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ABSTRACT 21 

Conservation decisions are challenging, not only because they often involve difficult conflicts 22 

among outcomes that people value, but because our understanding of the natural world and 23 

our effects on it is fraught with uncertainty. Value of Information (VoI) methods provide an 24 
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approach for understanding and managing uncertainty from the standpoint of the decision 25 

maker. These methods are commonly used in other fields (e.g. economics, public health) and 26 

are increasingly used in biodiversity conservation. This decision-analytical approach can 27 

identify the best management alternative to select where the effectiveness of interventions is 28 

uncertain, and can help to decide when to act and when to delay action until after further 29 

research. We review the use of VoI in the environmental domain, reflect on the need for 30 

greater uptake of VoI, particularly for strategic conservation planning, and suggest promising 31 

areas for new research. We also suggest common reporting standards as a means of 32 

increasing the leverage of this powerful tool. 33 

The environmental science, ecology and biodiversity categories of the Web of Knowledge 34 

were searched using the terms ‘Value of Information,’ ‘Expected Value of Perfect 35 

Information,’ and the abbreviation ‘EVPI.’ Google Scholar was searched with the same 36 

terms, and additionally the terms decision and biology, biodiversity conservation, fish, or 37 

ecology. We identified 1225 papers from these searches. Included studies were limited to 38 

those that showed an application of VoI in biodiversity conservation rather than simply 39 

describing the method. All examples of use of VOI were summarised regarding the 40 

application of VoI, the management objectives, the uncertainties, the models used, how the 41 

objectives were measured, and the type of VoI. 42 

While the use of VoI appears to be on the increase in biodiversity conservation, the reporting 43 

of results is highly variable, which can make it difficult to understand the decision context 44 

and which uncertainties were considered. Moreover, it was unclear if, and how, the papers 45 

informed management and policy interventions, which is why we suggest a range of reporting 46 

standards that would aid the use of VoI. 47 

The use of VoI in conservation settings is at an early stage. There are opportunities for 48 

broader applications, not only for species-focussed management problems, but also for 49 
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setting local or global research priorities for biodiversity conservation, making funding 50 

decisions, or designing or improving protected area networks and management. The long-51 

term benefits of applying VoI methods to biodiversity conservation include a more structured 52 

and decision-focused allocation of resources to research. 53 

 54 

Key words: adaptive management, decision analysis, decision theory, uncertainty, 55 

biodiversity, ecology, reporting standards, funding, research prioritisation. 56 

 57 

CONTENTS 58 

I. Introduction ........................................................................................................................ 4 59 

(1) The changing landscape of biodiversity conservation ................................................ 4 60 

(2) Strengthening scientific input for management and policy ......................................... 5 61 

(3) Decision making under uncertainty............................................................................. 6 62 

(a) Decision analysis ..................................................................................................... 6 63 

(b) Uncertainty .............................................................................................................. 7 64 

(c) Decisions in the face of uncertainty ...................................................................... 10 65 

(4) Prioritising research to reduce uncertainty about the things that matter: the Value of 66 

Information ........................................................................................................................... 10 67 

II. Calculating the Value of Information ............................................................................... 12 68 

III. The use of VoI in biodiversity conservation .................................................................... 15 69 

(1) Methods ..................................................................................................................... 15 70 

(2) Results ....................................................................................................................... 16 71 

(3) Case studies ............................................................................................................... 18 72 

(a) Case study 1 ........................................................................................................... 19 73 

(b) Case study 2 ........................................................................................................... 21 74 



4 
 

(c) Case study 3 ........................................................................................................... 22 75 

IV. Discussion ......................................................................................................................... 24 76 

V. Conclusions ...................................................................................................................... 28 77 

VI. References ........................................................................................................................ 29 78 

 79 

I. INTRODUCTION 80 

(1) The changing landscape of biodiversity conservation 81 

Our understanding of what constitutes biodiversity [the ‘variety of life’ (CBD Secretariat, 82 

1992; Watson et al., 1995)] has developed to encompass not only genes, species, and habitats 83 

or ecosystems but the variation within them and among all levels, and their inter-84 

relationships. This has led over time to a desire for policy to go beyond the maintenance of 85 

species and protection of places. Whilst protecting species and habitats remain key and 86 

important conservation objectives, other objectives have emerged that reflect more fully such 87 

holistic definitions of biodiversity. These include maintaining genetic variability, 88 

evolutionary potential, food webs, ecological networks and the interactions within and among 89 

species, and ecosystem resilience and function (Mace, Norris & Fitter, 2012). A significant 90 

challenge is presented in both understanding the complex patterns and processes that these 91 

components of biodiversity represent and in shaping and implementing policies designed to 92 

ensure their maintenance. Amongst the most complex of globally agreed goals for 93 

biodiversity are those in the Convention on Biological Diversity’s Strategic Plan for 94 

Biodiversity 2011–2020 and specifically their constituent Aichi Targets (Leadley et al., 95 

2014), and the environmental goals in the recently adopted Sustainable Development Goals. 96 

There are many statutory initiatives to advance the conservation of biodiversity across the 97 

globe, but implementation and enforcement of these statutes has been hampered because of 98 

the potential regulatory burden they impose and potential for conflict with human activities 99 
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such as economic development, recreation, and subsistence and sport hunting. As a result, a 100 

more nuanced view of biodiversity conservation has emerged, one that recognises the choices 101 

and trade-offs implicit in decisions about environmental management.  102 

The political complexity of decisions regarding biodiversity is exacerbated by the remaining 103 

uncertainties about the nature of biodiversity and its response to human interventions, to the 104 

extent that scientific uncertainty is sometimes used as a pawn during political debates and 105 

negotiations. There is a long way to go before the components of biodiversity are fully 106 

described, let alone their processes understood or the consequences of disrupting or even 107 

losing them are adequately predicted. In the meantime, policy and management decisions are 108 

still needed in the absence of such ecological knowledge and thus under substantial 109 

uncertainty. This leads to two important questions that are relevant for environmental 110 

managers: how should decisions about natural resource management be made in the face of 111 

uncertainty, and when is it valuable to reduce the uncertainty before committing to a course 112 

of action? The purpose of this review is to consider the literature concerning the second 113 

question, while placing it in the context of the first question. 114 

 115 

(2) Strengthening scientific input for management and policy 116 

This changing landscape of biodiversity conservation has two important implications for the 117 

science that informs or underpins conservation policy. First, decisions about conservation 118 

policy are significantly enhanced when what is known about biodiversity is made available to 119 

decision makers in a form that they can understand and use (Pullin et al., 2004). There is a 120 

significant body of thought and literature concerning how to achieve this, including making 121 

literature more available to decision makers, analysing management interventions and other 122 

relevant topics through systematic reviews (Pullin & Stewart, 2006; Sutherland et al., 2017), 123 

and promoting research that bridges the ‘knowing–doing’ gap (Knight et al., 2008). The 124 
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diversity of these approaches reflects the large range of contexts in which information on 125 

biodiversity, in all its forms, is now sought to inform policy and decision making. 126 

The second implication of the interplay between uncertainty and decisions about biodiversity 127 

is the need to identify which uncertainty is most valuable to reduce in order to improve the 128 

outcomes of policy or management decisions. The critical issue here is determining which of 129 

the sources of uncertainty has the strongest influence on the choice of action. This requires an 130 

understanding of the decision context in which knowledge about biodiversity is being used. 131 

The question is not whether there is scientific uncertainty and how great it is, but rather, 132 

whether the scientific uncertainty impedes the choice of a management action. Here we 133 

examine the potential for a formal method called the ‘Value of Information’ (VoI) to address 134 

this question in support of conservation management and policy. 135 

 136 

(3) Decision making under uncertainty 137 

Before turning to the topic of the VoI, we first introduce the background on decision making 138 

in the face of uncertainty. A summary of terms can be found in Table 1. 139 

 140 

(a) Decision analysis 141 

The field of decision analysis aims to support decision makers by providing insights from a 142 

large array of disciplines, including decision theory, cognitive psychology, operations 143 

research, economics, and statistics. Based on the work of von Neumann & Morgenstern 144 

(1944) and harkening back to work of Nicolas Bernoulli in 1713, the field of decision theory 145 

recognises that all decisions have common elements, and searches for rational ways to 146 

structure decisions. Decision analysis aims to formalise the decision-making process by using 147 

a clear framework that incorporates all aspects that are relevant to making a decision, namely: 148 

the decision context (the authority of the decision maker and the environment in which the 149 
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decision is being made); the objectives that are to be achieved by the decision and how they 150 

are measured; the different alternative actions that are under consideration to achieve the 151 

objectives; an analysis of the consequences of each action (the prediction of the consequences 152 

of each alternative in terms of the objectives is the central means by which scientific 153 

information is incorporated into a decision); and methods for navigating various types of 154 

trade-offs in choosing an action to implement (Gregory et al., 2012; see Table 1). A diverse 155 

set of analytical tools has been developed to aid decision makers, depending on the primary 156 

impediments to the decision, including multi-criteria decision analysis (Davies, Bryce & 157 

Redpath, 2013), risk analysis (Burgman, 2005), spatial optimisation (Moilanen, Wilson & 158 

Possingham, 2009), and VoI (Runge, Converse & Lyons, 2011). 159 

Formal methods of decision analysis have been used extensively for decisions regarding 160 

natural resource management (Gregory et al., 2012), wildlife population management 161 

(Yokomizo, Couts & Possingham, 2014), fisheries management (Peterson & Evans, 2003), 162 

and endangered species management (Gregory & Long, 2009), among other applications. In 163 

practice, decision analysis is often used in conjunction with collaborative and participatory 164 

facilitation methods, to allow negotiation and dispute resolution (Gregory et al., 2012). 165 

 166 

(b) Uncertainty 167 

Our knowledge of the natural world is extensive, but incomplete. When scientists are asked to 168 

make predictions about the outcomes associated with alternative management actions, they 169 

should do so with an understanding of the uncertainties that underlie those predictions, where 170 

possible. Identifying types of uncertainties can be helpful in determining how to deal with 171 

them. It is useful to distinguish three types of uncertainty: linguistic, epistemic, and aleatory. 172 

Linguistic uncertainty is any type of uncertainty that is linked to language (vague or 173 

ambiguous terms, or terms that are context dependent for example; Regan, Colyvan & 174 
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Burgman, 2002), and is often unresolved in conservation decision making (Kujala, Burgman 175 

& Moilanen, 2013). Sometimes disputes or confusion arise simply because different people 176 

ascribe a different definition to the same term. Epistemic uncertainty arises from limitations 177 

in our knowledge of the world and its workings and is often linked to aspects of available 178 

data, such as insufficient observations or imprecise measurements, which are often 179 

parameters in models used to forecast the effects of management actions. A special case of 180 

epistemic uncertainty is structural uncertainty, which refers to uncertainty in the structure of 181 

the systems model, or of model form, as opposed to model parameters (Morgan & Small, 182 

1992; Conroy & Peterson, 2013). Both linguistic and epistemic uncertainty are, at least 183 

theoretically, reducible uncertainties, that is, with appropriate effort and study, we could 184 

resolve the uncertainty (Conroy & Peterson, 2013). The third type of uncertainty, aleatory 185 

uncertainty, is irreducible, because it arises from sources that are not possible to know about 186 

in advance (Gregory et al., 2012). For example, variation in the weather over the next ten 187 

years, and how it will affect a wildlife population relevant to a particular decision, is not 188 

something we can know in advance. We can describe its expected mean and variance, but we 189 

cannot know the specific temperature and precipitation patterns that will emerge. All three 190 

types of uncertainty can be relevant to a decision analysis but they often emerge at different 191 

stages of the process. For example, linguistic uncertainty often arises during problem framing 192 

or objective setting, whereas epistemic and aleatory uncertainty play a more important role 193 

during the prediction of the consequences of the alternative actions.  194 

The first step to grappling with uncertainty in a decision context is simply to acknowledge 195 

that uncertainty exists and to identify the potential sources of uncertainty that could affect the 196 

prediction of the consequences of the alternative actions. The second step is to estimate the 197 

magnitude of the uncertainty. Statistical methods can be used to estimate the magnitude of 198 

uncertainty in empirical observations; in other cases, formal methods of expert elicitation 199 
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(Martin et al., 2012) can be used. Either way, uncertainty can be expressed as probability 200 

distributions associated with the state variables of interest (e.g. population abundance), the 201 

parameters of predictive models (e.g. survival or reproductive rates), the underlying 202 

alternative hypotheses about how the ecosystem responds to management (e.g. whether the 203 

population is limited by habitat or predation), and the efficacy of actions (e.g. fraction of a 204 

grassland burned by a prescribed fire). For analysis of empirical data, Bayesian statistical 205 

techniques are most useful, because the posterior distributions represent direct statements 206 

about the probabilities of values of the parameters in question. For analysis of expert 207 

judgment, various elicitation and aggregation methods are available to produce probabilistic 208 

summaries. Burgman (2005) discusses the range of methods available for estimating 209 

uncertainty in a risk-analysis context. 210 

The third step in grappling with uncertainty is to propagate the uncertainty through the 211 

predictions of the consequences. If a model is being used to connect the alternatives to the 212 

outcomes, then standard modelling techniques can be used to accomplish this; if not, then 213 

again, expert elicitation can be used. The fourth step is the most important – figuring out how 214 

to handle the uncertainty in the decision. There are essentially two different paths. Decisions 215 

can be made either without resolving uncertainty, or once some of the uncertainty has been 216 

resolved. For irreducible uncertainty, only the first choice is available. For reducible 217 

uncertainty, both choices are theoretically available, and the question is whether it is worth 218 

resolving the uncertainty first. Funders of research may also be interested in prioritisation 219 

where there are multiple sources of uncertainty to address. In some instances uncertainty may 220 

not be an important consideration, in others, however, uncertainty may play an important 221 

role. The next two sections describe the decision analytical tools for evaluating decisions in 222 

the face of uncertainty, and evaluating the value of reducing uncertainty. 223 

 224 
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(c) Decisions in the face of uncertainty 225 

Many decisions are made in the face of uncertainty, without an attempt to resolve the 226 

uncertainty before committing to action; analysis of such decisions is the focus of risk 227 

analysis (Burgman, 2005). The essence of such decisions is to choose the alternative action 228 

that best manages the risk associated with the uncertain outcomes in a manner that reflects 229 

the decision maker’s risk tolerance. For a risk-neutral decision maker, the analysis involves 230 

calculating the expected outcome for each alternative, with the expectation (the weighted 231 

average) taken over all the uncertainty, and choosing the action with the best expected value. 232 

The decision maker, however, might not be risk neutral; for instance, they might be much 233 

more concerned about the risk of downside losses than the chance of upside gains. If the 234 

decision maker is not risk neutral, utility theory (von Neumann & Morgenstern, 1944) is used 235 

to express the decision maker’s risk tolerance. Both the expected value (risk neutral) and 236 

expected utility approaches require a probabilistic expression of uncertainty. There are also 237 

approaches to risk analysis and management that do not require uncertainty to be described 238 

with probabilities, that instead seek actions that are relatively robust to uncertainty [for 239 

example, info-gap decision theory (Ben-Haim, 2006)]. So, there are methods for analysing 240 

decisions that are made in the face of uncertainty. But what if there is an opportunity to 241 

reduce uncertainty before committing to action – is it worth doing so? 242 

 243 

(4) Prioritising research to reduce uncertainty about the things that matter: the Value 244 

of Information 245 

From the standpoint of a decision maker, research and monitoring are expensive and time-246 

consuming, and potentially take resources away from management interventions, but hold the 247 

promise of providing new information that can guide and improve future management 248 

actions. When is new information worth the cost? The VoI addresses this question by helping 249 
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to focus research and monitoring efforts on uncertainty that impedes choice of an optimal 250 

action (Runge et al., 2011). VoI can also be used to identify cases where monitoring or 251 

further learning would not improve the management actions (McDonald-Madden et al., 252 

2010). 253 

As an example, if the threats to a declining species are unknown, there is uncertainty around 254 

the management action that would best address the decline. In some cases, research may lead 255 

to a better understanding of the causes of the decline so the decision maker can choose an 256 

appropriate management action. In other cases, research might not affect the choice of action, 257 

either because the decision maker cannot address some of the causes of the decline, or 258 

because the best action would not change even with more knowledge. The aim of VoI is to 259 

establish whether the removal of uncertainty by conducting research or undertaking 260 

monitoring would be beneficial. The ability to use VoI to prioritise and choose between 261 

different monitoring and research options is particularly useful, but to our knowledge has not 262 

become common practice among research-funding agencies or conservation organisations.  263 

VoI was first described by Schlaifer & Raiffa (1961) and has since been used in a wide range 264 

of applied disciplines, notably health economics (Yokota & Thompson, 2004; Steuten et al., 265 

2013) and engineering (Zitrou, Bedford & Daneshkhah, 2013). VoI is calculated by 266 

determining whether the performance of objectives of a decision could be improved if 267 

uncertainty could be resolved before committing to a course of action.  268 

There are several variants of VoI, all of which compare the expected benefit with new 269 

information to the expected benefit when the decision is made in the face of uncertainty 270 

(Runge et al., 2011). The expected value of perfect information (EVPI) calculates the 271 

improvement in performance if all uncertainty is fully resolved, and can be used to establish 272 

if research or monitoring is valuable to make effective management decisions. The expected 273 

value of partial perfect information (EVPXI or EVPPI) shows the relative value of resolving 274 
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uncertainty about different hypotheses or different parameters, thus serving as a way to 275 

prioritise research questions (Yokomizo et al., 2014). Finally, because reducing uncertainty 276 

to zero is likely to be impossible, the expected value of sample information (EVSI) calculates 277 

the expected gain in performance from collecting imperfect information rather than for 278 

perfect information (Steuten et al., 2013). The expected value of partial sample information 279 

(EVXSI) combines the concepts of EVPXI and EVSI. Canessa et al. (2015) and Milner‐280 

Gulland & Shea (2017) advocate the use of VoI in ecology and also provide explanations and 281 

online documentation for ecologists on how it can be calculated (Canessa et al., 2015) and in 282 

which contexts it would be useful for addressing uncertainty (Milner‐ Gulland & Shea, 283 

2017). 284 

 285 

II. CALCULATING THE VALUE OF INFORMATION 286 

As the calculations can become complex, we provide here a simplified explanation of how to 287 

calculate VoI. A VoI analysis requires that the decision be formally structured (Gregory et 288 

al., 2012). First, the decision maker’s objectives must be articulated and appropriate 289 

performance metrics identified. This is often quite challenging, because it requires critical 290 

thought about the aims of management and how the outcomes can be measured. While 291 

managers may be able to identify costs of different interventions, estimating benefits for 292 

biodiversity conservation is usually more difficult, but there is a growing literature on this 293 

topic (Keeney, 2007; Runge & Walshe, 2014). Second, at least two alternative management 294 

actions need to be identified that could meet the objectives. Third, the consequences of the 295 

alternatives need to be estimated, specifically how effective each alternative will be in 296 

meeting the different objectives (Gregory et al., 2012). This is where the evaluation of 297 

uncertainty begins. For each action, the uncertainty in achieving the objectives needs to be 298 

estimated. Often, this comes in the form of structural uncertainty: different hypotheses about 299 
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how the system works that result in different predictions of the outcomes associated with 300 

each action (see Case Study 3 in Section III.3c, for an example). Along with these 301 

predictions, the probability of the different hypotheses also needs to be estimated. This 302 

information (the objectives, the actions, the consequences, and the estimates of uncertainty) 303 

form the basis for a risk analysis, but they also provide the basis for the VoI analysis. 304 

To demonstrate a VoI calculation by example, we consider three different areas that could be 305 

purchased, placed in protection, and managed for the benefit of an endangered species. The 306 

decision maker has the resources to purchase only one area, and would like to know which 307 

one will be of most benefit. The decision maker has indicated that the fundamental objective 308 

can be measured using the long-term population size of the endangered species. 309 

There is uncertainty about the ultimate population size of the endangered species that could 310 

be supported in the three protected areas, so the population size has been estimated under five 311 

different hypotheses about what resource most limits the species, each of which is judged to 312 

be equally likely (Table 2). The expected population size across hypotheses is highest for 313 

area A with a mean of 1,000, so if we do no further research, area A would be the best option 314 

under current knowledge. That is, in the face of uncertainty, a risk-neutral decision maker 315 

would choose to acquire area A. 316 

For hypotheses 1 and 5, we estimate that area A has the highest long-term population size, so 317 

A is the optimal choice in 40% of the cases. For hypotheses 2 and 3, we estimate that area B 318 

would be best, while for hypothesis 4 area C would be best, so there is some uncertainty 319 

about the best area in which to invest, depending on which hypothesis is correct. That is, the 320 

uncertainty matters to the decision maker. Now we can use VoI to decide whether to select 321 

area A now or invest in more research first. 322 

The maximum long-term population size under each hypothesis arises if the decision maker 323 

can choose the best action associated with that hypothesis (A for hypothesis 1, B for 324 
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hypotheses 2 and 3, C for hypothesis 4, and A for hypothesis 5). Taking the mean of the 325 

maximum long-term population sizes under each hypothesis, we can calculate the expected 326 

value of the maximum long-term population size, which is 1,110. Prior to undertaking 327 

research to resolve uncertainty about the true hypothesis, we do not know what we will find 328 

out, but we think it is equally likely it will be any one of the five hypotheses. The average of 329 

the performance of the best action for each hypothesis tells us the expected value of our 330 

decision if we can resolve uncertainty before we commit to action. In comparison, the highest 331 

long-term population size under current knowledge is the mean value of A, which is 1,000. 332 

The difference is the VoI – we could achieve an expected gain of 110 additional animals in 333 

the population if we had perfect knowledge. We assume here that one of the five hypotheses 334 

is correct and therefore one of the estimates for long-term population sizes of area A, B, and 335 

C under each hypothesis must be correct. The decision maker now knows that reducing 336 

uncertainty about the limiting factors would increase the expected outcome by 11% (110 337 

more animals than the 1,000 expected by simply purchasing Area A). Several very difficult 338 

questions now arise. First, is research possible that can reduce the uncertainty and identify the 339 

limiting factor? This question requires careful consideration of research design. Second, how 340 

much would the research cost? A power analysis associated with the research design could 341 

help identify the amount of sampling necessary, which could help with estimation of the 342 

costs. Third, is the cost of the research worth the gain? Suppose the research would cost 343 

$500,000; would the expected gain of 110 individuals of this endangered species be worth 344 

that investment? The decision maker needs to weigh this decision, taking into account such 345 

things as the importance of this species, the number of other populations that exist, and the 346 

other uses to which the funds could be put. This is not a trivial task, but the decision is greatly 347 

informed by the transparent analysis of uncertainty, the comparison with the expected 348 

outcome in the face of uncertainty, and the estimate of the potential gain. It is now up to the 349 
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decision maker to decide whether money should be spent on further research, or whether the 350 

decision should just be made to protect area A. 351 

 352 

III. THE USE OF VoI IN BIODIVERSITY CONSERVATION 353 

(1) Methods 354 

A literature search was undertaken to examine the extent to which the use of VoI in 355 

biodiversity conservation has been documented so far. Search criteria were established to 356 

identify papers that were written in English and were published in a peer-reviewed journal 357 

before the end of July 2017. The Web of Science was searched for papers containing the 358 

terms “value of information”, “value of perfect information”, or “EVPI” within the 359 

environmental science, ecology, and biodiversity conservation categories. To search for grey 360 

literature, Google Scholar was searched with the following terms: ("value of information" 361 

OR "value of perfect information" OR EVPI) AND (biology OR "biodiversity conservation" 362 

OR fish OR ecology) AND decision. The term fish was added to ensure that fishing and 363 

fisheries papers were included in the search results. Only the first 1,000 matches were 364 

examined, however this was deemed sufficient as none were relevant after entry 318. Not all 365 

articles found in this way applied VoI in biodiversity conservation, and articles whose 366 

research domains were, for example, medicine, meteorology, or economics were excluded. 367 

Studies that did not use VoI calculations and studies that advocated the use of VoI but 368 

showed no real-world application were also excluded: only studies that incorporated VoI 369 

calculations that were applied to biodiversity conservation were selected. We report our 370 

search using a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-371 

Analyses; Liberati et al., 2009) flow diagram. Citations of studies meeting the inclusion 372 

criteria were searched for further studies, then all studies were summarised with respect to: 373 

the application of VoI, management objectives, uncertainties considered and how they were 374 
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expressed, the predictive modelling used, the performance metric used, and the type of VoI. 375 

Papers were further categorised according to the type of uncertainty (structural, parametric – 376 

empirical, or parametric – elicited), whether they had single or multiple objectives, whether 377 

uncertainty was expressed discretely or continuously, and what type of VoI was used (EVPI, 378 

EVPXI, EVSI). We also plotted the number of papers we found and the overall citations over 379 

time.  380 

Three papers were chosen as case studies, to illustrate in more detail the decision context, 381 

what data sources were used, how VoI was calculated, and whether it made a difference to 382 

the decision. They were chosen to represent a range of applications that show clearly how 383 

VoI was helpful.  384 

 385 

(2) Results 386 

The searches returned 1225 unique references of which 30 met the inclusion criteria, or 2.5% 387 

of the total references (Fig. 1). 901 references were excluded because their primary discipline 388 

was not biodiversity conservation. 294 were excluded due to no mention of VoI, no real-389 

world application of VoI, or due to duplication of previously identified records. 390 

A range of relevant aspects of the included papers are summarised in Table 3. Single-species 391 

management problems were the focus of 18 (60%) of the papers. Of those, the disciplines 392 

within which VoI has been used included invasive species management (eight papers: 393 

D'Evelyn et al., 2008; Moore et al., 2011; Sahlin et al., 2011; Moore & Runge, 2012; 394 

Johnson et al., 2014b, 2017; Williams & Johnson, 2015; Post van der Burg et al., 2016) and 395 

protected species management (10 papers: Grantham et al., 2009; Runge et al., 2011; Tyre et 396 

al., 2011; Williams, Eaton & Breininger, 2011; Smith et al., 2012, 2013; Johnson et al., 397 

2014a; Canessa et al., 2015; Maxwell et al., 2015; Cohen et al., 2016). Other papers focused 398 

on management of multiple species. Of those, fisheries were the subject of five papers 399 



17 
 

(Sainsbury, 1991; Costello, Adams & Polasky, 1998; Kuikka et al., 1999; Mäntyniemi et al., 400 

2009; Costello et al., 2010) and the management of ecosystems was also the subject of five 401 

papers (Bouma, Kuik & Dekker, 2011; Convertino et al., 2013; Runting, Wilson & Rhodes, 402 

2013; Perhans, Haight & Gustafsson, 2014; Thorne et al., 2015). The use of phylogenetic 403 

diversity for deciding which species to protect was used by one study (Hartmann & Andre, 404 

2013) and the sustainable harvest of a species by another (Johnson, Kendall & Dubovsky, 405 

2002).  406 

While there was a range of different objectives considered, there were some common themes, 407 

including maximising populations or their growth rates, or having optimal populations (14 408 

papers or 47%), maximising or maintaining harvests (seven papers or 23%) and minimising 409 

costs (seven papers or 23%). Many papers listed more than one objective, and further details 410 

of objectives that were specific to individual studies can be found in Table 3. The 411 

uncertainties considered are also listed (Table 3): six papers (20%) used expert elicitation for 412 

estimates of uncertainties, the others used various models.  413 

The type of performance metric, that is, how the achievement of objectives by different 414 

management interventions was expressed, was conveyed in a wide variety of ways. Monetary 415 

values for costs and benefits were used by 12 papers (40%) (Sainsbury, 1991; Costello et al., 416 

1998, 2010; Johnson et al., 2002; D'Evelyn et al., 2008; Mäntyniemi et al., 2009; Bouma et 417 

al., 2011; Moore et al., 2011; Moore & Runge, 2012; Runting et al., 2013; Perhans et al., 418 

2014; Post van der Burg et al., 2016). Two papers used monetary values for costs only, and 419 

relative benefits that can be achieved at those costs (Maxwell et al., 2015; Convertino et al., 420 

2013). Another eight (27%) papers used a unitless value that reflected a weighted response 421 

across multiple objectives (Runge et al., 2011; Smith et al., 2013; Williams et al., 2011; 422 

Johnson et al., 2014a,b, 2017; Thorne et al., 2015; Williams & Johnson, 2015). Other papers 423 

used a range of performance metrics, namely cost ratio (Sahlin et al., 2011), probability of 424 
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survival of different age classes (Canessa et al., 2015), population growth rate in per cent 425 

(Cohen et al., 2016), species retention rate at the end of a 20-year simulation period 426 

(Grantham et al., 2009), increase in gas extraction while maintaining brook trout (Salvelinus 427 

fontinalis) populations (Smith et al., 2012), probability of population persisting for 256 years 428 

(Tyre et al., 2011), utility function reflecting both yield (kilotons) and risk of falling below 429 

critical spawning mass (Kuikka et al., 1999), and proportion of maximum phylogenetic 430 

diversity retained (Hartmann & Andre, 2013). 431 

Of the 30 papers found, 19 considered multiple objectives (63%), whereas 11 (37%) 432 

considered single objectives (Table 4). 17 papers (57%) were concerned with structural forms 433 

of uncertainty and 19 with parametric forms of uncertainty (63%) – six papers considered 434 

both forms of uncertainty (20%). While 27 papers used EVPI (90%), 10 used EVPXI (33%), 435 

all of which were published since 2011, and six used EVSI (20%). Twelve papers used more 436 

than one VoI calculation. 437 

Use of VoI in the field of biodiversity conservation is a recent phenomenon. The number of 438 

papers has increased markedly since 2011, with eight papers published before 2011, and 22 439 

papers published since the start of 2011 (Fig. 2). The number of citations has increased 440 

steadily and was at 813 at the end of 2017, a mean of 27 citations per paper. Leadership in 441 

this arena comes primarily from the USA and Australia: the country of affiliation for first 442 

authors was USA for 18 of the papers (60%), Australia for seven (23.3%), and European 443 

countries for five (16.7%). 18 papers (60%) had at least one author who worked for the US 444 

Department of Interior. 445 

 446 

(3) Case studies 447 

All 30 examples found through the literature search undertook a VoI analysis that shed light 448 

on whether more information would be valuable to the decision maker, but they varied in the 449 
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transparency of their presentation, the thoroughness of the uncertainty analysis, and the 450 

clarity of the usefulness to the decision maker. Rather than a detailed analysis of the strengths 451 

and shortcomings of all 30 cases, we present here three case studies that describe clearly how 452 

VoI was used and calculated, represent a range of applications of VoI, and document how 453 

VoI informed the decision-making process. These three case studies are exemplary 454 

applications of VoI, but each also has a few shortcomings; these shortcomings help identify 455 

fruitful areas for improved application. They are also amongst the VoI papers with the 456 

highest annual citations. 457 

 458 

(a) Case study 1 459 

Costello et al. (2010) used VoI to find an optimal marine protected area network in 460 

California, under uncertainty around dispersal of larval fish. Their aim was to design an 461 

optimal Marine Protected Areas network for sheephead Semicossyphus pulcher, kelp bass 462 

Paralabrax clathratus, and kelp rockfish Sebastes atrovirens to maximise fishery profits 463 

whilst ensuring the conservation of the three fish species. They investigated the trade-offs 464 

between maximising profits and maximising conservation by changing the weighting of the 465 

two objectives across the different scenarios. The authors considered 135 patches of 10 km2. 466 

There was uncertainty around the dispersal of the fish larvae, which affects where the species 467 

will be, which is relevant both for fishing these species as well as for protecting them. They 468 

used ten different dispersal kernels, of which only eight may accurately represent the real 469 

dispersal of fish larvae. The other two were simplified kernels, included to see how incorrect 470 

assumptions might affect the outcomes. The management alternatives were based around 471 

these kernels: to choose the best possible spatial harvest either under uncertainty or with 472 

perfect information, or under the two incorrect dispersal kernels. A stage-structured spatial 473 

model as well as an ocean-circulation model were used, and EVPI was calculated.  474 
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To maximise profits from fishing, the two incorrect dispersal kernels led to the least profits, 475 

while imperfect information led to higher profits and perfect information to the highest 476 

profits, for all three species of fish. To maximise the conservation benefits, there was no 477 

difference in the value of all three fisheries between the different dispersal kernels. The area 478 

in marine protected areas increased with certainty, and was lowest for the two incorrect 479 

dispersal kernels. The VoI to maximise profits was 11%. 480 

Two observations about this case study point towards challenges in the application of VoI 481 

methods. First, the analysis of uncertainty focused on one aspect of the fish model, the larval 482 

dispersal kernels, and did not consider uncertainty in other aspects of the model, such as in 483 

the other fish population parameters or in assumptions about the fidelity with which optimal 484 

designs are implemented in practice. How comprehensive does the expression of uncertainty 485 

need to be? To some extent, the practice of modelling involves judgments about which 486 

uncertainties will matter and so which should be explored; these are essentially informal VoI 487 

evaluations. There is no guidance yet about how modellers should navigate this question. 488 

Second, to generate alternative larval dispersal kernels, Costello et al. (2010) used alternative 489 

realisations from a stochastic ocean circulation model, but then acknowledge that they 490 

assumed those represented fixed dispersal kernels for the purpose of developing an optimal 491 

protected area design. Does their set of eight alternative kernels represent the full range of 492 

uncertainty for this aspect of their model? Would an alternative ocean circulation model have 493 

added to the range of dispersal kernels? We believe this is a valuable open research question 494 

– is there a way to evaluate whether a candidate set of models captures the relevant degree of 495 

uncertainty for the decision problem at hand? 496 

 497 
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(b) Case study 2 498 

Maxwell et al. (2015) used VoI to determine the value of more research in choosing the best 499 

management intervention for a declining koala Phascolarctos cinereus population in 500 

Australia. Their objective was to maximise the growth rate of the koala population. Three 501 

actions were suggested that could address threats to koalas, and the authors investigated how 502 

much should be invested in each action under different budget levels: preventing vehicle 503 

collisions by building fences and bridges; preventing dog attacks by building enclosures for 504 

dogs; and preventing spread of disease by buying land for conversion to koala habitat, which 505 

was also considered to reduce the other two threats. There was uncertainty about how habitat 506 

cover affected koala mortality, as well as about the survival and fecundity rates of koalas. 507 

These uncertainties were described using eight population models. The optimal strategy (how 508 

much of a given budget should be spent on each action) was calculated for various budget 509 

levels. EVPI and EVPXI were calculated by determining which uncertainties to reduce under 510 

different budget levels to achieve a certain population growth rate, which was then converted 511 

into a financial VoI. 512 

The authors found that preventing vehicle collisions was the most cost-effective action at low 513 

budget levels but that larger budgets allowed more to be spent on habitat restoration instead, 514 

due to the disparity in costs of the different actions. The VoI differed between different 515 

budget levels; at budgets below AUS$45 million it was best to resolve the uncertainty around 516 

survival and fecundity, whereas at budgets above $45 million it was best to resolve 517 

uncertainty around habitat cover. Maxwell et al. (2015) made a valuable methodological 518 

contribution: even though the management objective was not stated in monetary terms (the 519 

objective was to maximise the population growth rate of koalas), the VoI could be converted 520 

to a financial value by comparing budget levels that could achieve the same expected 521 
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population growth rate with and without resolving uncertainty. Interestingly, the VoI was 522 

never more than 1.7% of the budget. 523 

Maxwell et al. (2015) analysed both structural and parametric uncertainty in a combined 524 

analysis, serving as a good example for how others can include both types of uncertainty in a 525 

VoI analysis. They found that parametric uncertainty explained around 97% of the EVPI, 526 

with structural uncertainty contributing very little, but is this a general result? There has not 527 

yet been a comprehensive study to look at how structural and parametric uncertainty 528 

contribute to EVPI and whether there are any general patterns that can be inferred. 529 

 530 

(c) Case study 3 531 

A study using expert elicitation was undertaken by Runge et al. (2011) who studied the 532 

management of a reintroduced whooping crane Grus americana population in the USA. At 533 

the time of the study, the population was failing to reproduce and so the aim was to enhance 534 

the current population under uncertainty around the reasons for low reproductive success. 535 

They formulated four objectives to contribute to a self-sustaining population of whooping 536 

cranes: provide suitable nest sites; maximise reproduction; maximise survival during the 537 

summer months; and improve body condition when the birds leave for their winter quarters. 538 

Because quantitative data were not available to evaluate the effectiveness of all proposed 539 

actions, they used an expert elicitation process to articulate competing hypotheses for 540 

reproductive failure, develop alternative management action, and evaluate the management 541 

actions under each hypothesis. Eight hypotheses to explain the pattern of reproductive failure 542 

were developed, ranging from nutrient limitation to harassment by black flies. Seven 543 

alternative management actions were developed, using the competing hypotheses as 544 

motivation. Using formal methods of expert judgment, the experts were then asked to 545 
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estimate how well each action would address each of the four different objectives, under each 546 

hypothesis.  547 

Three variants of VoI (EVPI, EVPXI and EVSI) were calculated with the information 548 

provided by the expert panel. Under uncertainty, the best action was meadow restoration, 549 

which was thought to address all four objectives best. For three of the four objectives, the VoI 550 

was nearly 0, because the best action was the same under most of the hypotheses. But for one 551 

objective (maximising the fledging rate), the best action depended on the underlying 552 

hypothesis for reproductive failure, thus the VoI was substantial (25.7%). Calculation of the 553 

expected value of partial information (EVPXI) revealed that the most important hypotheses to 554 

resolve were how parasitic flies and human disturbance affected whooping cranes. In part as 555 

a result of this analysis, a controlled experimental study of the effect of parasitic flies on 556 

reproduction was undertaken, lending strong support to this hypothesis; in response, 557 

management agencies have refocused reintroduction efforts to areas with lower parasitic fly 558 

densities. 559 

This study reveals one difficult challenge in estimating uncertainty. The authors considered 560 

eight hypotheses against seven alternatives and four objectives, thus, each expert had to 561 

estimate 224 values. A panel of experts was used, but uncertainty across experts was not 562 

analysed, nor were the experts asked to estimate their internal uncertainty, in part because the 563 

sheer magnitude of the elicitation task was already exhausting for the experts. Thus, 564 

differences across objectives and hypotheses were evaluated, but differences across and 565 

within experts were ignored. In this setting, expert judgement was needed, because empirical 566 

data could not inform the full set of questions being asked. But there are not yet methods in 567 

the expert judgment literature for eliciting large patterned matrices of responses, while 568 

properly estimating within- and among-expert uncertainty and minimising expert fatigue. 569 

 570 
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IV. DISCUSSION 571 

Natural resource managers have to make decisions despite uncertainty on issues such as rapid 572 

species declines, increasing numbers of invasive species, or changes in ecosystems due to 573 

land-use change. In many cases, there is an urgency to take action even though the science 574 

behind these, and other pressing issues, is generally not fully understood (Tittensor et al., 575 

2014). VoI is a method for evaluating this uncertainty, yet its potential remains relatively 576 

unexplored, with only 30 papers so far using it in biodiversity conservation.  577 

The pursuit of a VoI analysis requires a structured approach to decision analysis, which has 578 

rewards in its own right (Gregory et al., 2012; Possingham, 2001). Applied biodiversity 579 

conservation is about decisions, and the field of decision analysis provides a rich set of tools 580 

for helping decision makers navigate the complexities in natural resource-management 581 

settings. The consistent use of these methods is emerging in a few conservation organisations 582 

around the world, supported by a rapidly expanding literature. 583 

The specific benefit of a VoI analysis is to ascertain whether uncertainty surrounding the 584 

effects of management actions should be reduced or not. It is valuable to note that the answer 585 

to this question is context specific. There are examples from our review where using VoI 586 

showed that uncertainty should be reduced first (Costello et al., 2010; Bouma et al., 2011; 587 

Runting et al., 2013), and other examples where it makes little difference to the overall 588 

outcomes whether uncertainty is reduced or not (Johnson et al., 2014a,b; Maxwell et al., 589 

2015). There are two endeavours where the resolution of uncertainty takes a central role: 590 

research design and adaptive management. There is potential to extend the application of VoI 591 

to prioritising research topics through the use of EVPXI. This could be used by conservation 592 

NGOs or funding agencies to prioritise which projects to fund, or by policy makers to help 593 

set national or international conservation and research priorities. VoI can also be used to 594 

decide when adaptive management is warranted, as it shows whether resolution of 595 
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uncertainty will improve the expected outcomes associated with management decisions and, 596 

if so, which elements of uncertainty contribute most to that improvement.  597 

Attention to VoI methods in the conservation literature is recent. The first suggestion for 598 

using VoI in biodiversity conservation was made by Walters (1986), followed by the earliest 599 

paper included in our review (Sainsbury, 1991). Seven more papers on VoI were published in 600 

the next 20 years. A turning point appears to have occurred in 2011: 22 of the 30 papers we 601 

found were published since then. Because the introduction of VoI methods into the 602 

biodiversity conservation literature is fairly recent, the coverage of topics to which it has been 603 

applied is incomplete (Table 4). Most of the papers we reviewed focus on EVPI, while the 604 

use of EVPXI has increased since 2011. Only six of the 30 papers used EVSI, so its use 605 

remains poorly explored. Uncertainty was dealt with in a range of ways: either by using 606 

different model structures, by using the same model but with different parameters, or by 607 

eliciting uncertainties from experts. A wide range of predictive models has been used for VoI 608 

analysis, with many papers using population models, but there is the potential to explore its 609 

use with other modelling structures, such as machine-learning methods like Random Forests 610 

or Neural Networks.  611 

Our review revealed that although many scientists are talking about VoI methods (hundreds 612 

of papers), their use in applied settings is more limited (30 papers) – why is the uptake of VoI 613 

so slow? Using VoI in a structured decision-making context is advocated by many in ecology 614 

and biodiversity conservation, for example, at the US Department of the Interior (Williams, 615 

Szaro & Shapiro, 2009), and recently by the IUCN in their guidelines for species 616 

conservation planning (IUCN – SSC Species Conservation Planning Sub-Committee, 2017). 617 

It does not appear, however, that these calls have yet resulted in the systematic use of VoI in 618 

conservation decision making, with the 30 cases presented herein encompassing the bulk of 619 

the applications. The methods are novel enough that applications warrant publication in the 620 
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peer-reviewed literature. While there is not a mechanism to systematically search the grey 621 

literature, during our search we only came across two or three indications of unpublished VoI 622 

analyses by conservation decision makers. We have not undertaken an institutional analysis 623 

to identify the impediments to faster uptake of these methods, but we suspect that the 624 

methods are simply at an early stage of adoption. Widespread introduction to the concept of 625 

VoI in the conservation field only occurred in 2011 and conservation agencies are only now 626 

deliberately building capacity in decision analysis. The study of organisational change, 627 

especially adoption of decision-analysis methods, suggests that it typically takes 15–25 years 628 

to achieve widespread adoption of new practices (Spetzler, Winter & Meyer, 2016). 629 

Standardised reporting of VoI analyses might help in the communication and adoption of the 630 

methods. The calls for using VoI (Williams et al., 2009; IUCN, 2017) ensure there is a clear 631 

framework within which VoI can be applied. It also means that reporting standards for VoI 632 

analyses can be developed readily (Table 5). These standards include a description of the full 633 

decision context, whether a real or hypothetical decision is considered, what the uncertainties 634 

are, which type of VoI was used, how the objectives were measured, and the time horizon. As 635 

VoI is implemented more widely, these reporting standards can increase the transparency of 636 

the VoI calculation. Most of the items we suggest in the reporting standards were listed in the 637 

papers we found and have been summarised in Table 3, but for some papers stating the 638 

reporting standards explicitly would aid in making the papers easier to understand. Rarely 639 

was the decision maker named however, and no paper stated whether the research would be 640 

used to inform management.  641 

Our review of the extant literature applying VoI methods suggests a number of fruitful areas 642 

for future research and development. First, Tables 3 and 4 reveal a number of gaps in 643 

application (e.g. no examples of using EVSI in ecosystem management settings); the 644 

continued expansion of VoI methods into all types of conservation decisions, with all system 645 
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model types, could provide greater guidance for other decision makers. Second, there is a 646 

need for guidance about which uncertainties to include in a VoI analysis. That is, how should 647 

scientists and decision makers work together to identify the sources of uncertainty to 648 

examine, and what are the consequences of leaving out important sources? Third, there are 649 

not yet methods for evaluating whether the range of values or range of alternative models 650 

used to capture uncertainty adequately does so. Put another way, does uncertainty about the 651 

uncertainty matter? Can the usefulness of a VoI analysis be undermined if uncertainty is 652 

inadequately captured? This question is perhaps most applicable when uncertainty is 653 

expressed as a discrete set of alternative models or parameter sets. Fourth, perhaps to help in 654 

developing the guidance for the previous two items, is it possible to identify what types of 655 

uncertainty contribute most to EVPI? Is there an important difference between structural and 656 

parametric uncertainty? Are there other properties of sources of uncertainty that are 657 

associated with greater EVPI? Fifth, there is a need for new methods of expert judgment that 658 

are designed to elicit patterned matrices of values, with expression of uncertainty, without 659 

exhausting the cognitive resources of experts. For example, a decision setting that involves 660 

four possible actions and five alternative models of system response (representing 661 

uncertainty) requires elicitation of 20 values, but these values should not be viewed as 662 

independent – there are presumably relationships across rows and columns that are part of the 663 

expert knowledge. Sixth, and finally, there is a curious pattern in many of the examples we 664 

reviewed – EVPI can often be smaller than one might expect. Is this a common occurrence 665 

across conservation applications, and if so, why? Is it because the intuitive expectations of a 666 

high VoI are biased, or is it because the analysis of uncertainty is too narrow? 667 

Decisions regarding biodiversity conservation, especially in the face of climate and land-use 668 

change, are often impeded by uncertainty. Risk-analysis methods can help managers make 669 

decisions in the face of uncertainty, and VoI methods can help them decide whether to gather 670 
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more information before committing to action. The increased use of VoI since 2011 is a 671 

positive sign, and its wider implementation will be beneficial for making robust decisions in 672 

an uncertain future. To support expanded implementation, there are a number of open 673 

research questions regarding how best to conduct VoI analyses. 674 

 675 

V. CONCLUSIONS 676 

(1) Formal methods of decision analysis provide tools for making rational conservation 677 

decisions in the face of uncertainty, whether those decisions concern management of 678 

imperilled species, control of invasive species, establishment and management of protected 679 

areas, setting of harvest quotas, or any other of the classes of decisions faced by natural 680 

resource-management agencies. 681 

(2) VoI methods allow decision makers to understand the value of resolving uncertainty, and 682 

thus provide a way: to evaluate whether more information is needed before taking action; to 683 

set a research agenda by ranking the influence of different sources of uncertainty; and to 684 

motivate and guide the development of adaptive management. 685 

(3) The increasing use of VoI in biodiversity conservation since 2011 indicates that there are 686 

efforts to tie the analysis of uncertainty more explicitly to decision-making contexts. The 687 

variety of VoI methods have been explored fairly thoroughly in conservation settings, but 688 

there are few examples of the expected value of sample information (EVSI). 689 

 (4) While VoI has been extensively promoted as a tool to inform management, it is much 690 

less common that is has been implemented for managing conservation issues. For VoI to 691 

make a difference, it needs to be used by managers, policy makers and funders, not just 692 

scientists. The use of decision analysis and formal VoI could do much to reduce the 693 

incoherence of information flow from scientists to practitioners. We postulate that this is a 694 

critical missing piece required to bridge the knowing–doing gap. 695 
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(5) Common reporting standards to document the use of VoI could be a valuable way to share 696 

insights and motivate further application of these methods. 697 
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FIGURES 888 

 889 

Fig. 1. PRISMA flow diagram (Liberati et al., 2009) of results of literature search. 890 

 891 

Fig. 2. Cumulative number of applied Value of Information (VoI) papers in biodiversity 892 

conservation and their total citations over time. The citations are tallied until the end of 2017. 893 
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TABLES 894 

Table 1. Definitions of terms relating to decision making in conservation. 895 

Term Definition 

Decision analysis methodology 

Decision analysis A broad field that explores both how humans make decisions (descriptive decision 

analysis) and how they should make decisions (prescriptive or normative decision 

analysis). Importantly, normative decision analysis provides a framework for decision 

making that includes the context, the objectives, alternative actions, the consequences of 

the actions, the uncertainties involved and how learning can be implemented (Gregory et 

al., 2012). 

Decision context What decision needs to be made and how? Who is the decision maker and what is their 

authority? What legal, policy, and scientific guidelines form the context for the 

decision? (Gregory et al., 2012). 

Objectives The fundamental outcomes that the decision maker is pursuing in making the decision. 

Objectives need to encompass everything that should be achieved by the decision whilst 

being independent from each other. They can be used to build consensus amongst 

stakeholders (Gregory et al., 2012). 

Alternatives Set of potential actions under consideration that could achieve the objectives. An 

alternative may encompass various tasks that will address all objectives, so different 

alternatives can be comparable. Alternatives need to be distinct from each other 

(Gregory et al., 2012). 

Consequences The predicted outcomes of the different alternatives relative to the different objectives. 

Often the consequences show trade-offs between different alternatives (Gregory et al., 

2012). 

Trade-offs Competing consequences across objectives, such that improving the outcome associated 

with one objective requires giving up performance associated with another objective. 

The challenge to the decision maker is to evaluate consequences of the different 

alternatives and make a decision on which alternative to implement (Gregory et al., 

2012). 

Uncertainty terms 

Aleatory 

uncertainty 

Uncertainty arising from inherent variability in random processes. Environmental, 

demographic, and catastrophic stochasticity are examples (Gregory et al., 2012). 

Epistemic 

uncertainty 

Uncertainty arising from the limits of current human knowledge. Often linked to aspects 

of data, for example lack of data or imprecise measurements (Regan et al., 2002). 

Irreducible 

uncertainty 

Uncertainty that cannot be resolved, for example environmental stochasticity (Conroy & 

Peterson, 2013). 

Linguistic 

uncertainty 

Uncertainty linked to language: vague or ambiguous terms, or terms that are context 

dependent (Regan et al., 2002). 
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Parametric 

uncertainty 

Special case of epistemic uncertainty: uncertainty about the values of the parameters in a 

model (Kujala et al., 2013). 

Reducible 

uncertainty 

Uncertainty that can be resolved, if enough effort is exerted, for example epistemic or 

linguistic uncertainty (Conroy & Peterson, 2013). 

Structural 

uncertainty 

Special case of epistemic uncertainty: uncertainty around the systems model (Conroy & 

Peterson, 2013). 

 896 

Table 2. Long-term population size resulting from choosing areas A, B or C to protect, and 897 

maximum long-term population size, as estimated under five different hypotheses, and their 898 

means. 899 

Hypothesis Area A Area B Area C Maximum long-term 

population size 

1 1,250 750 500 A - 1,250 

2 1,000 1,250 450 B - 1,250 

3 500 750 450 B - 750 

4 750 500 800 C - 800 

5 1,500 500 300 A - 1,500 

Mean 1,000 750 500 1,110 

 900 
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Table 3. Summary of 30 papers identified by the literature search for inclusion in this study. EVPC, expected value of perfect choice (analogous 901 

to EVPI); EVPI, expected value of perfect information; EVPXI, expected value of partial perfect information; EVSI, expected value of sample 902 

information; VoI, Value of Information. 903 

Paper Paper summary  VoI application  Management 

objective(s) 

Uncertaintie

s considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Invasive species papers 

D'Evelyn 

et al. 

(2008) 

To inform management of the 

invasive brown tree snake 

Boiga irregularis in the USA 

under uncertainty regarding 

population size 

Establish social costs 

of invasive species 

management (control 

costs and damages) 

with and without 

learning about the 

true population size 

Minimise costs of 

management 

Minimise damage 

caused by 

invasive species 

Population 

size 

Continuous – 

probability 

distribution 

for population 

size 

Species 

population 

models 

$ Simulation 

comparison 

of expected 

value with 

and without 

learning 

Johnson et 

al. (2014b) 

Establish management and 

monitoring options for pink-

footed goose Anser 

brachyrhynchus in Western 

Europe under uncertainty 

regarding population 

dynamics to minimise 

negative effects on farmland 

and habitats  

Choose most 

appropriate 

population model for 

pink-footed goose 

and whether 

information on 

survival or 

reproduction would 

be most beneficial 

Maintain viable 

goose populations 

 Minimise losses 

on agricultural 

lands and of 

tundra habitat due 

to geese 

Allow goose 

hunting 

Survival and 

reproductive 

rates of 

goose 

Discrete – 

nine different 

population 

models 

considered 

Annual life-

cycle models  

Objective 

value – 

relative 

measure of 

management 

performance 

EVPI, 

EVPXI 

Johnson et 

al. (2017) 

Control of invasive black and 

white tegu Salvator merianae 

in Florida, a newly introduced 

species that is increasing 

rapidly under uncertainty 

regarding population 

Find best 

management action to 

control tegu 

abundance if 

uncertainty is 

resolved, and if 

Contain tegu 

population whilst 

minimising costs 

Range of 

uncertainties 

of 

population 

ecology of 

tegu, and 

effectiveness 

Continuous – 

population 

parameter 

elicited from 

experts, 

replicated to 

draw 

Population 

matrix model, 

expert 

elicitation 

Objective 

function value 

– combination 

of weighted 

management 

objectives 

EVPI, 

EVPXI 
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dynamics  uncertainty remains of control distributions, 

then included 

in models 

Moore & 

Runge 

(2012) 

Establish best management 

strategy for invasive grey 

sallow willow Salix cinerea in 

Australia despite uncertainty 

regarding some of its 

ecological traits and how they 

can be managed 

Establish if further 

research would 

enhance management 

through improving 

dynamic models at 

different budget 

levels 

Protect alpine 

bogs by removing 

willows 

Minimise 

resources used for 

willow removal 

Frequency 

of fires, 

population 

dynamics of 

willow, 

effectiveness 

of 

management 

effort 

Continuous – 

effects of 

actions 

elicited from 

experts, then 

incorporated 

in the model; 

discrete - 

different 

parameter 

values used 

Expert 

elicitation, 

dynamic 

management 

model for 

different 

budgets 

Budget – 

workdays 

allocated 

EVPI, 

EVPXI 

Moore et 

al. (2011) 

Establish which interventions 

are best for managing Acacia 

paradoxa, an invasive species 

occurring in South Africa, 

when its extent is unknown 

Establish if more 

research needed 

before deciding 

whether eradication 

or containment is best 

for managing Acacia 

paradoxa 

Minimise overall 

cost 

Current 

extent of 

Acacia 

paradoxa 

Continuous - 

probability 

distribution 

for the extent 

of infestation 

Decision 

model 

South African 

Rand 

EVPI, 

EVPXI 

Sahlin et 

al. (2011) 

For cultivated introduced 

marine macroalgae in Europe, 

establish those that will 

become invasive and those 

that will not become invasive 

to avoid future costs of 

invasive species while not 

spending on non-invasive 

species 

Evaluate which 

species of macroalgae 

are likely to become 

invasive so money 

can be spent on 

avoiding 

introductions of such 

species  

Remove 

populations of 

species that will 

become invasive 

Do not remove 

populations of 

species that will 

not become 

invasive 

Base rate of 

invasiveness 

Continuous – 

different 

parameter 

values in pre-

posterior 

Bayesian 

analysis 

Screening 

model of 

species 

invasiveness 

Cost ratio – 

relative loss of 

avoiding 

introduction of 

species that 

will not be 

invasive, and 

not avoiding 

introduction of 

species that 

will be 

invasive 

EVSI 

(Bayesian 

pre-posterior 

analysis) 

Post van 

der Burg et 

Find optimal management for 

two invasive species, leafy 

spurge Euphorbia esula and 

Evaluate whether to 

prioritise one or both 

invasives and 

Maximise native 

species 

A whole 

range of 

uncertain 

Continuous – 

probability 

distributions 

State-and-

transition 

US$ per year 

with less than 

50% 

EVPI, 

EVPXI 
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al. (2016) yellow toadflax Linaria 

vulgaris, on private and 

public lands under different 

budgets 

whether to focus on 

managing public 

lands directly or 

private land indirectly 

through incentives, 

under different 

budgets 

populations 

Minimise costs 

values was 

modelled, 

see S3 at 

http://www.f

wspubs.org/

doi/suppl/10.

3996/032015

-JFWM-023  

for species-

specific spread 

and 

establishment 

parameters 

model infestation 

Williams 

& Johnson 

(2015) 

Inform management of pink-

footed goose Anser 

brachyrhynchus in Western 

Europe despite uncertainty 

regarding population 

dynamics over a 50-year time 

horizon. Establish which 

aspect of population dynamics 

would be most beneficial to 

understand. Data from 

Johnson et al. (2014b). 

Determine which 

management option 

would be best over a 

50-year time horizon, 

looking at different 

population levels 

Maximise 

sustainable 

harvest whilst 

keeping to the 

population goal 

Nine models 

that differ in 

the survival 

and 

reproductive 

rates of 

geese 

Discrete – 

nine different 

population 

models 

considered 

Annual cycle 

models 

Objective 

value – 

relative 

measure of 

management 

performance 

EVPI, 

EVPXI 

Protected species papers 

Canessa et 

al. (2015) 

Inform reintroduction strategy 

for the European pond 

terrapin Emys orbicularis 

under uncertainty about post-

release effect on different age 

classes 

Determine optimal 

age class at which to 

release captive 

terrapins into the wild 

under uncertainty of 

post-release effects in 

different age groups 

Maximise 

survival of 

terrapins 

Uncertainty 

if post-

release 

effect on 

terrapins is 

stable, or 

increases or 

decreases 

with 

increasing 

age 

Continuous – 

different 

parameter 

values in the 

model 

Population 

model 

Probability of 

survival of 

different age 

classes 

EVPI, EVSI 

Cohen et 

al. (2016) 

Inform management of piping 

plovers Charadrius melodus 

at nest sites for improved 

nesting success and adult 

survival under different 

Decide if and in 

which situations nest 

exclosures improve 

breeding success and 

whether this exceeds 

Maximise 

breeding success 

Minimise adult 

A whole 

range of 

uncertain 

population 

values was 

Continuous – 

means and 

confidence 

intervals 

identified 

Mixed 

multinomial 

logistic 

exposure 

model, expert 

Population 

growth rate in 

per cent 

EVPI 

http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
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predation rates the effect on adult 

mortality 

mortality considered, 

see 

Materials 

and Methods 

in Cohen et 

al. (2016) 

through 

literature or 

expert 

elicitation 

elicitation 

Grantham 

et al. 

(2009) 

Decide on survey effort to 

maximise protection of 

members of the Proteaceae 

family in South Africa 

Choice of six 

different survey 

durations or use of a 

habitat map alone 

under uncertainty 

regarding future 

habitat loss and 

protection 

Maximise 

protection of 

Proteaceae 

Rate of 

surveying by 

volunteers, 

rate of 

habitat loss, 

rate of 

establishmen

t of newly 

protected 

areas 

Discrete – 

habitat 

suitability of 

plots; 

continuous – 

varying mean 

rates of habitat 

loss, habitat 

protection and 

volunteer 

survey hours 

spent 

Maximum 

entropy model 

for habitat 

suitability; 

minimum loss 

algorithm and 

maximum 

gain algorithm 

for 

designation of 

protected 

areas 

Proteaceae 

retention rate 

at the end of 

20-year 

simulation 

period 

EVSI 

Johnson et 

al. (2014a) 

Inform management of a 

declining population of 

Northern bobwhite quail 

Colinus virginianus in the 

USA despite uncertainty 

regarding population 

limitations and how 

management options could 

address these 

Choose which 

management option 

would be best and 

which potential 

reasons for a decline 

in Northern bobwhite 

quail would be most 

beneficial to study 

further 

Maximise 

population growth 

rate and harvest of 

bobwhites 

Minimise costs 

Maximise 

feasibility of 

management  

Cause of 

decline of 

bobwhites 

Discrete – 

hypotheses 

elicited from 

experts, then 

ranked 

Expert 

elicitation, 

population 

model 

Objective 

value – 

calculated 

with weighted 

objectives 

EVPI, 

EVPXI 

Maxwell et 

al. (2015) 

Inform management options 

for a declining koala 

Phascolarctos cinereus 

population in Australia 

despite uncertainty regarding 

survival and fecundity rates 

and how habitat affects 

different threats 

Determine if more 

research is necessary 

to decide whether 

habitat restoration or 

preventing vehicle 

collisions or dog 

attacks would be 

most cost-effective 

Maximise koala 

population growth 

rate 

Survival and 

fecundity 

rates 

Discrete – 

eight different 

structures of 

the population 

model; 

continuous – 

varying 

parameter 

Deterministic 

age-structured 

matrix 

population 

model 

Relative 

benefit of 

actions at 

different 

monetary 

levels in AU$ 

EVPI, 

EVPXI 
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values 

Runge et 

al. (2011) 

Establish which management 

interventions are best for 

whooping crane Grus 

americana conservation in the 

US whilst reasons for low 

reproduction are unknown 

Distinguish between 

different hypotheses 

regarding reasons for 

low productivity as 

well as possible 

management actions 

Provide suitable 

nest sites  

Maximise 

reproductive 

success 

 Maximise 

survival during 

the breeding 

season 

Maximise body 

condition prior to 

migration 

Cause for 

reproductive 

failure 

Discrete – 

hypotheses 

elicited from 

experts 

Expert 

elicitation 

Multi-criteria 

scale – relative 

values of 

objectives 

EVPI, EVSI 

Smith et 

al. (2013) 

Establish harvest rates in the 

US for Delaware Bay 

horseshoe crabs Limulus 

polyphemus with uncertainty 

regarding its link to red knot 

Calidris canutus rufa 

abundance 

Determine best 

population model of 

red knot with and 

without uncertainty 

Maintain crab 

harvest 

Ensure red knot 

recovery 

Relationship 

between 

horseshoe 

crab 

spawning, 

red knot 

mass and red 

knot vital 

rates 

Discrete – 

three different 

population 

models 

Species-

specific 

population 

models 

Mean outcome 

of populations 

averaged over 

model weights 

EVPI 

Smith et 

al. (2012) 

Find optimal management to 

combine extraction of shale 

gas with maintaining 

populations of brook trout 

Salvelinus fontinalis under 

different densities of well 

pads 

Determine level of 

gas extraction under 

uncertainty regarding 

effect of density of 

well pads on brook 

trout, and uncertainty 

around occupancy 

model 

 

Extract shale gas 

while maintaining 

brook trout 

populations 

Well pad 

density 

Discrete – 

three 

predictive 

models; 

continuous – 

different well 

pad densities 

considered, 

different 

model 

likelihood 

considered  

Urban-type, 

forestry-type 

and 

intermediate 

type impact 

models 

Increase in gas 

extraction 

while 

maintaining 

brook trout 

populations 

EVPI 
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Tyre et al. 

(2011) 

Inform stream management 

for bull trout  Salvelinus 

confluentus conservation in 

north-western USA under 

uncertainty about migratory 

behaviour 

Choose between four 

assumptions and a 

model of bull trout 

movement 

Maintain current 

distribution  

Maintain 

stable/increase in 

abundance  

Restore/maintain 

habitat suitable 

for all life-history 

stages 

Conserve genetic 

diversity 

Mechanisms 

that 

determine 

life-history 

strategy 

Discrete – four 

different 

models 

 

Patch network 

models 

Probability of 

population 

persisting for 

256 years (for 

demonstration 

of concept) 

EVPI 

Williams 

et al. 

(2011) 

Establish optimal habitat 

management for the recovery 

of Florida scrub-jay 

Aphelocoma coerulescens 

despite uncertainty regarding 

the effect of different habitat 

management interventions 

Find the best option 

for habitat 

management under 

uncertainty of how 

vegetation will 

regenerate 

Maintain stable 

scrub jay 

population 

Rate of 

scrub 

regeneration, 

future 

burning rate 

after 

removal of 

combustibles 

Discrete – 

multiple 

transition 

models 

Habitat 

occupancy 

model 

Smallest 

average loss in 

objectives 

EVPI, 

EVPXI, 

EVSI 

Ecosystems papers 

Bouma et 

al. (2011) 

Potential use of Earth 

Observation data for Great 

Barrier Reef protection, used 

to assess if non-targeted or 

targeted Water Action Plan 

would best address sediment 

discharge 

Determine when 

Earth Observation 

data has most value: 

if sediment discharge 

is an equal issue from 

all catchments or if 

there are differences 

among catchments 

Decrease 

sediment 

discharge into 

Great Barrier 

Reef 

Difference 

in sediment 

discharge 

between 

catchments 

Cost of 

pollution 

abatement 

Discrete – 

differing 

simulations in 

model, expert 

elicitation on 

data accuracy 

incorporated 

as prior belief 

Four different 

simulations 

for cost 

minimisation 

model, expert 

elicitation 

Million 

AU$/year 

EVPI 

Convertino 

et al. 

(2013) 

Find optimal interventions 

and monitoring plans for 

restoring water flow in the 

Florida Everglades to meet 

objectives including 

Distinguish between 

different monitoring 

efforts (low – 

medium – high) 

Improve 

ecological 

conditions whilst 

minimising 

Uncertainty 

around 

decisions on 

restoration 

alternatives 

Discrete – 

three rainfall 

scenarios and 

two soil 

oxidation 

Probabilistic 

decision 

network 

consisting of 

environmental

Cost in $, 

benefit is 

relative utility 

of 

management 

EVPI - 

Change in 

payoff of 

different 

monitoring 
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biodiversity conservation and 

flood protection under 

uncertainty regarding future 

rainfall and soil oxidation 

operational costs and 

monitoring 

as well as 

climate 

change 

scenarios were 

modelled 

, monitoring 

and decision 

sub-models 

interventions plans for one 

management 

plan 

Perhans et 

al. (2014) 

In areas to be clear-cut, find 

optimal method for selecting 

trees that are to be conserved 

with highest biodiversity 

value, using lichens as 

indicator species 

Decide which method 

of selecting trees to 

retain will give most 

biodiversity benefit 

Find trees that 

would give 

highest number of 

lichens 

Find trees that 

would give 

highest number of 

protected lichens 

Maximise 

probability that a 

protected species 

is represented 

Relationship 

between 

different tree 

attributes 

and lichens 

present 

Continuous – 

model 

averaging of 

model 

parameters 

Generalised 

linear model 

Swedish krona EVPI 

Runting et 

al. (2013)  

Find optimal allocation of 

resources for conservation 

areas under uncertainty 

around sea level rise in 

coastal South East 

Queensland 

Find optimal 

allocation of budget 

towards either 

research or 

conservation of 

coastal areas at 

different budget 

levels 

Maximise areas 

for conservation 

Future sea-

level rise, 

accuracy of 

elevation 

data, budget 

level 

Discrete –

different 

models, 

coarse/ fine 

resolution 

elevation data, 

different sea-

level rise 

scenarios; 

continuous – 

different 

budget levels 

Sea Level 

Affecting 

Marshes 

model or 

Inundation 

model 

AUS$ EVPXI 

Thorne et 

al. (2015) 

Find management options 

robust to different climate 

change scenarios in the San 

Francisco Bay area 

Decide if and which 

uncertainty to reduce 

– storm or marsh 

resilience 

Maximize marsh 

ecosystem 

integrity 

Maximize 

likelihood of 

Frequency 

and intensity 

of storms 

and tidal 

marsh 

Discrete – 

discrete states 

in network 

with 

conditional 

Bayesian 

network 

Relative utility 

of 

management 

under different 

assumptions 

on scale from 

EVPI 
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recovery of 

California 

Ridgway’s Rail 

(Rallus obsoletus 

obsoletus) 

Maximize human 

benefits from tidal 

marshes 

resilience probabilities 0 to 100 

Fisheries papers: 

Costello et 

al. (1998) 

Find optimal harvest rates of 

Coho salmon Oncorhynchus 

kisutch under uncertainty 

around future El Niño events 

Choose optimal 

harvest rate for coho 

salmon under 

uncertainty about 

future El Niño events 

and if uncertainty can 

be resolved 

Maximize 

expected net 

present value of 

the Coho fishery 

Future El 

Niño 

occurrences 

 

Discrete; three 

different states 

for the annual 

El Niño phase 

Bioeconomic 

model of Coho 

salmon fishery 

US$ EVPI, EVSI 

Costello et 

al. (2010) 

Design optimal Marine 

Protected Areas network for 

sheephead Semicossyphus 

pulcher, kelp bass Paralabrax 

clathratus and kelp rockfish 

Sebastes atrovirens to 

maximise fishery profits 

Choose location and 

extent of Marine 

Protected Areas 

Maximise fishery 

profits whilst 

ensuring 

conservation of 

species 

Dispersal of 

fish larvae 

Discrete – 10 

different 

dispersal 

kernels used 

Stage-

structured 

spatial model, 

ocean 

circulation 

model 

Net profit of 

fishing – 

unitless 

EVPI 

Kuikka et 

al. (1999) 

Management of Baltic cod 

Gadus morhua fisheries in the 

Baltic Sea 

Determine best mesh 

size for cod fishery 

Minimise risk of 

spawning biomass 

going below 

critical levels 

Maximise yield 

Growth rate 

of cod, 

recruitment 

of cod, 

critical 

spawning 

biomass 

Discrete – 

three different 

models for 

recruitment 

Bayesian 

influence 

diagram that 

combines 

three different 

recruitment 

models 

Utility 

function 

reflecting both 

yield 

(kilotons) and 

risk of falling 

below critical 

spawning 

mass 

EVPI 

Mäntynie

mi et al. 

Management of North Sea 

herring Clupea harengus 

Determine ideal 

fishing pressure 

Maximise 

expected profits 

Stock–

recruitment 

Discrete – two 

stock–

Bayesian 

probability 

Norwegian 

Krone 

EVPI 
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(2009) fisheries in the North Sea under uncertainty 

around the stock–

recruitment 

relationship 

over 20-year 

period 

relationship recruitment 

relationships 

considered 

model 

Sainsbury 

(1991) 

Management of a multi-

species fishery in north-

western Australia of genera 

Lethrinus, Lutjanus, 

Nemipterus, Saurida 

Find optimal 

management option 

for fishery by using 

trap or trawl catch 

and using adaptive 

management to 

incorporate learning 

into the management 

process 

Maximise value 

of fisheries 

Effect of 

intra- and 

interspecific 

competition 

as well as 

habitat on 

abundance 

of different 

fish species 

Discrete – four 

different 

models; 

continuous – 

different 

parameter 

values 

Population 

growth models 

Million AUS$ EVPI 

Other topics 

Hartmann 

& Andre 

(2013) 

A framework for the use of 

phylogenetic diversity to 

inform which species should 

be protected, and the 

associated costs and benefits 

Distinguish when to 

use species richness 

as a measure of 

biodiversity, and 

when to use 

phylogenetic 

diversity as a better 

measure 

Maximize 

phylogenetic 

diversity 

Uncertainty 

in the 

underlying 

phylogenetic 

relationships 

among a set 

of species 

 

Continuous – 

10,000 

samples of 

possible 

phylogenetic 

trees for a set 

of 20 species 

Calculation of 

phylogenetic 

diversity, 

based on the 

edge lengths 

for the 

included 

species from a 

phylogenetic 

tree 

Proportion of 

maximum 

phylogenetic 

diversity 

retained 

EVPC  

Johnson et 

al. (2002) 

Find optimal harvest strategy 

under uncertainty regarding 

population processes of 

mallards Anas platyrhynchos 

Optimal harvest 

strategy if accurate 

population model was 

known compared to if 

uncertainty remained 

Maximise long-

term cumulative 

harvest 

Density 

dependence 

and additive 

or 

compensator

y mortality 

Discrete – four 

population 

models and 

their 

probabilities 

Age-structured 

population 

models 

Harvested 

mallards/year, 

converted to $ 

EVPI 

 904 
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Table 4. Table summarising papers according to the uncertainties and objectives considered 905 

and depending on the type of VoI used. EVPI, expected value of perfect information; EVPXI, 906 

expected value of partial perfect information; EVSI, expected value of sample information. 907 

 Uncertainty EVPI EVPXI EVSI 

S
in

g
le

 O
b

je
ct

iv
e 

Structural Sainsbury (1991); Costello et al. 

(1998); Johnson et al. (2002); 

Mäntyniemi et al. (2009); Bouma et al. 

(2011); Williams et al. (2011); 

Maxwell et al. (2015) 

Williams et al. 

(2011); Runting et al. 

(2013); Maxwell et 

al. (2015) 

Costello et al. 

(1998); Grantham 

et al. (2009); 

Williams et al. 

(2011) 

Parametric Sainsbury (1991); Bouma et al. (2011); 

Moore et al. (2011); Canessa et al. 

(2015); Maxwell et al. (2015) 

Moore et al. (2011); 

Runting et al. (2013); 

Maxwell et al. (2015) 

Grantham et al. 

(2009); Canessa et 

al. (2015) 

M
u

lt
ip

le
 O

b
je

ct
iv

es
 

Structural Kuikka et al. (1999); Costello et al. 

(2010); Tyre et al. (2011); Smith et al. 

(2012, 2013); Convertino et al. (2013); 

Johnson et al. (2014b); Williams & 

Johnson (2015) 

Johnson et al. 

(2014b); Williams & 

Johnson (2015) 

 

Parametric D'Evelyn et al. (2008); Runge et al. 

(2011); Moore & Runge (2012); Smith 

et al. (2012); Hartmann & Andre 

(2013); Johnson et al. (2014a, 2017); 

Perhans et al. (2014); Thorne et al. 

(2015); Cohen et al. (2016); Post van 

der Burg et al. (2016) 

Moore & Runge 

(2012); Johnson et al. 

(2014a, 2017); Post 

van der Burg et al. 

(2016) 

Runge et al. (2011); 

Sahlin et al. (2011) 

 908 

Table 5. Suggested reporting standards for the use of Value of Information (VoI) in 909 

biodiversity conservation. Adapted from PrOACT (Hammond et al., 2015). See also Section 910 

I.3. EVPI, expected value of perfect information; EVPXI, expected value of partial perfect 911 

information; EVSI, expected value of sample information. 912 

Reporting standard Description 

Problem What is the problem or the decision to be made? Is it a real-world decision to be 

made? 

Objectives What objectives are considered to ensure delivery of the decision? 

Alternatives Which alternative actions are proposed to meet objectives? 

Consequences What are the consequences of different alternatives? How have they been estimated? 

Trade-offs What are the trade-offs of the alternative actions? 

Uncertainty What are the key uncertainties? Are they structural or parametric? Are they discrete 

or continuous? How have they been dealt with? 

Type of VoI EVPI, EVPXI or EVSI 

Performance metric The performance metric needs to be stated and fully explained. Ideally this would 

have a financial value too, to make the analysis more useful for managers, and to 



46 
 

enable synthesising of different studies in the future. 

Decision makers State whether the research is undertaken on behalf of a decision maker and whether 

they are planning on implementing the findings.  

Time horizon State time horizon. If the VoI shows that more research is necessary, and therefore 

there is a need for adaptive management, a timeframe should be given when the 

information will be re-assessed. State how long intervention implementation will 

take. 

 913 


