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universe. To study and interpret these datasets we need to know the possible graviton
non-Gaussianities. To this end, we derive the most general tree-level three-point functions
(bispectra) for a massless graviton to all orders in derivatives, assuming scale invariance.
Instead of working with explicit Lagrangians, we take a bootstrap approach and obtain
our results using the recently derived constraints from unitarity, locality and the choice
of vacuum. Since we make no assumptions about de Sitter boosts, our results capture
the phenomenology of large classes of models such as the effective field theory of inflation
and solid inflation. We present formulae for the infinite number of parity-even bispectra.
Remarkably, for parity-odd bispectra, we show that unitarity allows for only a handful
of possible shapes: three for graviton-graviton-graviton, three for scalar-graviton-graviton
and one for scalar-scalar-graviton, which we bootstrap explicitly. These parity-odd non-
Gaussianities can be large, for example in solid inflation, and therefore constitute a concrete
and well-motivated target for future observations.
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1 Introduction

Being the only force that stubbornly refuses to be described at arbitrarily high energies
within the dominant framework of quantum field theory, gravity is a prominent testing
ground for our understanding of fundamental physics. Ideas from string theory, the study
of black holes and gauge-gravity duality suggest that the field-theoretic gravitons that
appear to describe low-energy phenomena very well, most likely don’t provide the right
language to discuss non-perturbative and high-energy aspects of quantum gravity. Given
how difficult it is to establish what gravity is, a useful approach to the problem is to ask
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the related question: What can gravity be? For example, given the framework of quantum
mechanics as we know it, what different descriptions of gravity can be formulated that are
mathematically and physically consistent?

Concrete and quantitative progress in this direction has been achieved for quantum
fields on flat spacetime, e.g. via the derivation of positivity bounds that constrain effec-
tive field theories admitting standard and consistent UV-completions. To understand and
model cosmology, and in particular inflation, dark energy and dark matter, we would like to
use these bounds as a compass pointing us in the direction of the most promising consistent
theories. However, the set of consistent theories of dynamical gravity is different in flat and
cosmological spacetimes. Concrete examples of this difference include a theory of inter-
acting massless spin 3/2 particles, which is given by supergravity in flat space, but is not
known in de Sitter; or the theory of a scalar coupled to gravity with boost-breaking interac-
tions, which is easily written down in cosmological spacetimes, as in many realistic models
of inflation and dark energy, but which is inconsistent in flat spacetime as can be shown by
examining amplitude factorization [1]. At the same time, new probes of gravity have just
become available through the observation of gravitational waves at interferometers, and
there is a substantial international effort and a well-kindled hope to detect a cosmological
background of gravitational waves from the primordial universe. In light of these consid-
erations, it is highly desirable to study the consistency of effective field theories of gravity
directly on the cosmological spacetimes where we want to use them for phenomenology.

In this work, we are interested in constraining the possible phenomenological descrip-
tions of gravity around a (quasi) de Sitter spacetime, with an eye towards applications to
inflation. To this end, we focus on the natural observables of this system: cosmological
correlators, namely the expectation values of the product of fields in the space-like asymp-
totic future, which we will call the (conformal) boundary. Given a concrete model, such
observables can be computed in perturbation theory using the in-in formalism. However,
since we don’t know what the “right” model is, we will follow a different approach, which
is inspired by parallel progress in the study of amplitudes [2–4]. In particular, we aim
to derive all possible correlators that are compatible with fundamental principles such as
symmetry, unitarity and locality. This model-independent approach goes under the name
of the cosmological bootstrap and has received growing attention in recent years [5–29].

We will focus on the simplest non-trivial correlators of massless spin-2 fields, a.k.a.
gravitons, and massless scalars, namely three-point functions or bispectra. An important
previous result is that of [30], where, assuming invariance under the full isometry group
of de Sitter, it was shown that for gravitons only three cubic cosmological wavefunctions
are allowed, and of those only the two parity-even ones can lead to a non-vanishing bis-
pectrum [31]. Several additional results can be derived in this setup using conformal Ward
identities, as done for example in [30, 32–36], and parity-odd correlators in CFT’s were
recently discussed in [37, 38]. While some of these results are remarkable because they
are non-perturbative in nature, we are faced with the issue that de Sitter boosts are ac-
tually broken in all cosmological models and, in particular, during inflation. Unlike the
breaking of scale-invariance, the breaking of boosts is in general not slow-roll suppressed
and may be large, as for example in so-called P-of-X models (a.k.a. “k-inflation” [39]),
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where the Lagrangian is an arbitrary function of the kinetic term, or more general models
captured by the effective field theory of inflation [40, 41]. In fact, as emphasized in [29],
the breaking of de Sitter boosts is a necessary condition to have phenomenologically large
non-Gaussianities.

Therefore, to make contact with cosmological observations, in this work we will weaken
the assumption of full de Sitter invariance and instead assume only the symmetries that
have been observed in primordial perturbations, namely statistical homogeneity, isotropy
and (approximate) scale invariance. In particular, we will allow for arbitrary breaking of
de Sitter boosts. The price to pay for this smaller set of isometries is that we have to work
in perturbation theory and we will restrict ourselves to tree-level.

Progress in understanding boost-breaking gravitational interactions has been achieved
using effective field theories and the Lagrangian approach in a series of recent papers [42–
47]. This approach is quite general and intuitive but its computational complexity grows
quickly as one considers operators with an increasing number of derivatives. To overcome
this difficulty, here we will instead follow the “boostless” cosmological bootstrap approach
proposed in [16, 17], which partially builds upon results in [1, 5, 6, 14, 30] and is reviewed
in section 2. Our approach leverages the powerful constraints of fundamental principles
such as unitarity, locality and the choice of vacuum and allows us to bootstrap all tree-level
graviton bispectra to any order in derivatives, as well as all parity-odd mixed bispectra.
At the end of our derivation we will see how the bootstrap results can be understood in
the familiar Lagrangian language (see section 5).

Our main results are summarized below:

• Unitarity and the choice of the Bunch-Davies vacuum highly restrict the allowed set
of parity-odd correlators. In particular, for massless scalars and gravitons and to all
orders in derivatives, there is only a finite number of tree-level correlators. In contrast,
the number of possible wavefunction coefficients and Lagrangian interactions grows
without bound as one increases the number of derivatives in the effective field theory
expansion. In more detail, a contact parity-odd correlator can only arise when there
is a logarithmic IR-divergence in the associated wavefunction coefficient. In turn this
may only happen when 2n∂η +n∂i ≤ 3, where n∂η and n∂i are respectively the number
of time and space derivatives in the parity-odd interaction.1 This explains on general
grounds why parity-odd correlators where found to vanish in the scale-invariant limit
in a number of explicit calculations [31, 46, 48].

• We computed all tree-level graviton bispectra to any order in derivatives, assuming in
particular scale-invariance and massless gravitons. There are infinitely many parity-
even graviton bispectra B3. For example, for the choice of all plus helicities these are
given by the symmetrized products of three factors

e3
3B

+++
3 (k1,k2,k3) = SH+++

∑
permutations

hα(k1, k2, k3)ψtrimmed
3 (k1, k2, k3) . (1.1)

1This is valid for any contract n-point function and assumes that there is at most one time derivative
per field. Interactions with more than one time derivative can always be re-written in terms of those with
at most one time derivative using the equations of motion.
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The first factor SH+++ includes the spinor helicities and provides the correct little-
group scaling. It is given by

SH+++ = [12]2[23]2[31]2
e2

3
= −e+

ij(k1)e+
jk(k2)e+

ik(k3) (1.2)

= −k
3
T

(
8e3 − 4kT e2 + k3

T

)
16
√

2e2
3

, (1.3)

where [ij] is the square-bracket product of helicity spinors, eij are polarization tensors,
and kT , e2 and e3 are the elementary symmetric polynomials defined in (1.12). The
second factor hα roughly accounts for the contractions between spatial derivatives
and polarization tensors and can be any one of the following four possibilities

h0 = 1, h2 = k2k3, h4 = I2
1I2I3, h6 = I2

1I
2
2I

2
3 , (1.4)

where

Ia ≡ (kT − 2ka) = kb + kc − ka a 6= b 6= c . (1.5)

For parity-odd interactions there are a further five possibilities for hα. Finally, the
third factor is the “trimmed” wavefunction ψtrimmed

3 , which roughly accounts for the
conformal time integrals of mode functions, time derivatives and spatial derivatives
contracted with each other. This can be any of the infinitely-many rational-function
solutions of the manifestly local test, ∂kaψtrimmed

3 = 0 at ka = 0 (see (2.25)), which
are conveniently organized in terms of the increasing order of the polynomial in
the numerator, roughly corresponding to the derivative expansion of an effective
field theory. For concreteness, the first few explicit bispectra are given in (4.77)
through (4.95). The bispectra corresponding to other helicity choices can be derived
from the all-plus bispectrum as discussed in section 4.2.

• Remarkably, there are only three parity-odd graviton bispectra at tree level to all orders
in derivatives. These are explicitly found to be

B+++
3 = g1,1

e3
3
SH+++kT

(
k2

T−2e2
)
, B++−

3 = g1,1

e3
3
SH++−I3

(
k2

T−2e2
)
,

B+++
3 = g1,2

e3
3
SH+++(−3e3+kT e2) , B++−

3 = g1,2

e3
3
SH++−

[
(k1+k2)

(
k1k2+k2

3
)
−(k2

1 +k2
2)k3

]
,

B+++
3 = g3,3

e3
3
SH+++I1I2I3 , B++−

3 = g3,3

e3
3
SH++−I1I2kT ,

where the gα,p are arbitrary real coupling constants whose indices denote respectively
the number α of spatial momenta contracted with polarization tensors and the total
number of derivatives p in the associated interaction. The remaining two helicity
configurations, namely −−− and −−+, can be obtained via a parity transformation,
while keeping in mind the odd-parity of the above bispectra. In the effective field
theory of inflation only one specific combination of these three shapes can appear and
it must be accompanied by a parity-odd correction to the free theory. In this case, the
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final parity-odd graviton bispectrum must be small, and in particular much smaller
than the standard parity-even contribution from General Relativity (GR) computed
in [49]. By contrast, all three shapes above can appear in a general model of solid
inflation [50], without any modification to the free theory and with arbitrarily large
amplitudes. Hence, these three parity-odd graviton bispectra are an important target
for non-Gaussian searches in the graviton sector. Their shapes are plotted in figure 5.
In solid inflation they should be accompanied by correlated scalar-scalar-graviton and
scalar-graviton-graviton bispectra with larger signal-to-noise ratios (see section 5.4).

• We show that there are only three parity-odd scalar-graviton-graviton bispectra and
one scalar-scalar-graviton bispectrum at tree level to all orders in derivatives, assum-
ing scale invariance and manifest locality. These are given by

B00+
3 = h3,3

e3
3

[13]2[23]2
k2

3[12]2 I2
3k3 , (1.6)

B0++
3 = [23]4

k2
2k

2
3e

3
3
[q1,1(k2 + k3)k2

1 + q1,2,a(k3
2 + k3

3) + q1,2,b(k2k
2
3 + k3k

2
2)] , (1.7)

where h3,3 and qα,p are arbitrary coupling constants. Notice, however, that for scalars
non-manifestly local interactions do arise in GR. We show in section 5 that the
above scalar-scalar-graviton bispectrum can be large in solid inflation, but not in the
effective field theory of inflation, and can be the leading observational signal.

The rest of this work is organized as follows. In section 2, we review the framework and
tools used to bootstrap correlators in general scale-invariant and boost-breaking theories,
and in particular the boostless bootstrap rules, the constraints of unitarity in the form of the
Cosmological Optical Theorem and associated cutting rules, the constraints from locality
on massless fields in the form of the Manifestly Local Test, and finally the spinor helicity
formalism for spinning cosmological correlators. The expert reader might skip directly to
section 3, where we derive a very general consequence of unitarity for tree-level contact
correlators that implies that to all orders in derivatives there is only a small and finite
number of non-vanishing parity-odd correlators. Then in section 4 we present formulae
for all graviton bispectra to any order in the derivative expansion and show that there
are only three non-vanishing parity-odd bispectra, and infinitely many parity-even ones.
In section 5, we show that the parity-odd bispectra can indeed arise in realistic models
such as solid inflation, and study how they are constrained in the effective field theory
of inflation. We also discuss their detectability by studying the associated signal-to-noise
ratio. We conclude in section 6 with an outlook on future research directions.

Notation and conventions. Throughout we will work with the mostly positive metric
signature (−+ ++) and we define the three-dimensional Fourier transformation as

f(x) =
∫

d3k
(2π)3 f(k) exp(ik · x) ≡

∫
k
f(k) exp(ik · x) , (1.8)

f(k) =
∫
d3x f(x) exp(−ik · x) ≡

∫
x
f(x) exp(−ik · x) . (1.9)
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We use bold letters to refer to vectors, e.g. x for spatial co-ordinates and k for spatial mo-
menta, and we write the magnitude of a vector as k ≡ |k|. We will sometimes refer to these
objects as “energies” even though there is no time-translation symmetry in cosmology. We
will use i, j, k, . . . = 1, 2, 3 to label the components of SO(3) vectors, and a, b, c = 1, . . . , n
to label the n external fields. For wavefunction coefficients and cosmological correlators we
use ψn and Bn respectively:

ψn(k1, . . . ,kn) ≡ ψ′n(k1, . . . ,kn)(2π)3δ3
(∑

ka
)
, (1.10)

〈O(k1) . . .O(kn)〉 ≡ 〈O(k1) . . .O(kn)〉′(2π)3δ3
(∑

ka
)

≡ Bn(k1, . . . ,kn) (2π)3δ3
(∑

ka
)
, (1.11)

and we will drop the primes on ψn when no confusion arises. We will also use a prime
to denote a derivative with respect to the conformal time e.g. φ′ = ∂ηφ. We will often
encounter polynomials that are symmetric in three variables, for example, for the + + +
correlator. We write these in terms of the elementary symmetric polynomials (ESP):

kT = k1 + k2 + k3 , (1.12)
e2 = k1k2 + k1k3 + k2k3 , (1.13)
e3 = k1k2k3 . (1.14)

2 Bootstrap techniques from symmetries, locality and unitarity

In this section, we define the objects that we will be bootstrapping, namely wavefunction
coefficients appearing in the wavefunction of the universe and the associated cosmological
correlators. In this part of the paper we also review bootstrap techniques that have been
recently developed in the context of boost-breaking interactions. We outline how symme-
tries, locality and unitarity can be directly imposed on cosmological observables thanks to
a set of Boostless Bootstrap Rules [16], a Manifestly Local Test [17] and the Cosmologi-
cal Optical Theorem [14, 18, 19, 27]. Finally, we review the cosmological spinor helicity
formalism that we will use to succinctly present graviton bispectra.

2.1 The wavefunction of the universe and cosmological correlators

Let’s start by reviewing the computation of the wavefunction of the universe Ψ and defin-
ing wavefunction coefficients ψn which will be our primary objects of interest. We will also
remind the reader how correlation functions are extracted from knowledge of the wavefunc-
tion.

We take the background geometry to be that of rigid de Sitter (dS) spacetime which
we write as2

ds2 = a2(η)(−dη2 + dx2) , a(η) = − 1
ηH

, (2.1)

2These are the so-called Poincaré or flat-slicing coordinates and cover half of the maximally extended
de Sitter spacetime. This spacetime is the one relevant for the discussion of cosmological observations.
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where the conformal time coordinate η ∈ (−∞, 0) and H is the constant Hubble parameter
which we will often set to unity. This background geometry is an excellent approximation
of an inflationary solution, and considering quantum fields fluctuating on this rigid back-
ground allows us to compute the leading contributions to inflationary non-Gaussianities,
up to small slow-roll corrections [49]. Our methods in this paper will apply to general
quantum field theories, but we will primarily be interested in the two massless modes that
appear in all inflationary models: a massless scalar φ(η,x) and the transverse, traceless
massless graviton γij(η,x). When our results apply to both scalars and graviton, especially
in section 3, we will use ϕ(η,x) with any SO(3) indices suppressed.

The free action of a massless scalar is

Sφ,free =
∫
dηd3x a2(η)1

2
[
φ′2 − c2

s∂iφ∂iφ
]
, (2.2)

where we have allowed for an arbitrary, constant speed of sound cs which signals the
fact we are allowing for dS boosts to be spontaneously or explicitly broken.3 Working in
momentum space, we write the quantum free field operator as

φ̂(η,k) = φ−(η, k)ak + φ+(η, k)a†−k , (2.3)

where the mode functions φ±(η, k) correspond to solutions of the free classical equation of
motion and are given by

φ±(η, k) = H√
2c3
sk

3 (1∓ icskη)e±icskη . (2.4)

The mode functions for graviton fluctuations take the same form as (2.4) (with cs = 1)
with the addition of polarisation tensors ehij(k), with h = ±2, as required by little group
scaling. This is because for each polarisation mode the equation of motion is that of a
massless scalar. The polarisation tensors satisfy the following conditions:

ehii(k) = kiehij(k) = 0 (transverse and traceless) , (2.5)
ehij(k) = ehji(k) (symmetric) , (2.6)

ehij(k)ehjk(k) = 0 (lightlike) , (2.7)
ehij(k)eh′ij (k)∗ = 2δhh′ (normalization) , (2.8)

ehij(k)∗ = ehij(−k) (γij(x) is real) . (2.9)

As we explained in the introduction, we are interested in scenarios where dS boosts
are broken since we know that these symmetries could not have been exact in the early
universe, and large non-Gaussianities are associated with a large breaking of boosts [29].
We take the remaining symmetries of the dS group to be exact: spatial translations, spatial
rotations and dilations. A general interaction vertex with n fields, scalars and gravitons,
therefore takes the schematic form

Sint =
∫
dηd3x a(η)4−Nderiv∂Nderivϕn , (2.10)

3When the speed of sound differs from the speed of light appearing in the metric, cs 6= 1, the sound
cone is not invariant under de Sitter boosts, a fact which can be simply seen in the flat-space limit, where
de Sitter boosts reduce to Lorentz boosts.
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where ∂ stands for either time derivatives ∂η or spatial derivatives ∂i, and Nderiv is the total
number of derivatives. Spatial derivatives and the graviton’s indices are contracted with
the SO(3) invariant objects δij and εijk and the overall number of scale factors is dictated
by scale invariance.

We now turn to the wavefunction of the universe which we denote as Ψ. We are
interested in this wavefunction evaluated at the end of inflation or alternatively on the
late-time boundary of dS space, at a conformal time which we denote as η0. Ultimately
we will take η0 → 0. To illustrate the wavefunction of the universe method, let us focus
on a single massless scalar φ. The generalisation to gravitons simply requires the addition
of SO(3) indices where appropriate. We refer the reader to [13, 14, 51–53] for further
details. At late-times, the wavefunction has an expansion in the late-time value of the
scalar, φ(k) ≡ φ(η0,k), given by

Ψ[η0, φ(k)] = exp
[
−
∞∑
n=2

1
n!

∫
k1,...,kn

ψn(k1 . . .kn)φ(k1) . . . φ(kn)
]
, (2.11)

where we have written the exponent as an expansion in powers of the field multiplied by
the wavefunction coefficients ψn(k1 . . .kn) which contain the dynamical information about
the bulk processes. Invariance of the theory under spatial translations ensures that the
ψn(k1 . . .kn) always contain a momentum conserving delta function and so we can write

ψn(k1 . . .kn) = ψ′n(k1 . . .kn)(2π)3δ3(k1 + . . .+ kn). (2.12)

We will often drop the prime even when we do not explicitly include the delta function.
At weak coupling, we can compute the leading contribution to the wavefunction using the
saddle-point approximation where the wavefunction is completely fixed by the value of the
action evaluated on classical solutions:

Ψ[η0, φ(k)] ≈ eiScl[φ(k)]. (2.13)

Traditionally, one computes Scl[φ(k)] in perturbation theory using Feynman diagrams
which involve bulk interaction vertices, bulk-boundary propagators K(η, k) and bulk-bulk
propagators G(η, η′, k). If we denote the scalar’s free equation of motion as O(η, k)φ = 0,
then these propagators satisfy

O(η, k)K(η, k) = 0, (2.14)
O(η, k)G(η, η′, k) = −δ(η − η′), (2.15)

with boundary conditions

lim
η→η0

K(η, k) = 1, lim
η→−∞(1−iε)

K(η, k) = 0 (2.16)

lim
η,η′→η0

G(η, η′, k) = 0, lim
η,η′→−∞(1−iε)

G(η, η′, k) = 0. (2.17)
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Figure 1. Contact diagram for n external fields.

We can then write both propagators in terms of the positive and negative frequency mode
functions as

K(k, η) = φ+
k (η)

φ+
k (η0)

, (2.18)

G(p, η, η′) = i

[
θ(η − η′)

(
φ+
p (η′)φ−p (η)−

φ−p (η0)
φ+
p (η0)

φ+
p (η)φ+

p (η′)
)

+ (η ↔ η′)
]

= iP (p)
[
θ(η − η′)

φ+
p (η′)

φ+
p (η0)

(
φ−p (η)
φ−p (η0)

−
φ+
p (η)

φ+
p (η0)

)
+ (η ↔ η′)

]
, (2.19)

where P (p) is the power spectrum of φ and we have introduced the notation φk(η) ≡ φ(η, k)
to shorten the expressions. In deriving these expressions we have imposed the Bunch-Davies
vacuum state as an initial condition which is the assumption that at very early times the
mode functions are those of the flat-space theory. Physically this is because at very high
energies the modes do not feel the expansion of the universe.

Now to extract the wavefunction coefficients one follows the following Feynman rules.
For a contact diagram like the one shown in figure 1, we insert an overall factor of (−i) and
perform a single time integral where the integrand is a product of the coupling parameter,
the n bulk-boundary propagators and their derivatives (as dictated by the interaction
vertex), and an appropriate number of scale factors (as dictated by scale invariance). Time
derivatives act on the bulk-boundary propagators whereas spatial derivatives simply bring
down a factor of iki, as is the case for scattering amplitudes. We integrate from the far past
at η = −∞(1−iε) to the future boundary at η = η0. This iε prescription ensures that there
is a short period of evolution in Euclidean time rather than Lorentzian time that dampens
the exponential factors appearing in the integral, thereby projecting the theory onto the
vacuum state [49, 54]. In analogy to scattering amplitudes, we finally sum over all possible
permutations. For an exchange diagram like the one shown in figure 2 we now have two
time integrals, one for each vertex. The vertices contribute n and m powers of the bulk-
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Figure 2. Single exchange diagram for n+m external fields.

boundary propagators, possibly time-differentiated as dictated by the interaction vertices,
while the internal line requires us to include one bulk-bulk propagator, which may also be
differentiated with respect to time. The number of scale factors is fixed by scale invariance
and as for contact diagrams we sum over all possible permutations. The generalisation of
these rules to more complicated tree diagrams is simple, with a time integral for each local
vertex. See appendix A of [17] for more details and examples.

As an example, for a massless scalar with a a(η)
3! φ

′3 self-interaction in the bulk, the
three-point wavefunction coefficient is given by

ψφ′3(k1, k2, k3) = −i
∫
dη a(η)K ′(k1, η)K ′(k2, η)K ′(k3, η) , (2.20)

while the s-channel four-point exchange diagram is given by

ψsφ′3×φ′3 = −i
∫
dη′ dη

(
a(η)K ′(k1, η)K ′(k2, η)

)
∂η∂

′
ηG(s, η, η′)

(
a(η′)K ′(k3, η

′)K ′(k4, η
′)
)
,

(2.21)
where s = |k1 + k2| is the “energy” of the internal line and we have suppressed the

integration limits. This traditional computational process can be complicated due to the
(nested) time integrals that have to be performed, which may obscure the origin of analytic
properties of the final answer. In this paper we will usually avoid computing time integrals
altogether and instead fix the final form of the wavefunction coefficients using symmetries,
locality and unitarity, only computing explicit time integrals to verify that all parity-odd
bispectra can be generated in solid inflation (section 5.2). In general, the wavefunction is a
complex function of the kinematics and η0, since we are evaluating the action on complex
field configurations, and we will use our bootstrap methods to construct both the real and
imaginary parts.
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With the wavefunction in hand, one can extract equal-time (late-time) expectation
values using the usual quantum mechanics formula. We have

〈φ(k1) . . . φ(kn)〉 =
∫
Dφ ΨΨ∗ φ(k1) . . . φ(kn)∫

Dφ ΨΨ∗ , (2.22)

for an n-point function of scalars. Here Dφ is the functional measure on a fixed time slice.
Correlators are therefore fixed via the bulk dynamics through the probability distribution
ΨΨ∗. We will use this equation in section 3 to derive some general results for cosmological
correlators arising from unitary time evolution in the bulk.

2.2 Boostless Bootstrap Rules

We now turn to reviewing bootstrap techniques for efficient computation of late-time wave-
functions/correlators. In [16] a set of Boostless Bootstrap Rules was introduced that enables
one to write down general structures for the three-point functions of massless scalars and
gravitons without assuming full dS symmetries. In total, six rules were introduced, each
based on the following principles:

• Rule 1: Spatial translations, spatial rotations and scale invariance,

• Rule 2: Tree-level approximation for wavefunctions and correlators in dS,

• Rule 3: High-energy boundary condition in the form of an amplitude limit,

• Rule 4: Bose statistics for wavefunctions/correlators of external bosons,

• Rule 5: Bunch-Davies initial vacuum state,

• Rule 6: Soft theorems.

For the curvature perturbation in inflation each of these six rules are necessary to bootstrap
the bispectrum [16], however for gravitons and spectator scalars that are the primary
interest in this paper, rules 3 and 6 are not required and are replaced by the Manifestly
Local Test of [17] which we will review in the following subsection. Before doing so let us first
review the other rules (1, 2, 4, 5) and refer the reader to [16] for further details on all rules.

• Rule 1: Spatial translations, spatial rotations and scale invariance. These symmetries
ensure that wavefunction coefficients can be written as a product of a polarisation
factor, which is an SO(3) invariant function of polarisation tensors and spatial mo-
menta, multiplied by a trimmed wavefunction coefficient which is only a function of
the energies:

ψn =
∑

contractions
(polarization factor)× (trimmed wavefunction coefficient) . (2.23)

We take all coefficients appearing in the polarisation factor to be real and therefore
include any factors of i that might appear when converting to momentum space, or
simply as part of the Feynman rules, in the trimmed part which we will denote as
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ψ̃n. We denote the total number of spatial momenta appearing in the polarisation
factor as α. For the bispectrum of massless gravitons which is our primary interest
in this paper, we have

ψ3 =
∑

contractions

[
eh1(k1)eh2(k2)eh3(k3)kα1

1 kα2
2 kα3

3

]
ψtrimmed

3 , (2.24)

with α1 +α2 +α3 = α. Here we have already stripped off the ever-present momentum
conserving delta function that is a consequence of spatial momentum conservation.
Furthermore, scale invariance ensures that for all n we have ψn ∼ k3 which cancels the
scaling of the three-dimensional delta function thereby ensuring invariance of Ψ. If
one also includes dS boosts as a symmetry, the trimmed wavefunction coefficients for
gravitons are very constrained [30]. In this paper we are interested in boost-breaking
scenarios and so will not impose invariance under dS boosts.

• Rule 2: Tree-level approximation for wavefunctions/correlators in dS. This rule sim-
ply imposes that the bispectrum is a rational function of the external kinematics up
to possible logarithmic terms. Such logs will indeed be captured by our bootstrap
analysis. Our focus in this paper will be at tree-level but progress is now also being
made on using bootstrap techniques at loop-level [18, 22, 24].

• Rule 4: Bose statistics for wavefunctions/correlators of external bosons. This rule
enforces invariance under permutations of the momenta of identical fields.

• Rule 5: Bunch-Davies initial vacuum state. The assumption of a Bunch-Davies initial
state enforces that the only allowed poles for contact diagrams are in the total energy
kT = ∑n

a=1 ka. The degree of the leading kT pole is given by p = 1 +∑
A(∆A − 4)

where the sum is over all vertices appearing in a given diagram and ∆A is their mass
dimension [16]. We only have one type of pole since the integrands appearing in
the bulk formalism only depend on the positive frequency modes. For excited initial
states both positive and negative frequency modes can contribute leading to so-called
flattened singularities, see e.g. [55, 56] for the phenomenology of such poles. It is also
interesting to note that the residue of the leading order kT poles contain the flat-space
scattering amplitude for the same process [14, 30, 57].

These four rules will play an important role in our ability to bootstrap graviton bispectra
in section 4.

2.3 Manifestly Local Test

In [17] a condition, referred to as the Manifestly Local Test (MLT), was introduced that
must be satisfied by both contact and exchange n-point wavefunction coefficients of mass-
less scalars and gravitons with manifestly local interactions. Manifestly local interactions
are those with only positive powers of derivatives, i.e. without inverse Laplacians; this is a
natural locality condition for gravitons and spectator scalars in dS at cubic order in per-
turbations [16]. Manifest locality can be violated upon integrating out the non-dynamical
modes in a gravitational theory, so such a violation is a feature of the self-interactions of the
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inflationary curvature perturbation [49] as well as gravitons at quartic and higher order in
the fields. The MLT was used in [17] to bootstrap bispectra of the Goldstone mode in the
Effective Field Theory of Inflation [41] to all orders in derivatives, and used in conjunction
with partial energy recursion relations to bootstrap inflationary trispectra (see also [5] for a
use of energy shifts for the flat-space wavefunction). The MLT was also recently employed
in [38]. The MLT offers a conceptually simple yet very powerful bootstrap technique and
will be a central feature of this work.

The MLT takes the form
∂

∂kc
ψn(k1, . . . , kn; {p}; {k})

∣∣∣
kc=0

= 0 , ∀ c = 1, . . . , n , (2.25)

where ka are the energies of the external fields, {p} collectively denotes the energies of
possible exchange fields while {k} collectively denotes a possible dependence of n-point
functions on spatial momenta and polarisation tensors. We will also often also use {k} to
collectively denote the external energies. The derivative with respect to one of the external
energies is taken while keeping all other variables fixed and this condition must be met for
all external energies if they are those of a massless scalar or a graviton in de Sitter. Two
complementary derivations of the MLT were given in [17]. The first arises from demanding
that exchange diagrams have the appropriate singularities while the second comes directly
from the bulk representation of such n-point functions. We refer the reader to [17] for
details of the first method while reviewing the second here.

The computation of tree-level diagrams in the bulk formalism reduces to nested time
integrals of the following schematic form

ψn({k}; {p}; {k}) ∼
∫ ( V∏

A

dηAFA

)(
n∏
a

∂#
η Kφ(ka)

)(
I∏
m

∂#
η G(pm)

)
, (2.26)

where the FA’s denote the momentum dependence due to the spatial derivatives and po-
larisation tensors in the V vertices, each vertex representing a contact interaction placed
at the conformal time ηA. We have included a bulk-boundary propagator for each external
field and have allowed for an arbitrary number of time derivatives acting on these propa-
gators. Finally, we have allowed for I internal bulk-bulk propagators G, possibly with time
derivatives. Now we differentiate the above expression with respect to one of the external
energies. This derivative acts only on the bulk-boundary propagator associated to this
energy, because FA depend only on the spatial momenta and polarisations while G(pm) de-
pend only on energies of internal legs. Assuming that η integrals and ∂

∂kc
commute, we have

∂

∂kc
ψn
∣∣∣
kc=0
∼
∫ ( V∏

A

dηAFA

)∏
a 6=c

∂#
η Kφ(ka)

(∂#
η

(
∂

∂kc
Kφ(kc)

)∣∣∣
kc=0

)( I∏
m

∂#
η G(pm)

)
.

(2.27)
The bulk-boundary propagator for a massless graviton is the same as for a massless scalar
up to the presence of a polarisation tensor. In both cases, we have

d

dk
K(η, k) = d

dk

(
(1− ikη)eikη

)
= kη2eikη , (2.28)
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which vanishes at k = 0. It follows that (2.27) must vanish. We emphasise that we have not
assumed anything about the form of the ψn, so the MLT holds for contact and exchange
diagrams, even those with IR-divergences: it follows from a simple property of the bulk-
boundary propagators, namely that d

dkK(η, k) vanishes at k = 0. In fact, this property also
holds in slow roll inflation, for both massless gravitons and massless scalars, and therefore
the MLT (2.25) is applicable in that case as well. The main obstacle to extending all of our
results beyond exact scale invariance is therefore not the MLT itself, but the assumption of
scale invariance (Rule 1), which allows us to write down a simple ansatz for the wavefunction
coefficient before applying the MLT (as will be shown in detail in section 4). We will return
to the prospect of employing the MLT to construct slow-roll corrections in the future.

The MLT, in conjuction with the bootstrap rules from the previous section, can be
used to find all consistent, tree-level, contact wavefunction coefficients for massless scalars
and gravitons in de Sitter. Let us present a constructive proof of this claim. As a first
step, we find an exhaustive list of polarization factors (see (2.23)), which covers all possible
contractions of tensor indices. Then we write down an ansatz for ψtrimmed

n , consistent with
rules 2 and 5 (rule 4 is automatically satisfied once we sum over the permutations). Any
such ansatz can be written in the form of a bulk integral

ψtrimmed
n ∼

∫
dηf(ka,ka.kb; η)eikT η, (2.29)

where f(ka,ka.kb; η) is a polynomial in the energies ka and the scalar products ka.kb, with
appropriate factors of η as required by scale invariance. The exponential factor contributes
the needed poles in kT , and these are the only possible poles, as dictated by rules 2 and 5.
The IR divergences, which are of the form η−m0 or log(−kT η0), are fully accounted for by
those terms in f that have negative powers of η.

The final ingredient is the MLT, which imposes the following constraints on f :

∂f

∂ka

∣∣∣
ka=0

+ iηf |ka=0 = 0. (2.30)

It is easy to see that any such polynomial (assuming scale invariance) can be written as

f(ka,ka.kb; η) = (1− ik1η)g(k2, . . . , kn,ka.kb; η) + k2
1h(ka,ka.kb; η) , (2.31)

where g, h are polynomials satisfying

∂g

∂ka

∣∣∣
ka=0

+ iηg|ka=0 = 0, a 6= 1, (2.32)

∂h

∂ka

∣∣∣
ka=0

+ iηh|ka=0 = 0, a 6= 1. (2.33)

Then, we can repeat the decomposition (2.31), albeit now for g and h. By iterating over
a = 1, 2, . . . , n, we can arrive at a general form of f(ka,ka.kb; η):

f(ka,ka.kb; η) =
∑
S⊂Zn

∏
j /∈S

(1− ikjη)
∏
j∈S

(
k2
j

)
hS (ka∈S ,ka.kb; η)

 , (2.34)
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where hS are polynomials in the ka ∈ S and the scalar products ka.kb. The sum is taken
over all subsets S of the set Zn := {1, 2, . . . , n}. It will now be sufficient to show that any
term of the above sum can be produced by some linear combination of functions constructed
from bulk-boundary propagators. In fact, we can focus on the case where hS is a monomial,
since any polynomial is just a linear combination of those. If this monomial includes factors
of ka.kb, we can generate them from the Lagrangian by writing pairs of spatial derivatives
contracted with each other, so from now on, let us assume for simplicity that hS is a
monomial that does not include such factors. Reinstating powers of η as required by scale
invariance, we are thus looking for a functional of bulk propagators that would generate

ψtrimmed
n ∼

∫
dη
∏
j /∈S

(1− ikjη)
∏
j∈S

(
k

2+nj
j

)
η
α+
∑

j∈S nj+2|S|−4
eikT η , (2.35)

for some arbitrary nj > 0; α is the energy dimension of the polarization factor. The linear
combination we are looking for is, up to an overall constant,

ηα−4 ∏
j /∈S

K(kj , η)
∏
j∈S

(
K2+nj (kj , η)

)
, (2.36)

where K(kj , η) is the usual bulk-boundary propagator, and

K2(k, η) ≡ η∂ηK(k, η) = k2η2eikη, (2.37)

K3(k, η) ≡ −i
(
η2∂2

ηK(k, η)− η∂ηK(k, η)
)

= k3η3eikη, (2.38)

Kn+2(k, η) ≡ k2η2Kn(k, η) for n > 2. (2.39)

Each of these functions can be obtained from the massless bulk-boundary propagators
by applying time derivatives, Laplacians (k2 ↔ −∇2) and taking linear combinations.
Recall that we can introduce the dependence on ka.kb by introducing pairs of spatial
derivatives, followed by taking linear combinations again to account for terms with distinct
dependencies on ka.kb. Therefore, any integral of the form (2.31) can be generated by a
linear combination of products of bulk-boundary propagators, their time derivatives, factors
of a(η)2k2

a and by pairs of spatial derivatives contracted with each another. This entails that
any solution to the MLT corresponds to a combination of some manifestly local operators.

2.4 Cosmological Optical Theorem

The final bootstrap tool we are going to review is the Cosmological Optical Theorem
(COT) [14] which is a consequence of unitary time evolution in the bulk. It was shown
in [14] that if the wavefunction of the universe is normalised at time η then it only remains
normalised at time η′ if contact and exchange wavefunction coefficients satisfy some simple
yet powerful relations. Assuming a Bunch-Davies initial condition, the bulk-boundary
propagator of fields of general mass and spin on any FLRW spacetime satisfies (see [19] for
a proof and a discussion of the related technical assumptions)

K∗(−k∗, η) = K(k, η) , k ∈ C , (2.40)
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from which one can derive the COT for contact diagrams [14]

Disc [iψn(k1, . . . , kn; {k})] = i [ψn(k1, . . . , kn; {k}) + ψ∗n(−k∗1, . . . ,−k∗n; {−k})] = 0 ,
(2.41)

which must be satisfied by any contact n-point function arising from unitary evolution in
the bulk spacetime. Note that all spatial momenta in the second term get a minus sign,
k→ −k, and all energies are analytically continued. One is usually interested in real values
of the energies k, and so in the following we will drop the complex conjugation. This no-
tation is unambiguous as long as one adopts the prescription that all negative energies are
approached from the lower-half complex plane. For scalars it is clear from (2.41) how the sec-
ond term should be computed but for spinning fields the presence of polarisation tensors in-
troduces slight complications which were addressed in [19]. Ultimately any polarisation fac-
tors appear as a common factor in this contact COT since e.g. ehij(k)∗ = ehij(−k). The COT
is therefore not constraining the polarisation factor (which is constrained by symmetry),
rather it is constraining the trimmed part of the wavefunction that in the bulk representa-
tion arises from performing the bulk time integrals. This of course makes sense as the COT
is indeed a consequence of unitary time evolution. For our purposes in this paper the COT
for contact diagrams is enough and we will use it in section 3 to derive some general results
about cosmological correlators, but the consequences of unitarity for exchange diagrams are
also known [14, 19] and were used extensively in [17] to bootstrap inflationary trispectra.
The COT for exchange diagrams relates the discontinuity of an exchange diagram to prod-
ucts of the contributing sub-diagrams, multiplied by the power spectrum of the exchanged
field. It is reminiscent of the factorisation theorem for scattering amplitudes. A complemen-
tary derivation of the COT was given in [27] where the consequences of excited initial states
were also considered. The COT was also extended to general FLRW spacetimes in [19]
and to loop level in the form of cutting rules in [18], see also [21] for a recent discussion
of cosmological cuts. Unitarity constraints on cosmological observables were also recently
studied in [22, 24, 25]. See [58–60] for analogous statements in anti-de Sitter (AdS) space.

2.5 Cosmological spinor helicity formalism

In this paper we are primarily concerned with bootstrapping graviton bispectra and just as
is the case for scattering amplitudes, wavefunctions/correlators of spinning fields are most
compactly presented using spinors rather than polarisation tensors. We end this section
by reviewing the cosmological spinor helicity formalism and refer to the reader to [13, 30]
for other presentations.

The spinor helicity formalism is most useful when we have null momenta as is the case
for massless on-shell particles in flat-space and has been used extensively in that setting.
In our cosmological setting the spatial momentum k is not null, but we can define a null
four-component object kµ = (k,k), with k = |k|, which we can express as the outer product
of two spinors via

kαα̇ = σµαα̇kµ = λαλ̃α̇ , (2.42)
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where σµ = (1,σ) and σ are the Pauli matrices. Using the relation σµαα̇σ̄β̇βµ = 2δβαδ
β̇
α̇ (we

follow the conventions used in [61]), where σ̄µ = (1,−σ), the inverse of (2.42) is

kµ = 1
2 σ̄

α̇α
µ kαα̇ . (2.43)

A little group transformation by definition should leave this four-momentum invariant, so
we can model this transformation as λ→ tλ, λ̃→ t−1λ̃ where each external field transforms
with a different constant t ∈ C. These very simple helicity transformations allow us to
easily extract an overall dependence of a wavefunction/correlator on the spinors given
some helicity configuration for the external fields, and is one of the primary virtues of the
spinor helicity formalism. As usual, dotted and un-dotted indices are raised and lowered
by εα̇β̇ and εαβ respectively e.g. λ̃α̇ = εα̇β̇λ̃

β̇ , λα = εαβλ
β .

Now for objects with three external fields, conservation of spatial momentum k1 +k2 +
k3 = 0 leads to

3∑
a=1

λ(a)
α λ̃

(a)
α̇ = kT (σ0)αα̇ and 〈ab〉 [ab] = kT (kT − 2kc) ≡ kT Ic for a 6= b 6= c , (2.44)

where we have introduced

Ia ≡ (kT − 2ka) , (2.45)

and we recall that
〈ab〉 = εαβλ(a)

α λ
(b)
β , [ab] = εα̇β̇λ̃

(a)
α̇ λ̃

(b)
β̇
. (2.46)

We remind the reader that the above spinors are not Grassmanian, so these angle and
square brackets are anti-symmetric due to the anti-symmetric nature of the epsilon tensors.
For scattering amplitudes one also has time translation invariance, which implies kT = 0.
In this case the above relations reduce to the usual flat-space ones, see e.g. [62]. Now
to construct SO(3) invariant objects we can use (2.46) but can also contract dotted and
un-dotted indices using σ0

αα̇ [1, 30]:

(ab) = (σ0)αα̇λ(a)
α λ̃

(b)
α̇ , (2.47)

with (aa) = 2ka. We can use (2.44) to obtain an expression for (ab) with a 6= b i.e. the
off-diagonal components. We have

(ab)[ac] = Ib[bc] for a 6= b 6= c , (2.48)
(ab) 〈bc〉 = Ia 〈ac〉 for a 6= b 6= c , (2.49)

and therefore a general three-point function is a function of the angle brackets, the square
brackets and the energies.

For spinning fields, we will find it necessary to write polarisation tensors in terms
of spinors. The transverse and traceless graviton polarisation tensors e±µν are given by
e±µ e

±
ν , where e±µ is the polarisation vector for a spin-1 particle of the same momentum.

We therefore only need an expression for e±µ in the spinor helicity formalism. The form
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of the polarisation vectors follows from the fact that they must be lightlike, orthogonal
to the corresponding momentum, and carry the appropriate helicity weight. We have (see
e.g. [1, 62])

e+
αα̇ = 2

√
2µαλ̃α̇
〈µλ〉

, e−αα̇ = 2
√

2λαµ̃α̇[µλ] , (2.50)

for generic reference spinors µα and µ̃α̇. For scattering amplitudes in flat-space these refer-
ence spinors represent the redundancy in defining massless spinning fields as a representa-
tion of the Lorentz group, but for cosmology we can make a choice to eliminate this redun-
dancy [30]. Indeed, we can use our freedom to mix dotted and undotted indices to choose

µα = (σ0)αα̇λ̃α̇ , µ̃α̇ = (σ0)αα̇λα , (2.51)

which makes the zero component of the polarisation vectors vanish. We can therefore write

e+
αα̇ =

√
2

(σ0)αβ̇λ̃β̇λ̃α̇
k

, e−αα̇ =
√

2(σ0)βα̇λβλα
k

, (2.52)

which has the correct normalisation. Under a helicity transformation we have e+ → t−2e+

and e− → t2e−, as expected.
With these relations at hand, we can easily convert any SO(3) invariant object contain-

ing spatial momenta and polarisation vectors into the spinor helicity formalism using the
necessary σ and ε identities which are given in [61]. We present a complete list of distinct
contractions of SO(3) indices for a massless graviton in appendix A. We will use these
relations extensively in section 4.1 where we study the tensor structures for the graviton
bispectrum.

3 Unitarity constraints on n-point cosmological correlators

In this section we are going to use the Cosmological Optical Theorem (COT) for contact
diagrams to derive some general results about the form of cosmological correlators. Recall
that with the wavefunction of the universe at hand, one can compute expectation values
via eq. (2.22), i.e.

〈ϕ(k1) . . . ϕ(kn)〉 =
∫
Dϕ ΨΨ∗ ϕ(k1) . . . ϕ(kn)∫

Dϕ ΨΨ∗ , (3.1)

where in the weak coupling approximation we are using here, the late-time wavefunction
is given by

Ψ[η0, ϕ(k)] = exp
[
−
∞∑
n=2

1
n!

∫
k1,...,kn

ψn({k}; {k})ϕ(k1) . . . ϕ(kn)
]
. (3.2)

Here we have made a distinction between the dependence of the wavefunction coefficients
on the set of spatial momenta {k} and their norms {k}, since in general we will work away
from the physical configuration and treat {k} and {k} as independent objects, for reasons
that will become clear. We have not included a possible dependence on internal energies
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{p} since our focus in this section is on contact diagrams. We are going to use the COT to
constrain the form of the probability distribution ΨΨ∗. Here and throughout this section
we use ϕ(k) to schematically denote scalars and gravitons, with SO(3) indices suppressed,
and each of these fields satisfies ϕ(k) = ϕ(−k)∗ which follows directly from (2.3), (2.4)
and (2.9). Now from this perturbative expression for the wavefunction, we have

− log(ΨΨ∗) =
( ∞∑
n=2

1
n!

∫
k1,...,kn

ψn({k}; {k})ϕ(k1) . . . ϕ(kn)
)

+
( ∞∑
n=2

1
n!

∫
k1,...,kn

ψn({k}; {k})ϕ(k1) . . . ϕ(kn)
)∗

(3.3)

=
( ∞∑
n=2

1
n!

∫
k1,...,kn

ψn({k}; {k})ϕ(k1) . . . ϕ(kn)
)

+
( ∞∑
n=2

1
n!

∫
k1,...,kn

ψ∗n({k}; {k})ϕ(−k1) . . . ϕ(−kn)
)
. (3.4)

If we change the integration variables on the final line by sending {k} → {−k} we have

− log(ΨΨ∗) =
∞∑
n=2

1
n!

∫
k1,...,kn

[ψn({k}; {k}) + ψ∗n({k}; {−k})]ϕ(k1) . . . ϕ(kn) . (3.5)

It follows from Gaussian integral formulae that the resulting correlators arising from these
contact diagrams, in perturbation theory, are given by

Bcontact
n ({k}; {k}) = −ψ

′
n({k}; {k}) + ψ′∗n ({k};−{k})∏n

a=1 2 Re ψ′2(ka)
, (3.6)

where in deriving this expression we kept only terms linear in the coupling constants. For
parity-even interactions of scalars and gravitons, the numerator is simply 2Re ψ′n in which
case our expression matches the one that usually appears in the literature.

Let’s now use the contact COT to constrain Bcontact
n . As we reviewed above, uni-

tary time evolution in the bulk inflationary spacetime and the choice of the Bunch-Davies
vacuum imply that [14]

ψn({k}; {k}) + ψ∗n({−k};−{k}) = 0 . (3.7)

By directly comparing (3.6) and (3.7), we conclude that

Any contribution to the wavefunction of the universe that is invariant under
{k} → {−k}, which is a flip in the sign of all external energies, does not
contribute to the contact correlator.

What are the implications of this observation? To answer this question we need to
look more closely at the form of ψn. After stripping away the polarization factor in ψ,
see (2.24), the remaining trimmed wavefunction ψtrimmed for a contact interaction can have
the following structures:
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1. The trimmed wavefunction may be a rational functions of {k},

ψtrimmed
n ⊃

Poly3−α+q({k})
Polyq({k})

, (3.8)

where the subscripts indicate the degrees of the polynomials and the combination
3−α+ q is fixed by scale invariance such that ψn ∼ k3. If we further impose locality
and the Bunch-Davies vacuum as in the bootstrap Rule 5 then the denominator must
be kT to some power, but we will not use this fact in the following.
If α is even, this trimmed wavefunction contains an overall odd number of energies
and therefore is not invariant under {k} → {−k}, whereas if α is odd, the trimmed
wavefunction contains an overall even number of energies and so is invariant under
{k} → {−k}. So rational terms in the wavefunction can only contribute to the
correlator if the polarisation factor has an even number of spatial momenta, which
for scalars and gravitons implies parity-even. Conversely, parity-odd interactions of
scalars and gravitons have an odd number of derivatives, which are contracted with
a Levi-Civita tensor, and the contribution of their rational part to the correlator
must vanish. This observation explains why kT poles were never found in the in-
in computation of parity-odd graviton bispectra in the effective theory of inflation
performed in [44]: they are simply incompatible with unitarity.

2. The trimmed wavefunction may have logarithmic IR-divergences,

ψtrimmed
n ⊃ Poly3−α({k}) log(−kT η0) 3− α ≥ 0 , (3.9)

where again the degree of the polynomial that multiplies the log is fixed by scale
invariance. We cannot have any poles multiplying the log and so we need 3−α ≥ 0.4
Such logs can arise from relevant operators in the bulk at tree-level but are also a
common feature of loop corrections [63, 64].
These logs break the {k} → {−k} symmetry for both even and odd α, so they can
in principle contribute to the correlator. Unitarity in the form of the contact COT
tells us that these logs do not appear on their own but rather always appear in the
combination [14]

log(−kT η0) + iπ

2 , (3.10)

multiplied by a real function of {k}, and possibly a polarisation factor (which also has
real coefficients). Indeed, if we consider a wavefunction coefficient of the schematic
form

ψtrimmed
n ∼ kαeβ(k)[A log(−kT η0) +B] , (3.11)

4This fact can be quite easily seen from the bulk representation and the corresponding time integrals
one must perform. We don’t have a better “bootstrap” reason but it would be interesting to find one. We
note that if the interactions violate manifest locality, there can be poles multiplying the log as they can
come from inverse Laplacians.
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where we have allowed for β polarisation structures, a complex polynomial A and
a complex rational function B, then the COT (3.7) tells us that (recall that the
polarisation factor becomes a common factor on the l.h.s. of the COT)

A log(−kT η0) +B −A∗[log(−kT η0) + iπ]−B∗ = 0 . (3.12)

We therefore conclude that Im(A) = 0, Im(B) = Aπ
2 while Re(B) is unconstrained and

would actually contribute to the rational part of the wavefunction covered above in
point 1. It then follows from (3.6) that for even α only the log contributes to the corre-
lator and not the iπ piece, whereas for odd α the iπ piece contributes to the correlator
but the log does not. For parity-odd interactions of scalars and gravitons, which nec-
essarily have an odd α, we therefore conclude again that the singular part of the wave-
function does not contribute to the correlator. Indeed the parity-odd contributions to
the graviton bispectrum computed in [44] come from this iπ

2 part of the wavefunction.

3. The trimmed wavefunction may have a polynomial IR-divergence 1/ηq0 with q > 1
as η0 → 0. These terms may not have any singularity as kT → 0 because there we
recover scattering amplitudes which, by time translation invariance, must be time
independent. Scale invariance then tells us that

ψtrimmed
n ⊃

3∑
q=1

Poly3−α−q({k})
ηq0

3− α− q ≥ 0 . (3.13)

Now we observe that we need α + q to be even in order to break the {k} → {−k}
symmetry, while the MLT can only be satisfied if 3−α−q > 2 or 3−α−q = 0. These
two conditions imply that 3−α− q > 3, which contradicts the fact that q > 1. Thus,
a combination of the COT and MLT leads us to conclude that η0 = 0 poles cannot
contribute to cosmological correlators arising from manifestly-local bulk interactions.5

We have therefore seen that parity-odd contact correlators of scalars and gravitons do not
contain any total-energy singularities: the only part of the trimmed wavefunction that
survives when we compute parity-odd correlators is finite or vanishing as kT → 0. These
contributions arise from the polynomial function of {k} that multiplies log(−kT η0) + iπ/2
in the wavefunction and can only appear when the overall number of derivatives in bulk
interactions is relatively small, which we will make precise in section 4. This is consistent
with the observation that the parity-odd Weyl-cubed vertex yields a vanishing bispectrum
in dS space [30, 31, 48]. In this case there are too many derivatives for a logarithm to appear
in the wavefunction. Related observations about the consequences of unitarity cuts were
recently made in [21]. We summarise these results in table 1 and remind the reader that
the above discussion applies to contact diagrams, as relevant for this work. In section 4 we
provide a full analysis of the form of the wavefunction for graviton cubic interactions and
one can then use the results of this section to extract the contributions to the bispectra.

5Although here our proof was outlined in D = 4 spacetime dimensions, a generalised version of the
MLT [65] applies in all other dimensions and with this generalised MLT and the COT, one can show that
η0 = 0 poles never appear in correlators. We thank Harry Goodhew for discussions on this point.
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kT poles log(−kT η0) + iπ
2 η0 poles

even α X X (only the log) 7

odd α 7 X (only the iπ) 7

Table 1. In this table we indicate which parts of the trimmed wavefunction, arising from contact
diagrams, can contribute to cosmological correlators and which cannot. Here α is the number
of spatial derivatives contracted with polarizations tensors, as defined in (2.24), and these results
apply for three spatial dimensions, d = 3.

Before proceeding we would like to comment on what happens for tree-level contri-
butions to the wavefunction that are not contact but include some exchange interaction
(a bulk-bulk propagator in the bulk representation). In that case, two things change: (i)
the expression for the correlator in terms of wavefunction coefficients in (3.6) acquires ad-
ditional contributions and (ii) the right-hand side of the Cosmological Optical Theorem
(COT) does not vanish anymore [14]. Notice that both of these additional contributions
are not singular as kT → 0. Hence, one can still conclude that any term in the wavefunc-
tion that is invariant under {k} → {−k} cannot contribute to the part of the correlator
that is singular as kT → 0. Unfortunately, the wavefunction coefficients can become quite
complicated for general exchange diagrams and we did not find a simple rule to establish
when ψtrimmed

n is invariant under {k} → {−k}.

4 Bootstrapping all graviton bispectra

In this section we bootstrap boost-breaking graviton bispectra at tree-level. We detail the
general method that allows one to extract bispectra for any helicity configuration, and up
to any desired order in derivatives. Throughout we employ the Boostless Bootstrap Rules
and Manifestly Local Test, which were both reviewed in section 2.

4.1 Polarisation factors

It is the presence of spin-2 polarization tensors that distinguishes graviton bispectra from
any other. As we reviewed in section 2, we write a general three-point wavefunction coef-
ficient in terms of a polarisation factor multiplied by a “trimmed” wavefunction coefficient
ψtrimmed

3 which is an SO(3) scalar. We have [16]

ψh1,h2,h3
3 (k1,k2,k3) =

∑
contractions

[
eh1(k1)eh2(k2)eh3(k3)kα1

1 kα2
2 kα3

3

]
ψtrimmed

3 (k1, k2, k3) ,

(4.1)
where ha = ±2 are the helicities of the external fields, and we remind the reader that we
define the total number of spatial momenta as α = α1 + α2 + α3. Here index contractions
between the momenta and polarization tensors are left implicit, and indeed our first goal
is to construct all of the possible polarisation factors. As we explained in section 2, the
trimmed wavefunction is constrained by the Manifestly Local Test (MLT) [17] and the
Cosmological Optical Theorem (COT) [14], and so with the polarisation factors at hand,
we will solve the MLT and obtain the complete three-point functions.

– 22 –



J
H
E
P
0
5
(
2
0
2
2
)
0
7
7

We first note that we can restrict our attention to α 6 7. This is because in order to
construct an SO(3)-invariant object, we need to contract momenta with one of

eh1
i1i2

eh2
i3i4

eh3
i5i6

or εi1i2i3e
h1
i4i5

eh2
i6i7

eh3
i8i9

, (4.2)

where the presence of a Levi-Civita tensor tells us that the resulting graviton bispectrum
will violate parity. All remaining contractions are made with δij and from now on we
omit the dependence of polarization tensors on momenta for simplicity of notation. Now,
it is straightforward to see that α can be at most 6 in the parity-even case, with all six
polarisation indices contracted with momenta, and 7 in the parity-odd case since we can
have at most two spatial momenta contracted with the Levi-Civita tensor due to momentum
conservation. We will deal with the parity-even and parity-odd cases separately.

As is the case for scattering amplitudes, graviton bispectra are most compactly pre-
sented using the spinor helicity formalism rather than polarisation tensors. Indeed, this was
the view advocated in [30] and is the route we will follow in this paper. A virtue of the spinor
helicity formalism is that it can easily highlight possible degeneracies that could be hidden
when using polarization tensors. Unfortunately, we do not have the means to construct the
full structure of all allowed polarisation factors directly using spinors, so the approach we
will take is to write down all possible polarisation factors in terms of polarisation tensors,
with potential degeneracies still present, and to then convert these expressions into the
spinor helicity formalism, where all degeneracies are manifest and can be easily eliminated.

We initially focus on the + + + helicity configuration, and in the following subsection
we will show how to easily obtain the polarisation factors for all the other helicity config-
urations (+ +−, −−+ and −−−) from this + + + building block. The helicity scaling
of the external fields tells us that all + + + polarisation factors must contain

[12]2[23]2[31]2 , (4.3)

as an overall factor. This is the same factor that appears in three-point scattering am-
plitudes of massless gravitons [1, 62] and is unique for this helicity configuration. The
symmetries of the wavefunction then ensure that this can only be multiplied by SO(3)
invariant quantities that are simply functions of the three external energies. As explained
in section 2.5, whenever we convert a polarisation tensor into an expression with spinor
brackets, we gain two powers of the corresponding energy in the denominator of the wave-
function. It is therefore not merely (4.3) that appears as an overall factor, but actually the
dimensionless quantity

SH+++ = [12]2[23]2[31]2
e2

3
, (4.4)

where e3 = k1k2k3 is the third elementary symmetric polynomial. The above factor is
ever-present. The information about the specific contraction is contained in an additional
factor which is a function of the energies and which we denote as hα(k1, k2, k3). This is
always a polynomial of degree α. Finally, this product can be multiplied by the trimmed
wavefunction, which in the bulk representation arises from bulk time integrals. This general
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form is true before we sum over all possible permutations, so the final form of the three-
point function is

ψ+++
3 (k1,k2,k3) = [12]2[23]2[31]2

e2
3

∑
permutations

hα(k1, k2, k3)ψtrimmed
3 (k1, k2, k3) , (4.5)

where the sum over permutations ensures that the final expression is invariant under the
exchange of any two external fields and their momenta, as dictated by Bose symmetry. In
appendix A we construct all possible polarisation factors using polarisation tensors. With
repeated use of (2.48), and recalling the definition of Ia = kT − 2ka, we find the following
general structures for the + + + polarisation factors:

h0 = 1 , (4.6)
h1 = ik1 and perms , (4.7)
h2 = k2

1 and perms, k1k2 and perms , (4.8)
h3 = ik3

1 and perms, ik2
1k2 and perms , ik1k2k3, (4.9)

h4 = I2
1I2I3 and perms , (4.10)

h5 = iI3
1I2I3 and perms, iI2

1I
2
2I3 and perms , (4.11)

h6 = I2
1I

2
2I

2
3 , (4.12)

h7 = iI3
1I

2
2I

2
3 and perms , (4.13)

where in some cases we have only presented one of the possible permutations, but we should
keep in mind that one needs to sum over permutations in the final expression. For odd α
we have included overall factors of i which arise from the Levi-Civita tensor as shown in
appendix A. Note that, if we only use spinor helicity variables, we do not have the means to
derive the full form of the polarisation factors: for example, we did not find a good reason
why a term like I7

1 would be prohibited in the case of α = 7. This was the main rationale
for invoking polarization tensors in our argument, although it would be very interesting to
derive the above list of structures, and to understand why some terms are not permitted,
directly using spinors.

As we have explained in sections 2 and 3, the general form of the trimmed wavefunc-
tion can be fixed by a set of Boostless Bootstrap Rules [16]. A combination of symmetries
(including scale invariance), a weak-coupling approximation and Bunch-Davies initial con-
ditions, ensures that the trimmed part of the wavefunction takes the form

ψtrimmed
3 (k1, k2, k3) =

Poly3+p−α(k1, k2, k3)
kpT

+ Poly3−α(k1, k2, k3) log (−kT η0) (4.14)

+ Poly2−α(k1, k2, k3)
η0

+ Poly1−α(k1, k2, k3)
η2

0
+ Poly−α(k1, k2, k3)

η3
0

,

where we remind the reader that the degree of these complex polynomials is indicated by
the subscripts. For those terms that diverge as η0 → 0, we have strong restrictions on the
allowed values of α: a 1/ηq0 singularity can only arise for α 6 3 − q, which also justifies
truncating the expansion at q = 3. The above general form of the trimmed wavefunction is
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then further constrained by the MLT, which must be satisfied for all external energies. Note
that we impose the MLT before we sum over permutations in (4.5), and so in that formula,
each ψtrimmed

3 (k1, k2, k3) is a solution to the MLT. The general recipe for constructing a
+ + + wavefunction coefficient is therefore the following:

1. Write down the spinor helicity factor SH+++ and multiply it by one of the above
choices for hα(k1, k2, k3).

2. Multiply this polarisation factor by a trimmed wavefunction coefficient of the
form (4.14) where the polynomials in this ansatz have been constrained by the
MLT (2.25). Note that for computational purposes it is useful to choose the per-
mutation symmetry of this trimmed part to be the same as that of the polarisation
factor. For example, if the polarisation factor is symmetric in the exchange of k2
and k3 then the trimmed part should be too, while if the polarisation factor has no
symmetry then the trimmed part shouldn’t either.

3. Use the COT (2.41) to deduce if unitarity demands real or imaginary coefficients.

4. Finally, sum over the remaining permutations such that the final wavefunction coef-
ficient is fully symmetric, as dictated by Bose symmetry (Rule 4 of [16]).

5. To extract the corresponding three-point correlators, we use the results of section 3.
For even α we take the rational and log terms, with real coefficients, and divide by
the appropriate powers of the power spectrum. For odd α, we take the log part and
simply replace the log with iπ/2 such that we have some polynomial multiplied by a
polarisation factor. Finally, we divide by the appropriate powers of the power spec-
trum. In both cases the result is real since for even α the polarisation factor is real,
and is multiplied by a real function of the energies, while for odd α the polarisation
factor is imaginary but it is multiplied by an imaginary function of the energies.

4.2 + + + to rule them all

Before we constrain these +++ wavefunctions further, let us first show how we can obtain
the ++−, −−+ and −−− helicity configurations if hα(k1, k2, k3) and ψtrimmed

3 (k1, k2, k3)
are known. It might be tempting to go back to the beginning, i.e. to the polarization
tensors, and derive the spinor helicity form of tensor structures independently for each
configuration. However, this is not necessary as the spinor variables can do most of the
work for us. Let us first construct the + +− tensor structures in spinor helicity variables
directly from the + + + ones. Flipping the helicity of the third graviton is equivalent
to sending its energy from k3 to −k3 while keeping its momentum fixed. Under this
transformation, the spinors transform according to [1]

λ̃ 7→ i(λ2,−λ1) , λ 7→ i(−λ̃2, λ̃1) . (4.15)

Using the definitions of the various brackets given in section 2.5, we then have

[13] 7→ −i(31) , (4.16)
[23] 7→ −i(32) , (4.17)
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from which it follows that

SH+++ 7→
[12]2
e2

3
(31)2(32)2 = [12]6

[23]2[31]2
I2

1I
2
2

e2
3
≡ SH++− . (4.18)

So all + + − wavefunction coefficients are multiplied by this common factor of SH++−.
Note the square brackets are completely fixed by the helicities of the external fields and
are the same as for amplitudes [1, 62], while the ever-present I2

1I
2
2 factor in the numerator

is required for the absence of divergences. Indeed, consider the following argument: with
the help of (2.44), the spinor helicity factor [12]6

[23]2[31]2 can be rewritten as

[12]6〈23〉2〈31〉2
k4
T I

2
1I

2
2

. (4.19)

If the momenta are allowed to be complex, then I1 can be taken to zero while keeping
kT , I2 and the numerator finite. Such a divergence is forbidden and therefore we should
include two factors of I1 in the numerator to cancel it out. The absence of a divergence
as I2 is taken to zero similarly demands that we should include two factors of I2. This
argument can be easily generalised to other helicities to show that in general the bispectrum
of any three fields with helicities ha for a = 1, 2, 3 has to contain the following factor (for
H ≡ h1 + h2 + h3 ≥ 0)

SHh1,h2,h3 = [12]d3 [23]d1 [31]d2∏3
a=1 k

|ha|
a

3∏
b=1

I
max[0,−db]
b , (4.20)

where

da ≡ hb + hc − ha = H − 2ha (a 6= b 6= c) . (4.21)

The scaling dimension of the spinor helicity factor SHh1,h2,h3 is max{0,−d1,−d2,−d3}.
The wavefunction coefficient then takes the form

ψh1,h2,h3
3 (k1,k2,k3) = SHh1,h2,h3 × Pm(k1, k2, k3) (4.22)

where Pm is a rational function of the energies (possibly also including log(−kT η0) multi-
plied by a polynomial) and m is its scaling dimension.

To extract the + + − wavefunction, then, we take SH++− and multiply it by
hα(k1, k2,−k3) and by ψtrimmed

3 (k1, k2, k3). Note that only in hα is the sign of k3 flipped.
Indeed, the structure of hα is fixed by the form of the polarisation factor which certainly
depends on the helicity configuration, whereas ψtrimmed

3 (k1, k2, k3) is a product of time in-
tegrals in the bulk formalism and is therefore independent of the helicity configuration of
the external fields. Therefore, the + +− wavefunction coefficients are given by

ψ++−
3 (k1,k2,k3) = [12]6

[23]2[31]2
I2

1I
2
2

e2
3

∑
permutations

hα(k1, k2,−k3)ψtrimmed
3 (k1, k2, k3) . (4.23)

The recipe we outlined above for the + + + configuration is then easily applied to this
+ + − case, with the symmetries of ψtrimmed

3 (k1, k2, k3) fixed by hα(k1, k2,−k3) and with
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the final sum over permutations ensuring that the final wavefunction is symmetric under
the exchange of k1 and k2, as dictated by Bose symmetry.

Finally, the − − + and − − − wavefunction coefficients are then obtained directly
from the + + − and + + + ones respectively, by sending ka 7→ −ka for a = 1, 2, 3. This
corresponds to all square brackets changing into (minus) angle brackets, such that

SH+++ 7→
〈12〉2〈23〉2〈31〉2

e2
3

≡ SH−−− , (4.24a)

SH++− 7→
〈12〉6

〈23〉2〈31〉2
I2

1I
2
2

e2
3
≡ SH−−+ . (4.24b)

Under ka 7→ −ka, we have hα(k1, k2, k3) 7→ (−1)αh(k1, k2, k3), while ψtrimmed
3 (k1, k2, k3) is

again taken to be unchanged.
In conclusion, with knowledge of the building blocks of the + + + wavefunction coef-

ficients, one can easily compute wavefunction coefficients for other helicity configurations.
We note that our ability to do this is due to fact that time translations are no longer a sym-
metry in cosmology and therefore square, angle and round brackets are related as shown in
section 2.5. For scattering amplitudes, where time translations are a symmetry, one cannot
simply map between different configurations in this way. As a very non-trivial check of this
procedure, we verified that the + + + wavefunction coefficient arising from a parity-even
Weyl3 vertex in the bulk gives rise to a vanishing + +− coefficient, as it should [30].

4.3 A further simplification of the polarisation factors

Now given that hα(k1, k2, k3) must be multiplied by a solution to the MLT, we can actually
further simplify the structures given in (4.6) to (4.13). The general hα in (4.5) is given by
an arbitrary linear combination of polynomials listed in (4.6)–(4.13), as well as all their
permutations, for each α. However, now we will show that we may consider only a few
special hα and still obtain fully general wavefunction coefficients. We give an explicit
argument for α = 2, but a closely analogous argument works for any α.

We have already established that h2(k1, k2, k3) = ∑
a nak

2
a + ∑

amakaka+1, where
na,mb are arbitrary numerical coefficients. We then have (recall that ψ̃3 is a shorthand
notation for ψtrimmed

3 ):

ψ+++
3 (k1,k2,k3)

SH+++
=
∑
σ∈S3

∑
a

(
nak

2
σ(a) +makσ(a)kσ(a+1)

)
(ψ̃3 ◦σ)(k1,2,3)

=
∑
a

∑
σ∈S3

(
nσ−1(a)k

2
a+mσ−1(a)kaka+1

)
(ψ̃3 ◦σ)(k1,2,3)

=
∑
a

k2
a

∑
σ∈S3

nσ−1(a)(ψ̃3 ◦σ)(k1,2,3)+kaka+1
∑
σ∈S3

mσ−1(a)(ψ̃3 ◦σ)(k1,2,3)


=
∑

cyclic
k2

1f(23)(k1,k2,k3)+
∑

cyclic
k1k2g(12)(k1,k2,k3) , (4.25)

where f(23) and g(12) are linear combinations of trimmed wavefunction coefficients, and
therefore they must take the form given in (4.14) and satisfy the MLT. Moreover, we
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employ the notation that a function of the three external energies is symmetric under the
exchange of energies indicated in a subscript e.g. f(23) is symmetric under the exchange of
k2 and k3, while f(123) would be fully symmetric. An analogous argument can be used to
show that ψ++−

3 (k1,k2,k3) can be simplified in the same way. More precisely, we have

ψ++−
3 (k1,k2,k3)

SH++−
=

∑
cyclic

k2
1f(23)(k1, k2, k3) + k1k2g(12)(k1, k2, k3)

− k2k3g(23)(k2, k3, k1)− k3k1g(31)(k3, k1, k2). (4.26)

Thus, we see that we can take h2(ka) to be a linear combination of k2
1 and k1k2 and still

get a fully general α = 2 solution. Moreover, we note that all solutions constructed from
h2(ka) = k2

1 can also be constructed using the α = 0 polarization factor h0(ka) = 1. This
is because, if f(23)(k1, k2, k3) satisfies the MLT, then k2

1f(23)(k1, k2, k3) must satisfy it too,
so wavefunction coefficients of the form

ψ+++
3 (k1,k2,k3)

SH+++
=
∑

cyclic
k2

1f(23)(k1, k2, k3) , (4.27)

ψ++−
3 (k1,k2,k3)

SH++−
=
∑

cyclic
k2

1f(23)(k1, k2, k3) , (4.28)

are already accounted for and contained in the MLT solutions for polarisation factors
with α = 0. Assuming we construct solutions iteratively with increasing α, so that α = 0
wavefunction coefficients have already been constructed, for α = 2 we only need to consider
h2(k1, k2, k3) = k1k2 to derive a complete set of such coefficients.

One can proceed in a similar manner at each order in α by studying the different allowed
hα and asking if the resulting wavefunction coefficients have already been captured by lower
order solutions in α. We find that to construct fully general wavefunction coefficients, it is
sufficient to consider the following polarisation factors for the +++ helicity configuration:

h0 = 1 , (4.29)
h1 = ik1 , (4.30)
h2 = k2k3 , (4.31)
h3 = iI1I2I3 , (4.32)
h4 = I2

1I2I3 , (4.33)
h5a,b = iI3

1I2I3, iI1I
2
2I

2
3 , (4.34)

h6 = I2
1I

2
2I

2
3 , (4.35)

h7 = iI3
1I

2
2I

2
3 . (4.36)

Therefore, at each order in α we have to consider a single polarisation factor, apart from α =
5 where there are two possible structures. Note that in all cases we can write the polarisa-
tion factor in such a way that it is symmetric in the kinematical data of two out of the three
external fields, which we take to be fields 2 and 3. We can now follow the recipe outlined
above, and constrain the remaining part of the wavefunction coefficients with the MLT.
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4.4 Constraining the trimmed wavefunction

We now turn to the final piece of the puzzle, which requires us to solve the MLT (2.25) to
constrain (4.14) and therefore construct the trimmed part of the wavefunction coefficients.
By writing out the allowed form of the polynomials in this ansatz we have

ψtrimmed(k1,k2,k3)= 1
kpT

∑
l+m+n=3+p−α

clmnk
l
1k
m
2 k

n
3 +log(−kT η0)

∑
l+m+n=3−α

dlmnk
l
1k
m
2 k

n
3

+ 1
η0

∑
l+m+n=2−α

elmnk
l
1k
m
2 k

n
3 + 1

η2
0

∑
l+m+n=1−α

flmnk
l
1k
m
2 k

n
3 + 1

η3
0

∑
l+m+n=−α

glmnk
l
1k
m
2 k

n
3 , (4.37)

where l,m, n ≥ 0 and we remind the reader that the sums are fixed by scale invariance.
The following conditions are then necessary for the above ansatz to pass the MLT:

d1,n,r−1 = 0 , (4.38)∑
m

(
p

n−m

)
d0,m,3−α−m = p c0,n,p+r − c1,n−1,p+r − c1,n,p+r−1 , (4.39)

e1,n,r−2 = f1,n,r−3 = g1,n,r−4 = 0 , (4.40)

with r ≡ 3− α− n; along with analogous conditions for all other permutations of indices.
Note that the conditions that arise from the terms in the first line of (4.37) decouple from
those in the second line.

Whenever a polynomial hα has a symmetry under interchange of external labels, the
trimmed wavefunction coefficient may also be assumed to have such a symmetry without
loss of generality. This is because any non-symmetric part will be cancelled out after
summing over all permutations indicated in (4.5), as we saw explicitly in the previous
section in the α = 2 case. Therefore, if hα(k1, k2, k3) = hα(k1, k3, k2), then we have

clmn = clnm , (4.41)
dlmn = dlnm , (4.42)

...

Moreover, if hα(k1, k2, k3) is completely symmetric, then we have

clmn = clnm = cmln , (4.43)
dlmn = dlnm = dmln , (4.44)

...

As we saw above, in all cases hα is symmetric in at least two external labels. We will now
present the first few solutions for each α, considering even and odd α separately.

Parity-even interactions. We begin with parity-even interactions which have even α.
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α = 0. In this case we have h0 = 1 and so the solution to the MLT must be fully
symmetric. This case is actually exactly the same as the situation for three identical
scalars which was covered in [17]. The following solutions are therefore the same as those
found in that work. Given the symmetry, we present the results using the three elementary
symmetric polynomials kT , e2, e3. Up to p = 3 we have

η−1
0 : i(k2

T − e2)
η0

, (4.45)

η−3
0 : i

η3
0
, (4.46)

p = 0 : 4e3 − e2kT + (k3
T − 3kT e2 + 3e3) log(−kT η0), k3

T − 3kT e2 + 3e3 , (4.47)

p = 2 : e2e3 + e2
2kT − 2e3k

2
T

k2
T

, (4.48)

p = 3 : e2
3
k3
T

, (4.49)

...

where, as indicated, there are two possible solutions for p = 0.
Unitarity places the following additional constraints. The coefficients of 1/η0 and

1/η3
0 must be imaginary as consequence of the Cosmological Optical Theorem (COT),

see section 3. This has a nice interpretation in terms of the holographic language of
(A)dS/CFT, along the lines of [49]. These two terms are bulk IR divergences and should
be holographically renormalized as described in [66]. For the associated renormalization
group flow to be unitary, these divergences should be imaginary, which is precisely what
the COT ensures. Conversely, the COT says that the coefficient of the 1/η2

0 divergence
must be real. This would correspond to a counterterm with imaginary coupling constant.
It is quite intriguing that the MLT forbids precisely these terms and we will discuss this
elsewhere. For p = 0 the MLT admits two solutions. The second one does not have a log
and can satisfy the COT by itself with an arbitrary real coefficient. Conversely, the first
solution, which contains a log, satisfies the COT only when it is combined with the second
solution with a relative factor of iπ/2 (see section 3 or [14]), namely in the combination

λ

[
4e3 − e2kT + (k3

T − 3kT e2 + 3e3) log(−kT η0) + i
π

2
(
k3
T − 3kT e2 + 3e3

)]
, (4.50)

for real λ.
There are no p = 1 solutions. This can simply be understood as follows. Recall that

for cubic wavefunction coefficients, the degree p of the leading kT pole equals the number
of derivatives. Then the absence of solutions for p = 1 is related to the fact that there are
no single derivative interactions one can write down (for α = 0), other than a total time
derivative. Wavefunction coefficients with p = 1 do arise in not-manifestly-local theories.
Indeed the scalar bispectrum induced by gravity has p = 1, which is consistent with the
above discussion because, after integrating out the non-dynamical parts of the metric, GR
displays not-manifestly-local interactions. We refer the reader to [17] for more details on
this case. Note that the COT fixes the coefficients of the terms rational in {k} to be real.
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α = 2. In this case, we have h2(k1, k2, k3) = k2k3 without loss of generality, so we take
the ansatz to also be symmetric in k2 and k3. The leading solutions are then

η−1
0 : i

η0
, (4.51)

p = 2 : e3 + e2kT − k3
T

k2
T

, (4.52)

p = 3 : k2
1
(
k2

1 + 3k1k23 + 2(k2
23 + k2k3)

)
k3
T

, (4.53)

p = 4 : k2
2k

2
3 (kT + 3k1)
k4
T

, (4.54)

...

We see that only a simple η0 = 0 pole is allowed with a constant and imaginary residue, by
unitarity. In terms of total-energy poles, the leading solution has a degree two pole which
is related to the fact that such wavefunction coefficients arise from bulk vertices with at
least two derivatives. Again, the COT demands that the coefficients of these rational terms
are real.

α = 4. Here we again have a single choice for the polarisation factor which is
h4(k1, k2, k3) = I2

1I2I3. This must be combined with an α = 4 solution to the MLT,
which is symmetric in k2 and k3. Clearly no η0 = 0 poles are allowed, and the leading
solutions are

p = 4 : 3e3 + kT e2 + k3
T

k4
T

, (4.55)

p = 5 : k2
1
(
k2

1 + 5k1k23 + 4(k2
23 + 3k2k3)

)
k5
T

, (4.56)

...

Again we see that the lowest possible total energy pole has degree 4.
α = 6. Finally, we have h6 = I2

1I
2
2I

2
3 . This is fully symmetric, so we can present

solutions to the MLT using the elementary symmetric polynomials. There are no η0 = 0
poles and the leading solutions are

p = 6 : 15e3 + 3kT e2 + k3
T

k6
T

, (4.57)

p = 8 : 7e2e3 + kT e
2
2 − 2k2

T e3
k8
T

, (4.58)

...

In each case, solutions with higher-order kT poles can be easily computed. We see that
an IR-divergent logarithm is only permitted for α = 0, while IR-divergences in the form of
η0 = 0 poles can only arise for α = 0, 2 and they always come with imaginary coefficients.
In section 4.5 we will use these solutions to write down the final form of the leading + + +
and + +− bispectra.
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Parity odd interactions. We now turn to odd α which correspond to parity-odd inter-
actions.

α = 1. In this case we have h1(k1, k2, k3) = k1. This must be combined with an α = 1
solution to the MLT, symmetric in k2 and k3. The leading solutions are

η−2
0 : 1

η2
0
, (4.59)

p = 0 : k2
1, k

2
T − 2e2, (4.60)

p = 1 : 2e3 − e2kT
kT

+ (k2
T − 2e2) log(−kT η0) , (4.61)

p = 2 : k2
1 (kT (k2 + k3) + k2k3)

k2
T

− k2
1 log(−kT η0) , (4.62)

p = 3 : −2e3k
2
T + 2e3e2 + kT e

2
2

k3
T

, (4.63)

...

where, as indicated, there are two possible solutions for p = 0. We see that the only allowed
η0 = 0 pole is of degree two, as it should be for α = 1 because of scale invariance. Interest-
ingly, we also see that IR-divergent logarithms are also permitted but only in combination
with total-energy poles. This is in contrast to even α where logarithms could contribute
as the only singular term. The solutions with higher total-energy poles that are not shown
here do not have logarithms.

Unitarity places the following additional constraints. All terms without logs can appear
with real coefficients. The two solutions containing a log, namely p = 1 and p = 2, solve the
Cosmological Optical Theorem (COT) only when accompanied by a corresponding p = 0
solution with a relative coefficient of iπ/2, namely in the combinations

2e3 − e2kT
kT

+ (k2
T − 2e2)

[
log(−kT η0) + i

π

2

]
(4.64)

k2
1 (kT (k2 + k3) + k2k3)

k2
T

− k2
1

[
log(−kT η0) + i

π

2

]
, (4.65)

with real overall coefficients. Notice that, since we are considering parity-odd interac-
tions, it is only the imaginary part of these trimmed wavefunction coefficients, namely that
proportional to iπ/2, that contributes to the bispectrum.

α = 3. Here we can choose h3(k1, k2, k3) = I1I2I3 and the solution to the MLT may be
assumed to be fully symmetric. No η0 = 0 poles are allowed, and the leading solutions are

p = 0 : 1 , (4.66)

p = 3 : 2e3 + e2kT
k3
T

− log(−kT η0) , (4.67)

p = 5 : 4e2e3 + e2
2kT − 2e3k

2
T

k5
T

, (4.68)

...
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Again the higher order solutions do not contain logarithms, so only a single solution with
such a IR-divergence is allowed in this case. As above, unitarity in the form of the Cosmo-
logical Optical Theorem (COT) requires that the p = 3 term, which contains a log, must
appear together with the (trivial) p = 0 solution in the combination

2e3 + e2kT
k3
T

−
[
log(−kT η0) + i

π

2

]
, (4.69)

with a real overall coefficient.
α = 5. In this penultimate case there are two choices for h5: h5(k1, k2, k3) = I3

1I2I3
and h5(k1, k2, k3) = I1I

2
2I

2
3 . Both must be multiplied by a solution to the MLT that is

symmetric in k2 and k3. No η0 = 0 poles or logarithmic terms are allowed, and the leading
solutions are

p = 5 : 8e3 + 2kT e2 + k3
T

k5
T

, (4.70)

p = 6 : k2
1
(
k2

1 + 6k1k23 + 5(k2
23 + 4k2k3)

)
k6
T

, (4.71)

...

both with real coefficients by unitarity.
α = 7. In this final case, we have h7(k1, k2, k3) = I3

1I
2
2I

2
3 and so the solution to the

MLT needs to be symmetric k2 and k3. The leading solutions are

p = 7 : 24e3 + 4kT e2 + k3
T

k7
T

, (4.72)

p = 8 : k2
1
(
k2

1 + 8k1(k2 + k3) + 7((k2 + k3)2 + 6k2k3)
)

k8
T

, (4.73)

...

Again, higher order solutions are easily found. As we have emphasised a number of
times, only the coefficients of the logarithms contribute to the final bispectra for these
parity-odd interactions. We have found only three solutions with logarithms which are
also required to come alongside total-energy poles which will ultimately drop out from the
correlator. It is important to stress that the fact we only have three logarithmic terms is
true to all orders in derivatives. Indeed, all remaining solutions not explicitly shown above
are purely rational. We can therefore extract the full form of parity-odd graviton bispectra,
to all orders in derivatives, from these MLT solutions. Given that there is only a single
polarisation structure for α = 1, 3, there are only three independent parity-odd graviton
bispectra. We will discuss this further in section 4.5 where we construct the final form of
the correlators.

Contact reconstruction formula. In this section we have derived wavefunction coef-
ficients for graviton interactions without any reference to flat space. However, there also
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exists a well-defined relationship between wavefunction coefficients in de Sitter and scatter-
ing amplitudes in flat space: the residue of the leading total-energy pole of a wavefunction
coefficient contains the flat space amplitude (see also [11, 21, 67] for additional relations
between correlators and amplitudes). This was first noticed in [30, 57] and then an explicit
formula was derived in [14]. For n external fields the relationship is

ψn = (p− 1)!(iH)p−n−1 enA
(p−n+3)
n

kpT
+ . . . , (4.74)

where en = ∏n
a=1 ka is a product of the n energies and here we have re-inserted the factors

of Hubble. The ellipsis denote terms with subleading total-energy poles and A(p−n+3)
n is the

part of the corresponding scattering amplitude that contains the largest scaling in energy
and momentum, which is of order p− n+ 3. For n = 3 which is the primary focus of this
work, this leading total-energy pole picks out that part of the amplitude that comes from
operators with p derivatives.

One may go a step further and hope that with the knowledge of the scattering ampli-
tude, as well as the form of the de Sitter mode functions, the full de Sitter wavefunction
coefficient could be produced since it is the same bulk interaction vertex that gives rise to
the amplitude and the wavefunction. As we have seen above, some knowledge of the de
Sitter mode functions is contained in the MLT and indeed in a recent paper [68] solutions
to the MLT were used to convert a contact flat space amplitude into a contact de Sitter
wavefunction via a contact reconstruction formula:

ψn = (p− 1)!(iH)p−n−1
n∑

m=0

∑
π∈Sn

A
(p−n+3)
n

∣∣
{kπ(j)=0}nj=n−m+1

∏n−m
i=1 kπ(i)

m!(n−m)!kp−mT

∏m
l=1(p− l)

, (4.75)

where the sum ∑
π∈Sn runs over the n! permutations π of {1, 2, . . . , n}. For n = 3 this

reconstruction formula takes the following form

ψ3 = (p−1)!ipHp−4
[
A

(p)
3 k1k2k3
kpT

+
A

(p)
3
∣∣
k1=0k2k3 +A

(p)
3
∣∣
k2=0k1k3 +A

(p)
3
∣∣
k3=0k1k2

kp−1
T (p−1)

(4.76)

+
A

(p)
3
∣∣
k2=k3=0k1 +A

(p)
3
∣∣
k1=k3=0k2 +A

(p)
3
∣∣
k1=k2=0k3

kp−2
T (p−1)(p−2)

+
A

(p)
3
∣∣
k1=k2=k3=0

kp−3
T (p−1)(p−2)(p−3)

]
.

This formula is valid for p ≥ 4 where the time integrals in the bulk computation of these
wavefunction coefficients do not produce logarithms or purely analytic terms. In this
case (4.76) yields the full wavefunction. For p ≤ 3 the time integrals can yield such
logarithms or analytic terms which are not captured, but in those cases the total-energy
poles can still be computed using this formula; then one would need to write down an
ansatz for the MLT solution and fix the additional terms that are ultimately required to
satisfy the MLT. For more details we refer the reader to [68].

Instead of taking the route outlined in this paper, one could in principle use (4.76)
to construct graviton bispectra. The p-derivative amplitude that we must input is simply
given by taking one of the polarisation factors we classified in appendix A, multiplying this
SO(3) invariant object by a polynomial in the energies of degree (p − α) > 0, followed by
summing over permutations [1]. The final sum over permutations is crucial since as can be

– 34 –



J
H
E
P
0
5
(
2
0
2
2
)
0
7
7

seen from (4.76), the wavefunction coefficient will only have the correct Bose symmetry if
the amplitude does. For p ≥ 4 this procedure will generate all possible bispectra. Note that
here we are advocating to use this contact reconstruction formula using polarisation tensors
rather than the spinor helicity formalism since in A(p)

3 the energy dependence needs to be
from bulk time derivatives only. When the amplitude is written in terms of spinors, there
is an energy dependence that has arisen from the polarisation factor itself rather than from
bulk time derivatives, as we explained above. With the final result computed from (4.76),
one can convert this expression into the spinor helicity formalism using the expressions
given in appendix A. Above we have presented the leading order MLT solutions for each α,
one can in principle use this reconstruction formula to generate all higher-order solutions.

4.5 The final form of graviton bispectra

With all of the ingredients at hand, we can now write down the final form of the wave-
function coefficients and extract the corresponding correlators. We will concentrate on the
+++ and ++− helicity configurations (since the other two are easily obtained from those
by a parity transformation, with an extra − sign for odd α) and again work at each order
in α treating the even and odd cases separately. Note that we classify the final form of
the bispectra in terms of the leading pole of the MLT solutions presented in the previous
subsection. Once we sum over permutations there can be cancellations meaning that the
final form has a lower order pole. However, it is the solution to the MLT whose leading
degree pole is generically equal to the number of derivatives in a corresponding bulk vertex.
Each of the bispectra below can be multiplied by a real coupling which we denote as gα,p,
and we absorb all O(1) factors that appear when we go from a wavefunction to correlator
(cf. (3.6)) into these couplings.

Parity-even interactions. We begin with even α where both the rational parts and the
logarithmic parts contribute to the correlator, as shown in section 3.

α = 0. Since in this case we have hα = 1, both the final + + + and + + − bispectra
are easily read off from the solutions to the MLT given above. We simply take the spinor
helicity factors, multiply them by the MLT solutions and then divide by the power spectrum
of each external field which contributes a factor of 1/e3

3. We have

p = 0 : e3
3B

+++
3 = g0,0SH+++[4e3 − e2kT + (k3

T − 3kT e2 + 3e3)(log(−kT η0/µ)] , (4.77)
e3

3B
++−
3 = g0,0SH++−[4e3 − e2kT + (k3

T − 3kT e2 + 3e3) log(−kT η0/µ)] , (4.78)

p = 2 : e3
3B

+++
3 = g0,2SH+++

e2e3 + e2
2kT − 2e3k

2
T

k2
T

, (4.79)

e3
3B

++−
3 = g0,2SH++−

e2e3 + e2
2kT − 2e3k

2
T

k2
T

, (4.80)

p = 3 : e3
3B

+++
3 = g0,3SH+++

e2
3
k3
T

, (4.81)

e3
3B

++−
3 = g0,3SH++−

e2
3
k3
T

, (4.82)

...
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This p = 0 bispectrum corresponds to a combination of a potential term in the bulk of
the form γ3

ij and the contribution k3
T − 3kT e2 + 3e3 which is the graviton version of the

well studied local non-Gaussianity [69]. The local shape arises from taking the free theory
for the massless graviton and performing a field redefinition γij → γij + γikγkj . Such a
redefinition does not alter the S-matrix and so its contribution to the wavefunction must
be regular as kT → 0, which it is. The log piece is produced by the γ3

ij vertex which
appears in Solid Inflation [50] and in the slow-roll limit it is the leading contribution from
this interaction. The p = 3 bispectrum corresponds to that of a γ̇3

ij vertex in the bulk
which appears in the Effective Field Theory of Inflation (EFToI) [41], without corrections
to the two-point function and with an independent coefficient [44]. We provide more details
about these examples in section 5.

α = 2. In this case the polarisation factor is not fully symmetric, so after we multiply it
by a solution to the MLT, we need to symmetrize the result. We find

p = 2 : e3
3B

+++
3 = g2,2SH+++

e2(e3 + e2kT − k3
T )

k2
T

, (4.83)

e3
3B

++−
3 = g2,2SH++−

(k1k2 − k2k3 − k3k1)(e3 + e2kT − k3
T )

k2
T

, (4.84)

p = 3 : e3
3B

+++
3 = g2,3SH+++

e3(6e3 + 2e2kT + k3
T )

k3
T

, (4.85)

e3
3B

++−
3 = g2,3SH++−

−e3(4e3 + kT (4e2 + I2
3 + 2I3kT − k2

T ))
2k3

T

, (4.86)

...

Since GR is a two-derivative, parity-even theory, its bispectrum in de Sitter space must be
contained within the solutions we have written up to this point. Indeed, if we first take
µ = −kT η0e

−g̃0,0/g0,0 , and then

g0,2 = 2g̃0,0 = −g2,2, g0,0 = 0, (GR tuning) (4.87)

then both the + + + and + +− wavefunction coefficients are those of GR [30]. We remind
the reader that on the total-energy poles we recover the amplitude, and in GR the + + +
amplitude vanishes while the ++− amplitude does not. This tells us that in GR the +++
bispectrum should not have such a pole while the + +− one should have a degree-2 pole.
If we take an arbitrary linear combination of these bispectra and demand that the + + +
wavefunction does not have a total-energy pole, while the ++− has a non-zero total-energy
pole, then the result is a linear combination of GR and the local non-Gaussianity. In [30]
these conditions along with full de Sitter symmetry was enough to uniquely pick out GR.
Without some additional symmetry principle, we cannot set the coefficient of the local
non-Gaussianity coupling to zero. Interestingly, this GR bispectrum is the leading order
one in the EFToI [42–44]: the breaking of boosts is only felt at higher-order in derivatives.
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α = 4. Again in this case the polarisation factor is not fully symmetric, so we take the
solutions to the MLT and then symmetrise appropriately. We find

p= 4 : e3
3B

+++
3 = g4,4SH+++I1I2I3

3e3 +e2kT +k3
T

k3
T

, (4.88)

e3
3B

++−
3 = g4,4SH++−I1I2I3

3e3 +e2kT +k3
T

k3
T

, (4.89)

p= 5 : e3
3B

+++
3 = g4,5SH+++I1I2I3

24e2e3 +6e2
2kT −9e3k

2
T +e2k

3
T

k5
T

, (4.90)

e3
3B

++−
3 = g4,5SH++−I1I2(2kT )−4

[
12e2

2kT +48e2e3 +e2kT
(
3I3

2−2I3kT +kT
2
)

+2e3
(
6I3

2−6I3kT −7kT 2
)

+I3
2kT

3−kT 5
]
,

... (4.91)

α = 6. Here we have hα = I2
1I

2
2I

2
3 , which is fully symmetric and no symmetrization is

necessary when constructing the full bispectra. We have:

p = 6 : e3
3B

+++
3 = g6,6SH+++I

2
1I

2
2I

2
3

15e3 + 3kT e2 + k3
T

k6
T

, (4.92)

e3
3B

++−
3 = g6,6SH++−I

2
1I

2
2

15e3 + 3kT e2 + k3
T

k4
T

, (4.93)

p = 8 : e3
3B

+++
3 = g6,8SH+++I

2
1I

2
2I

2
3

7e2e3 + kT e
2
2 − 2k2

T e3
k8
T

, (4.94)

e3
3B

++−
3 = g6,8SH++−I

2
1I

2
2

7e2e3 + kT e
2
2 − 2k2

T e3
k6
T

, (4.95)

...

Parity-odd interactions. We now turn to odd α where only the coefficient of the log-
arithm can contribute to the correlator. In all cases it must be multiplied by iπ/2. We
absorb the π/2 factor into the overall coupling gα,p and then the additional factor of i
combines with the factors of i appearing in each hα, cf. (4.36), to give real coefficients.
As we showed above, to all orders in derivatives logarithms can only appear for α = 1, 3
and give rise to a total of three solutions. Since in each case the logarithmic solutions to
the MLT must always come with total-energy poles, we still classify these solutions by the
corresponding p.

α = 1. In this case we need to multiply h1(k1, k2, k3) = k1 by the appropriate solutions
to the MLT and then symmetrise. We find

p = 1 : e3
3B

+++
3 = g1,1SH+++kT

(
k2
T − 2e2

)
, (4.96)

e3
3B

++−
3 = g1,1SH++−I3

(
k2
T − 2e2

)
, (4.97)

p = 2 : e3
3B

+++
3 = g1,2SH+++ (−3e3 + kT e2) , (4.98)

e3
3B

++−
3 = g1,2SH++−

(
k1(k2

2 + k2
3) + k2(k2

1 + k2
3)− k3(k2

1 + k2
2)
)
. (4.99)
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Possible operators that generate these bispectra are, respectively (up to constant factors),

a(η)−1g1,1εijkγilγlm∂jγkm, (4.100)
a(η)−2g1,2εijkγ

′
ilγlm∂jγkm . (4.101)

α = 3. In this case we have h3(k1, k2, k3) = I1I2I3 which is already symmetric. We then
have a unique log term yielding

p = 3 : e3
3B

+++
3 = g3,3SH+++I1I2I3 = g3,3SH+++

(
−8e3 + 4e2kT − k3

T

)
, (4.102)

e3
3B

++−
3 = g3,3SH++−I1I2kT . (4.103)

This can be generated, up to a constant factor, by the operator

a(η)−3g3,3εijk∂lγin∂mγjl∂nγkm . (4.104)

These bispectra correspond to those in computed in [44] where the three couplings were
tuned as dictated by the symmetries of the EFToI. Although in that work the bispectra
were presented using polarisation tensors, we have checked that they are all indeed captured
by our expressions and provide details in section 5.1. Such parity-odd interactions do
not appear on their own in EFToI; rather, they come with a correction to the two-point
function [44]. We also discuss this further in section 5.1. It is also worth pointing out that
our results tell us that for bulk vertices with more than three derivatives, and therefore
p > 4 degree poles in the solutions to the MLT, there are no contributions to the bispectra.
Indeed, IR-divergent logarithms can only appear when

Condition for IR-divergent logs: 2n∂η + n∂i 6 3 , (4.105)

where n∂η and n∂i are respectively the number of time and space derivatives in the parity-
odd interaction. Note that here we assume that each field in the cubic vertex contains at
most one time derivative which can always be guaranteed by using the equations of motion.
This offers a complementary proof that the parity-odd Weyl3 vertex in de Sitter space
leads to a vanishing bispectrum. Indeed, this is a six derivative vertex and therefore the
corresponding wavefunction does not have logarithms and therefore the correlator vanishes.
See [30, 31, 48] for further discussions.

Discussion. So far in this paper we have bootstrapped three-point wavefunction coeffi-
cients arising from tree-level and manifestly local bulk graviton self-interactions. We have
made very minimal assumptions. We assumed the usual massless de Sitter mode functions,
and assumed that the vertices are SO(3) and scale invariant. With this full catalogue at
hand, one can now search for interesting subsets. Indeed, given a particular symmetry
breaking pattern for inflation, as recently classified in [45], only some of these bispectra
will be permitted and non-linear realisations of the broken symmetries could result in re-
lations among the couplings gα,p, as is the case for GR. One could attempt to perform
the classification at the level of the Lagrangian using an effective field theory approach,
however the main message of the bootstrap approach is that the Lagrangian route might
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not be the most efficient. Rather, one would like to take this full catalogue of bispectra
and use soft theorems to classify consistent subsets, or even better to use these objects
as the building blocks of higher-point functions. We have learned from the S-matrix pro-
gramme that gluing together three-point amplitudes to form consistent four-point ones can
be very constraining [1, 70]. We expect this gluing procedure to also be very constraining
for cosmology and plan to explore this in future work. For parity-even vertices in the
EFToI, there is only a single operator at both cubic and quartic order in derivatives that
does not modify the two-point function [44]. It would be interesting to rederive this result
directly using bootstrap methods. In any case, in section 5 we provide a discussion of how
these bispectra could be classified by the EFToI [41] or as the leading contributions to the
bispectra of Solid Inflation [50], following the approach of [45].

4.6 Parity-odd bispectra involving gravitons and scalars

Given that we have discovered very few possible parity-odd bispectra for three gravitons,
let us provide a more complete analysis by also considering bispectra involving a scalar.
As is well-known, the bispectrum for three scalars cannot break parity. This is easily
seen given that there is no non-zero way to contract two independent momenta with an
epsilon tensor, and so there are simply no parity-odd tensor structures in the absence of
polarisation tensors. Let us therefore concentrate on scalar-scalar-graviton (B00+

3 ) and
scalar-graviton-graviton (B0++

3 ) bispectra. As always, other helicity configurations can be
extracted from these as explained in section 4.2.

As we have done throughout this work, we concentrate on manifestly local interactions
and so the solutions to the MLT that we have classified previously in this section can be used
to construct trimmed wavefunctions when we also have scalars: the MLT applies to scalars
and gravitons alike. Our results of section 3 also apply and so for contact interactions there
can be no singularities in the parity-odd bispectra. Our job to classify B00+

3 and B0++
3 is

then a simple one: we first write down all possible parity-odd tensor structures, and then
multiply these by a solution to the MLT. Here we will concentrate on the contributions to
the bispectrum rather than the wavefunction and so the relevant part of the solution to
the MLT is the coefficient of a logarithm, as we have explained in detail above. These logs
can only occur for α = 1, 3 and so we only need to consider these tensor structures.

Scalar-scalar-graviton. First consider B00+
3 . In this case there is only a single parity-

odd tensor structure, which has α = 3:

εijke
h3
im(k3)kj1kk2km1 , (4.106)

and permutations. The relevant solution to the MLT contains a log with a k-independent
coefficient just as was the case for α = 3 with three gravitons. If we multiply (4.106) by
the appropriate MLT solution and sum over permutations, then the contribution to the
bispectrum written in terms of spinor helicity variables is

e3
3B

00+
3 = h3,3

[13]2[23]2
k2

3[12]2 I2
3k3 . (4.107)
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Regardless of the form of the symmetry breaking pattern, this is the only such parity-odd
bispectrum when the bulk interactions are manifestly local, to all orders in derivatives.

Scalar-graviton-graviton. Moving onto B0++
3 we find a single tensor structure for α =

1 and two for α = 3. Up to permutations we have

α = 1 : εijkeh2
im(k2)eh3

jm(k3)k2
k , (4.108)

α = 3 : εijkeh2
im(k2)eh3

ml(k3)k2
jk

3
kk

1
l and εijke

h2
il (k2)eh3

jm(k3)k2
kk

1
l k

1
m . (4.109)

Now for α = 1 we need to multiply this tensor structure by a degree-2 polynomial that
arises from the coefficient of a log in a solution to the MLT. We find three such solutions:
this tensor structure can be multiplied by k2

1, k
2
2 or k2

3 with arbitrary coefficients. Each of
the appropriate MLT solutions also have rational contributions with kT poles: one solution
has a simple pole while the other two solutions have k−2

T poles. A complete basis is

e3
3B

0++
3 = [23]4

k2
2k

2
3

[
q1,1(k2 + k3)k2

1 + q1,2,a(k3
2 + k3

3) + q1,2,b(k2k
2
3 + k3k

2
2)
]
. (4.110)

Now for α = 3 we find that when converted to spinor helicity variables, the two α = 3
structures are equivalent and since they already scale as ∼ k3, the relevant part of the
MLT solution is simply a constant multiplied by a log. We therefore have a single solution
for the α = 3 B0++

3 bispectrum which turns out to be a linear combination of those from
α = 1 in (4.110). It follows that (4.110) is a complete list, to all orders in derivatives. From
these bispectra we can also extract those for B0+−

3 . We have

e3
3B

0+−
3 = I4

2
k2

2k
2
3

[12]4
[31]4

[
q1,1(k2 − k3)k2

1 + q1,2,a(k3
2 − k3

3) + q1,2,b(k2k
2
3 − k3k

2
2)
]
, (4.111)

where the overall factor is a necessary consequence of helicity scaling and the absence of
divergences.

One of our main messages in this paper is that parity-odd contact bispectra, arising
from manifestly local cubic interactions, are small in number. In table 2 we summarise
the number of independent couplings associated with tree-level parity-odd bispectra of
manifestly local scalars and gravitons, to all orders in derivatives, and with exact scale
invariance. In inflationary models, we would expect additional bispectra that mix scalars
and gravitons and violate manifest locality. These will arise when we integrate out the non-
dynamical modes. We still expect the shapes of such correlators to be heavily constrained
given our discussion in section 3. The primary difference is that in those cases the logs that
appear in the wavefunction can in principle be multiplied by poles as one of the external
energies is taken soft. In any case, in section 5 we comment on when the above bispectra
appear in the effective field theory of inflation and solid inflation.

5 Graviton bispectra and symmetry breaking patterns

In this section, we want to study which of the graviton and graviton-scalar three-point
functions we have discussed so far can arise during inflation depending on the particular way
in which de Sitter boosts are broken. We consider the Effective Field Theory of Inflation
(EFToI) [41] and the symmetry breaking pattern of a solid, i.e. Solid Inflation [50].

– 40 –



J
H
E
P
0
5
(
2
0
2
2
)
0
7
7

Parity-odd bispectra SSS SST STT TTT
no. of couplings 0 1 3 3

Table 2. For manifestly local and scale invariant theories, the table specifies the number of inde-
pendent parity-odd tree-level bispectra for all possible combinations of scalars (“S”) and gravitons
(“T”) to all orders in derivatives.

5.1 Effective field theory of inflation

Let us begin with the EFToI which is the most well-studied symmetry breaking pattern
for inflation. Here the symmetry breaking is driven by a single scalar that acquires a
time dependent vev. The background homogeneity and isotropy is then manifest and an
approximate shift-symmetry for the resulting Goldstone mode ensures approximately scale
invariant primordial correlators. In the decoupling limit and on subhorizon scales, where
we can neglect gravity and the expansion of the universe, the Goldstone theory is that of
a superfluid [71].

First, let us stress that at tree-level all cubic graviton interactions are manifestly local:
one does not need to worry about non-manifestly local interactions coming from solving
the Hamiltonian and momentum constraints in GR. The reason is that for the three-point
function it is sufficient to solve the constraints at linear order6 [49] and at this order a
two-tensor cannot mix with the scalars and transverse vector in g0µ. Hence, the Manifestly
Local Test (MLT) we used throughout this paper does indeed capture graviton bispectra in
the EFToI. Now, what are the building blocks for the graviton operators? Initially consider
operators that give rise to non-trivial cubic graviton self-interactions, but do not alter the
graviton’s quadratic action with respect to the GR contribution. This case corresponds to
the setup in this paper: standard dS mode functions for the massless graviton plus bispectra
arising from manifestly-local cubic self-interactions. To find these building blocks we can
stop the expansion of all geometric objects constructed from the foliation at leading order
in perturbations. We can either use γ̇ij , which is 2 δKi

j at leading order in perturbations
(δKµν being the fluctuation in the extrinsic curvature of constant-time hypersurfaces), or
a−2∂k∂lγij . The indices ijkl cannot be, however, chosen arbitrarily. We can either have
the combination7

a−2(∂k∂[iγj]l − ∂l∂[iγj]k
)
, (5.1)

corresponding to the Riemann tensor (3)Rijkl on constant-time hypersurfaces, or

a−2∂2γij , (5.2)

corresponding to the Ricci tensor (3)Rij . We can then freely take further time derivatives or
spatial derivatives of these building blocks, since we can project derivatives either parallel
or orthogonal to nµ, the normal four-vector to constant-time hypersurfaces.

6More generally, the solution of the constraints to order n is sufficient to write down the action to order
(2n+ 1) or less [36].

7The square brackets on a pair of indices denote anti-symmetrization with weight one, A[ij] ≡
(Aij −Aji) /2.
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Parity even. Let us consider a few parity-even examples (beyond the bispectrum of GR)
before moving to the parity-odd case. The constraints on the building blocks forbid us
from having p < 3 for α = 0 and p < 5 for α = 2 and α = 4. Two examples are the
following: we have the dimension-6 and dimension-7 operators∫

dηd3x a(η) γ′ijγ′jkγ′ki and
∫
dηd3x γ′ijγ

′
jk∂

2γki . (5.3)

Since no spatial derivative is contracted with the indices of γij , both have α = 0 and
both give the same trimmed wavefunction ψtrimmed(k1, k2, k3) which may be assumed to be
symmetric since the polarisation factors are. We find

ψtrimmed(k1, k2, k3) = e2
3
k3
T

, (5.4)

which is our α = 0, p = 3 solution from section 4. In general we expect that the order of
the total-energy pole is given by [16]

p = 1 +
∑
A

(∆A − 4) , (5.5)

where the sum is over all vertices A with mass dimension ∆A. For the tree-level bispec-
trum of gravitons and scalars this tells us that p is the total number of spatial and time
derivatives. Indeed, for the first interaction in (5.3), we get a k−3

T pole as expected. For
the second interaction in (5.3), we naively expect a k−4

T pole. However, the amplitude
corresponding to this interaction vanishes, so the residue of the k−4

T pole is zero.8 A simi-
lar observation was made for the DBI limit of the EFToI in [72]. Another example is the
dimension-7 operator ∫

dηd3x γ′jkγ
′
il

(
∂k∂(iγj)l − ∂l∂(iγj)k

)
, (5.6)

which has α = 2 because two spatial derivatives are contracted with the indices of γij . The
trimmed wavefunction coefficient is

ψtrimmed(k1, k2, k3) = k2
1k

2
2

k4
T

(k1 + k2 + 4k3) , (5.7)

i.e. p = 4, as expected from (5.5). Note that this is the trimmed wavefunction for one of
the permutations where the third leg in the diagram is not differentiated with respect to
time. One would need to follow the rules outlined in section 4 to find the final expressions
with the correct symmetries. Despite appearances, this trimmed wavefunction does indeed
satisfy the MLT for each leg.

Parity odd. As we have seen already in the previous sections, the parity-odd case is much
more constrained. While it is possible to write infinitely many parity-odd high-dimension

8On-shell we can replace the ∂2 with two time derivatives and then it is clear that this interaction is a
total time derivative and does therefore not contribute to the energy conserving S-matrix.

– 42 –



J
H
E
P
0
5
(
2
0
2
2
)
0
7
7

operators, only one contributes to the three-point function. This is the three-dimensional
Chern-Simons term, i.e.

M2
pl

Λ

∫
dηd3x a(η)εijk

[
(3)Γlim∂j(3)Γmkl

2 +
(3)Γlim(3)Γmjn(3)Γnkl

3

]
, (5.8)

where (3)Γkij are the Christoffel symbols for the covariant derivative on hypersurfaces of
constant time and we have introduced a new scale Λ on dimensional grounds. It is possible
to show (see e.g. [44], appendix B), that this term is equal to the WW̃ combination (where
W is shorthand for the Weyl tensor and W̃ for its dual) multiplied by f(φ) ∝ φ where φ
is the inflaton, up to a boundary term9 and an operator that has α = 1 and p = 3 (which
does not, then, contribute to correlators as we showed in section 3). At cubic order in
perturbations, this operator is equal to [44]

M2
pl

Λ

∫
dηd3xa(η)

[1
4εijkγkn∂lγnm∂j∂lγim+1

4εijkγln∂nγim∂j∂lγkm−
1
4εijk∂mγnj∂nγlm∂iγlk

− 1
12εijk∂mγlj∂nγmi∂lγnk+

1
4εijk∂nγlm∂kγln∂jγmi+

1
4εijk∂mγnj∂mγlk∂lγni

+1
4εijk∂nγmk∂lγmn∂jγli

]
. (5.9)

We recognize the tensor structures summarized in appendix A. The first and sixth terms
in the above equation are the first and second tensor structures in eq. (A.12). Indeed they
only have one spatial derivative contracted with the graviton’s indices and have α = 1.
The other five terms are found in eqs. (A.14), (A.15), (A.16) and have α = 3. If we take
the mode functions to be the usual massless ones in dS (see below for a discussion on this
point) then the bispectrum coming from this sum of interactions is given by a linear sum
of the parity-odd bispectra in section 4.5. The relevant constraints are

g1,1 = −2g1,2 = −1
6g3,3 , (5.10)

and by fixing g1,1 in terms of M2
pl/(HΛ), and reinserting the factor of π, we find for the

+ + + configuration

e3
3B

+++
CS,contact = −π4

H

Λ
H4

M4
pl
SH+++(99e3 − 53kT e2 + 14k3

T ) , (5.11)

where the subscript CS stands for “Chern-Simons”. If we rewrite this using the tunings of
eq. (5.10), we find

e3
3B

+++
CS,contact =−π4

H

Λ
H4

M4
pl
SH+++

(
2kT (k2

T −2e2)−(−3e3 +kT e2)−12I1I2I3
)
, (5.12)

e3
3B

++−
CS,contact =−π4

H

Λ
H4

M4
pl
SH++−

(
2I3(k2

T −2e2)−
(
k1(k2

2 +k2
3)+k2(k2

1 +k2
3)−k3(k2

1 +k2
2)
)

−12I1I2kT
)
. (5.13)

9Given the high number of derivatives, such boundary term vanishes very fast at late times and does
not contribute to the three-point function.

– 43 –



J
H
E
P
0
5
(
2
0
2
2
)
0
7
7

<latexit sha1_base64="Y5Qs0YuwYdmZxMp8wtWv+E02n3g="></latexit>� <latexit sha1_base64="Y5Qs0YuwYdmZxMp8wtWv+E02n3g="></latexit>� <latexit sha1_base64="Y5Qs0YuwYdmZxMp8wtWv+E02n3g=">AAAVhHicpVhbbxtFFJ4WKCXcUlCeeLFIA6VqLTvBJSBRVRQqXiqKcmmkOIp212Nn5b2YvaQNK/MjeIU/xj/ggR/BOd/MrNeOPbuGrBzPzJ7zneucOWN3Evhp1un8dePmG2++devt2+9svPve+x98uHnno+M0zhNPHnlxECcnrpPKwI/kUeZngTyZJNIJ3UC+dMdP+f3LS5mkfhwdZlcTeRY6o8gf+p6T0dLJ3f7ICUPn7vnmdqfdwV/r+qCrB9tC/72I72zsib4YiFh4IhehkCISGY0D4YiUnlPRpWdCaw9Ei6giokiFTxxSnImCqBJ654NDiqnYILScKCTxOLQ6pv8jmhX4H0NCRjxXmnZxtQBORo+kOWNMMLIjJ6C7gB6vLbSn4pCsYb2HsCWDvZ6VIyeqodgHl0/UE6zU8zmwKoFODlEzv0sjl1YDcO5YZKaQoDBS8HqkcUAf9kWLeFviIT2P6dsTn4u/6ft1haZFXDH8GIs2ntX+YykpfRyivrB6WlGmFKeQ7LBRco7kZIFPmLaIsE84emNE3eaVYs4+m+czeDnQGdqMq2hIlUHbiN5NkPtqv9g4mIJ3lo+sCa20JgYcNdYmrfGcHW1CMk2eMx371uRMqq14CM4ElK1SfktTr46u4q7mzGpqD9nCMkawzVAfIOYHOpvY3mda2wL1JwF/WnnP/iiIgqPEsgPMfxLPxQlGvngFBAezUFOvZ7uibf6s9v8Faa6qF+fJkPTYWRub6Y/hC58sYzktZGoIfSOqw7zCnmAZDs2vaM51qkW1TpJfDkiPmPRgPb+nFU/7VooX9O1jNMCbgGYmTxPSv499pHzep7eXWM/0PKnM/wv2LIoG/3gB/3gOn0+eVwu2M12mpUxxVp3pNUn7Pqvs6aKkKsQ20U1rUbmC5DjT7LgzuqbIubbQoOUUHTtPjizmkcnSFPlk4xkgr+clFfCAnc/Xtsy4fHD6dIZI+kzFbzUIkvJ/GQJzj2oR+ugtAvBPyv7C0WfmKh4pfinj9AON2yRDraq9V2D8TW2E+tjJHsk0aAeYKzyDpWiaoA1R9QzWM8zmsRRFEyx1rhmsQ8zmsRRFPRb71gVPVkYqRy5zvc2oMg4RszqMIVGP0cuxHeclTqo5d7Ruq/gv4cfqDjP57cKeJnYc4sSu8nJVKfR6n/rWdTRZ1OF6rxWTdf/QKMJJo/osHpuq66EucP9zSaONNeSq83yVvHo5y7NGVem04uML2DeTPvOzOSmf4yRLILsuh6blaATN1E7LIcOHzvdrYyhLHKnX1sdw0ZNd14ZXg0bZLCsIRo/m3K6mWpRv+j5f/KpPk0DvvFD3OEz3LVl4VqvfTILRbxG9fs9HSyMW6dtfAp//Xz1nUmbxvC6h7hxy0DnF9HaqV5Stp/p0i0inQuzSs08UdVrFZWzNqbS8ly9Eh6pqR/RqNWTEaGl/sAp5Vs82sMsPy5tKau3z+TYw1tXdficIaT3ArjGeW0070H0MxyVqeDdSfZHtlDJdIduu+rgcFp5SRdsFJfuqi9EU3g513fvMinuh650NtVOi9iiGPT2zoYZAlRb0vSXo+xVkjuTT0j+prt0tLa9Fnzatt8kj7aU9+eo+cQTN5Iocq/agVcr5U3OAPexDSpUj1LGNkFX3SJcEvwFJ3O+/AA7veRejLnYE/wLUmRv1xKPabldJqrOgiT5N7Bpgv40RyUTXiHnvzKxStnxdWvMl2WPGu+KrWssGa0SoXq8m1rFPrtALm1vHPdJN0mwxYsqGXsW2bjneR72su1M1vf/U6aTtOt/c7i7+Dnl9cLzb7j5q7/28u/3kO/0b5W3xifiUMLsUkSfiR7pZHuGe+bv4Q/y5dWvrwdbeVk+R3ryheT4Wc39bj/8FvrgmPw==</latexit>�

<latexit sha1_base64="YP7cjewX58JEL+MJPaP62Moyr50="></latexit>

M2
pl

H⇤ <latexit sha1_base64="8xZS/O0yGk8GMYdlEO0sKuHup0w="></latexit>

H2

M2
pl

<latexit sha1_base64="+yvJ2wrFzQN4BmreUkj6hr2M9vk="></latexit>

M2
pl

H2

Figure 3. Three-point exchange diagram in the parity-odd sector of the EFT of Inflation.

The non-linear realization of boosts not only forces the different operators to appear with
tuned coefficients, it also forces a contribution to the quadratic graviton action. One can
see how this is necessary from the fact that the bispectrum from eq. (5.9), by itself, gives
a contribution ∼ q−3 in the soft q limit,10 spoiling the consistency relation of GR. The
modification to the quadratic action is

−
M2

pl
4Λ

∫
dηd3x a(η) εijk∂i∂mγjl∂mγlk , (5.14)

and gives rise to the new three-point exchange diagram shown in figure 3 where the cubic
vertex is the one from GR. In this paper we have not discussed such exchange diagrams.
However, given that such an operator is the only source of parity violation in the EFToI, we
find it interesting to consider the wavefunction coefficient and resulting bispectrum from
this diagram which must appear in addition to the contact ones we just derived. Note that
we are treating the correction to the two-point function perturbatively which, as shown
in [42], is valid as long as the approximately constant Hubble scale during inflation is smaller
than the scale Λ. Indeed, the correction to the late-time power spectrum 〈γ±k γ

±
k′〉
′ = P±(k)

of the graviton is [42]

δP±(k) = ±π HΛ
H2

M2
plk

3 , (5.15)

where the factor of π is enforced by unitarity, as explained in section 3, and the ± indicates
that the helicities have been split by this parity-odd correction. To compute this correction
to the power spectrum the relation

iεijkkje
h
km(k) = λhk e

h
im(k) (5.16)

proves useful, where λ± = ±1. By considering this correction perturbatively, we can use
the usual bulk-to-boundary and bulk-to-bulk propagators arising from the massless mode

10This comes from the first two terms in eq. (5.9).
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functions, as we have done to compute (5.12) and (5.13). It is worth noting that to get a
parity-odd bispectrum one could use any parity-even vertex for the right-hand sub-diagram
but this one is of the same order as the contact contributions arising from (5.9). The con-
tribution to the wavefunction from the contact interactions (5.9) is M2

pl/(HΛ). For the
diagram in figure 3, the GR vertex contributes a factor of M2

pl/H
2, the quadratic mixing

contributes a factor ofM2
pl/(HΛ), while the bulk-bulk propagator scales in the same way as

the graviton power spectrum and so contributes a factor of H2/M2
pl. Multiplying these fac-

tors together shows that the contact diagram and this exchange diagram contain the same
dependence onMpl, H and Λ, as expected from the consistency relations of the EFToI [44].
If in figure 3 we took the cubic vertex to be given by the sum in (5.9) then this (parity-even)
contribution would scale as M2

pl/(HΛ)×H/Λ and for H < Λ such a diagram is suppressed.
Now, up to cubic order the GR action is

SGR =
M2

pl
8

∫
dηd3x a(η)2[γ′ijγ′ij − ∂lγij∂lγij + (2γikγjl − γijγkl)∂k∂lγij +O(γ4)] , (5.17)

and given that both the GR vertex and the new quadratic term only have spatial derivatives,
none of the propagators in the bulk time integrands are differentiated, so the relevant
integrals are the same for all permutations. The only integral we need to compute for this
exchange diagram is

−i
∫
dη

∫
dη′a(η)a(η′)2K(k1, η)G(k1, η, η

′)K(k2, η
′)K(k3, η

′) , (5.18)

where we have used momentum conservation to write the internal energy as k1, and have
included an overall −i as dictated by the Feynman rules. We will use (see e.g. [17])

K(k, η) = (1− ikη)eikη , (5.19)
G(k, η, η′) = 2P (k)[θ(η − η′)K(k, η′)ImK(k, η) + (η ↔ η′)] , (5.20)

where P (k) is the GR power spectrum arising from the usual massless mode functions. We
can compute this integral exactly and while the full expression is not very illuminating, we
find that the result is purely imaginary. The result of this integral is then multiplied by a
polarisation factor which is purely real, as we discussed in section 3, so it follows that the
contribution to the wavefunction from this digram is a pure phase, so it does not contribute
to the bispectrum. It is interesting to note that this diagram contributes logarithms to
the wavefunction which by unitarity have to come with iπ contributions too [14]. As we
explained in section 3, for contact diagrams the only logarithmic divergences are of the form
log(−kT η0), so iπ contributions are inevitable. However, for this three-point exchange
diagram we find a number of logarithmic terms with different arguments and it turns
out that the coefficients of these logs are such that all iπ contributions cancel out! This
observation clearly deserves further attention and we plan to come back it in the near future.

Although the contribution of figure 3 to ψ3 is pure phase, this modification of the
quadratic action still leads to a parity-odd correction to the bispectrum, as we will now
show.11 First, we write the full ψ2 as ψ(0)

2 + δψ2, i.e. the leading part from GR plus a
11We thank Aaron Hillman for discussions about this point.
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small correction due to the parity-odd quadratic term. To linear order in 1/Λ, the relevant
contributions to the wavefunction for computing the bispectra are

Ψ[γ, η0] = exp
{
−1

2

∫
k

∑
λ

(
ψ

(0)
2 (k) + δψλ2 (k)

)
γλkγ

λ
−k (5.21)

− 1
3!

∫
k1,k2,k3

(2π)3δ(3)
(∑

ki
)∑
{µi}

ψµ1µ2µ3
3 ({ki}, {ki})γµ1

k1
γµ2
k2
γµ3
k3

+ . . .

}
,

where ψ3 contains all contributions from GR and our parity-breaking CS term, and we
have used the fact that due to SO(3) invariance helicities do not mix at quadratic order.
To linear order in 1/Λ we then have

B3 = 1
3∏
i=1
P(0)

2 (ki)

(
−P{λi}3 ({ki}) + P{λi}3 ({ki})

(
δPλ1

2 (k1)
P(0)

2 (k1)
+ 2 permutations

))
, (5.22)

where the permutations are of both momenta and helicity labels, and we have defined

P{µi}n ({ki}, {ki}) = ψ{µi}n ({ki}, {ki}) + ψ{µi}n ({ki}, {−ki})∗, (5.23)

for n ≥ 3, while for n = 2 we use SO(3) invariance to simplify the definition of Pλ2 (k) as
ψλ2 (k) + ψλ2 (k)∗. As we explained above, the contribution to ψ3 from figure 3 drops out of
P3; thus the only parity-odd contribution to P3 is fixed by the contact interactions in (5.9)
and the contributions of these interactions are given by (5.12) and (5.13). However, δP2 is
non-zero. The expressions that we now need to compute the full bispectra are

P±2 (k) =
M2

pl
H2 k

3
(

1∓ πH

Λ

)
(5.24)

and

P+++
3,GR ({ki}) =

M2
pl

4H2SH+++(e3 + kT e2 − k3
T ) , (5.25)

P++−
3,GR ({ki}) =

M2
pl

4H2SH++−
I2

3
k2
T

(e3 + kT e2 − k3
T ) , (5.26)

which we have computed from the cubic Einstein-Hilbert action using the bulk formalism.
It follows that the full parity-odd contributions to the bispecta at O(1/Λ), by summing all
terms in (5.22) with those in eqs. (5.12), (5.13), are given by

e3
3B

+++
CS,total=−

π

4
H

Λ
H4

M4
pl
SH+++

(
2kT (k2

T−2e2)−(−3e3+kT e2)−12I1I2I3−3(k3
T−e2kT−e3)

)
,

(5.27)

e3
3B

++−
CS,total=−

π

4
H

Λ
H4

M4
pl
SH++−

(
2I3(k2

T−2e2)−
(
k1(k2

2+k2
3)+k2(k2

1+k2
3)−k3(k2

1+k2
2)
)

−12I1I2kT+ I2
3
k2
T

(e3+kT e2−k3
T )
)
. (5.28)
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Again, we see that these parity-odd corrections are suppressed by H/Λ compared to
the GR contributions. Using the relation P±(k) = 1/P±(k), it is straightforward to
check that these bispectra satisfy the consistency condition for large wavelength gravitons,
i.e. 〈γhSk−q/2γ

hS
−k−q/2γ

hLq 〉
′
∼ 3

2P
hL(q)P hS (k)ehLij (q)k̂ik̂j for q/k → 0.

To conclude, many of the bispectra we have computed in section 4 do indeed arise in
the EFToI, without corrections to the quadratic theory. The parity-odd contact bispectra,
however, necessarily come with a correction to the two-point function that can be treated
perturbatively and results in a total parity-odd contribution to the bispectrum in the EFToI
given in (5.27) and (5.28). Although it is very interesting that all parity-odd corrections
can be computed, they are suppressed relative to the GR contribution and will therefore
be very difficult to detect observationally. This suppression was also noted in [47]. In this
paper we have restricted ourselves to exact scale invariance, and away from this limit other
shapes are possible [46]. As we mentioned above, it would be very interesting to pick out
this EFToI subset of our full catalogue directly at the level of the correlator rather than
going back to the Lagrangian. We hope to return to this in the future.

In section 4.6 we showed that (4.107) is the unique scale invariant, manifestly-local
and parity-odd bispectrum of two scalars and a graviton. Here we will argue that this
bispectrum does not appear in the EFToI. For the reader’s convenience the structure of
this bispectrum is

e3
3B

00+
3 = h3,3

[13]2[23]2
k2

3[12]2 I2
3k3 , (5.29)

and the relevant polarisation factor is

εijke
h3
im(k3)kj1kk2km1 , (5.30)

up to permutations. Let’s first ask if such a tensor structure can appear in the EFToI
without a correction to the graviton’s two-point function. In this case the corresponding
operator must be built out of the building blocks we listed above. Since such an interaction
must have three spatial derivatives (simply from the form of the polarisation factor) and
no time derivatives (to ensure 2n∂η + n∂i ≤ 3 and therefore a non-vanishing bispectrum)
the only possible building blocks contain two derivatives acting on the graviton. However,
it is easy to see from the structure of (5.30) that there is no way for two of the k′s to
correspond to the graviton. This implies that if such a bispectrum is to appear in the
EFToI, it should come with a correction to the graviton’s two-point function.

The leading correction to the graviton’s two-point function is the one we discussed
above, namely (5.14) which, as dictated by symmetries, appears in the EFToI in the
form of the Chern-Simons term (5.8), see also [42]. We have checked that to leading
order in slow-roll this Chern-Simons term does not contain a three-derivative scalar-scalar-
graviton interaction and therefore cannot produce this bispectrum. We therefore conclude
that (4.107) does not appear in the EFToI. We note that in [47] a scalar-scalar-graviton
interaction with four-derivatives was derived from this Chern-Simons term. This inter-
action is slow-roll suppressed, but given our discussion in section 3 it also has too many
derivatives to produce a log in the corresponding wavefunction and so the corresponding
bispectrum is zero (rather than simply small).
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5.2 Solid inflation

Let us now switch to the symmetry breaking pattern of solid inflation [50]. Here the
symmetry breaking is driven by a multiplet of scalar fields that pick up spatial vevs. Internal
symmetries of the scalars then ensure that the background geometry is homogeneous and
isotropic. In stark contrast to the EFToI, the fluctuations in solid inflation break spatial
diffeomorphisms, and yield the following effective field theory description [45].

The building blocks in unitary gauge are constructed from the one-forms ∂µxi, with
the requirement that latin indices are contracted in an SO(3)-invariant way. An important
role is played by the trace

X = gii , (5.31)

which is a proxy for time, and by the four-vector

Oµ = eµνρσεijk∂νx
i∂ρx

j∂σx
k

6
√

det(gmn)
, (5.32)

which we can use to take time derivatives of diffeomorphism scalars (via Oµ∇µ). Then, we
can take spatial derivatives of diffeomorphism scalars via

D⊥i = giµ∇µ√
X/3

. (5.33)

This reduces to ∂i/a at zeroth order in perturbations. The last ingredient is the SO(3)
tensor

Γij = δij −
3gij
X

, (5.34)

which is equal to γij at leading order in perturbations.
With these building blocks it is then possible to write all possible manifestly-local cubic

operators involving three gravitons. These are always built from an object of the form

(D⊥i1 · · ·D
⊥
iα1

Γil)(D⊥j1 · · ·D
⊥
jα2

Γjm)(D⊥k1 · · ·D
⊥
kα3

Γkn) , (5.35)

where indices are contracted with δij or εijk. Contracting the indices i1, . . . iα1 , j1, . . . jα1 ,
k1, . . . kα1 allows us to obtain all the tensor structures discussed in section 4.1 and ap-
pendix A. Adding time derivatives to Γil, Γjm, Γkn only changes ψtrimmed

3 (k1, k2, k3) and
is always allowed in this solid inflation EFT. So all of the interactions we have considered
in section 4 can arise in solid inflation. As it is clear from our bootstrap approach, there
are a number of degeneracies at the level of the action that do not appear when working
directly with observables. However, as an example, one possible set of interactions in solid
inflation that can give rise to the parity-odd bispectra that we derived in section 4.5 are

g1,1 :
∫
d4x
√
−g εijkΓknΓnmD⊥j Γim , (5.36)

g1,2 :
∫
d4x
√
−g εijkΓknOµ∇µΓnmD⊥j Γim , (5.37)

g3,3 :
∫
d4x
√
−g εijkD⊥mΓljD⊥n ΓmiD⊥l Γnk , (5.38)
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where Oµ is defined in eq. (5.32). In addition to parity-odd graviton bispectra, each of
these operators also generates mixed bispectra containing gravitons and scalars, such as for
example scalar-scalar-graviton and scalar-graviton-graviton bispectra. No purely scalar bis-
pectra are generated because scalar bispectra cannot be parity-odd. To see why the scalars
must enter the game, notice that to leading order in scalar and tensor perturbations we have

Γij = γij + 2ζδij − 6∂i∂j
∂2 ζ , (5.39)

where ζ are curvature perturbations on constant-energy time slices. Furthermore, this
expression makes it clear that the interactions involving the scalar ζ are not manifestly
local due to the appearance of the inverse Laplacian in the last term in (5.39), a fact that
we have verified with an explicit computation. Hence, the mixed scalar-scalar-graviton and
scalar-graviton-graviton bispectra generated by these operators are not the ones we derived
in section 4.6, where we used the Manifestly Local Test (MLT) and therefore described
only manifestly local interactions. In section 5.4 we will see that, in solid inflation, the
signal-to-noise ratio for the bispectra involving one or more scalar is always larger than
that for the purely graviton bispectrum. Therefore, if the parity-odd graviton bispectra
derived here were to be detected, then either one should also see the corresponding
parity-odd mixed bispectra or one would conclude that the symmetry breaking pattern
during inflation is different from that assumed in solid inflation (and the EFT of inflation).

Since in section 4.6 we have bootstrapped only the manifestly local parity-odd scalar-
scalar-graviton bispectrum, it is natural to ask whether that mixed bispectrum can be
generated in solid inflation. It is straightforward to see that the answer is yes. Let us
consider the operator ∫

d4x
√
−g X−2εijkD

⊥
l XD

⊥
k XD

⊥
j Γli , (5.40)

which starts at cubic order in perturbations. Using X = 3a−2(1 + 2ζ), together with
eq. (5.39), we see that to lowest order it is equal to

4
∫
dηd3x a(η) εijk∂lζ∂kζ∂jγli . (5.41)

Furthermore, the operator in (5.40) does not introduce any other mixed interaction. In
particular, it does not generate terms with two gravitons and one ζ, with three gravitons
(given that X does not contain γij), or with three scalars (they all vanish by integration
by parts). The interaction in eq. (5.41) gives the bispectrum of eq. (4.107). Since the
coupling constant of this operator can be large, we conclude that the parity-odd scalar-
scalar-graviton bispectrum that we have bootstrapped can indeed arise and be large in
solid inflation. We plot its shape in figure 4.

Mode functions. Let us now discuss our assumption that the mode functions for the
graviton and scalar are the usual massless de Sitter ones. Let us start with the graviton. As
one may have anticipated from the breaking of spatial diffeomorphisms, in solid inflation
the graviton acquires a mass. Indeed, in unitary gauge solid inflation can be thought of as
a theory of Lorentz-violating massive gravity [73]. On the surface this seems problematic
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for our assumptions, but it turns out that this mass is slow-roll suppressed. Let us quickly
review how this happens (we refer the reader to [50] for more details.) We write the
non-Einstein-Hilbert part of the action S as

S =
∫
d4x
√
−g

{
L0(X) +M4(X, δY, δZ)

}
, (5.42)

where we defined

δY = Y − 1
3 = gijgji

X2 −
1
3 , (5.43)

δZ = Z − 1
9 = gijgjkgki

X3 − 1
9 , (5.44)

and X = gii was defined in eq. (5.31). Without loss of generality, M4 can be written as
an expansion in powers of δY and δZ, each multiplied by a function of X. This mimics
the expansion in powers of g00 + 1 (with time-dependent coefficients) of the EFToI action
at zeroth order in derivatives, thanks to the fact that δY and δZ start at second order in
perturbations around a FLRW background. Consequently, it is only L0 whose dependence
is fixed by the background evolution: we have

3M2
plH

2 = −L0 , (5.45)

ε ≡ − Ḣ

H2 = d logL0
d logX , (5.46)

where we recognize the slow-roll parameter ε on the left-hand side of (5.46). What are the
contributions of eq. (5.42) to the graviton action (which are added to those from Einstein
gravity)? It is straightforward to see that

Sγγ =
∫
d4x a3

(1
6

dL0
d logX + 1

9
∂M4

∂Y
+ 1

9
∂M4

∂Z

)
γijγji . (5.47)

Using eq. (5.46), together with the fact that the propagation speed c2
T of the transverse

part of the Goldstone modes πi is [50]

c2
T = 1 + 2

3
M4
,Y +M4

,Z

XL0,X
, (5.48)

we see that the graviton has a small mass given by

m2
γ = −2Ḣc2

T = 2H2εc2
T . (5.49)

One might ask what happens if other (higher-derivative) operators are turned on. No
other operator can contribute to the mass term aside from eq. (5.47). They could, however,
modify eq. (5.46) and therefore modify how one converts from eq. (5.47) to eq. (5.49) via the
definition of the speed of sound c2

T. As long as these operators are only small perturbative
corrections to the solid inflation action of eq. (5.42), the graviton mass will still be given by
eq. (5.49) at leading order, and thus it will be slow-roll-suppressed. Therefore, to leading
order in slow-roll one can use the massless dS mode functions to compute the bispectra, as
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we have been doing and as was done in [45, 74]. In the scale invariant limit, it then follows
that all of the parity-even and parity-odd bispectra we have constructed in this paper using
the MLT are the leading contributions to the graviton bispectra in solid inflation.

Let us now turn to the scalar’s mode functions. We have shown that the unique parity-
odd B00+

3 can indeed arise from an interaction in solid inflation under the assumptions we
have made in this paper which translate into constraints from the COT, MLT and boostless
bootstrap rules that enable us to write down an ansatz for the wavefunction. It turns out
that in solid inflation the mode functions for ζ are not the usual ones for a massless scalar
in dS [50], yet the COT, MLT and our ansatz still apply and so this unique bispectrum
can indeed be generated when using the corrected mode functions for ζ.

In more detail, it was shown in [50] that in the slow-roll limit the ζ mode functions
contain an extra term relative to the usual ones for a massless scalar in dS which corrects
the ζ bulk-boundary propagator to

Kζ(k, η) ∼ (1− icLkη + c2
Lk

2η2/3)eicLkη , (5.50)

where we have omitted overall constant factors.12 Now, one can easily verify that this new
bulk-boundary propagator satisfies (2.40) and any contact diagrams that we derive using
this propagator satisfy the contact COT (2.41). One can also see that this propagator
will lead to wavefunction coefficients that satisfy the MLT. Indeed, the first derivative
of (5.50) vanishes at k = 0. Finally, wavefunction coefficients due to manifestly-local
interactions that are derived in the bulk formalism using this bulk-boundary propagator
still take the form we assume in this paper: the energy dependence corresponds to rational
functions, with only total-energy poles, with the additional possibility of log(−kT η0) terms
multiplied by polynomials. This can be easily seen from the fact that any integrand in the
bulk formalism that is a function of (5.50) and its derivatives, can also be written in terms
of the usual expression for K(k, η) and its derivatives. To capture the effects of the k2η2

correction, we would need to include terms with extra time derivatives which will in turn
result in wavefunction coefficients where the degree of the leading total-energy pole will
not equal the number of derivatives in the corresponding bulk interaction. Indeed, we have

Kζ(k, η) = K(k, η)− η

3
∂K(k, η)

∂η
. (5.51)

For our interests in this paper, the important point is that the interaction in (5.41)
still generates a logarithm in the wavefunction. Indeed, given that the relevant interaction
vertex has α = 3, terms coming from the second term on the r.h.s. of (5.51) will violate
2n∂η + n∂i ≤ 3 and so will not alter the coefficient of the log divergence coming from three
copies ofK(k, η). It follows that (4.107) does indeed arise as a ζ-correlator in solid inflation.

12We note that ζ and γ are not conserved in solid inflation which induces time dependence in both the
power spectra and bispectra of these modes. However, in the slow-roll limit this time dependence is small and
to capture it one needs to keep slow-roll corrections in the mode functions. Importantly for us, the shapes of
solid inflation bispectra are unaffected by this mild time dependence. We refer the reader to [50] for details.
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Figure 4. The shape of the unique parity odd, manifestly local B00+
3 .

5.3 Phenomenology of parity-odd interactions in solid inflation

In the EFToI, we showed above that the parity-odd correction to the graviton bispectrum
is small relative to the GR contribution since in our analysis we took the correction to
the quadratic action to be perturbative. Furthermore, the mixed scalar-scalar-graviton
parity-odd bispectrum that we found in section 4.6 does not arise in the EFToI. In solid
inflation, however, we can choose operators that do not affect the quadratic action and can
in principle give rise to large parity-odd bispectra: see (5.36)–(5.38) for gravitons (which do
also introduce three-point functions involving the curvature perturbation ζ) and (5.40) for
scalar-scalar-graviton (which is the only three-point function arising from that operator).
The reason we focus on these three-point functions is two-fold. On the one hand, if parity-
odd non-Gaussianities involving scalars are suppressed in some model of inflation beyond
the ones we discuss here, then graviton-graviton-graviton bispectra will be the leading
signal. On the other hand, in the generic case where non-Gaussianities involving scalars
are not suppressed (as is the case in EFToI and solid inflation), then the scalar-scalar-
graviton signal will be the leading one, as we show in section 5.4. In this short section, we
therefore study the phenomenology of the parity-odd, manifestly local graviton-graviton-
graviton and scalar-scalar-graviton bispectra in more detail by plotting and commenting
on the shapes of each possibility that we presented in sections 4.5 and 4.6.

Let us start with the unique scalar-scalar-graviton bispectrum, which is

(α = 3, p = 3) : B00+
3 = h3,3

1
e3

3

[23]2[31]2
[12]2k3

I2
3 . (5.52)

Taking k3 = k3ẑ without loss of generality, the bispectrum can be rewritten in terms of
the graviton polarisation tensor

e±(k3) = 1√
2


0 0 0
0 1 ±i
0 ±i −1

 , (5.53)
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as

B00h
3 = −2λhh3,3

1
e3

3
ehij(k3)k1

i k
2
jk3 = λh

h3,3

2
√

2e3
3k3

kT I1I2I3 , (5.54)

where λ± = ±1. To see the shape of this bispectrum, in figure 4 we plot B00+
3 k6

1, which
has a vanishing scaling dimension. The correlator vanishes in the folded limit and does not
peak in the squeezed limit.

Let us now move to the three parity-odd graviton bispectra. For the convenience of
the reader we recall that these are

α = 1, p = 1 : B+++
3 = g1,1SH+++

kT
(
k2
T − 2e2

)
e3

3
,

B++−
3 = g1,1SH++−

I3
(
k2
T − 2e2

)
e3

3
, (5.55)

α = 1, p = 2 : B+++
3 = g1,2SH+++

−3e3 + kT e2
e3

3
,

B++−
3 = g1,2SH++−

k1(k2
2 + k2

3) + k2(k2
1 + k2

3)− k3(k2
1 + k2

2)
e3

3
, (5.56)

α = 3, p = 3 : B+++
3 = g3,3SH+++

I1I2I3
e3

3
,

B++−
3 = g3,3SH++−

I1I2kT
e3

3
. (5.57)

Now, for each of these bispectra the polarisation factor is unique and is fixed by the
helicity transformations of the external spinors. In terms of polarisation tensors we have

SH++± = −e+
ij(k1)e+

jk(k2)e±ik(k3) , (5.58)

which we can express solely in terms of the energies k1, k2, k3. Using momentum conserva-
tion and SO(3) invariance, we can make each of the three external vectors lie in the (x, y)
plane with

k1 = k1(1, 0, 0), k2 = k2(cos θ, sin θ, 0), k3 = k3(cosϕ, sinϕ, 0), (5.59)

where

cos θ = k2
3 − k2

1 − k2
2

2k1k2
, cosϕ = k2

2 − k2
3 − k2

1
2k1k3

. (5.60)

The angles θ and ϕ are simply those formed by k1 with k2 and k3 respectively. With this

– 53 –



J
H
E
P
0
5
(
2
0
2
2
)
0
7
7

representation for ka we can write the polarisation tensors as

e±(k1) = 1√
2


0 0 0
0 1 ±i
0 ±i −1

 , (5.61)

e±(k2) = 1√
2


sin2 θ − sin θ cos θ ∓i sin θ

− sin θ cos θ cos2 θ ±i cos θ
∓i sin θ ±i cos θ −1

 , (5.62)

e±(k3) = 1√
2


sin2 ϕ − sinϕ cosϕ ∓i sinϕ

− sinϕ cosϕ cos2 ϕ ±i cosϕ
∓i sinϕ ±i cosϕ −1

 . (5.63)

It is then straightforward to see that

SH+++ = −k
3
T

(
8e3 − 4kT e2 + k3

T

)
16
√

2e2
3

, (5.64)

SH++− = −I
3
3
(
−8e3 − 4I3e

′
2 + I3

3
)

16
√

2e2
3

. (5.65)

Note that, perhaps surprisingly, these expressions are purely rational. Here we have defined
e′2 which is simply e2 with the sign of k3 flipped i.e. e′2 = k1k2 − (k1 + k2)k3.

To see the behaviour of these different shapes we plot B++±
3 k6

1 for each of the three cou-
plings. These combinations have vanishing scaling weight and can be written as functions
of the dimensionless parameters

x2 ≡
k2
k1
, x3 ≡

k3
k1
. (5.66)

The shapes can be found in figure 5. We see that both α = 1 parity-odd bispectra peak
in the squeezed limit for all helicities, but have an angular dependence which causes them
to vanish when all spatial momenta are parallel. More specifically, in the squeezed limit
k3 � k1, k2, all α = 1 bispectra are proportional to sin2 (](k1,k3)). By contrast, the α = 3
parity-odd bispectrum vanishes in the squeezed limit for all helicities, and is large in the
equilateral configuration.

5.4 On the detectability of graviton and scalar bispectra

In this subsection we discuss the signal-to-noise ratio S/N for general bispectra. We use this
analysis to argue that, since (S/N)2 scales with the power spectrum of the fields involved,
it is larger for bispectra that contain more scalar fields, all other things being equal.

So far we have seen that the three parity-odd graviton bispectra that we have boot-
strapped to all orders in derivatives can indeed arise in solid inflation. Since there cannot
be any parity-odd scalar bispectra, the graviton bispectra do not have any counterpart in
the purely scalar sector and are therefore unconstrained by current data. In solid inflation
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(a) The shape of B+++
3 for α = 1, p = 1. (b) The shape of B++−

3 for α = 1, p = 1.

(c) The shape of B+++
3 for α = 1, p = 2. (d) The shape of B++−

3 for α = 1, p = 2.

(e) The shape of B+++
3 for α = 3, p = 3. (f) The shape of B++−

3 for α = 3, p = 3.

Figure 5. Shapes of each of the three tree-level, contact parity-odd bispectra consistent with the
MLT.
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they can appear with a large coefficient and should therefore be considered an important
observational target for observations of the polarization of the Cosmic Microwave Back-
ground (CMB). It would be interesting search for these parity-odd graviton bispectra also
with gravitational wave interferometers. Since both ground and space based interferom-
eters probe scales that are very much shorter than cosmological scales, the possibility to
detect a primordial stochastic background of gravitational waves in the conceivable future
hinges on having a blue tilt in the tensor power spectrum. It is worth keeping in mind
that such a blue tilt is at odds with the assumption of scale invariance that we have used
extensively in this work.

The operators in (5.36)–(5.38) generate a parity-odd graviton bispectrum, but also
scalar-scalar-graviton and scalar-graviton-graviton bispectra. It is therefore interesting to
ask which of these signals can be seen first. To assess the theoretical detectability of a
bispectrum we look at the signal-to-noise ratio. For concreteness and convenience, we
assume that we can access the full three-dimensional distribution of the fields within a
volume V and up to a resolution of order k−1

max. Let us consider the following action for
three massless fields ϕa with a = 1, 2, 3, which can be scalars or gravitons,

S =
∫
d3xdη a4

[ 3∑
a=1

∆2
a

2 (∂µφa)2 + ga−p∂pφ1φ2φ3

]
, (5.67)

where g is a coupling constant, ∆a is an arbitrary normalization, and we have schematically
indicated that the interaction has p derivatives and therefore comes with the appropriate
power of the scale factor required by scale invariance. The indices of the spatial derivatives
can be contracted with the indices of the gravitons, with δij or with the anti-symmetric
Levi-Civita symbol εijk, so that this discussion captures parity-odd interactions as well. For
example, for the graviton γij we would have ∆γ = MP/2 and for curvature perturbations
∆ζ = MP

√
2ε� ∆γ . The power spectra are found to be

〈φaφa〉′ =
H2

2∆2
a

1
k3 ≡

Aa
k3 , (5.68)

where the prime indicates that we are dropping the factor (2π)3δ3(k). The bispectrum in-
duced by the interactions in (5.67) in the in-in formalism takes the following schematic form

〈φ1φ2φ3〉′ = B123 =
∫
dη〈[Hint, φ1φ2φ3]〉 (5.69)

∼ gHp−4
( 3∏
a=1

Aa
k3
a

)
R3(k1, k2, k3) , (5.70)

where R3 is a rational function of the momenta that scales as k3, up to possible logarithmic
terms. For parity-even interactions we expect R3 ∼ Polyp+3/k

p
T , while for parity-odd

interactions we have proven that no kT pole can arise and so R3 ∼ Poly3. Notice that the
bispectrum therefore scales as the power spectrum of each of the fields. Then, we define
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the dimensionless signal-to-noise ratio S/N as (see e.g. [75])(
S

N

)2
= V 3

∫
k1k2k3

〈φ1(k1)φ2(k2)φ3(k3)〉〈φ1(k1)φ2(k2)φ3(k3)〉
〈φ1(k1)φ2(k2)φ3(k3)φ1(k1)φ2(k2)φ3(k3)〉 (5.71)

= V 3
∫

k1k2k3
(2π)3δ

( 3∑
a=1

ka

)
B123(k1, k2, k3)2 × (2π)3δ(0)∏3

a=1(2π)3δ(0)Pa
, (5.72)

where we estimated the denominator, i.e. the noise, in the Gaussian theory since we have
in mind non-Gaussianities that are perturbatively close to the Gaussian theory. For a
finite-volume survey we substitute (2π)3δ(0) = V and use (5.69) to find

(
S

N

)2
= V

∫
k1k2

(
gHp−4R3

∏3
a=1Aa

)2

e3
3
∏3
a=1Aa

(5.73)

= g2H2p−8
( 3∏
a=1

Aa

) (
V k3

max

)
, (5.74)

where we estimated the momentum integrals with dimensional analysis.13 Since we can
write V ∼ k−3

min and the number of independent data points is Ndata ∼ (kmax/kmin)3, the
last factor confirms the intuition that our ability to detect a signal scales as S/N ∼ N1/2

data.
From the above expression we deduce that if two interactions have the same coupling
constant g, then the interaction involving fields with the largest power spectrum has the
most signal-to-noise ratio and therefore should be the main observational target.

If we apply this result to the parity-odd bispectra generated in solid inflation by the
operators (5.36)–(5.38) we conclude that the scalar-scalar-graviton bispectrum is expected to
have an S/N larger than the graviton bispectrum by a factor of ε−1, which is the inverse of
the small tensor-to-scalar ratio. (See [76] for a detailed analysis of efficient CMB estimators
of this signal.) To summarize, we briefly discuss some possible scenarios in which the
manifestly local parity-odd bispectra that we computed in this work can be the leading
observational signals:

• The manifestly local, parity-odd scalar-scalar-graviton bispectrum that we computed
in (4.106) and which is generated in solid inflation by the interaction in (5.40) does
not have a purely scalar counterpart because of symmetry, and therefore can be
the leading observational signal in solid inflation or in other non-minimal symmetry
breaking patterns.

• If one has access only to the gravitational sector, as it is the case for example if one
considers only interferometric and pulsar observations of gravitational waves, then
the parity-odd graviton bispectra in (4.96)–(4.103) can be the leading observational
signals in solid inflation. A detection of these signals would rule out the effective field
theory of inflation.

13Here we focus our attention on the parametric scaling of S/N . The reader should be mindful that this
discussion neglects the fact that different bispectra might have very different shapes and so momentum
integrals might give rise to large numerical factors that are not captured by dimensional analysis. This is
not the case for the parity-odd bispectra we are considering in this work.
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• A detection of the parity odd graviton bispectra in (4.96)–(4.103) that is not accom-
panied by correlated parity-odd scalar-scalar-graviton and scalar-graviton-graviton
bispectra with a much higher signal-to-noise ratio would rule out both the effective
field theory of inflation and solid inflation. It would be interesting to investigate what
symmetry breaking pattern could be consistent with this possibility.

5.5 Perturbativity, naturalness and strong coupling

Since we have claimed at the beginning of this paper that the bispectra we study, in
particular the parity-odd bispectra of section 5.3 can be large, we need to verify how large
they can be without compromising the validity of our analysis. One might worry that
loop corrections could spoil our conclusions. Such corrections can come in a number of
forms. Loops could introduce brand new shapes coming from performing new bulk time
integrals coming from loop diagrams. These will introduce more complicated shapes that
we have not considered here, but these will always be suppressed relative to the ones we
have computed as long as we work below the strong coupling scale which we estimate below.
Loops could also alter the quadratic action which we have assumed takes on the GR form.
Such corrections could be in the form of operators with three or more derivatives that
introduce new diagrams that contribute to the bispectrum. We will show below that these
corrections are always small if we work below the strong coupling scale. Corrections to the
quadratic action could also arise in the form of a large mass correction to the graviton. In
Solid Inflation, where our large parity-odd bispectra can arise, the graviton is massive but
the mass is very small and in this section we pay special attention to the issue of large
mass corrections within the context of naturalness. A reader not interested in the details
of the calculation may skip to the end of this section, where we summarize our findings.

We can write a general Lagrangian up to cubic order as

L[γc] = LGR[γc] +
∑
i

f (i)
m

(Hη)m−4

Λm−2 ∂mγ2
c +

∑
i

g(i)
n

(Hη)n−4

MplΛn−2∂
nγ3

c +O
(
γ4
c

)
, (5.75)

where γc := Mplγ is the canonically normalized field, ∂nγmc is a shorthand notation for an
n−derivative operator and f (i)

n and g(i)
n are the dimensionless coupling constants. We have

included all powers of η that are required by scale invariance. The parity-odd interactions
that contribute to bispectra have n = 1, 2 and 3, and their dimensionless coupling constants
are denoted by g1, g2, g3, respectively. At tree-level these operators do not correct the
quadratic action which allows us to conclude that they can yield a large contribution to
the graviton non-Gaussianity relative to the GR contribution if

(L3)new � (L3)GR ∼
H

MP
L2 . (5.76)

In the above, L2 is simply the GR quadratic Lagrangian, as we have assumed throughout
the paper. Ideally, we want a stronger notion of a large non-Gaussianity, namely that the
signal-to-noise (S-to-N) in the 3−point function is close to that of the power spectrum.
This would mean

fNL γ . O(1). (5.77)
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Crucially the non-Gaussian contributions need to be smaller than the vacuum one to re-
main within a perturbative analysis. These two conditions entail, respectively, (at horizon
crossing)

gn
Hn−2

Λn−2 � 1, (5.78)

gn
Hn−2

Λn−2 .
Mpl
H

, (5.79)

and these would need to be satisfied for H � Mpl again so that the vacuum contribution
dominates over the GR cubic contribution. We see that it is possible to have large non-
Gaussianities relative to GR, while remaining perturbative. However, we must remember
that the tree-level bispectra derived in this work are good approximations only if the loop
contributions to the bispectra are suppressed, while the GR quadratic Lagrangian assumed
throughout is only natural if loop corrections to it are insignificant. Let us therefore
estimate (i) the size of quantum corrections to the quadratic Lagrangian and (ii) the size
of loop contributions to the bispectra.

We start by estimating the UV cutoff scale Λc. This can be done by deriving the
scale Λ∗ at which the theory becomes strongly coupled, since at that energy new physics
is expected to be important [77]. This corresponds to a limiting scenario where loop
corrections are the largest, although it is still possible that the cutoff lies much below the
strong coupling scale, which would correspond to a weakly coupled UV completion which
we will comment on later. Now consider a general cubic operator with n derivatives. A
rough estimate of the strong coupling scale can be derived by examining the breakdown of
perturbative unitarity in flat-space i.e. by asking when the γγ → γγ scattering amplitude
is of order 1. We work in flat space as this is a good approximation for energy scales well
above the Hubble scale and indeed we want the theory to be valid in such a regime. A
back-of-the-envelope estimate in the flat space limit yields

A4 ∼ g2
n

En

MplΛn−2
1
E2

En

MplΛn−2 =
(
gn

En−1

MplΛn−2

)2

, (5.80)

implying that the strong coupling scale Λ∗ associated to an n−derivative operator is

Λ∗ ∼
( 1
gn
MplΛn−2

) 1
n−1

. (5.81)

(For n = 1, we take Λ∗ ∼ Mpl, since we expect new physics to be relevant at Mpl, if not
earlier.) For the EFT to be useful, we should require that it is valid at least up to Hubble
scale, so that Λ∗ > H. Thanks to the presence of the Mpl factor, this is consistent with
the above estimate of Λ∗, as well as with (5.78).

Let’s now estimate the size of the loop corrections to the quadratic Lagrangian. First
we focus our attention on a particular n-derivative operator and cut off the loop momentum
at the relevant Λ∗ given above. In the absence of a symmetry that would protect a small
value of a given coupling, the radiative correction to the coefficient of a (∂aγc)2 operator
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due to a loop with two n−derivative vertices is of the order

δL(∂aγc)2 ∼
1

MplΛn−2
1

MplΛn−2

∫ Λ∗
d4pg2

n

pn−apn−a

p4 ∼ g2
n

Λ2n−2a
∗

M2
plΛ2n−4 ∼ Λ2−2a

∗ . (5.82)

The ratio of the loop contribution (L2)new to the GR contribution at E ∼ H is of the order

(L2)new
(L2)GR

∼
(Λ∗
H

)2−2a
. (5.83)

Now for a > 1 this is a small contribution since we take Λ∗ > H. For a = 1 we would have
a correction to the two derivative GR action but such corrections are harmless since we can
always do field redefinitions that bring the quadratic action into the canonical form [42].
However, we see that the mass term (a = 0) could receive a large quantum correction. An
important exception is for n = 3 where we have a shift symmetry. In this case a small
graviton mass is protected by the shift symmetry of the interaction (4.104). For the other
two operators (4.100)–(4.101) it looks like a large mass could be generated, but before
jumping to such a conclusion one would need to perform a fully fledged computation to
check if once all polarisation sums are included such a correction is still non-zero and large.
We leave such an analysis for future work.

In the above we have assumed that there is only one cubic operator which not only
generates radiative corrections, but also defines the cutoff scale. Suppose, however, that
we have multiple cubic operators O1, . . . ,Ok. If the gn couplings do not differ by too
many orders of magnitude, then the cutoff scale Λc is the one associated to the highest-
dimension operator and this can alter our conclusions about large corrections to the mass.
In the case of our three parity-odd interactions (4.100)–(4.101), (4.104) the lowest cutoff is
Λ∗ =

√
MPΛ
g3

. The radiative correction to the coefficient at (∂aγ)2 due to a loop with two
n−derivative vertices is then of the order

δL(∂aγc)2 ∼
1

MplΛn−2
1

MplΛn−2

∫ Λ∗
d4pg2

n

pn−apn−a

p4 ∼ g2
n

Λ2n−2a
∗

M2
plΛ2n−4 ∼

g2
n

gn−a3
Mn−a−2

pl Λ4−n−a.

(5.84)
Comparing this with the GR contribution at E ∼ H, we have

(L2)new
(L2)GR

∼ g2
n

gn−a3

(
H2

MPΛ

)a−1 ( Λ
MP

)3−n
. (5.85)

For a > 1 the corrections are small. For a = 0, only n = 1, 2 contribute due to the shift
symmetry for n = 3. We have

n = 1 : (L2)m2

(L2)GR
∼ g2

1
g3

Λ3

MPH2 , n = 2 : (L2)m2

(L2)GR
∼ g2

2
g2

3

Λ2

H2 . (5.86)

We see that the g1 could dominate the GR contribution (fNL � 1, but fNL � MP/H)
while keeping δm2 small. This applies as long as the cutoff scale is dictated by the n = 3
operator which, as we have shown before, could be very large (fNL ∼MP/H) since its loops
do not correct the mass. On the other hand, we need a hierarchy g3 � g2

Λ
H if the radiative
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corrections to m2 from the n = 2 parity-odd operator are supposed to be small. In this
case it is difficult to keep non-Gaussianity from g2 larger than the GR non-Gaussianity,
while keeping loop corrections under control.

Let us now study loop contributions to the parity-odd tree-level shapes we have com-
puted in this paper. We are interested mostly in the regime where the energy in the loop is
large (close to Λ∗), so the loop is effectively deep inside the horizon. We can therefore again
work in flat-space and estimate the size of the loop corrections to the three-particle ampli-
tude and compare it with the tree-level result. We should be careful, however, to only put
derivatives on the external legs in such a way that we reproduce the structure of one of our
parity-odd operators, since otherwise the loop diagram will not contribute to the parity-odd
bispectrum as we have shown in section 4.5. We can therefore put m = 1, 2 or 3 derivatives
on the external legs. An estimate of such a loop diagram proceeds similarly as before. For
loop diagrams with three instances of the same n-derivative parity-odd operator, assuming
the cutoff Λ∗ =

(
1
gn
MPΛn−2

)1/(n−1)
is dictated by that operator, we find

A1−loop
3
Atree

3
∼ g

m−1
n−1
n g−1

m

(
MP
Λ

)n−m
n−1

. (5.87)

• If n = 3, then shift symmetry must be preserved at any loop order, which means that
loop diagrams cannot generate the shapes (4.96)–(4.99), but only the three-derivative
shape. Thus, it suffices to consider m = 3. It seems that the ratio (5.87) is equal to 1,
although in our estimate we neglected combinatorial factors as well as factors of (2π).
In any case, identifying the cutoff with the perturbative unitarity breakdown scale is
supposed to only give us an order-of-magnitude estimate, and it is not unnatural to
have a slightly lower cutoff which would further suppress loops which scale as Λ4

c .

• If n = 2, then loop contributions are small for m = 3, again O(1) for m = 2, while
they are large for m = 1. However, if the n = 3 interaction is also present and
dominates the signal, then the cutoff is lowered from Mpl/g2 to

√
MplΛ/g3, and all

the loop contributions from n = 2 are small.

• For n = 1, high energies are suppressed and we don’t observe any UV divergences
in the loop constructed out of three copies of the n = 1 operator. Instead, we ought
to consider the loop constructed out of two GR vertices and one n = 1 operator.
Regardless of the structure of derivatives on the external legs, this loop diagram is
suppressed, relative to tree level, by M−2

pl , but has at most two factors of Λ∗ since at
most four derivatives can be put on the internal legs. Therefore, loop contributions
due to n = 1 are small.

Let us conclude this section by summarising our findings:

• If we consider the parity-odd operators individually, then g3 (and only g3) can be
so large that the (4.103) bispectrum has a S-to-N ratio comparable to that of the
power spectrum, without the need for fine-tuning. This is because of shift symmetry
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of (4.104), which protects a small mass from receiving quantum corrections. Mean-
while, the other two parity-odd operators do contribute to the mass via radiative
corrections, and natural values of g1 and g2 must be very small, meaning that the
associated signals are weaker than the GR bispectra.

• By identifying the cutoff scale of the theory with the scale at which the three-
derivative parity-odd interactions given by (4.104) become strongly coupled, Λc =√
MPΛ/g3, we can consider a more general case in which we have multiple parity-

odd operators. In this case, non-Gaussianities generated by (4.100) may be larger
than GR non-Gaussianities (but with S-to-N smaller than in the power spectrum)
while g1 remains natural. However, the coefficient of (4.101) is bounded by g2 � g3

H
Λ ,

implying that the region of parameter space where (4.98)–(4.99) are larger than GR
is very limited.

• Tree level calculations are a good approximation for the three-derivative parity-odd
interaction: loop contributions to the bispectrum can be suppressed without the need
for fine-tuning. Overall, the g3 operator is best placed to give large non-Gaussianities,
both in the sense of being large compared to GR but also with a sizeable S-to-N, while
keeping loop corrections under control.

6 Summary and future directions

In this work we have, for the first time, bootstrapped tree-level inflationary graviton bispec-
tra to all orders in derivatives. Under a minimal set of assumptions, we have detailed how
one can write down these bispectra without working with a concrete inflationary model.
We used spatial translations, spatial rotations and scale invariance to write down a gen-
eral ansatz for the corresponding wavefunction of the universe. Assuming that the mode
functions are the usual ones of a massless graviton with Bunch-Davies initial conditions,
we used locality and unitarity to constrain the wavefunction coefficients. We considered all
possible tree-level contributions, including IR-divergences at future infinity, η0 → 0. We
imposed locality by demanding that the wavefunction coefficients satisfy the Manifestly
Local Test (MLT) introduced in [17] which is a simple differential constraint that all n-
point functions of massless gravitons should satisfy. Solutions to the MLT replace solutions
to the time integrals that one is required to calculate in the bulk formalism. The beauty of
the MLT is that it allows us to compute non-Gaussian shapes without having to consider
the unobservable bulk time evolution. We imposed bulk unitarity using the Cosmologi-
cal Optical Theorem (COT) [14]. We presented our results succinctly in section 4 using
the cosmological spinor helicity formalism of [30], and we computed all bispectra for both
parity-even and parity-odd interactions.

In section 3, we showed which part of the wavefunction contributes to the correlator,
for contact diagrams. We concentrated on contact diagrams since our focus in this
paper is on tree-level bispectra but many of our results in that section hold for any
tree-level n-point function. We showed that only the part of the wavefuction that breaks
the {k} → {−k} symmetry, where {k} are the external energies, can contribute to the
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correlator. This is a direct consequence of bulk unitarity and can be easily derived from
the COT for contact diagrams. For graviton bispectra, this tells us that for parity-even
interactions both the rational part and the log part of the wavefunction can appear in
the correlator, whereas for parity-odd interactions the only allowed contributions are
regular at both η0 → 0 and kT → 0. Indeed, unitarity in the form of the COT tells us
that the log must always appear in the combination log(−kT η0) + iπ

2 and for parity-odd
interactions it is the iπ

2 piece that contributes to the correlator. This allowed us to show
that, to all orders in derivatives, for parity-odd graviton self-interactions there are only
three independent couplings that contribute to the bispectrum. This is not evident when
using concrete Lagrangians and the in-in formalism and therefore offers a neat example of
where the bootstrap approach can be very advantageous.

In section 5, we showed that our parity-breaking graviton bispectra appear in both
the Effective Field Theory of Inflation (EFToI), and in solid inflation. For the former, a
correction to the two-point function is forced by the non-linearly realized symmetries. By
accounting for this correction, we computed the full parity-odd contribution to the graviton
bispectrum. The associated non-Gaussianity is too small to be detected observationally in
any conceivable future. Conversely, for solid inflation there is no symmetry that forces a
correction to the two-point function, so the three parity-odd bispectra we have computed
can indeed arise with arbitrary coefficients. Given that such operators do not contribute to
the bispectrum of curvature perturbations, which cannot violate parity, there are no strong
observational bounds on the size of these non-Gaussianities. We plotted the associated
shapes in figure 5.

With this catalogue of graviton non-Gaussianities at hand, we outline here a few di-
rections for future work

• To derive our catalogue of graviton bispectra we did not assume any particular sym-
metry breaking pattern for the inflationary dynamics. Indeed, we have captured all
scale invariant contributions, assuming the usual massless mode functions. It would
be very interesting to develop further criteria to identify those non-Gaussianites that
are consistent only in the presence of additional degrees of freedom. For example,
we expect that only some couplings can appear in the EFToI and in future work
we plan to use soft theorems/consistency relations to extract this subset. It would
also be very interesting to take these three-point building blocks and to glue them
together to form four-point functions. By demanding that the full four-point func-
tion satisfies some consistency constraints, we will also be able to pick out interesting
subsets of our full catalogue. This approach would be very similar to that used to
constrain cubic interactions in flat space with S-matrix consistency conditions [1, 70],
and in [13] assuming invariance under de Sitter boosts. Deriving this full catalogue
is the first step towards distinguishing between different symmetry breaking patterns
for inflation directly at the level of the observable. This will complement the recent
Lagrangian analysis of [45] and ultimately lead to a more efficient way of “simplify-
ing” inflationary predictions [43]. For example, we expect there to be only a single
three-derivative correction to the graviton bispectrum in the EFToI [44], and we
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plan to develop bootstrap techniques that enables us to efficiently extract this result
without having to use the Lagrangian or bulk time evolution.

• Given the small number of possible parity-odd graviton bispectra in solid inflation, it
would be interesting to study the associated bulk operators. In particular one would
like to know when those same operators give also rise to interactions between the
graviton and curvature perturbations. It is also very important to study the quantum
stability of these operators and possible perturbative unitarity bounds on their size.

• Finally, we notice that ref. [78] showed that for manifestly-local interactions, all
parity-odd scalar correlation functions vanish at tree level. It would be interesting
to see if their result can be generalized to spinning particles.

Our understanding of physical observables in nature becomes increasingly more opaque
as we approach the real world. In anti-de Space (AdS) we have the gauge-gravity duality
that provides us with a good understanding of the structure of boundary observables. In
flat-space, the object of interest is the S-matrix. The S-matrix bootstrap has lead to a good
understanding of the tree-level properties of amplitudes, with progress now being made on
the analytic structure at loop level. Finally, we have de Sitter space, which appears to
describe the early and late phases of our universe very well. We are only now starting to
understand the general structure of cosmological correlators in de Sitter, both at tree and
loop level. We hope that our results will contribute to broadening this understanding and
to provide theoretical guidance on the physical modeling of inflation.
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A From polarisations to spinors

In this appendix we construct all possible polarisation factors for three gravitons and ex-
plain how one can convert these into spinor expressions using the spinor helicity formalism.
We consider parity-even and parity-odd structures separately. Throughout we suppress the
momentum dependence of the polarisation tensors. Note that throughout we only contract
momenta with polarisation tensors as any pair of contracted momenta can be written in
terms of the energies (norms) which we include in the trimmed part of the wavefunction
cf. (2.23). Indeed, we have

ka · kb = 1
2(k2

c − k2
a − k2

b ) , a 6= b 6= c . (A.1)
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When we convert the following expressions into spinors, their symmetry properties will
become manifest.

Parity-even tensor structures. For parity-even structures we need to contract spatial
momenta with

eh1
i1i2

eh2
i3i4

eh3
i5i6

, (A.2)

using δij . We work order by order in the total number of derivatives α.

α = 0. In this case there is clearly only a single structure which is given by

eh1
ij e

h2
jke

h3
ki . (A.3)

This structure is fully symmetric and when converted to spinors this contraction simply
yields

SH+++ , (A.4)

for the all-plus configuration.

α = 2. In this case we have two possibilities. For the first we contract the two mo-
menta with the same polarisation tensor and for the second we contract each momentum
with different polarisations. Using momentum conservation and the transversality of the
polarisation tensors, there is then a single option for the labels of the momenta, up to
permutations. We have

eh1
lme

h2
lme

h3
ij k

i
1k
j
2 and eh1

lme
h2
il e

h3
jmk

i
1k
j
1 . (A.5)

These two structures appear in GR with tuned coefficients. The first structure is symmetric
in labels 1 and 2 while the second is symmetric in 2 and 3. If we sum over permutations
and convert to spinors then we have

SH+++ × Poly2 = SH+++
(
a0e2 + a2k

2
T

)
. (A.6)

α = 4. In this case we have a single option. All momenta need to be contracted with po-
larisation tensors and then using the fact that the polarisations are traceless yields a single
possibility. Again, momentum conservation and transversality yields a single possibility
for the labels, up to permutations. We have

eh1
lk e

h2
mke

h3
ij k

i
1k
j
2k
l
3k
m
3 . (A.7)

This structure is symmetric in 2 and 3 and when we sum over permutations and convert
to spinors we have

SH+++ × Poly4 = SH+++
(
k4
T − k2

T e2 + 8kT e3
)
. (A.8)
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α = 6. Finally, in this case there is a single option with all polarisation tensor indices
contracted with momenta. We have

eh1
il e

h2
jme

h3
knk

i
2k
l
3k
j
3k
m
1 k

k
1k

n
2 . (A.9)

This structure is fully symmetric and yields

SH+++ × Poly6 = SH+++
(
k6
T − 8k4

T e2 + 16k3
T e3 + 16k2

T e
2
2 − 64kT e2e3 + 64e2

3

)
. (A.10)

when we convert to spinors.

Parity-odd tensor structures. We now turn to parity-odd structures where we need
to contract momenta with

εi1i2i3e
h1
i4i5

eh2
i6i7

eh3
i8i9

. (A.11)

As above, in all cases there is a single option for the labels, up to permutations.

α = 1. In this case there are two possible structures with the single momentum either
contracted with a polarisation tensor or with the epsilon tensor. We have

εijke
h1
il e

h2
lme

h3
kmk

j
3 and εijke

h1
il e

h2
jme

h3
kl k

m
3 . (A.12)

The first of these is symmetric under the exchange 1 ↔ 2, while the second is symmetric
under 1 ↔ 3. When symmetrized over all possible permutations of the three energies,
these two contractions coincide up to a minus sign. This fact can be checked using explicit
expressions for the polarization tensors, but it is not at all obvious. Conversely, it is easy
to see in the spinor helicity formalism where both contractions must take the form

SH+++ × Poly1 , (A.13)

where the only permutation-invariant linear symmetric polynomial is Poly1 = kT .

α = 3. In this case we have six possibilities and we classify them according to how many
momenta are contracted with the epsilon tensor. First consider the case where none of the
momenta are contracted with the epsilon tensor. Given the properties of the polarisation
tensors, we then have a single possibility given by

εijke
h1
il e

h2
jme

h3
knk

l
3k
m
1 k

n
2 . (A.14)

Now when one of the momenta is contracted with the epsilon tensor we have two possibilities
since the remaining two momenta can be contracted with the same polarisation tensor or
with two different ones. We have

εijke
h1
nl e

h2
jme

h3
kmk

n
2 k

i
3k
l
3 , εijke

h1
jl e

h2
nme

h3
knk

m
1 k

l
2k
i
1 and εijke

h1
jl e

h2
nme

h3
knk

m
1 k

l
2k
i
3 . (A.15)

Finally, we can contract two momenta with the epsilon tensor. There are then two possi-
bilities: the third momentum must be contracted with a polarisation tensor, and the other
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index of this polarisation can be contracted with the epsilon tensor or another polarisation.
We have

εijke
h1
nl e

h2
nme

h3
il k

m
1 k

j
2k
k
3 and εijke

h1
ime

h2
ln e

h3
ln k

j
1k
k
2k

m
3 . (A.16)

Upon symmetrization over all possible permutations of the three energies, only three of
the above six contractions are linearly independent (for example (A.14) and the first two
in (A.15)). To see this with explicit polarization tensors requires a laborious calculation.
Conversely, this can be easily seen using spinor helicity variables, where the most generic
α = 3 (symmetrized) contraction must take the form

SH+++ × Poly3 = SH+++
(
a0e3 + a1kT e2 + a3k

3
T

)
, (A.17)

which has indeed three free coefficients a0,1,3.

α = 5. In this case we have a total of three possibilities. One of them corresponds to
having only one momentum contracted with the epsilon tensor, while for the others two of
the momenta are contracted with the epsilon tensor. We have

εijke
h1
mqe

h2
nqe

h3
lk k

i
1k
j
2k
m
2 k

n
1 k

l
1 , εijke

h1
mne

h2
lq e

h3
qkk

i
1k
j
2k
m
2 k

n
2 k

l
1 , and εijke

h1
mne

h2
qj e

h3
lk k

i
2k
m
3 k

q
1k
l
1k
n
3 .

(A.18)
When we sum over permutations and convert to spinors we have only two structures:

SH+++Poly5 = a SH+++(−3k5
T + 20k3

T e2 − 24k2
T e3 − 32kT e2

2 + 64e2e3) (A.19)
+ b SH+++(k5

T − 8k3
T e2 + 8k2

T e3 + 16kT e2
2 − 32e2e3) . (A.20)

α = 7. Finally, in this last case we have a single possibility given by

εijke
h1
mne

h2
qpe

h3
lk k

i
1k
j
2k
m
2 k

n
2 k

q
1k
p
1k

l
1 , (A.21)

and once we sum over permutations and convert to spinors we have

SH+++Poly7 = SH+++(k7
T − 8k5

T e2 + 16k4
T e3 + 16k3

T e
2
2 − 64k2

T e2e3 + 16kT e2
3) . (A.22)

Note that in the above we have used the fact that three momenta cannot be contracted
with the epsilon tensor due to momentum conservation.

Converting to spinors. Now that we have all of the possible polarisation factors, we can
convert them into spinor expressions using the spinor helicity formalism. As we explained
in detail in section 4, given the form of the + + + polarisation factor, one can easily
construct the ones for the other helicity configurations. The following expressions hold for
three-point kinematics only. In the parity-even case the only expressions we need are

ea+ · eb+ = − [ab]2
kakb

, (A.23a)

pa · eb+ = (ab)[ab]√
2kb

, (A.23b)
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where we have used the relations presented in section 2.5. For parity-odd structures we
use the general expression

εijkV
a
i V

b
j V

c
k = i

4(〈ab〉[ab](cc) + 〈ab〉[ca](cb) + 〈bc〉[ab](ac)) , (A.24)

where each SO(3) vector contains the spatial parts of a null four-vector Vµ which is con-
verted to spinors using the standard expressions

V µ = 1
2(σ̄µ)α̇αVαα̇, Vαα̇ = V µ(σµ)αα̇, Vαα̇ = λαλ̃α̇ . (A.25)

The expressions that we need are then

εijk e
a+
i eb+j ec+k = −i

√
2[ab][bc][ca]

kakbkc
, (A.26a)

εijk p
a
i e
a+
j eb+k = −i [ab]

2

kb
, (A.26b)

εijk p
a
i p
b
je
a+
k = − i√

2
[ab](ba) . (A.26c)

Note that by momentum conservation, we only need to consider cases where one of the
momenta has the same label as one of the polarisation tensors. We used these relations to
derive the list of possible hα(k1, k2, k3) in (4.6) to (4.13). Notice that for some α there are
fewer choices for hα compared to the polarisation structures above.
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