of the
ROYAL ASTRONOMICAL SOCIETY i

MNRAS 477, 24062418 (2018) doi:10.1093/mnras/sty596
Advance Access publication 2018 March 17

A local model of warped magnetized accretion discs

J. B. Paris* and G. I. Ogilvie

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge
CB3 OWA, UK

Accepted 2018 February 27. Received 2018 February 26; in original form 2017 March 10

ABSTRACT

We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped
astrophysical disc using a warped shearing box formalism. A perturbation expansion of these
equations to first order in the warping amplitude leads to a linear theory for the internal
local structure of magnetized warped discs in the absence of magnetorotational instability
(MRI) turbulence. In the special case of an external magnetic field oriented normal to the
disc surface, these equations are solved semi-analytically via a spectral method. The relatively
rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished
by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic
oscillations, detuning the natural frequency from the orbital frequency and thereby removing
the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In
contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes
which may be resonantly forced by the warped geometry at critical values of the orbital shear
rate ¢ and magnetic field strength. At these critical points large internal torques are generated
and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence,

these results are of greatest applicability to strongly magnetized discs.
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1 INTRODUCTION

Warped astrophysical discs are discs in which the orientation of the
orbital plane is dependent on the radius. These warps may be pro-
duced by a wide variety of sources, such as Lense—Thirring torques
(Bardeen & Petterson 1975) from a central misaligned spinning
black hole or the torques due to a misaligned companion object
in a binary star system (Terquem & Papaloizou 2000). Theoretical
considerations and observations revealing the existence of warped
discs in several systems, such as the X-ray binary Her X-1 and the
galactic nucleus of NGC 4258 (M106) (Miyoshi et al. 1995), have
historically motivated the study of warped accretion disc dynamics.

Early theoretical studies (Bardeen & Petterson 1975; Hatchett,
Begelman & Sarazin 1981) found evolutionary equations for the
shape of a warped disc and suggested that the warp would dif-
fuse on a viscous time-scale inversely proportional to o, where «
is the Shakura—Sunyaev viscosity parameter. These models were
challenged by Papaloizou & Pringle (1983) who determined that
the prior models failed to appropriately recognize the importance
of internal flows within the disc and consequently did not conserve
angular momentum.

Papaloizou & Lin (1995) and earlier works showed that warps in
inviscid Keplerian discs propagate as bending waves at a fraction
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of the sound speed. The fully non-linear theory for the diffusive
regime in Keplerian discs and for the slower bending waves in non-
Keplerian discs was derived by Ogilvie (1999). In that work it was
shown that warped hydrodynamic discs exhibit resonant behaviour
when the disc is Keplerian and the warp is small.

More recently, Ogilvie & Latter (2013a) have shown that the
non-linear hydrodynamic theory of Ogilvie (1999) can be derived
by separating the global and local aspects of a warped thin disc.
The global evolution of the mass distribution and the shape of the
disc can be deduced from the (vectorial) conservation of angular
momentum, provided that the internal torque is known. The internal
torque can be calculated from time-averaged quantities in a local
model, which is constructed around a reference point that follows
a circular orbit through a warped disc and experiences a geometry
that oscillates at the orbital frequency, thereby generalizing the well-
known shearing sheet or box. The simplest solutions in the warped
shearing box are laminar internal flows that oscillate at the orbital
frequency; these are driven by a radial pressure gradient that arises
from the warped geometry and the vertical stratification of the disc.
Owing to the coincidence of the orbital and epicyclic frequency in a
Keplerian disc, this forcing may result in fast internal flows for even
comparatively small warps. Such flows generate correspondingly
large internal torques, leading to the rapid propagation of the warp.

There are many situations in which these hydrodynamic mod-
els are not valid. Astrophysical discs are often threaded by large
or small-scale magnetic fields thought to be important in the
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formation of jet outflows (Blandford & Payne 1982) and the trans-
port of angular momentum via the magnetorotational instability
(MRI; Balbus & Hawley 1991). These magnetized discs may be
created, for example, by dragging in significant amounts of mag-
netic flux during disc formation as is thought to be the case for
protostellar discs (Lewis & Bate 2017). It is therefore likely that
there exist many disc systems in which both large-scale magnetic
fields and the warped geometry will have important effects on disc
dynamics. Despite this, the study of warped discs and the study
of magnetized discs have generally been done in relative isolation.
With a few notable exceptions, comparatively little attention has
been given to the complex interplay between these two aspects of
accretion disc physics.

From a computational perspective, it has been difficult to re-
solve warp evolution in large-scale magnetohydrodynamic (MHD)
simulations. This difficulty lies in the vast separation between the
time-scale of MHD turbulence, which requires a time-step very
short relative to the orbital period, and the warp evolution time-
scale which is usually far longer than the orbital period. However, a
limited body of work on warped magnetized discs does exist. Frag-
ile et al. (2007) performed one of the first 3D MHD simulations of
a relatively thick tilted disc around a rotating black hole. The radial
extent of the simulation was unfortunately not large enough to cap-
ture significant disc warping. The simulations of tilted discs around
stellar objects of Lovelace & Romanova (2014) and Sheikhnezami
& Fendt (2015) on the other hand were concerned primarily with
Rossby wave trapping and jet launching respectively, providing rel-
atively little insight on the warp evolution process.

The global 3D MHD simulations of a warped disc recently per-
formed by Sorathia, Krolik & Hawley (2013b) were among the first
to resolve shape evolution in a magnetized accretion disc. In that
work it was argued that neither the bending wave nor the diffusion
models of warp propagation were adequate to properly describe the
observed warp propagation. Qualitative differences between the hy-
drodynamic (Sorathia, Krolik & Hawley (2013a) and MHD warped
disc simulations (most notably a distinctively sharper warp profile
in the hydrodynamic case) were also observed. Although the depar-
ture from standard hydrodynamic warped disc theory was partially
explained through non-linear damping effects, the magnetohydro-
dynamic aspect was clearly recognized and arguments involving
the MRI-driven background turbulence and anisotropic viscosities
were presented to rationalize the observed warp propagation. These
results raise questions about the applicability of certain aspects of
hydrodynamic warped disc theory (especially the neat separation
of discs into ‘diffusive’ or ‘bending wave’ regimes) to magnetized
discs. A contrary view has been presented by Nealon et al. (2016),
who found that the results of a similar MHD simulation by Krolik
& Hawley (2015) — which does however begin with a weaker mean
magnetic field — could be quite accurately reproduced using a hy-
drodynamic simulation with an alpha viscosity. Continued interest
in Bardeen—Petterson alignment has stimulated the production of
a number of recent warped magnetized disc simulations such as
Zhuravlev et al. (2014). The advent of 3D MHD simulations of
this kind necessitates the development of a corresponding theory of
warp propagation in magnetized discs in order to explain the salient
features of these simulations.

Bending instabilities in a magnetized warped disc subject to an
inclined dipole field were studied in a vertically integrated manner
by Agapitou, Papaloizou & Terquem (1997). Lai (1999) investi-
gated warping in a magnetized disc due to an inclined dipole, but
did not include the effects of the warped disc geometry itself on
the disc response. Terquem & Papaloizou (2000) included this ef-
fect and were able to determine the global warped disc structure
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for a variety of magnetic field configurations. However, none of
these models considered the potentially dramatic effects of driven
internal flows such as those described by Ogilvie & Latter (2013a)
in hydrodynamic warped discs. The work presented in this paper
attempts to analyse whether these dramatic resonantly driven flows
and their associated large torques exist in magnetized warped discs,
and if so, what consequences they would have for the evolution of
the warp.

The problem of a magnetized warped disc presents a number of
different issues and regimes, only some of which can be addressed
in this paper. If the disc is threaded by a large-scale magnetic field,
the warping of the disc will affect the structure of this external field
and will generally produce torques on the disc that will cause the
warp to evolve. This aspect of the problem is global in character
and can be studied only to a limited extent using the local model
considered in this paper. A magnetic field will also affect the interior
dynamics of the disc. If it is sufficiently weak, it can cause the
MRI, which can produce MHD turbulence. The occurrence of the
MRI in a warped disc, its effect on the internal flows and torques,
and its interaction with the hydrodynamic instability studied by
Ogilvie & Latter (2013b) could be usefully studied in the local
model of the warped shearing box. The launching of outflows from
a magnetized disc can be studied to some extent using local models
(Ogilvie 2012) and the interaction of that problem with a warp also
deserves investigation. In this paper we take a useful first step by
calculating the laminar internal flows in a warped disc threaded by
a magnetic field in ideal MHD. The laminar solutions are of most
direct relevance when the field is sufficiently strong to suppress the
MRI.

In Section 2 we employ the warped shearing box model developed
by Ogilvie & Latter (2013a) to express the fully non-linear local
ideal MHD equations in a reference frame comoving with a fluid
element in the warped disc mid-plane. In Section 3 we consider one-
dimensional laminar solutions to these equations, and by expanding
linearly in warp amplitude about an equilibrium solution, a system
of first-order differential equations is found for the internal structure
of the disc.

In Section 4 we consider the special case of a warped disc
threaded by a magnetic field perpendicular to the disc mid-plane. A
solution to this particular case is found via a spectral method. The
unique features of magnetized warped disc dynamics are discussed.
In Section 5 we outline two numerical procedures that are used to
check the results of the spectral method. In Section 6 the results of
the paper are discussed and summarized.

2 THE LOCAL MODEL OF A WARPED DISC

2.1 The warped shearing box

We restrict ourselves to circular warped discs (as opposed to ellip-
tical discs) due to their relative simplicity. Ogilvie (1999) showed
that a circular warped disc may be mathematically described by a
radially dependent vector I(r, t) defined to be perpendicular to the
orbital plane of the fluid at radius r. The radial dependence of the
orbital plane causes a warping in the disc geometry, as can be seen
in Fig. 1. For this class of accretion disc, only the dimensionless
warp amplitude ¥ defined by ¢ = r| %\ is necessary to specify the
local geometry of the warped disc. The physical significance of the
warping parameter ¥ can be clearly seen in Fig. 2.!

! Figs 1 and 2 are derived from figures originally published in Ogilvie &
Latter (2013a).

Downl oaded from https://academ c. oup. coml nmras/articl e-abstract/ 477/ 2/ 2406/ 4942271 MNRAS 477’ 2406-2418 (2018)

by University of Canbridge user
on 18 June 2018



2408  J. B. Faris and G. 1. Ogilvie

Figure 1. A warped disc, viewed as a collection of tilted rings. As discussed
in Section 2.1, a local frame (the blue box) is centred on a point that follows
the red reference orbit.

N ——

Figure 2. A side-on view of untwisted warps with constant warp amplitudes
¥ = 0.01 (top), 0.1, 0.2, 0.5, and 1 (bottom).

Local models of unwarped accretion discs are typically con-
structed around a reference point in the mid-plane of the disc co-
orbiting with the surrounding fluid. A Cartesian coordinate system
can be imposed with the origin at this reference point and the axes
rotating at the orbital frequency such that the x-direction is radial,
the y-direction is azimuthal, and the z-direction is perpendicular to
the disc mid-plane. There is a shearing flow within the box due the
differential rotation of the disc; consequently such models are often
called ‘shearing box” models.

An analogous construction is the ‘warped shearing box’, intro-
duced in Ogilvie & Latter (2013a). In warped shearing box models, a
Cartesian coordinate system is constructed around a reference point
in the mid-plane of a warped accretion disc as shown in Fig. 1. The
warped shearing box is represented by the non-orthogonal primed
coordinates (¢, x', ¥/, 7') chosen to compensate for the local geome-
try of the warped disc. These are related to the Cartesian coordinate
system (7, x, ¥, z) comoving with the fluid via expressions (1)—(4)
below, where g = —dd'l'; fz is the orbital shear rate of the disc in
question and 2 is the orbital frequency at the reference radius.

We define 7' such that the surface 77 = 0 corresponds to the
mid-plane of the warped disc and the 7'-axis is normal to the disc
mid-plane rather than normal to the orbital plane. The definition
of y' simply takes into account the shear due to the differential

rotation, where ¢ is assumed to be 3/2 for a Keplerian disc. The rel-
ative velocities v are constructed to remove the expected azimuthal
velocity changes due to shear or the vertical velocity changes due
to the warped geometry of the disc.

t'=t, €))
x' =x, )
Y =y+qQtx, 3)
7 =z + Y¥xcos(Q1). 4)

In such coordinates, it is important to note that

3, = 0y + qxd, — Y sin(QN)0.., )
9, = 0, +qQtdy + Y cos(Q1)D., (6)
9, =y, @)
9, =10,, )

and relative velocities are defined such that

o =1, ©)
vy =uy, +qQx, (10)
v, = u, — PQx sin(Q). (11)

2.2 The non-linear MHD equations in a warped disc

Having defined the coordinate system of the warped shearing box,
we may now express the full non-linear local MHD equations in
these coordinates.

2.2.1 The physical equations
The momentum equation expressed in a coordinate system corotat-

ing with the reference orbit is

D
p<?l:+29ez/\u> — _oVO—Vp+JAB, (12)

where the effective potential due to a central gravitational force and
the rotating frame is given by

1
&= 5szz(z2 —2gx%) (13)
and the Lorentz force in ideal MHD is expressed as
1 1
JAB=—(B-V)B—- —VB% (14)
Mo 20
The induction equation in ideal MHD is given by
0B
E:V/\(u/\B):B-Vu—u-VB—B(V-u), (15)

while the continuity equation gives
0p
ot

For simplicity the disc is assumed to be isothermal with uniform
sound speed ¢, implying

+ V- (pu) =0. (16)

p=clp. 17
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Rather than expressing the full MHD equations in terms of
the vector components perpendicular to the orbital plane, such
as v, and B, it will be more convenient to consider the vec-
tor components perpendicular to the disc mid-plane as defined
by v, = v, + ¥ cos(Q2)v,, By = B, + 1 cos(Q2t) B, (in fact, these
are contravarient vector components in the warped shearing coor-
dinate system). The full non-linear MHD equations are then given
by

Dv, 1
" 2Qu, = —— [0y + gD, + ¥ cos(Q)d, 11T
Dt 0 )
1
+ — (B’ - V)B,, (18)
Hop
Dv, 1 1 ,
L+ (22— q)Qu, =——03,I1+ —(B - V)B,, (19)
Dr P Hop
DU:’ . / 2.7 /
D = =29 Qsin(Qt")v, — Q77 + 2Qy cos(2t)v,
v’ 1
— —0 01 — —y cos(Q1")(dy + qQ2t'0,)IT
P 2
1
+—(B'-V)B,, 20)
Hop
0B,
5 = B - Vv, —(V-v)B, —v - VB, 21
aBV ’ ’ ’
= =—qQB,+ B - Vv, —(V-v)B, —v'-VB,, 22)
or’ ’ ’
aBz’ ’ ’ ’
or B -Vvy, —(V-v)B,—v"-VB,, (23)
V-B =0, 24)
3 p+p(V- )+ -Vp=0, (25)
where
b _ 0y +0v -V (26)
pr TV Y
vV =00+ (v, +qQr'v )0y +v,0,, 27
Vv =0,v, +0,(vy +qgQt'v,) + 00y, (28)
B'-V = B0y + (By + qu,Bx)a,\'/ + Bz’az’v (29)
V-B = a,\"Bx + a)"(B)‘ + th/Bx) + az’Bz’7 (30)

total pressure [T = ¢Zp + % and y2 = 1 + yr%cos 2(Q).

This system of equations is horizontal homogeneous as it does
not refer explicitly to x’ or y’, and so is compatible with periodic
horizontal boundary conditions. In order to solve this system of
equations, boundary conditions far from the disc mid-plane must
be imposed. More specifically limiting magnetic field values, along
with a condition on material inflow/outflow, must be prescribed.

2.2.2 The validity of the local model

It is imperative that we keep track of the assumptions made to
derive these equations. First, we have assumed an isothermal gas for
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simplicity. Perhaps more subtly there is also an implicit separation
of scales in the formulation of these equations. The warp, expressed
by the warp amplitude v/, is assumed to be independent of time. This
reflects the assumption that the warp propagates on a time-scale far
longer than the orbital time-scale (| dd—‘fl <L Q).

At first glance it may seem curious that the warp amplitude is
a fixed parameter given that this model is intended partly for the
study of warp propagation. However, there is no contradiction here.
The warp amplitude determines the internal dynamics of the disc
on the fast orbital time-scale. An internal torque is generated by
the internal flows driven by the warp (as discussed in section 4.2),
which can be calculated. In principle the warp could then be allowed
us to vary on a slower time-scale in a manner consistent with the
torques acting upon that annulus of the disc. In practice, however, we
can deduce the evolution of the warp from the calculated internal
torque and the conservation of angular momentum. In this way,
warp propagation may be investigated in the local model without
an explicitly time-dependent warp amplitude.

Ogilvie & Latter (2013a) displayed that the hydrodynamic
warped shearing box is indeed capable of replicating the results
of the global asymptotic theory of warped discs (Ogilvie 1999),
validating the local approach. An investigation further exploring
the connection between the global and local theory of warped discs
is forthcoming.

Other challenges may be levelled at this approach to warped disc
dynamics. If one were to investigate solutions to these equations
that are either one-dimensional or have periodic radial boundaries,
one would require the structure of the warp to vary on a length scale
much greater than the radial excursion of fluid elements over the
period of an orbit. If this were not the case, then the radial variation
of the warp amplitude would affect the internal structure of the disc
and it would be impossible to characterize a region of the disc by
a single value for the warp amplitude. Hence the warped shearing
box would be unable to appropriately model a disc with extreme
radial variations in warp amplitude. If the warp varies on the length
scale of the disc radius this condition simplifies to |v| < QR, or
equivalently the relative velocity must be much less than the orbital
velocity.

Additionally, the presence of a global magnetic field implies
that in some sense the transport of angular momentum may not be
truly local as is the case for hydrodynamic discs, but rather angular
momentum may be communicated non-locally via magnetic stresses
to other parts of the disc. This issue enters the local model via
several unspecified boundary terms (see Section 3.2.2). This topic
is discussed in greater detail in the follow-up paper.

3 ONE-DIMENSIONAL SOLUTIONS

3.1 Non-linear 1D MHD equations

Having derived the fully non-linear local MHD equations we pro-
ceed by looking for the simplest solutions for the disc structure. The
warped shearing box was designed such that the MHD equations do
not explicitly contain x” or y’, and are hence horizontally homoge-
neous. We therefore start by seeking solutions that are independent
of x’ and y'. All physical quantities are taken to be functions of 7’ and
¢ alone, and the MHD equations reduce to a set of 1D equations.
Recall that the oscillatory time-dependence of quantities in the lo-
cal model corresponds to their azimuthal dependence in a global
description (see Fig. 1). We note that such a laminar flow excludes
the possibility of turbulence, most notably MRI turbulence.
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3.1.1 Scaling

B/, as shown in the following section, is a constant of the motion and
therefore can be used as a scaling parameter. Using this convention
the above set of equations (18)—(30) can be made dimensionless via
the following scaling relations:

T=Qt, @31)
o 7
= (32)
v = vi/cs, (33)
—~ PCs
P=sa (34)
R 35)
VT’
~ B,
Bo= . (36)

where ¢ is the isothermal sound speed, ¥ is the vertically inte-
grated surface density of the disc, and all other terms maintain their
previous definitions.

From this point onwards all physical quantities will be scaled
as shown above and the circumflexes will be removed. The one-
dimensional non-linear MHD equations are hence given by

Dv, cos(t’ B?
gy, = VO, B,
Dt P

— Y cos(t)B, 0, B,] — ¢ cos(t)B,0, By},  (37)

Do _ o g+ Boap (38)
— = — — U,( — 0. )y
Dt v p o7
Dv, 2
L =24 sin(t")v, — 7' + 24 cos(t')v, — V—az,p
Dt ’ P
B_Z,)/Z 2 ’
+ ——[—y"B.0,B, + ¥ cos(t)d, B, — B,0. By,
39

9p
2P 4 a.(ov) =0, 40
ar T 2 (pvz) (40)
0B,

=0,V — V0B, — B:0,vy, (41)
or'
0B,
at; =0,v,—¢qB, —v,0,B, — B,0. v, (42)
0B _y 43)
o
3B

=0, (44)
07

where 2 =0, +v.0. and y* = 1 4 y%cos X(7).

3.1.2 Properties of the non-linear 1D MHD equations

Some general comments can be made at this stage. The final two
equations (43)—(44) reveal an important property of warped magne-
tized accretion discs. The magnetic field component perpendicular
to the disc mid-plane, B,/ is independent of both time and height
above the mid-plane. This is a consequence of magnetic flux conser-
vation under the assumption of horizontal uniformity. The magnetic

field perpendicular to the disc mid-plane is therefore advected with
the fluid and a constant of the motion, while the other magnetic field
components are not. Thus the use of B, as a scaling parameter is
justified.

In a standard unwarped accretion disc there is an azimuthal sym-
metry present in the equations of motion. With suitable boundary
conditions and in the absence of a symmetry-breaking process,
there is therefore an azimuthal symmetry in all physical quantities.
Although this axisymmetry is broken in a warped disc, equations
(37)—(44) reveal that a point symmetry still exists. This point sym-
metry could be described as a reflection in the local disc mid-plane
followed by a rotation by 7t radians. For example, for a scalar quan-
tity f(z/, ¢') this transformation can be represented by the operator T
such that

TF. 1) = f(—7,t +m). (45)

For vector quantities, the vector components parallel to the disc
plane are invariant under transformation T and the vector compo-
nents perpendicular to the disc surface are inverted. For pseudo-
vectors, the opposite is true; pseudo-vector components parallel
to the disc surface are inverted, while pseudo-vector components
perpendicular to the disc surface are invariant.

This symmetry can be proven by making the appropriate
simultaneous transformation in the warped disc MHD equa-
tions: {7’ = —z/,t' > t'+m, p = p,v. = Vv, vy = Vy, Uy —
—vy, By - =B, B, - —B,, By — B}. This transformation
leaves equations (37)—(44) invariant, and is therefore a symmetry of
the system. The existence of this symmetry is not only of physical
interest but is of practical use in the numerical work described in
sections 4 and 5.

3.2 Perturbation analysis of the warped disc MHD equations

In the previous section we found a set of one-dimensional MHD
equations for the vertical structure of a magnetized warped disc.
We proceed by linearizing these equations with respect to the warp
amplitude . The solutions found by this method will be valid only
for small warps (¥ < 1).

3.2.1 The unwarped solution

The equilibrium state is chosen to be an unwarped disc such that
B, = v, = vy = Oandthereis no jet outflow for simplicity (Ogilvie
1997). This represents an unwarped accretion disc with a poloidal
magnetic field and a purely azimuthal velocity.
The unwarped disc is described by three variables { o, By, vy0}
which satisfy the following set of equations:
2

B
2vy0 + édz’ B,y = 0, (46)
Po
1 B
Z + fdz'p() + ;Bx()dz’Bx() =0, (47)
Po Po
dz’vy() —qB. = 0. (48)

The following three associated boundary conditions must also be
satisfied:

B,v0|7’—>r>o = tani, (49)

B(0) =0, (50)
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and

oo
/ po(z)dz = 1. (51
—00

The first condition states that the inclination angle i of the poloidal
magnetic field has to be specified at large 7. We only consider
i < 30°, as an inclination angle in excess of this value produces a jet
outflow (Blandford & Payne 1982). The second condition is a result
of the odd symmetry of B, in 7/, and the final condition normalizes
the surface density of the disc.

3.2.2 The MHD equations to first order

Through inspection of equations (37)—(44) and comparison with
the hydrodynamic solutions found by Ogilvie & Latter (2013a),
all first-order physical quantities can be expected to vary sinu-
soidally throughout the orbit. More specifically, the following time-
dependence is consistent with the MHD equations (37)—(44) to
first order in warp amplitude ¥: {v,; ~ sin(t’), vy; ~ cos(t'), By ~
cos(t'), By ~ sin(t'), p; ~ cos(t’), v,ir ~ sin(t')}.

We now assume the above time-dependence for all six variables
and remove the relevant factors of sin (#') or cos (#) from the linear
equations. Eliminating the time-dependence in this way, the first-
order MHD equations reduce to a set of six interrelated first-order
ordinary differential equations for the vertical structure of the disc:

2

1 B,; P1
Ux] — 2Uyl :_*dz’po + — dz’Bxl - *dz/ BxO - B,\'Odz/ BXO 5
Lo L0 Lo
(52)
B?
— Uy = -2 - Q)vxl + idz’Byl - Uzl’dz.’vyo» (53)
Lo
1 L1 B
v = 2050 — —dyp1 + —5dypo+ —| — Brody By
Lo Lo Lo
— Bud.Buo + Buods B + dszxo) : (54)
Lo
— p1 +dy(povsr) = 0, (55)
— By =dyvy — vrdy By — Brodv,y, (56)
Byl =dz'vyl —qB,. (57)

The symmetry properties of the first-order problem can be found
by the following considerations. It was shown in Section 3.1.2 that
all physical quantities have a symmetry under the transformation
{ - ¢ + n, 7 — —7'}. Given that the zeroth-order terms have
no time-dependence and the first-order terms have a sinusoidal
dependence, one can deduce whether each variable is an even or
odd function of 7'. For example p;( — 7/, ¥ + ) = pi(Z, ) from
the point symmetry of the warped disc, but the sinusoidal time-
dependence of p; implies that p,(z, ¥ + ) = —p;(Z, ¥'). We may
thus conclude that p,( — 2/, #) = —p (2, ¥'), or p; is an odd function
of Z. In summary, {09, vy0, V;1’, Byx1, By} are even functions of Z/,
while {Byo, p1, vy, vy1} are odd functions of z'. These symmetry
considerations lead to boundary conditions (58)—(63).

Equations (52)—(57) specify six first-order differential equations
with one free dimensionless parameter, B/, which fixes the strength
of the magnetic field. This is the same dimensionless parameter
used in the study of jet launching from isothermal discs by Ogilvie
(2012). In addition we require six boundary conditions in order
to construct a numerical solution for the vertical structure of the
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disc. Symmetry considerations imply that the equations need only
be solved above the mid-plane and immediately fix three boundary
conditions at the mid-plane. The magnetic field at the upper surface
must be prescribed, leading to a further two boundary conditions
(58)-(59).

We chose to impose a rigid lid on the upper disc surface cor-
responding to the final boundary condition (63). An analysis of
the far-field solution of equations (52)—(57) implied that the high-
density region of the disc is insensitive to any reasonable boundary
condition on the disc outflow at sufficiently large z'. Numerical
tests (see Section 5.1) confirmed this result, validating our choice
of boundary condition.

In summary the boundary conditions on the problem are

B.i(c0) = A, (58)
Byi(c<) = B, (59)
p1(0) =0, (60)
v,1(0) = 0, (61)
vy1(0) = 0, (62)
v.1(00) = 0, (63)

where A and B are the limiting values of the radial and toroidal field
far above the disc mid-plane. In the context of this model, A and
B are free parameters. Physically, A and B need to be determined
by solving for the global magnetic field in the force-free region far
above and below the disc and solving for the disc’s internal structure
in a self-consistent manner. Such a problem is global in character
and hence beyond the scope of this work, although we will discuss
it in a forthcoming publication concerned with bending equilibrium
magnetic field configurations.

3.3 The magnetic field and physical relevance

Having reduced the MHD equations to a set of linear one-
dimensional equations, it is informative to step back and consider
the structure of the magnetic field described by this model. Due to
the time dependence we have assigned to the magnetic field, the
field must be anchored within the disc. Were the magnetic field not
anchored within the disc, the differential rotation would inevitably
lead to far more complex magnetic field configurations. Beyond
being anchored in the disc, we have chosen to model the equilib-
rium magnetic field as purely poloidal. This assumption is made
for mathematical simplicity and also to eliminate the transport of
angular momentum by ether an outflow or an exchange of mag-
netic torques. The extent to which the magnetic field bends is a free
parameter of the model. A similar magnetic field structure can be
found in Guilet & Ogilvie (2012) and Ogilvie and Livio (2001).

If the dimensionless magnetic field strength B, < 1 we are no
longer justified in neglecting the MRI. While a more detailed dis-
cussion of the MRI is given in Section 4.3, we briefly mention that
due to the neglect of the MRI, this model is of greatest relevance
at plasma betas of order unity where the MRI is suppressed. Mag-
netic fields of this strength are often invoked to explain observed jet
emissions (see e.g. Moll 2012; Ogilvie 2012; Cao & Spruit 2013;
Campbell 2010).

Recent studies of protostellar disc formation from molecular
cloud core collapse by Lewis, Bate & Price (2015) and Lewis &
Bate (2017) indicate that protostellar discs may form with plasma
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betas of order unity. In addition, the continued study of magneti-
cally arrested discs (Narayan, [gumenshchev & Abramowicz 2003)
around black holes further motivate the study of strongly magne-
tized warped disc dynamics. Itis in this strong regime that the results
of this paper are most applicable.

4 THE SPECIAL CASE OF THE PURELY
VERTICAL MAGNETIC FIELD

4.1 Solution via a spectral method

The simplest magnetized warped disc model is one in which the
inclination angle tan i of the magnetic field at the disc boundary is
zero, implying the magnetic field above and below the disc is per-
pendicular to the disc surface. This corresponds to setting boundary
conditions (49), (58), and (59) to zero. This model is relatively easy
to analyse, yet demonstrates many of the qualitative differences
between purely hydrodynamic and magnetized warped discs.
Under these conditions, the unwarped density profile is given by

o) = e P (64)
0 V2

and the first-order equations reduce to

d*v, ) ,
e = g~ 2w =) (65)

Lo 2 0y — 1+ 20001 — 42 (66)
dZ’z Bf, J

The coupled pair of differential equations (65) and (66) were
solved via a spectral method as outlined below.

Using the set of basis functions {y,(z') = P,,_1(tanhz’)}, the
first 12 eigenvalues and eigenfunctions of the following Sturm-—
Liouville problem were found via a combined Rayleigh—Ritz and
Gram—Schmidt procedure:

d%u

i + upou =0, (67)
where we impose the boundary conditions u(0) = 0 and j—” =0at
large 7. Let this eigenfunction basis be {u; }, with associated eigen-
values pu; = {3.363, 22.30, 57.12, 107.8, . .. }. The eigenfunctions
u; are plotted in Fig. 3 (see also Latter, Fromang & Gressel (2010)).

Equations (43) and (44) together with a vanishingly small mag-
netic field perturbation at large z’ imply that velocity perturbations
v, and vy; must have a vanishingly small derivative at the upper
boundary. Through symmetry arguments one can deduce that v,
and v,; are odd in 7' and so vanish at 7/ = 0. Therefore, v,; and
v, satisfy the same boundary conditions as the eigenfunctions u;.
Let us project the velocity perturbations vy, v,; and the function
f(z') = 7/ on to this basis in the following way:

va@) =Y aui(?), (68)
V()= biui(), (69)
7 = Z ciui (7). (70)

i
Projecting the function z’ on to the eigenfunction basis {u; } requires
some consideration, as this function does not satisfy the appropriate

Figure 3. The first four eigenfunctions of equation (71), uy, uz, u3, us.
The velocities of the Alfvénic-epicyclic modes are proportional to these
eigenfunctions.

boundary conditions far from the mid-plane. However, beyond a few

scale heights the density becomes vanishingly small and the error

in approximating 7z’ via the set of eigenfunctions {;} is negligible.
If we let A; = p; B7, the MHD equations (65)—(66) give

A — 1

a; = — 3 Ci, (71)
A =204+ @)ri +(2q —3)
Mg 42—
= a2 d i, (72)

A =2(1+ @)k +(2q — 3)

where

¢ = / 2 oo i (2) 2. (73)
0

The critical aspect of this set of equations is the dependence of
the denominator on the magnetic field strength and the shear rate ¢
associated with the disc. Resonances will occur whenever either of
the following conditions holds for any eigenvalue w:

Biu=1+q+4+q% (74)

Bip=1+q—+/4+q. (75)

These resonances result in arbitrarily large velocities, magnetic
fields, and internal torques acting within the disc. More generally
equations (71)—(73) imply the existence of a set of modes, hence-
forth called Alfvénic-epicyclic modes, in this magnetized warped
disc. They are the result of a coupling between the magnetic field
and the epicyclic modes. Each of these modes is associated with its
own distinct vertical structure and a natural frequency given by

Oy = hi +2— g+ V44 + 2 —q)? (76)

and

wiz(slow) =i+ 2- q9—V 4)“1 + (2 - q)2 (77)

Whenever there is a coincidence between the natural frequency
of a particular Alfvénic-epicyclic mode and the orbital frequency
(w = 1 in scaled units), a resonance will occur and that mode will
dominate the solution.

The Alfvénic-epicyclic mode velocities are proportional to their
respective eigenfunction u;, while the magnetic field strengths as-
sociated with each mode are proportional to the derivatives of the
respective eigenfunction j‘—’; The radial and azimuthal velocities for
the first and second Alfvéﬁic—epicyclic modes are shown in Table 1.
The absolute magnitude of these velocities becomes arbitrarily high
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Table 1. The vertical structure of the first two Alfvénic-epicyclic fast and slow modes. The radial and toroidal velocity perturbations vy and vy are represented
in the left-hand column by the solid and dashed lines, respectively. The magnetic field perturbations B,1 and By are represented in the right-hand column by
the solid and dashed lines respectively. In all cases ¢ = 1.6 and the magnetic field is varied to be close to the resonant points of the first two Alfvénic-epicyclic

fast and slow modes. Referencing from the top row down, the resonances shown correspond to the first slow mode, the first fast mode, the second slow mode,

Velocity Perturbation

and the second fast mode. The associated magnetic field strengths are shown on the left of each row.

Magnetic Field Perturbation
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as a resonance is approached, leading to a breakdown of the linear
formalism outlined here. An investigation into the fully non-linear
theory would be required to explore the behaviour near resonance.

In the Keplerian case (¢ = 3/2), which is the case of greatest
physical interest, equations (74)—(75) reduce to

Biwi =5, (78)

B =0, (79)

implying that the fast modes are all resonant iff B, = 0. This corre-
sponds to the hydrodynamic resonance familiar from earlier work.
On the other hand, if the strength of the magnetic field is non-zero
this resonance will be lifted and, provided the orbital frequency
does not coincide with the natural frequency of a slow Alfvénic-
epicyclic mode, well-behaved solutions are obtained. The magnetic
field strengths associated with these resonances of the slow modes
areat B, = {1.22,0.473, 0.296, 0.215, . . .}, the resonances becom-
ing more and more closely spaced as the magnetic field strength
approaches zero.

4.2 The internal torque

The internal structure of a magnetized disc with an external mag-
netic field oriented normal to the disc surface was found in the
previous section. The torque acting on the disc can now be cal-
culated. As found in Ogilvie & Latter (2013a), the torque acting
within the disc may be written in the following way:

ol ol
G =213 Qi+ Qur— + Qsrl A — |, (80)
: or or
where Q, 0>, and Qs are dimensionless coefficients given by
- 0\2 = </(,0vxvy - Txy)dz'> , 81)
o

- QuEel = <e“’ / [ove(—Q2' —iv,) +iT:] dz/> . (82
o

where Q4 = Q> + iQs. The angular brackets denote that the quanti-

ties inside the brackets are time-averaged. Q; is similar to the usual

accretion disc torque, while Q, corresponds to diffusion of the warp

and Q3 causes a dispersive wave-like propagation of the warp.

Torque coefficients Q; and Q, are related to dissipation. This
model does not include viscosity or resistivity, implying both of
these coefficients will vanish and only Q3 need be considered. We
note that this can be also be proven by considering the symmetry
properties of the system as discussed in Section 3.1.2.

Equation (82) suggests that a radial magnetic stress 7T, will con-
tribute to Qs; for a vertical equilibrium field configuration however,
this radial stress is exactly balanced by a magnetic stress difference
above and below the disc surface. The contribution to the torque
from magnetic stresses is therefore of order O(h/r) relative to the
angular momentum flux, and is assumed to be small. Only the radial
flux of angular momentum need be considered, implying that

1 2w
03 = — /povxlz/ sin? 'dz'dr’ + O(y?). (83)
21 0

Projecting v,; and z’ on to the eigenfunction basis {u; } described
above in (67) and using the orthogonality relationships of the eigen-
function basis, equation (83) simplifies to

_ (1_)‘1') 2
Qs = Z P20+ hi+29—3" &

Q0

A\
\
\
\
1
]

Figure 4. The internal torque coefficient Q3 as a function of ¢ at magnetic
field strength B, = 0.04. The dotted line shows Q3 for a hydrodynamic disc.
The discontinuities at ¢ > 1.5 correspond to resonances of fast Alfvénic-
epicyclic modes.

where A; = u,-BZZ/. In the hydrodynamic limit, recalling that nor-
malization of density implies > ¢? = 1/2, we find

1 2 p2
03 = 32q —3) + 0", BY), (85)
which is consistent with the result found by Ogilvie & Latter (2013a)
for a hydrodynamic warped disc.

The internal torque coefficient Qs, as can be seen by the denom-
inator of equation (84), also diverges near an Alfvénic-epicyclic
resonance. The dependence of Q3 on the magnetic field strength B,/
and shear rate ¢ is shown in Figs 4-8. The Alfvénic-epicyclic reso-
nances as functions of g and B, are shown in Fig. 9 for comparison.

It is worthy of note that in the strong-field limit B2 > 1,

_c2
03 ~ m;lz . At very large magnetic field strengths the increasing

stiffness imbued by the magnetic flux dampens the disc response.
Consequently the induced internal flows lower in amplitude and
warp propagation slows as the magnetic field strength is increased.

The weak field limit is far more subtle. Since the model presented
in this paper is concerned with mean-field effects, it is reasonable to
expect that at weaker field strengths the hydrodynamic limit for Q3
is recovered. It can be seen in Fig. 4 that this holds true at all points
except those very near to an Alfvénic-epicyclic resonance. At these
resonances the warp structure and propagation properties may be
quite sensitive to the magnetic field strength and even a relatively
weak magnetic field may have significant consequences for the warp
evolution. This has special physical relevance in light of the fact that
a hydrodynamic Keplerian disc is precisely at one such resonance
(or alternatively, the resonance of a Keplerian hydrodynamic disc
could be considered as the pile-up of fast Alfvénic-epicyclic modes
as the magnetic strength falls to zero as shown in Fig. 8). Warp
propagation in a Keplerian low-viscosity disc may therefore be
quite sensitive to the introduction of even a weak magnetic field. In
the Keplerian weak-field limit 32 <« 1, the case of most physical

—2
Spi fl"’?/ :

In a more realistic model one might expect the mean-field effects
described above to compete with viscous effects including those
that might arise from MRI turbulence. In some circumstances, these
non-ideal effects may eliminate any distinction between the MHD
model presented here and the corresponding hydrodynamic model.
Further investigation is required to determine what factors influence
warp propagation in a weakly magnetized disc.

Although viscosity has not been included in any of the derivations
thus far, let us consider the effect of a magnetic field on the internal

interest, we note that Q3 ~
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Figure 5. The internal torque coefficient O3 as a function of ¢ at magnetic
field strength B,; = 0.1. The central discontinuity originally at ¢ = 1.5 has
been displaced rightward, lifting the hydrodynamic resonance at g=1.5.
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Figure 6. The internal torque coefficient O3 as a function of ¢ at magnetic
field strength B, = 0.2. The central discontinuity has moved well past
g = 1.5. Near ¢ = 1.0 there is a discontinuity associated with a slow
Alfvénic-epicyclic mode.
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Figure 7. The internal torque coefficient Q3 as a function of magnetic
field strength B,/ in scaled units for a Keplerian disc. The most significant
resonance occurs at B,y = 1.22, corresponding the ground state Alfvénic-
epicyclic mode.

torque coefficient Q,. It was found in Ogilvie & Latter (2013a)
that the torque coefficient O, in a Keplerian disc grows inversely
with viscosity as the hydrodynamic resonance is approached. It is
expected, subject to further analysis, that the presence of a magnetic
field will lift the resonance of a Keplerian hydrodynamic disc and
therefore remove the divergence in torque coefficient Q,, reducing
the anomalously quick diffusion of the warp in this case.

We would like to emphasize for completeness that it is only for
the vertical equilibrium field configuration that there is no explicit
magnetic contribution to the torque. Warp propagation in discs with
a ‘bending’ field (B,o # 0) differs from the vertical field case in
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Figure 8. Torque coefficient O3 as a function of shear rate ¢ and magnetic
field strength B,/. White regions indicate large torques that fall beyond the
plot range. Due to poor resolution, many of the higher order resonances are
not clearly visible. Large values of QO3 can be observed near the first slow
mode resonance where B,s ~ 1 and near the first fast mode resonance. The
fast mode resonance is responsible for the anomalous behaviour of Keplerian
hydrodynamic warped discs. The MRI stability curve is shown in black.
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Figure 9. The Alfvénic-epicyclic resonances in the g—B,/ plane. The first
three slow resonances are the top three nearly straight lines in this figure.
The bottom three curves, with a common meeting point at ¢ = 3/2 for the
hydrodynamic case, are the first three fast Alfvénic-epicyclic resonances.
The MRI stability curve is shown in red.

several respects. Notably, the magnetic field can potentially play
a greater role in the transport of angular momentum through the
disc. We refer the reader to an upcoming paper for details of warp
propagation in more general magnetic field configurations.
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4.3 Effects of the MRI

The MRI in an accretion disc can be expected to exist for a range
of magnetic field strengths By, < By < Bmax. The upper limit of
the MRI-unstable region By,,x may be found by a standard analysis
of the ideal MHD equations as first derived in Balbus & Hawley
(1991). It is informative to note the connection between their anal-
ysis and the analysis presented here. While investigations of the
MRI are primarily focused on the unstable normal modes of a mag-
netized accretion disc, the chief focus of this work has been the
resonant forcing of stable modes. However, when the natural fre-
quency of a stable Alfvénic-epicyclic mode transitions from a real to
an imaginary number, that mode becomes unstable corresponding
to the onset of the MRI. From equation (64) one can deduce that
this transition will occur when

B2 =2q, (86)

where p; is the smallest of the eigenvalues defined by equation
(67). In the case of a vertical magnetic field and a Keplerian disc,
we can conclude that

> _ 4

168

Though formulated slightly differently, this corresponds exactly
to the result found by Gammie & Balbus (1994) for isothermal
discs.” Given that the resonance associated with the lowest order
eigenfunction of equation (54) occurs for a Keplerian disc at B, ~
1.22 while the MRI is expected below B, ~ 0.94, one can see that
a large-scale magnetic field may have a significant effect on the
warp dynamics even in the MRI stable region. This is an important
result because if it was discovered that the resonances discussed
in the previous chapters only existed in the MRI unstable region
B,/ < Bnax, one would be uncertain as to whether these resonances
are likely to exist once the effects of the MRI are taken into account.

There are a few shortcomings with the analysis above. First, we
found an identical MRI stability condition to that found by Gammie
& Balbus (1994). This is unsurprising as the MRI has emerged
as an instability in our linear perturbation of an unwarped disc
state. Non-linear warped disc solutions may not have the same MRI
stability conditions and require a non-linear analysis beyond the
scope of this work. Secondly, the value of By,,x found is only valid
for the particular vertical magnetic field configuration considered
in this section. Using the numerical methods outlined in section 4,
we hope to analyse the MRI stability condition for a disc with an
equilibrium bending magnetic field (Byy # 0).

For small magnetic field strengths, the question is significantly
more complicated. The value of By, is related to the non-ideal
behaviour of the disc, and therefore is beyond the scope of this
analysis. It is unclear at this stage what effects MRI turbulence
would have on disc structure or warp propagation.

(87)

4.4 Comparison with hydrodynamic warped discs

It is instructive to consider briefly how the magnetized warped disc
considered here relates to the hydrodynamic warped disc discussed
in Ogilvie & Latter (2013a).

The distinctive characteristics of a hydrodynamic warped disc are
largely due to the unbalanced pressure gradient in the radial equation

2 We are in agreement with the general form for the Alfvén velocity at
the mid-plane, V02: > ZqQ%Hz/El, as well as the lowest order non-zero
eigenvalue E; ~ 1.34. However, we do not agree on the exact stability
condition VOZZ > 0.45cf that they quote for g = 3/2.

of motion due to the warped geometry. Internal flows therefore must
exist in a warped hydrodynamic disc. More specifically, linear flows
were shown to be valid solutions. These flows will be resonantly
driven for a Keplerian disc owing to the coincidence of the epicyclic
and orbital frequencies. This leads to the rapid diffusion of the warp
at small viscosities.

In contrast to a hydrodynamic disc, such simple linear flows are
no longer solutions for the internal disc structure of a magnetized
warped disc. The presence of the magnetic field adds some stift-
ness to the fluid, detuning the epicyclic frequency from the orbital
frequency and thereby lifting the resonance. In more detail, it was
found that there are a number of fast and slow Alfvénic-epicyclic
modes present with no analogue in the hydrodynamic disc. These
modes may resonate if their natural frequency coincides with the
orbital frequency, effectively driving a resonant response.

In an ideal inviscid disc the only non-zero internal torque coeffi-
cient is Q3. The properties of Q3 may be dramatically different from
those of the corresponding hydrodynamic problem, reflecting the
far richer structure of the magnetized warped disc. It is also expected
that due to the detuning of the epicyclic and orbital frequencies in a
warped magnetized disc, the anomalously large values of Q, found
in the hydrodynamic Keplerian case will be reduced.

At progressively weaker field strengths (see Fig. 4) the difference
between the MHD solution and the corresponding hydrodynamic
solution becomes negligible except when the disc is very close to
an Alfvénic-epicyclic resonance. Near these resonances the internal
structure is very sensitive to small changes in parameters and the
magnetohydrodynamic perturbations may have a significant effect
on disc structure. This is of some physical relevance as a hydro-
dynamic Keplerian disc corresponds to one such resonance, and
consequently may be sensitive to the introduction of a relatively
weak magnetic field. Further investigation is required to probe the
weak field limit and the effects of the MRI or a finite viscosity.

5 NUMERICAL SOLUTIONS

5.1 Solution via numerical ODE solver

In the previous section, we described in detail a semi-analytical
solution to the ideal MHD equations of a warped disc without
mass outflow in the specific case where, at large distances, the
external magnetic field is perpendicular to the disc surface. In this
section, we outline a numerical method for solving for the internal
structure of an accretion disc. There are two motivations for this.
First, this provides a check on the semi-analytical results outlined
in the previous section. Secondly, it would allow us to solve for
the structure of the disc for a more general equilibrium magnetic
field configuration and with more general boundary conditions. The
method developed is outlined below.

In Section 3.2.2, we derived a set of six first-order ordinary differ-
ential equations for the six first-order variables; these are given by
equations (52)—(57). The six necessary boundary conditions were
also given in equations (58)—(63). In Section 3.3.1, we derived three
first-order equations for structure of the unwarped equilibrium disc,
along with the three associated boundary conditions.

Owing to symmetry considerations our range of integration may
be restricted to 0 < 7’ < z;,, where z;, is the effective upper surface of
the disc and is some number of scale heights above the mid-plane.
7, was chosen to be small enough such that the numerical methods
described remain feasible, yet large enough to be considered exterior
to the disc for all practical purposes. All results were tested at various
values of z;, to ensure that its value did not have a significant impact.
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The boundary conditions were satisfied via the shooting method.
The nine variables were integrated from the mid-plane to the upper
surface of the disc. Four of the nine boundary conditions fix the
value of a variable at the mid-plane, requiring the value of the five
remaining variables at the mid-plane to be guessed. The Newton—
Raphson method was employed to refine these five initial value
guesses and satisfy the five boundary conditions at the upper surface.
All results were found to be insensitive to subsequent iterations of
the Newton—Raphson method and all boundary conditions were
satisfied to an acceptable degree of error, leading to the conclusion
that the Newton—Raphson method had converged on a valid solution.

There are four free parameters in this numerical system. One is
B/, a constant which determines the relative strength of the mag-
netic field in the system. The remaining three are the boundary
conditions on the magnetic field which specify the connection be-
tween the magnetic field within the disc region and the magnetic
field of the disc exterior. The first is B,o(z;), determining the angle
of the equilibrium poloidal field to the disc surface. The remaining
two are By (z,) and By;(z;), the first-order radial and toroidal mag-
netic fields external to the disc. These four free parameters must be
specified to solve for the internal structure of the disc.

As discussed in Section 3.3.2, one of the boundary conditions
on this system of equations was the imposition of a rigid lid corre-
sponding to equation (63). Based on a far-field analysis of the linear
MHD equations, it was found that the results in the high-density
region of the disc should be insensitive to the exact value of the
outflow velocity. This was tested by varying the outflow velocity at
the upper surface. We confirmed that the rigid lid had little effect
on our solutions.

All numerical results found via this method were consistent with
the results of the semi-analytical calculation described in Section 4
to a reasonable degree of accuracy.

5.2 The corrugated sheet model

As an alternative to the approach outlined here, one may also con-
sider a standard shearing box model within which all perturbed
variables vary sinusoidally with radius at a specified wavenumber
k (giving a thin disc the appearance of a corrugated sheet). For
very small k this corresponds exactly to the model presented above,
where the warping is assumed to be independent of the radius. A
numerical setup similar to the Runge—Kutta ODE solver outlined
above was used for this corrugated sheet model. This model is in-
formative because it allows us to investigate the dispersion relation
w(k) of radial bending waves. While the details of this model will
be discussed in an upcoming paper, there are two results highly
relevant to the work presented here.

First, the torque coefficient Q3 can be found from the quadratic
dispersion relation of the normal modes of the unwarped magne-
tized disc. In an unwarped disc there exists a normal mode with
frequency w(0) = Q2 (where 2 is the orbital frequency) correspond-
ing to vertical oscillations of the disc. For small but non-zero radial
wavenumber k, the frequency of this mode is related to Q5 via

2
w(k) = Q+ Q3§Sk2. (88)
It was found that the torque coefficients Q5 obtained by this numer-
ical method were consistent with the semi-analytical calculations
presented in Section 4, providing a valuable check on our results.
Secondly, w(k) at the critical points in the (B./, ¢) plane corre-
sponding to Alfvénic-epicyclic resonances were investigated. We
found that the warp dispersion relation transitions from quadratic
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to linear near these critical points. This transition implies a quali-
tative change in the disc behaviour associated with enhanced warp
propagation at these points. This result, described in more detail
in the relevant upcoming paper, perhaps most clearly illustrates the
physical interpretation of a divergent torque coefficient Q5.

6 SUMMARY AND DISCUSSION

Using the warped shearing box framework set out by Ogilvie & Lat-
ter (2013a), the local ideal MHD equations were found for warped
magnetized thin discs. These equations were expanded to terms lin-
ear in the warping parameter . While a general analysis of the
solutions to these equations is forthcoming, the case of an external
magnetic field oriented normal to the disc surface is relatively sim-
ple and can be solved semi-analytically via a spectral method. The
results of this analysis were verified by the use of a numerical ODE
solver. Many of the distinct characteristics of warped magnetized
discs may be illuminated by this rather simple model.

In a hydrodynamic disc it was found that the coincidence of the
epicyclic and orbital frequencies causes a resonance in thin Keple-
rian accretion disc models. This resonance results in fast internal
flows and torques acting within the disc, resulting in the rapid prop-
agation of the warp.

In the presence of a magnetic field this resonance is removed. The
magnetic tension adds a stiffness to the epicyclic oscillations, de-
tuning the epicyclic frequency from the orbital frequency. Therefore
at low viscosities the presence of even a relatively weak magnetic
field may dramatically alter the internal structure of a Keplerian or
very nearly Keplerian warped disc and evolution of the warp.

In magnetized warped discs there exists a series of normal modes
which we have called Alfvénic-epicyclic modes. These are the nor-
mal modes of the magnetized accretion disc, each with a fixed ver-
tical structure and phase relationship between the density, velocity,
and magnetic field perturbations. For a vanishing magnetic field, the
fast Alfvénic-epicyclic modes all oscillate at the orbital frequency
while the slow modes are static (w = 0), thereby recovering the
results found by Ogilvie & Latter (2013a). The frequencies of the
Alfvénic-epicyclic modes depend on the shear rate g, the magnetic
field strength and the inclination of the equilibrium magnetic field.

The warped geometry of the accretion disc creates a pressure gra-
dient in the radial direction that acts as an inhomogeneous forcing
term. This system is consequently analogous to a forced oscillator.
When the frequency of an Alfvénic-epicyclic mode coincides with
the orbital frequency, that particular mode is resonantly forced re-
sulting in large internal torques and rapid warp propagation. Warp
propagation in magnetized discs consequently has a surprisingly
subtle and rich dependence on the magnetic field strength and shear
rate. This mechanism may be critical to understanding and mod-
elling warp propagation in magnetized discs.

In this paper, we have assumed that there is no jet outflow from
the disc. The effect of disc warping on jet outflows is not well
understood and could be studied using the framework set out in
this paper. We also hope to use the methods developed in this
paper to investigate accretion discs with a wider variety of magnetic
boundary conditions corresponding to more general magnetic field
orientations.

The solutions investigated in the latter half of this paper have
neglected the MRI. Consequently, the results of those sections are
expected to be of greatest validity in highly magnetized discs (8 &~
1). The MRI, and especially the interplay between the MRI and the
warped magnetized accretion disc dynamics outlined in this paper,
could also be investigated using the formalism developed here.
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