x10-4 9.42x10-5 Hyperlipidaemia

S-VLDL-CE 5.8x10-3 6.75x10-3 2.07x10-4 Hyperlipidaemia

S-HDL-P 2.72x10-3 1.84x10-2 2.89x10-4 HDL_remodeling

S-HDL-P 4.10x10-2 3.92x10-2 8.x24x10-3 Hypertriglyceridemia_CTD

https://doi.org/10.1371/journal.pgen.1008605.t002
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for metabolic flexibility, i.e. the capacity to adjust fuel oxidation based on nutrient availability,

which itself has been shown to play a role in cardiovascular disease [52].

In analyses aiming at identifying effector transcripts at established GWAS loci associated

with traditional lipid measurements (HDL-C, LDL-C, TC and TG), we established that

reported genes mapping near HDL-C associated loci were enriched for rare coding variants

associated with multiple HDL-related measurements. The results remained significant

(p<0.005) after removing genes known to be directly involved in HDL metabolism. This sug-

gests that even though no single gene in the gene-set has sufficient statistical evidence of asso-

ciation, rare variants in this gene-set contribute to variation in these traits, and that this gene-

set is enriched for additional effector transcripts.

Finally, we showed that one can detect enrichment of rare variation in genes involved in

lipoprotein metabolism in phenotypic extremes of some of these NMR measurements. Specifi-

cally, we showed enrichment of rare variants in hyperlipidaemia related genes in participants

with very low levels of cholesterol and esterified cholesterol in small VLDL, and very low levels

of the total concentration of small VLDL particles. Enrichment of rare variants in HDL remod-

elling genes in participants with very low levels of small HDL particles was also observed.

Given that high levels of small HDL particles have been previously associated with higher inci-

dence of ischemic stroke [53] some of these variants could have protective effects. These results

are in agreement with previous work on LDL-C [23] and HDL-C [54] that show that common

polygenic signals seem to have a higher impact on the higher extremes of lipid traits whereas

there is evidence for a higher prevalence of rare variation on the lower extremes [54]. This is

also expected since the INTERVAL cohort consists of predominantly healthy blood donors

and therefore might be depleted of individuals with rare “damaging” variants. Our study bene-

fits from utilising a novel approach incorporating correlated metabolite information in rare

variant association analyses to boost power under a discovery plus validation study design.

This kind of approach will prove useful as we continue to amass deeply phenotyped and

sequenced biobanks. Whereas other similar studies [20,26,55] have been more lenient and not

accounted for the multiple phenotypes tested, here in gene-based analyses we attempted to

overcome this limitation by accounting for the effective number of tests performed, acknowl-

edging this burden of proof limited the power of our study.

One limitation of studies using sequencing data is that some of the singleton variants that

contribute to the rare variant tests might be false positives as they have not been validated with

a different molecular approach. We tried to overcome this limitation by using a two-stage

design in our gene-based and gene-set analyses requiring evidence of association in the two

independent datasets. This approach should decrease the possibility of false-positive findings

as the likelihood that the same gene or gene-set would be a false-positive in both WES and

WGS datasets is decreased. Additionally, for the novel association of the PDH pathway with

multiple lipid traits, we manually inspected the depth of coverage for all variants tested and

found that all of them were well supported with a min DP of 19 for the alternative allele in the

WES dataset except for one participant with DP<9 for a doubleton in the WGS dataset (S17

Table).

Altogether, our results show that focusing on rare variation and deep metabolic phenotyp-

ing provides new insights into circulating metabolic biomarker biology. This argues for the

expansion of deeper molecular phenotyping as part of large cohort sequencing efforts to gain

further understanding of the role of rare coding variation on circulating metabolic biomarkers

which may potentially lead to novel drug target discovery and/or provide additional genetic

validation for specific targets.

PLOS GENETICS The influence of rare variants in circulating metabolic biomarkers

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008605 March 9, 2020 9 / 19

https://doi.org/10.1371/journal.pgen.1008605


Methods

Participants

The INTERVAL cohort consists of nearly 50,000 predominantly healthy blood donors in the

UK [56]. All participants were genotyped using the Affymetrix UK Biobank Axiom Array and

imputed using a combined UK10K-1000G Phase III imputation panel [57]. A subset of 4,502

participants was selected for whole-exome sequencing (WES) [58] and another subset of 3,762

was selected for whole-genome sequencing (WGS). There was an overlap of 54 participants in

both datasets.

Sequencing and genotype calling

WES and WGS were performed at the Wellcome Sanger Institute (WSI) sequencing facility.

For WES, sheared DNA was prepared for Illumina paired-end sequencing and enriched for

target regions using Agilent’s SureSelect Human All Exon V5 capture technology (Agilent

Technologies; Santa Clara, California, USA). The exome capture library preparation was

sequenced using the Illumina HiSeq 2000 platform as paired-end 75 bp reads. Reads were

aligned to the GRCh37 human reference genome using BWA (v0.5.10) [59]. GATK Haploty-

peCaller v3.4 [60] was used for variant calling and recalibration. For WGS, sheared DNA was

prepared for Illumina paired-end sequencing. Sequencing was performed using the Illumina

HiSeq X platform as paired-end 75 bp reads. Reads were aligned to the GRCh38 human refer-

ence genome using mostly BWA (v.0.7.12) although a subset of samples was aligned with

v.0.7.13 or v.0.7.15. GATK HaplotypeCaller v3.5 was used for variant calling and recalibration.

We extracted coordinates from the VCF files that mapped to regions targeted in the WES. We

then used custom scripts to transform coordinates of variants to GRCh37 human reference.

Sample QC

For WES data we filtered out samples based on the following criteria: i) withdrawn consent; ii)

estimated contamination >3% according to the software VerifyBamID [61]; iii) sex inferred

from genetic data different from sex supplied; iv) non-European samples after manual inspec-

tion of clustering in 1000G principal component analysis (PCA) and choosing cutoffs on the

first 2 PCs; v) heterozygosity outliers (samples +/- 3 SD away from the mean number of het-

erozygous counts); vi) non-reference homozygosity outliers (samples +/- 3 SD away from the

mean number of non-reference homozygous counts); vii) outlier Ti/TV rates (transition to

transversion ratio +/- 3 SD away from the mean ratio); viii) excess singletons (number of sin-

gleton variants>3 SD from the cohort mean). After quality control 4,070 WES samples were

kept. For WGS data we filtered out samples based on the following criteria: i) estimated con-

tamination >2% according to software VerifyBamID; ii) non-reference discordance (NRD)

with genotype data on the same samples >4%; iii) population outliers from PCA (PC1>0 and

minimum PC2); iv) heterozygosity outliers (samples +/- 3 SD away from the mean number of

heterozygous counts); v) number of third-degree relatives (proportion IBD (PI_HAT) >0.125)

>18, vi) overlap with WES. After quality control 3,670 WGS samples were kept. The QC in

WGS was done to maximise sample retention while losing low quality ones building upon pre-

vious work with similar data [62].

In UK Biobank, we filtered out samples based on the following criteria: i) withdrawn con-

sent; ii) sex-mismatch between the sex inferred from the genetic data and the reported sex; iii)

non-European ancestry according to genetic principal components of ancestry; iv) relatedness

(third degree relatives in the UK Biobank data set). After quality control 36,769 WES samples

were kept.
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Variant QC

For variants with MAF>1% we used the following thresholds to exclude variants: i) VQSR:

99.90% tranche for WES and 99% tranche for WGS; ii) missingness >3%; iii) HWE p<1x10-5.

For variants with MAF�1% the following thresholds were used: i) VQSR: 99.90% tranche for

WES, 99% tranche for WGS SNPs and 90% tranche for WGS indels; ii) GQ:<20 for SNPs and

<60 for indels; iii) DP<2; iv) AB>15 &<80 for heterozygous variants. After genotype-level

QC (GQ,DP,AB) only variants with <3% missingness were kept. 1,716,946 variants were kept

in the final WES release and 1,724,250 in the final WGS release.

For the UK Biobank WES data, we used the FE (GATK) callset and checked the depth of

coverage for the regions targeting the novel genes. We removed monomorphic variants, vari-

ants with call rate < 95% and those with Hardy-Weinberg Equilibrium p-value< 1x10-15.

Phenotype QC

A total of 230 metabolic biomarkers were produced by the serum NMR metabolomics plat-

form (Nightingale Health Ltd.) [63] on 46,097 samples in the INTERVAL cohort. Glucose, lac-

tose, pyruvate and acetate were excluded initially due to unreliable measurements. Conjugated

linoleic acid and conjugated linoleic acid to total fatty acid ratio were set to missing for 3585

samples showing signs of peroxidation. Creatinine levels were set to missing for 1993 samples

with isopropyl alcohol signals. Glutamine levels were set to missing for 347 samples that

showed signs of glutamine to glutamate degradation. Samples with more than 30% missing-

ness or identified as EDTA plasma were removed. After this step, for each pair of related sam-

ples (PI_HAT>0.125) we kept only one, preferentially keeping samples with the lowest

missingness in WES or lowest NRD in WGS. Phenotypes were rank-based inverse normalised

for all participants. We then separately performed linear regression for WES and WGS adjust-

ing for age, gender, centre, processing duration, month of donation and 10 PCs. Residuals

from both linear regressions were used as the outcome variables in all subsequent analyses.

After this final step we kept 3,741 samples in the WES dataset and 3,401 samples in the WGS

dataset.

LDL-C, HDL-C, total cholesterol and triglycerides were measured using enzymatic assays

on a Beckman Coulter AU5800. Phenotypes in UK Biobank were rank-based inverse normal-

ised within aliquot and combined, removing participants on lipid-lowering therapy (UKBB

data codes 6177_or_6153 coded as “Cholesterol lowering medication”).

Gene-based analyses

Coding variant consequences were annotated with VEP [64] using Ensembl gene-set version

75 for the hg19/GRCh37 human genome assembly. Loss-of–function (LoF) variants were

annotated with a VEP plugin: LOFTEE (https://github.com/konradjk/loftee). M-CAP scores

were downloaded and we extracted all missense variants with AC> = 1 in the WES or WGS

datasets [29]. Two different nested tests were used to group rare variants into testable gene

units: predicted to be high confidence LoF by LOFTEE in any transcript of the gene, and the

same LoF variants plus rare (MAF <1%) missense variants mapping to any transcript of the

gene predicted to be likely deleterious by M-CAP (M-CAP score >0.025) (MCAP+LoF).

We performed rare-variant aggregation tests as implemented in the SKAT-O R package

[37,65]. For the LoF tests, we performed a burden test (rho = 1) whereas for the MCAP+LoF

tests we used the optimal unified approach (method =“optimal.adj”). Genes were taken for-

ward for validation if p<5x10-3.

Corresponding MCAP+LoF rare-variant aggregation tests for the four novel genes (ACSL1,

MYCN, FBXO36 and B4GALNT3) were performed in the European ancestry, unrelated
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participants in UK Biobank, adjusting for age, sex, aliquot and 10 principal components. Mis-

sense variants in any transcript were annotated with M-CAP scores on build 38 using ANNO-

VAR[66].

Adjusting for correlated phenotypes can increase power in single point association analyses

[36], therefore to increase power, we implemented a strategy to incorporate information from

the multiple phenotypes measured in our dataset. To minimise chances of a false positive asso-

ciation we only adjusted for phenotypes as covariates at the validation stage ensuring evidence

of association in discovery stage was present without adjustment for covariates. In order for a

metabolic biomarker to be selected as a covariate in the validation stage, the following condi-

tions had to be met: i) no evidence of genetic correlation (p>0.05) with outcome using publicly

available summary statistics from Kettunen et al (2016) [25]; ii) phenotypic correlation in our

dataset>10%; iii) not belonging to same metabolic biomarker supergroup as outcome (S18

Table). This approach resulted in 99 eligible NMR traits for which other traits could be used as

covariates. METASKAT [67] was used to perform meta-analysis using the same parameters as

in discovery. A signal was considered to replicate if: i) it met our Bonferroni corrected gene-

level significance threshold (p<1.32x10-7); ii) >2 variants were tested; iii) it was nominally sig-

nificant (p<0.05) in the unadjusted test for WGS (i.e. without adjusting for correlated traits).

The Bonferroni corrected gene-level significance threshold was chosen after adjusting the stan-

dard gene-level significance threshold (2.5x10-6) for 19 PCs explaining >95% of the variance

of 226 metabolic biomarkers, an approach previously used in similar studies using the same

NMR platform [24,25].

To test if a single variant was driving an observed association, we performed leave-one-out

analysis for all variants contributing to the test. An association was considered to be driven by

a single variant if, after removing it the test resulted in a non-significant association (p>0.05).

Gene-set analyses

To perform gene-set analysis we obtained a curated gene-disease list from DisGeNET [68,69]

and gene lists of metabolic pathways from KEGG [70–72] and Reactome [73,74] (S8 Table).

The gene-disease list obtained from DisGeNET, combines expert curated gene-disease associa-

tions from the following databases: a) CTD (Comparative Toxicogenomics Database); b) UNI-

PROT; c) ORPHANET (an online rare disease and orphan drug data base); d) PSYGENET

(Psychiatric disorders Gene association NETwork); and e) HPO (Human Phenotype Ontology).

We limited analysis to gene-sets with more than three genes. Finally we extracted loss-of-func-

tion variants from genes in the gene-sets and ran SKAT-O (method =“optimal.adj”) for each of

the traits. Similarly to the gene-based analysis, we used WES data as discovery, and took signals

forward for validation in WGS if p<0.01. Covariate selection for correlated traits was performed

as described in the gene-based analysis. The Gene-set-wide significance threshold was calcu-

lated by first estimating the effective number of gene-sets tested given the high overlap amongst

them. Using PCA we estimated that 1094 PCs explain>95% of the variance in gene-sets. The

significance threshold was therefore calculated as: 0.05/(1094�19) = 2.41x10-6 where 19 corre-

sponds to the effective number of phenotypes tested as described above. A signal was considered

to replicate if after meta-analysis: i) it met Bonferroni corrected gene-set-wide significance

threshold (pmeta<2.41x10-6); ii)>2 variants were tested; iii) it was nominally significant

(pvalidation<0.05) in the unadjusted test for WGS (i.e without adjusting for correlated traits).

Genes near GWAS signals

GWAS catalog data files (release 27-09-2017) were downloaded from https://www.ebi.ac.uk/

gwas/docs/file-downloads [75]. We focused on GWAS loci associated with HDL-C, LDL-C,
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TC and TG. We extracted all reported genes for GWAS loci that were associated at genome-

wide significance (p<5x10-8) excluding cases where the “REPORTED GENE” value was: i) NR

(not reported); ii) intergenic; iii) APO(APOE) cluster; iv) HLA-area (S12 Table). These vari-

ants were also further used as covariates in sensitivity analyses. For this analysis, we ran

SKAT-O using the optimal unified approach (method =“optimal.adj”) on the four gene-sets

(HDLC reported, LDLC reported, TC reported, TG reported, S12 Table). The list of genes

known to be involved in conditions leading to abnormal lipid levels was created extracting rel-

evant genes from the DisGeNET and Reactome gene lists. Afterwards, we conducted a manual

review of the published literature to remove genes where functional work in mouse or human

has revealed a direct role of the gene in HDL metabolism (S12 Table). The search terms used

were “[gene name] loss of function HDL” and “[gene name] knockout HDL”. Significance

threshold (p<0.005) was determined by correcting for 10 PCs explaining >95% of the variance

of the traits used in this analysis.

Tails analysis

For this analysis, we used all lipoprotein and lipid traits but excluded derived measures (lipid

ratios) resulting in 106 traits (S18 Table). We focused on likely deleterious missense and loss-

of-function variation in lipid metabolism and disease gene-sets (S19 Table) with an allele

count<10 in each dataset. We chose an arbitrary cut-off of 10 participants with the highest

and lowest values for the traits to define our tails for all 106 traits. Given the high phenotypic

correlation of our traits, there was a high overlap of participants at the tails of the distributions

(S2 and S3 Figs) so we removed traits that shared> = 8 participants with any other trait

reducing the number of tested traits to 50. For each trait, total deleterious allele count from

each gene-set for upper and lower tails was obtained and an empirical p was calculated by

performing 10,000 permutations extracting 10 random participants from the phenotype distri-

bution and counting the number of deleterious alleles from the gene-set. This was done sepa-

rately for WES (discovery) and WGS (validation) and only those that were nominally

significant (ppermutation<0.05) in WES were meta-analysed. The significance threshold for the

combined WES+WGS meta-analysis (ppermutation = 0.00037) was chosen by correcting for 9

PCs explaining >95% of the traits variance and 15 pathways. Enrichment was declared if the

test reached this significance threshold after meta-analysis and if in addition. we observed

ppermutation<0.05 in the validation dataset. Meta-analysis was done using Stouffer’s method

[38] as implemented in the metap package [76] in R.

Ethics statement

After reading study leaflets and participating in a discussion with donor carer staff, eligible

donors were asked to complete the trial consent form before giving a blood donation. The

National Research Ethics Service approved (11/EE/0538) this study.

Supporting information

S1 Fig. P-value thresholds used in each analysis. Neff refers to effective N. Yellow boxes high-

light analyses adjusted for correlated metabolites.

(TIF)

S2 Fig. Overlap of top 10 participants in the tails of 106 lipid and lipoprotein traits. Col-

umns represent the top 10 participants of at least one trait. Rows represent the 106 lipid

and lipoprotein traits used in this analysis. A blue square represents presence of a participant
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in the top 10 participants for its respective trait.

(TIF)

S3 Fig. Overlap of bottom 10 participants in the tails of 106 lipid and lipoprotein traits.

Columns represent the lower 10 participants of at least one trait. Rows represent the 106

lipid and lipoprotein traits used in this analysis. A blue square represents presence of a partici-

pant in the lower 10 participants for its respective trait.

(TIF)

S1 Table. Single point association analyses results.

(XLSX)

S2 Table. Gene-trait associations with p< 5x10-3 in discovery stage (LoF, N = 3,741), and

their corresponding association results in validation (N = 3,401) and combined meta-anal-

ysis (N = 7,142).

(XLSX)

S3 Table. Gene-trait associations with p< 5x10-3 in discovery stage (MCAP+LoF,

N = 3,741) and corresponding validation results (N = 3,401) and combined meta-analysis

results (N = 7,142).

(XLSX)

S4 Table. Phenotypes where adjustment for correlated biomarkers as covariates was per-

formed.

(XLSX)

S5 Table. Variants tested in significant gene-based results.

(XLSX)

S6 Table. Gene-trait associations for candidate novel loci using only LoF.

(XLSX)

S7 Table. LoF + MCAP SKAT-O gene-based results for LDL and triglycerides in the white,

unrelated samples with whole-exome sequence data in UK Biobank.

(XLSX)

S8 Table. Gene sets used in gene set analyses.

(XLSX)

S9 Table. Gene set analyses results.

(XLSX)

S10 Table. Rho values in SKAT-O tests for "R-HSA-204174" associated traits.

(XLSX)

S11 Table. LDL measurements for white, unrelated participants in UK Biobank

(N = 36,769) with whole-exome sequence data carring LoF variants rs113309941 or

rs201013643.

(XLSX)

S12 Table. Gene sets used for enrichment of genes near GWAS signals analyses.
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