DNA Phonology: Investigating the Codon Space

Giuseppe Insana

Wolfson College

A dissertation submitted to the University of Cambridge
for the degree of Doctor of Philosophy

November 2003

European Molecular Biology Laboratory,

European Bioinformatics Institute,
Wellcome Trust Genome Campus,
Hinxton, Cambridge, CB10 1SD,
United Kingdom.

Email: insana@ebi.ac.uk



“ o D COp B0 AU



Summary

The main part of the thesis is concerned with large-scale studies of codon usage in
completely sequenced genomes. A new compositional analysis scheme is presented,
complete with a number of computation and visualisation tools. The thesis addresses
the benefits of this very general scheme, named codon profiling, with comparisons to the
very similar synonymous codon usage. Codon profiling is applied to the analysis of several
domains of interest, with the scope of addressing several questions related to the

compositional constraints of coding sequences.

The heterogeneity of codon usage in the coding sequences of each genome was
examined and presented, noting the consistency of intra-genomic distributions of
codon similarity and atypicality. Such distributions provide the grounds on which to

elaborate practical applications that make use of these properties.

A computationally inexpensive methodology was developed to detect Horizontal
Gene Transfers (and for the first time to identify donor genomes), exploiting measures
of codon similarity and combining a compositional identification approach with a

phylogenetic verification process.

The thesis also presents a detailed procedure for the characterisation of coding
sequences with atypical codon usages, exemplified in a study conducted on a group of
human RNA binding proteins whose codon usage has striking similarity to that of some

human infecting retroviruses.

Finally, the concept of codon usage space, the space of all the possible codon usages, is
discussed. After calculating the theoretical extension of this space, the part visited by
known biological sequences was mapped and its dimensionality computed. The
comparison with the results obtained using several algorithms for random generation of
codon usages quantifies the constraints imposed on biological sequences and allows the

investigation and characterisation of the unexplored regions of the space.
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I Introduction, DNA linguistics and codon usage

A OUTLINE OF THE DISSERTATION

The dissertation is organised in almost self-contained chapters, each with its own

Introduction, Methods, Results&Discussion and Conclusions sections.

The present chapter first of all gives an introduction to the biology of genetic
message encoding and translation and in particular to the codon information, with
special emphasis on the redundancy of genetic messages and to how this redundancy
can serve the superimposition of other messages. It then introduces a number of
compositional analysis methods which are used by the scientific community to

investigate the form of genetic messages.

The second chapter presents a newly developed framework, called codon profiling, for
analysis of codon usage information. It combines traditional codon usage with
nucleotidic composition analysis, thus adopting a genomic base-oriented perspective
which is general, elegant and extensible. Because of its similarity with the synonymous
codon usage analysis, the two methodologies are compared, showing the respective
benefits. Furthermore, since all the work presented in this dissertation was conducted in
tandem with both methodologies, the results obtained under the two frameworks, when

different, will also be discussed in the other parts of this dissertation.

Chapter three deals with intra-genomic heterogeneity for the annotated completely
sequenced genomes, assessing how diverse in codon usage the genes inside a genome
are. Distributions of codon similarity are plotted for archaea, bacteria, five eukaryotic
genomes and for human infecting viruses. The distributions are shown to have the
same shape and spread, spanning across the same range of similarity values. The
observed coherence in intra-genomic heterogeneity provided the scale and thresholds
for codon similarity and codon atypicality, enabling various practical applications to be

developed.

The fourth and fifth chapters present two such applications of codon profiling and
codon similarity measures. Chapter four details a procedure elaborated to detect
Horizontal Gene Transfer events by combination of a very fast compositional approach

(based on codon similarity information) and of a slower phylogenetic approach for
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verification. Besides the multifaceted strategy, the advantage lies in the possibility of
predicting and verifying the donor species. Chapter five describes a complete
methodology for the identification and characterisation of genes with highly
heterogeneous codon usage, exemplified by a real case analysis of human infecting
viruses in the context of the human genome and of human protein families with very

atypical codon usage.

The sixth and final chapter discusses the conceptual space of all possible codon
usages. After calculating the number of theoretical possibilities, the attention is focused
on understanding how many of these are really employed by the biological world
(although in our limited approximation of it, represented by the sequenced data) and
what the portions of non-populated space are. To deal with the enormous number of
possibilities, the space is mapped at a certain specified granularity level, or, in other
words, with a certain binning size grouping together similar codon usages. Several
algorithms to generate random codon usages have been developed and used to sample
the codon space. The heterogeneity of the generated codon usages is compared to the

biological one, underlining and quantifying the constraints influencing the latter.

B MOTIVATION

Genetics studies the means by which biological information is transferred and how
this information can change, giving rise to different organisms and different species: the

wonderful process of evolution, intrinsically bound to our concept of life.

This biological information is contained (to the best of our knowledge) in the nucleic
acid molecules, long strings of bases. We can think of them as long sequences of letters.
These letters are: AT C G (actually the three-dimensional structure that a succession of
bases assumes in the whole molecule can sometimes be more important, but we
concentrate on the sequence, because from the sequence it should be possible to infer
the structure). DNA is the name of the molecule responsible for this genetic
information: Deoxyribo Nucleic Acid. DNA can be thought of as a language. It is the
language in which all the information “for making a new organism” is written, the

blueprint of a living being (specifically, of its structural and functional parts).



Understanding this language is a complex but fascinating goal — deciphering its
phonetics (this was accomplished in the 1960's, a process that has been named cracking
of the Genetic Code), its phonology, its syntax and morphology, its semiotics and

semantics.

This thesis was born from a desire to explore the mechanisms behind (to continue
with the metaphor) DNA phonology. In linguistics, phonology is the study of how
sounds are used in a language, how they are combined, how they are perceived. For
example, phonology studies constraints against particular combinations of sounds.
Words like druping or grink are perceived as possible English words, even if they do not
actually exist in the language. On the other hand, kter or zlatrah can definitely not be
part of (present day) English. A representation of phonological constraint for English
syllables could be:

() + (O + (wly[r[l) + (V) + V + (C) + (O) + (O)

where C=consonant, V=vowel, ()=optional; this translates into the letter s, followed
by any consonant, followed by a consonant or semivowel among the set w y r or 1, then
a vowel, and so on and so forth. For example, consider how the word strain fulfils those

constraints.

Are there DNA phonological constraints in biology? What are they? That is, what rules
must the sequential array of bases obey? There are constraints to the form of the
messages which are encoded in DNA. Constraints coming from the need to preserve a
particular three dimensional structure, a particular composition of bases (e.g. more
biased toward a lot of Gs and Cs or a lot of As and Ts), or a particular choice of frequent
or rare “sounds” (which in the DNA domain would be the codons for abundant or rare

tRNAsS).

How much flexibility is there in the choice of codons? How many possible ways? Are
all the arrangements possible and are they adopted by the genomes we study? Are the
constraints different for different organisms? Are the genomes homogeneous with
respect to codon usage? Is the amount of intra-genomic variability a constant or does it
fluctuate widely? Can two species be identified by their choice of codons, like two
human languages can be distinguished by the phonemes they use, their arrangement,

their frequency? Can genes acquired from other species be recognised and their origin
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identified, in the same way as a borrowed word in the lexicon can be traced to the

original language it was imported from?

New methodologies were devised and several experiments conducted towards the

goal of addressing the above questions.

C CONCEPTS

C.1 The genetic code and the translation of messages

Each group of three consecutive bases in a coding sequence is called a codon and
corresponds to either an amino acid in a protein or to a signal that terminates
translation. Codons that signal termination are called stop codons. The mapping from
codons to amino acids is called genetic code (Table I-1). Most genomes use the same
genetic code, called the Standard genetic code. There are in total 64 possible codons (four
bases for three positions in the codon: 4°). The genetic code was understood and

completely described in the late 1960s.

Second triplet position
T C A G

TTT | TTC | TCT | TCC | TAT | TAC | TGT | TGC

T Phe | Phe | Ser | Ser | Tyr | Tyr | Cys | Cys
TTA | TTG | TCA | TCG | TAA | TAG | TGA | TGG

Leu | Leu | Ser | Ser * * * Trp

CTT | CTC | CCT | CCC | CAT | CAC | CGT | CGC

kS c Leu | Leu | Pro | Pro | His | His | Arg | Arg
'§ CTA | CTG | CCA | CCG | CAA | CAG | CGA | CGG
% Leu | Leu | Pro | Pro | GIn | Gln | Arg | Arg
E* ATT | ATC | ACT | ACC | AAT | AAC | AGT | AGC
N lle lle | Thr | Thr | Asn | Asn | Ser | Ser
o ATA | ATG | ACA | ACG | AAA | AAG | AGA | AGG
Ile | Met | Thr | Thr | Lys | Lys | Arg | Arg

GIT | GTC | GCT | GCC | GAT | GAC | GGT | GGC

G Val | Val | Ala | Ala | Asp | Asp | Gly | Gly
GTA | GTG | GCA | GCG | GAA | GAG | GGA | GGG

Val | Val | Ala | Ala | Glu | Glu | Gly | Gly

Table I-1: The Standard genetic code. * indicates terminator codon (STOP).
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C11 Redundancy

In all genetic codes the sixty-four codons encode usually twenty (sometimes twenty-
one or a few less than twenty) different amino acids and the termination signal. There is
hence more than one codon encoding for the same amino acid, a property that takes the
name of redundancy or degeneracy of the code. In the Standard code, for example, there
are two amino acids encoded by a single codon, nine encoded by two codons, five by
four codons, one amino acid encoded by three codons and three by six codons (plus
three stop codons). Codons that encode the same amino acid are called synonymous
codons. Most synonymous codons differ by only one base at their 3' end, the base in the

third position.

C.1.2 The mediator molecule tRNA

In physical terms, genetic codes are mediated by tRNA (transfer RNA), molecules
which are responsible for the translation of the message from nucleotides (the genes) to
amino acids (the proteins). The tRNA molecules consist of 75-95 nucleotides and have
an RNA reading end, called an anticodon, while on the opposite side they are bound to
an amino acid (see Figure I-1 for a schematic representation — (a), called the cloverleaf
diagram — and (b), a three-dimensional model. Multiple codons may be read by the
same tRNA molecule, but usually there is a preferential codon that a tRNA molecule
reads most efficiently (with optimal interaction energy). This unique codon is usually
the one which is Watson-Crick complementary (i.e. A paired to U/T, C paired to G) to
the anticodon of the tRNA. The group of different tRNAs that read the same set of

synonymous codons are called isoacceptor tRNAs.

C.1.3 Translation: the ribosomes

The real translation process happens through the ribosomes, complex structures
consisting of two unequally sized subunits which are composed of RNA molecules and

proteins.

During protein synthesis a messenger molecule (nRNA, transcribed from a DNA
template) moves through a ribosome. As it moves, amino acids are assembled into a
gradually lengthening protein chain whose sequence corresponds to the transcript
sequence, translated into the amino acid code. Having reached the end of the coded

message (the STOP codon), translation stops and the ribosomal subunits separate,
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releasing the mRNA and the completed protein. The tRNA molecules provide the
“dictionary” between the two codes, recognising codons on the mRNA and allowing the
corresponding amino acid, that they carry, to be attached to the growing protein chain

(Figure I-1 c).
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Figure I-1: (a) Cloverleaf diagram and (b) three dimensional model of the tRNA molecule. (c) Schematic diagram of the translation

mechanism and its main players: mRNA, tRNAs, amino acids and ribosomes.



C.14 Codon usage

For some time after the discovery of the redundancy in the genetic code, it was often
believed that synonymous codons for the same amino acid were used randomly in a
genome. The simplest assumption would be that all genomes have uniform codon usage

meaning that synonymous codons are used with equal frequency.

With more and more sequence data appearing in the late 1970s and early 1980s, it
came to light that synonymous codon usage was nonrandom and that different
genomes had different preferred synonyms for any given amino acid. These effects are

known as codon usage bias or simply codon usage.

Before that time, most population geneticists imagined that the usage of codons for a
given amino acid would be distributed only according to the background base
composition in the genome: completely determined neutrally by the mutation processes
in the replication of the genomes. For example, the bacterium Escherichia coli has a
genomic G+C content (total sum of G and C bases over total number of bases) of about
50%. If codon usage were determined by mutation alone, then all genes would show
the same frequencies in the use of synonymous codons, with a base composition having

approximately equal numbers of G+C and A+T.

So in E. coli, the expectation would be that bases would be used in a random fashion,
with G and C being used 50% of the times. In reality this is only true on average, with
usually high variations of codon usage among different genes in the same genome

(chapter III presents analyses of intra-genomic heterogeneity).

C.1.5 Translational efficiency

Other evolutionary forces besides mutation can influence codon usage bias. Selection
for increased translational efficiency is one of them, but it is often considered to be
negligible, especially in organisms like humans and other vertebrates, in intracellular
bacteria and organelles (like mitochondria and chloroplasts). Although in all organisms,
a set of codons may be translated more efficiently than others, a possible selective
advantage, only in certain organisms (for example the above mentioned bacterium
Escherichia coli) will this advantage actually influence the distribution of codons (in
particular for the highly expressed genes). In these organisms a preferred subset of the

genetic code enabling lag-free translation (in particular under conditions of high
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expression, and hence prevalently for highly-transcribed genes) could be positively

selected, with mutations in the coding sequences favoured for those codons.

The currently accepted theory holds that the main factor for the differential
translational efficiency of codons is that tRNA isoacceptors are present in different
abundances in the cells. Those isoacceptors in the greatest abundance cause the codons
which they recognize more efficiently (or accurately) to be translated in a more efficient
way than any of their synonyms. Organisms in which selection acts on translational
efficiency can have different preferred codons, according to the most abundant

isoacceptors.

This was shown by Ikemura and colleagues in the 1980s. The preferred codons were
the same ones as those predicted to translate the most efficiently by the tRNAs in the
examined organisms. This correlation has since been made in some bacteria (like
Escherichia coli, Bacillus subtilis, Haemophilus influenzae, Mycobacterium tubercolosis), in
yeast and in some insects (Ikemura, 1981; Ikemura, 1982; Dong et al. 1996; Li and Luo,
1996; Percudani et al., 1997; Kanaya et al., 1999; Kanaya et al., 2001a) while it was not

found in mammals, where there appears to be little differential fitness for codons.

The probable reason to explain why natural selection acts with less potency on the
choice of codons in mammals might be their small effective population sizes which
would prevent selection from efficiently fixing preferred codons (Mooers and Holmes,

2000; Sharp et al., 1993).

C.2 Code redundancy, superimposed messages

The primary function of DNA is the storage of genetic information. However, DNA
also contains several signals, both compositional and structural (Schaap, 1971; Trifonov,

1989).

The redundancy of the genetic code is exploited in the genomes to superimpose the
various biological messages (for instance the nucleosomal pattern or reading frame) or
to satisfy constraints (like minimisation of palindromic sequences, avoidance of
restriction enzyme cutting sites, DNA bendability and melting temperature), some of

which will be presented in the next section.



The overlapping messages in multicode texts can only coexist due to their
degeneracy: when some letters of one message can be replaced without much damage
to that message, thus reaching a compromise with the other superimposed ones

(Trifonov, 1989).

The constraints to the superimposition of messages are particularly relevant in
organisms with small genomes, such as parasitic bacteria, in which the predominant
evolutionary process is genome reduction (Koonin et al., 1997), most viruses (expecially
in those with fixed genome size determined by the size of the capsid in which the

nucleic material is packed), and organelles.

Relying on the translation machinery of the host, viruses could try to reflect (undergo
positive selection towards translational efficiency) the host codon usage, but this usually
does not happen (as first reported by Grantham and collegues, 1980 and 1981) and is
indirect evidence of the stronger constraints that the viral genomes need to satisfy.
Examples are the avoidance of certain sequences that would be recognised by
restriction enzymes (Sharp et al., 1984), the maintenance of special features like
palindromic regions for genomic superstructure branching, compositional deviant
zones for genomic bending (Hertz et al., 1987) or regions responsible for dimerization

(Cain et al., 2001; Andersen et al., 2003).

Bacteriophages appear to be more influenced by tRNA abundances of the host
(particularly in highly expressed genes). This was shown to be true for E.coli phages,
with the exception of those that carry their own polymerase and can hence be subject to

different mutational pressure (Sharp et al., 1985; Kunisawa et al., 1998).

But the need for superimposed message is not limited to the smaller genomes.
Eukaryotes (with the exception of few protozoa and fungi) have genomes of at least two
orders of magnitude larger than prokaryotes; these large genomes require specialised
‘maintenance’ systems and features on the DNA to regulate those systems (for example

the nucleosome signal for proper chromatin packaging).

C.3 Phonological constraints: the reasons for nucleotide biases

This section presents a brief overview of several superimposed biological messages
that DNA sequences can contain; in other words, of the mechanisms influencing the

composition of DNA sequences and (in the case of coding sequences) the codon usage.
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The two main causes thought to affect the patterns of codon usage are genome tRNA

and G+C contents.

Codon usage in highly expressed genes has been positively correlated to tRNA
content, in particular in bacteria, fungi and insects. In turn the tRNA content correlation
can be explained as selection acting on translational efficiency (as discussed above,

section C.1.5).

Besides translation efficiency, bacterial genomes meet criteria linked to G+C content,
base compositional strand asymmetry and preferential gene orientation. These
pressures occur independently of the coding function and they influence it: there are
reports of protein constraints caused by codon usage, genomic G+C content and strand
asymmetry (see Gautier, 2000, for a review). The asymmetry in gene orientation (genes
are preferentially directed with their translation process occurring in the same direction
as the genome replication) is usually considered as the result of selection pressure
acting to avoid collisions between the replication and transcription mechanisms
(Brewer, 1988). Strand compositional asymmetry, which would imply a difference in the
substitution processes acting on the two strands, has been the subject of considerable

research (Frank and Lobry, 1999).

In mammals, however, the pattern of synonymous codon usage appears to correlate
only to the G+C content of the local genomic region (Bernardi et al., 1985; Smith and
Eyre-Walker, 2001). The nuclear genomes of vertebrates are mosaics of isochores, very
long segments (more than 300kb) of DNA having different homogeneous G+C content
and compositionally correlated with the coding sequences that they embed (see
Bernardi, 2000, for a complete review). They are distinguished as higher-density level
genomic segments (named heavy — H — isochores) and lower-density ones (light — L —
isochores). G+C content of exons, introns and flanking sequences vary in accord with
the isochore class in which they are located. The amino acid content of the encoded
proteins is also affected, with amino acids coded by GC-rich codons (Ala, Arg, Gly, Pro)
more frequent in H isochores. Furthermore, there is a higher frequency of genes in H

isochores than in L ones.

Understanding of the evolutionary forces behind the evolution of isochores has

generated considerable debate between neutralists and selectionists, with several
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models being proposed, but still remaining an unresolved question (Duret and Hurst,
2001). One of the hypotheses proposed: since GC-rich DNA is supposed to provide a
double-helix more stable to heat, and a high density of protein coding genes is
consistently found in homeothermic birds and mammals, a role was proposed for
advantageous selection of GC-rich isochores in animals with high body temperatures.
Emergence of these isochores would have accompanied the transition from cold- to
warm-blooded vertebrates (Bernardi, 2000; but see Hughes et al., 1999 and following

works reporting isochore organisation in several reptiles).

Nevertheless, although vertebrate codon usage strongly reflects G+C content,
nucleotide mutational biases are not sufficient to explain all the observed codon biases

(Urrutia and Hurst, 2001).

C.3.1 DNA structure, curvature, flexibility

DNA structure, beyond the double-helix pattern, can play a fundamental role in a
number of biological processes like DNA-protein interactions (Pazin and Kadonaga,
1997; Pedersen et al., 1998), gene regulation and nucleosome positioning (see below).
The curvature and deformability of the DNA molecule are critical for its packaging in
the cell, recognition by other molecules, and transient opening during several important

processes (transcription, replication, recombination and repair, to name a few).

The relation between exact sequences of DNA and their three-dimensional structure
has been repeatedly shown (Brukner et al. 1990; Olson et al., 1998). Several authors have
been developing methodologies to evaluate the local sequence-directed curvature and
flexibility of a DNA chain employing techniques like X-ray crystallography, electron
microscopy and gel retardation (Zuccheri et al, 2001). For example, sequence-
dependent flexibility was found to correlate with the occurrence of AT-rich dinucleotide
steps along the chain (Scipioni et al., 2002). Databases of structural and flexibility
properties have been compiled for dinucleotide or trinucleotide sets (see Ponomarenko

et al., 1999) and for octamers (Gardiner et al., 2003).

Because structural and protein coding signals can be superimposed in coding
regions, the genetic code should have a substantial degree of structural flexibility. In

other words, there should be the possibility for an amino acid (or an amino acid class
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like hydrophilic) to be encoded by codons with very different structural properties, from

stiff to bendable.

This was shown to be effectively true at the level of broad amino acid categories (the
flexibility at the single amino acid level was reported to be mild) by Baisnée and co-
workers (2001) using dinucleotide and trinucleotide models of DNA structure. They also
demonstrated (in the E.coli genome) that there is practically no correlation between the
structural properties of coding DNA and the physical properties of the encoded amino

acids and proteins.

C.3.2 Nucleosomal pattern

Curved DNA is also related to nucleosomal positioning (Baldi et al., 1996). The
primary function of the nucleosomes (elementary repeating subunits of the chromatin
structure, each formed by 146 bp of DNA wrapped around a protein octamer) is the
packaging of DNA in a dynamic chromatin structure. However, the precise folding of
regulatory sequences of genes around the histones within positioned nucleosomes is
also important in controlling transcription and hence, in turn, influencing expression

(Wolffe, 1994; Tsukiyama and Wu, 1997; Chen and Yang, 2001).

The nucleosome positioning pattern signal is one of the weakest (being highly
degenerate) and is related to the bendability of DNA wrapped around histone octamers.
A reason for this pattern being weak could be that chromatin needs to be easily
unfolded to allow the processes of replication and transcription, thus the binding of
histone octamers and the nucleotidic signal sequence should not be strong.
Furthermore, the degeneracy of the positioning pattern guarantees the possibility of
superimposition to other encoded messages (Bolshoy et al., 1997).

Multiple sequence alignment shows that the main part of the signal is created by the
recurrence of AA and TT dinucleotides at regular intervals (Ioshikhes et al., 1996). The

entire nucleosome site pattern consists of two regions, around 50 bp in length, with

increased bending propensity, divided by a central 15-20 bp zone (Levitsky et al., 1999).

C.3.3 RNA structure and stability

Functional and catalytic RNA molecules exhibit a characteristic secondary structure
highly conserved in evolution. The most well known examples are tRNAs, rRNAs

(ribosomal RNAs), and group I and II introns. RNA structure also plays an important

I—13



role in the stability of mRNA molecules (transcripts), thus the conservation of RNA
structure represents another message superimposed to the protein one in coding
sequences. RNA binding proteins that stabilise or destabilise transcripts rarely recognise
(unlike DNA binding proteins) distinct nucleotide sequences and instead bind to
relatively long elements, suggesting that the RNA secondary structure of the sequences
is an important factor in this process (for a very recent paper on the study of elements

for mRNA stability within a yeast protein coding sequence see Vemula et al., 2003).

Viral genomes in general and retroviral genomes in particular present the most
striking examples of overlapping codes (including overlapping genes and messages on
both forward and reverse strands). Viruses commonly use conserved RNA secondary
structures located within protein-coding regions. Probably the most famous case of
overlapping sequence is the rev-responsive element (RRE) located in the
transmembrane section of the coding sequence for the env protein of HIV (Malim et al.,

1989).

Furthermore, formation of mRNA secondary structure could interfere with ribosome
binding and hence negatively affect translation. Thus this additional constraint to the
composition of coding sequences can be present near the initiation sites (Eyre-Walker

and Bulmer, 1993).

C.3.4 Restriction avoidance

Bacteriophages are viruses which infect bacteria, injecting their DNA into the
bacterial cells and taking control of their genetic machinery to replicate. The primary
bacterial defense mechanism against bacteriophages are restriction enzymes, which cut
DNA molecules at specific locations (restriction sites), usually palindromic in their
sequence pattern. The presence (and the number) of a given restriction site in a phage
makes it vulnerable to the respective cutting enzyme. There is considerable evidence
that both phage genomes and bacterial genomes evolve to avoid the presence of
restriction sites (Sharp, 1986; Karlin et al., 1992; Gelfand and Koonin, 1997), thus

representing an additional constraint to the form of the coding sequences.

The genetic code has been shown to be flexible enough to encode the proteins in
such way as to avoid cutting sites, to the point that phages could be engineered for

protection against all known restriction enzymes while still respecting a favourable
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codon distribution (Skiena, 2001). Interestingly, Skiena observes that since bacterial
rRNA genes are usually located in the regions least depleted of palindromic sequences,
this could be an indication of the tradeoff between the necessities of maintaining the

functional RNA structure and that of avoiding cutting sites in the bacterial genomes.

C.4 Compositional analysis: codon usage and other techniques

Several compositional methodologies have been developed and applied to the
analysis of nucleotide sequences or complete genomes. With sequence data increasing
at an unprecedented pace, there have been increasing efforts to analyse, characterise
and categorise this data using computational methods. The availability of several
completely sequenced genomes allows comparisons which are not biased by selective

sequencing.
Some of the main compositional procedures are overviewed in this section.

C4.1 Compositional biases of dinucleotide abundances: genome signatures

There are multiple definitions of genomic signatures, however they are all based on
the measurement of the frequencies of oligonucleotides (of a specific length) in genomic
sequences (Karlin and Ladunga, 1994; Deschavanne et al., 1999). Genomic signatures
have been computed for complete genomes or just for the coding or non-coding

portions, using oligonucleotides of several lengths.

Dinucleotide relative abundance values are computed from the ratio between the
frequency of a given dinucleotide and the product of the frequencies of its two
component nucleotides. A relative abundance sufficiently different from one shows the
contrasts between the observed frequencies and those expected from random
association. These ratios are reported to be constant throughout the genome, with levels
of relative abundances for the dinucleotides being about the same for each 50 kilobase
segment (Campbell et al., 1999). Comparisons of dinucleotide abundances have been
used as a measure of similarity between genomes. Their values being relatively constant
for coding and non-coding DNA suggests the presence of genome-wide factors that

influence and constrain the genomic compositional patterns (Karlin et al., 1998).

Some general compositionally extreme trends that have been reported (Karlin and

Burge, 1995; Karlin et al., 1998) are: under-representation of the TA dinucleotide in both
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prokaryotes and eukaryotic nuclear genomes (but not in viral or organelle genomes nor
in some archaea), possibly explained by the low thermodynamic stacking energy, the
lowest, of this dinucleotide (Delcourt and Blake, 1991); AT being over-represented in
most a-proteobacteria; CG drastically under-represented (relative abundance values of
0.23-0.37) in vertebrates, usually ascribed to methylation dependent CG—TG mutations

but alternatively explained by chromatin packing constraints.

Species-specific signature appears to be a common feature of the genomes, especially
in prokaryotes. The species-specificity of genomic signatures was recently quantified by
Sandberg et al. (2003), who computed classification accuracy for genomic signatures,
nucleotide biases, amino acid biases and synonymous codon usage. Synonymous codon
usage was shown to capture most of the species-specificity of genomic signatures of
prokaryotes (better than trinucleotide signatures and at 86% of the accuracy achieved
with oligonucleotides of length nine; amino acid usages capture approximately 50% or

less).

C.4.2 Nucleotide biases

According to the base pairing rules, or Chargaff's rules (1951), in the double helix of
DNA the nucleotide Guanine is held together with Cytosine while Adenine pairs with
Thymine. In the double-strand molecule, the total amount of pyrimidine nucleotides
always equals the total amount of purine nucleotides (C+T=A+G), the amount of A
always equals the amount of T (A=T), the amount of C always equals the amount of G

(C=G). The amount of A+T does not need to equal the amount of C+G.

A tendency was noted since the 1950s for the ratio of C+G to the total bases
(A+C+G+T) being constant in a particular species, but variable between species. The
total content of Guanine and Cytosine content of bacterial DNA was observed to range
from approximately 25% to around 75% (Lee et al., 1956), with both mutation and

selection being proposed as explanations for the biases.

For single strand sequences, the genomic content of the four nucleotides or couple of
nucleotides can be computed as total measures, analysed for a sliding window over the
genome or calculated for specific subsets (for example coding versus non-coding

elements). For coding sequences there is the additionally possibility of computing
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nucleotide biases at different coding positions. For example GC3 stands for the

percentage of G and C nucleotides to be found as the third base in the coding triplets.

The two strands of a DNA helix must have the same G+C content but the different
bases can still vary in frequency. For example, one strand may be more rich in G than C

and, by complementarity, the other one will have more C than G.

C.4.3 Codon biases

Since alternative codons for any amino acid are not used randomly, it is desirable to
give quantitative measures of the degree of bias for genes or genomes in such a way as
to allow comparisons both within and between species. Several methods have been

devised to address this goal.

The earliest studies aimed at elucidating the nature of codon biases began in the mid
1980s (with pioneering work from Grantham, Ikemura, followed by Sharp and by other
major groups) and continues with ongoing effort to the present day. One of the
common aspects that these works revealed was the relationship of the nucleotide
composition in third codon position and the local or global genomic nucleotide

composition.

In 1987, the Codon Adaptation Index (CAI) was proposed by Sharp and Li as a
quantitative measure of codon bias, to be used for example to predict the level of
expression of a gene. An alternative measure, the Codon bias between gene classes, was
introduced in 1998 by Karlin et al. and is based on gene collections like ribosomal,
chaperones and translation processing factors. These two methodologies are important
expression level indicators and are used in several contexts, in particular for
heterologous gene expression in order to optimize codon usages and yield high
expression. Codon-optimization refers to the alteration of gene sequences to make the

codon usage match the available cellular tRNA pool within the species of interest.

The CAI assesses the relative merits of different codons based on translational
efficiency. It is based on a reference set of highly expressed genes from which optimal
codon frequencies are extracted. Ratios between the frequency of each codon and the
maximal synonymous codon frequency (the frequency of the most used synonymous
triplet for the same amino acid) are tabulated and used to compute the CAI of a given

transcript, which is the geometric average of the ratios for all its triplets. High values
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(approximating 1) of the CAI correlate with high expression levels. Genes
experimentally known to be highly expressed include most ribosomal protein ones,
those coding for elongation factors and some membrane genes. CAI needs genome
specific tables of codons for highly expressed genes. Although this scheme can appear
limited because of its qualitative nature and because it was originally based on only 24
genes (half of which were ribosomal), it sufficiently captures the codon information for
the most expressed genes, as was recently shown by Jansen and collegues (2003): they
performed parameterization of the CAI model (and of Karlin’s codon bias between classes)
using expression data from yeast. Their results of correlation between codon usage
model and expression data show that few highly expressed genes are sufficient to

describe the overall bias.

If tables for highly expressed genes are not available or if the interest is not focused
on expression levels and translational efficiency, then neutral measures of codon biases

can be employed.

The computation of relative synonymous codon usage frequencies is the most
frequently used codon bias parameter, in particular in correspondence analysis studies
(Perriére and Thioulouse, 2002; for example: Grantham et al., 1980; Holm, 1986; Shields
and Sharp, 1987; Mclnerney et al., 1997; Lafay et al., 2000). This measure of codon usage
corresponds to the observed frequency of a given codon divided by its expected value

under the hypothesis of a random distribution of all its synonymous triplets.

Other methods that have been used are: simple codon frequencies independent of
the genetic code (non-synonymous codon usage, where every codon is considered
independently and not paired to its synonymous ones) and absolute codon occurrences
(which have the drawback of reflecting the amino acid bias of the proteins encoded by
the transcripts, but which are in some cases beneficial and more sensitive; Lafay et al.,

2000).

Another important and widely used codon usage statistic is the effective number of
codons (Ng; Wright, 1990), which measures the amount of bias away from equal usage of
synonyms with values that range between 20 (for extremely biased genes where only
one codon is used per amino acid) and 61 (when all codons are used with equal

probability).
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C.4.4 Frequent and rare words

Some studies focused on the determination of which words (oligonucleotides) occur
with unusually high or low frequency in the genomes, and with which distribution.
Rare words could be binding sites for specific transcription factors, structurally
deleterious sequences or restriction enzyme cutting sites. As for frequent words, they
often are parts of repetitive structural, regulatory or transposable elements. In other
cases, they reflect protein motifs. Comparisons between the abundance and localization
of these words can identify evolutionary tendencies and genomic constraints (Burge et

al., 1992).
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Il Codon profile and codon profiling

A ABSTRACT

A novel methodology, called codon profiling, was devised to represent and compare
the preferential usage of codons in genes and genomes. It computes base and position
specific biases in synonymous codons as opposed to triplet relative frequencies.
Automatic classification of nucleotidic sequences can be performed by analysis of codon
usage information in a metric vector space. The very general scheme employed makes
the methodology independent of the genetic code of the studied genome, allowing the

analysis, for example, of nuclear and mitochondrial genomes together.

Codon profiling was compared to the very similar and widely used synonymous
codon usage methodology, examining the relative benefits of the two schemes. All
analyses presented in this dissertation were performed simultaneously with both

techniques, and differences in the results have been reported.

Various programs were developed for the calculation and display of codon

information and are made publicly available.

B INTRODUCTION

Since the first whole genome was sequenced in 1978 (Sanger et al., 1978) and the first
one of a free living organism in 1995 (Fleischmann et al., 1995), numerous genomes have
been sequenced every year. This provides an enormous resource for comparative
genomic analysis. Specifically, it allows taxonomic analysis based on the whole genome
information rather than on a specific set of genes such as the 16S ribosomal gene.
However, these methods require a great amount of computing power and detailed
analysis by experts for all the genes involved. Simple methods such as the analysis of
G+C content and synonymous codon usage can provide faster identification of regions

of interest.

In this thesis, a way to integrate codon usage and genomic base composition analysis
(such as G+C content) was devised and named codon profiling. It draws from codon

information (occurrences of triplets in coding sequences) but it presents it and analyses
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it from a different point of view than other codon usage techniques. One of the most-
employed of these techniques, and the most similar to codon profile, is synonymous
codon usage (the relative frequencies method) to which codon profile will be compared in

this work.

All the analysis discussed in this thesis have always been conducted in parallel with
the synonymous codon usage technique, constantly noticing the near equivalence of
these two techniques in the results they obtain. Codon profiling was preferred for its
generality, elegance and different approach, but also for its higher (although not
markedly so) sensitivity in some cases, which will be described. Nevertheless, all the
results presented, obtained through codon profile vectors, were repeated and verified

using synonymous codon usage vectors.

B.1 Messages beyond the triplet

Codon profiling arose from the interest towards the additional constraints in coding
sequences: how the redundancy of the genetic code is exploited to superimpose various
messages on top of the peptide one. The coding portions of a genome enable us to
specifically search for these signals, separating the protein message and investigating

the other constraints (g.0. I C.3 for an overview of several important ones).

Like in synonymous codon usage analysis, the amino acid bias (which amino acids
are used more and which ones less frequently in protein sequences) is eliminated with
codon profiles. Codon profiling also tries to reduce in part the contribution of the
component related to cell tRNA content, by working with the single nucleotide as the
minimal unit. This is in line with the understanding that, although a correlation was
found between cellular tRNA content and codon usage in a number of organisms, the
selection pressure acting on translational efficiency is considered weak (see I C.1.5 on

translational efficiency).

Several forces contribute to the shaping of codon usage, and different organisms may
have different constraints to the form of the coding sequences. Changing the point of

view can maybe help the investigation of codon usage patterns.
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C METHODS

C.1 Codon profiling

C.1.1 Shifting the point of view

A codon profile is a record of the preferential use of the four bases at the three
individual triplet positions inside the codon, for all amino acids. The information of
codon occurrences in coding sequences is presented and analysed from the base-at-
position point of view. This point of view is more oriented towards biases which are due
to genomic nucleotidic preferences (and hence mutational biases and compositional

constraints).

The following Table II-1 illustrates a comparison between codon profile and
synonymous codon usage to represent the codon usage information for the amino acid

Arginine in the human genome.

Synonymous codon usage Codon profile

CGT 8% position in the triplet
CGC 19% base 1 2 3
CGA 11% T 0 0 0.08
CGG 21% C - 0 | 019
AGA 21% A 0.41 0 0.32
AGG 20% G 0 1 0.41

sum 100% sum 1 1 1

Table 11-1: Codon usage for the amino acid Arginine in the human genome; comparison between synonymous
codon usage and codon profile methodologies.

In both methods the amino acid bias (which amino acids are used more and which
ones less frequently in protein sequences) is eliminated and relative frequencies (as
opposed to absolute codon occurrences) are computed. Use of relative frequencies can
give rise to artifactual distributions; this is circumvented by appropriate filtering of the

data (see below, section C.4).
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C.1.2 Combined contributions

For the majority of amino acids, codon profile analysis is equivalent to synonymous
codon usage, whereas it behaves differently for 6-fold or 8-fold degenerate amino acids.
For those amino acids (like Serine, Leucine and Arginine in the Standard code, Threonine
in the Yeast mitochondrial code) and also for Glutamine in Ciliata, Dasycladacean and
Hexamita nuclear code the codon profile combines the contribution of the triplets, as in
the example shown above (Table II-1): the high Arg G3 (relative frequency of Guanine
in third position for codons coding for Arginine) of 0.41 reflects the abundances of both
CGG and AGG codons. Section D.1 discusses the differences between the codon profile

and synonymous codon usage analyses.

Codon profile is more focused on revealing genome-wide preferences such as those
from the GC3 analysis (G+C content in the third coding base), but without being
restricted to that single aspect. Nucleotide composition analyses are still widely used
and a source of precious information, even if their nature is coarse and prone to
averaging effects. Codon profiling is the extension of G+C content (and similar base

specific studies) by combining it with codon usage analysis.

C1.3 Generality

Another advantage of the codon profile method is its generality: it can accommodate
different translation tables (all the existing ones, those still to be discovered and the
artificially created ones), since it does not start with a pre-defined setup for the genetic

code.

Synonymous codon usage analysis would use vectors of different dimensionality for
different genetic codes. Additionally, the components of these vectors would have
labels that would depend on the translation table. For example, the dimension which
was relative to an Isoleucine triplet in the Standard genetic code would refer to one of
the two triplets which encode Methionine in the mitochondrial code (or to some other

triplet, depending on how the triplets are sorted — mapped — in the vector).

In codon profiles, a single set of parameters is used for all possible genomes, allowing
for example the comparison between nuclear and mitochondrial genomes, or the

analysis of Mycoplasma bacteria together with the other bacterial species.
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The generality of codon profile vectors is an important aspect of the methodology
which leads to a consistent framework, a uniform labelling of vectors as well as the
possibility to use the same analysis programs and the same visualization tools

regardless of the problem being investigated.

C.14 Dimensionality

Since 20+1 coding possibilities are analysed in 12-element tables (4 bases - 3 codon
positions), the resulting codon profile data vector has 252 elements. Most of the
dimensions in the codon profile vectors would either always be zero or always one,
according to the genetic code. These dimensions do not contribute to measures of
codon composition similarity, are automatically ignored by multivariate analysis
algorithms and hence do not negatively affect performance. They form the basis of the

generality of codon profile vectors, making them independent of the translation table.

C.2 Codon profile vectors and measure of distance

Any two codon profiles can be thought of as two points in the multidimensional

space represented by all possible codon profiles.

If two transcripts (or two groups of transcripts or two genomes) have a similar codon
composition the distance between the corresponding two points in that vector space
will be short. Conversely, if the relative occurrences of the codons in the two sets are

very different, the distance will be long.

The Euclidean (geometric) distance in the codon profile space was adopted as a
convenient and suitable measure of dissimilarity between two codon profiles. The

Euclidean distance can be calculated as follows:

dist,s(p.9)= \/m

where p and g are vectors of 252 dimensions that contain the relative frequencies of

any two codon profiles.

Note that the empty dimensions will not affect the measure of distance: for example for
all data points (in the known genetic codes) the dimension relative to Ser_G1 (content
of Guanine in first position for Serine coding codons) will always be 0. Conversely, the

dimension relative to Val_G1 will always be 1 for all data points. Hence the contribution
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of those dimensions for any two vectors (for both being the same) will cancel and will

not contribute to the measure of dissimilarity.

In all analyses the STOP codons were not considered, since they are statistically
under-represented, occurring only once per transcript. The terminator information
contributed neither to filtering, nor to the measures of codon similarity (which are

hence computed on the first 240 dimensions of the vector).

C.3 Display: single matrices and difference matrices

One of the possible ways to display codon profiles is achieved by arranging the

elements of the vector in a graphical matrix form (Figure II-1 a).

Some amino acids have no synonymous codons, so they appear with three fixed blue
(frequency=1) squares, according to the single codon coding for them. For example,
Methionine (Met) can only be encoded (in the Standard code) by ATG, so the box
relative to Methionine in the matrix display will have three completely blue squares in

correspondence with A in the first, T in the second and G in the third position.

Other amino acids reflect the codon variability, which is usually restricted to the
third position, but (in the cases of Arginine, Serine, Leucine and STOP) can also involve
first or second positions. The scale indicates the relative frequency, as outlined above.
The sum of the elements in each of the columns, indicating the triplet positions, adds

up to 1.00, like in Table II-1 above.

This matrix form is especially useful for displaying differential matrices, showing at a
glance which are the biggest differences between two codon profiles (which may be
computed from two genomes, two protein families or two chromosomes). In this case
the colouring of the scale indicates the difference in frequency between the
corresponding positions of the two codon profiles. Hence the majority of the squares
will be white, with no colour, indicating a difference of 0 (in which case the two codon
profiles are equivalent for those vector dimensions). Slight differences will be lightly
shaded squares and great differences are indicated by stronger shades. Positive
differences are in blue while negative differences appear in red. The matrix in Figure

II-1 b, for example, illustrates the difference between human and HIV-1 codon biases.
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Figure II-1: (a) Homo sapiens codon bias (total codon usage over all sequenced transcripts, sequence data from Ensembl release

8.30a.1; Hubbard et al., 2002) displayed in the codon profile matrix form. (b) Codon profile difference matrix and Euclidean distance

between Homo sapiens and Human Immunodeficiency Virus 1 (codon bias for reference strain HXB2/IIIB-LAI, sequence from

GenBank entry K03455; Ratner et al., 1985).



C.4 Filtering the datasets to prevent artifactual distributions

In the analysis of short transcripts, codon frequencies are susceptible to large
stochastic variation. To minimise this, some authors select only transcripts longer than a
certain amount of bases, for example longer than 300 bp (Garcia-Vallvé et al., 2000;
Kanaya et al., 2001b). Nevertheless, the lack of particular codons in a sequence can
create artifactual multivariate clusterings, especially when using — as in synonymous
codon usage or codon profiling — relative frequencies (Perriere and Thioulouse, 2002).

This could obscure more interesting trends in the data.

Transcripts coding for peptides without Cysteine or without Tryptophan residues are
not infrequent. These transcripts would appear very atypical and cluster together,
concealing other more interesting transcripts, namely those with different but not
abnormal codon usage. For example, the transcripts missing codons for those amino
acids would determine one of the first principal coordinates of separation in

multivariate analysis.

To clean the dataset and eliminate those transcripts, three kinds of filters can be used,

listed here in the order of the most restrictive to the most permissive:

* CSYN-filter: the transcript is kept if it has at least one member of each triplet kind;
only those transcripts which contain each of the 61 species of codons would be further

analysed

* CPRO-filter: the transcript is kept if it holds information in all codon profile
dimensions (for the appropriate genetic code); due to the combination of triplet

contributions, this filter is less restrictive than the previous one (g.v. D.1.2)

* AAfilter: the transcript is kept if it has at least one codon coding for each amino

acid (if it encodes the full repertoire of amino acids)

In single transcripts — and in particular in archaea and in bacteria, since their genes
are relatively short — it is statistically unlikely to find a full repertoire of the 61 triplets.
For this reason the AA-filter is best used to clean data sets composed of single
transcripts. On the other hand, a more restrictive filter can be used for transcript

clusters (e.g. clusters of transcripts belonging to the same protein family).
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The following Figure II-2 shows the application of the AA-filter on the transcripts

from the genome of the bacterium Pseudomonas aeruginosa.

From a total of 5,565 transcripts, 1,601 are removed by the AA-filter. The risk of an
artifactual distribution without application of this procedure is already obvious at this
stage, considering the high number of transcripts that form a sort of band in
correspondence with an Euclidean distance of 2 (and getting smeared for higher
distances, even reaching values of 5 units) from the mean codon bias. These are all those
transcripts which lack codons for one or more amino acids; they are removed from the

data set when the filter is applied.

Considering all the analysed completely sequenced prokaryotic genomes (see
appendix III F.1 for a list), the three amino acids which contribute the most to the
removal of transcripts are Cysteine (accounting for 54.5% of the removed transcripts),

Tryptophan (20.5%) and Histidine (7.5%).
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C4.1 Masking instead of Filtering

An alternative to filtering the transcripts missing codon information (which could be
felt as a loss of valuable data) is the masking of empty dimensions. For example,
transcripts missing all codons for Cysteine would inherit, in the corresponding
dimensions of the codon profile vector (or synonymous codon usage vector), the values

relative to the genomic average distribution of Cysteine codons.

While this might seem a more desirable procedure, since it does not drop potentially
valuable information, it is not exempt from problems. Namely, where to set the limit for
the masking: how many dimensions are allowed to be substituted because of missing
information? Without a (necessarily arbitrary) limit, the masking could include

extremely short transcripts, substituting their codon information with the average bias.

For example in the case of a short transcript which lacks information for half of the
codon species, the application of the masking would result in a codon profile which is
half anomalous and half exactly like the genome average, and this codon profile would

probably stand out as atypical in its own way.

Masking leads to chimeric and artificial codon usages with unknown and potentially

misleading properties. It is therefore best avoided.

C.5 Coloured codons and musical codons

C.5.1 Coloured codons

A visual way to represent codons has been devised. A symbol (a coloured shape) is
assigned to each codon. The symbols were created in a coherent way, with the three
properties shape, inner colour and border colour mapping uniquely to the nucleotides
forming the codon triplets. These coloured symbols (denoted Coloured codons) can be
used to enhance the differences in synonymous codon usage for every transcript

forming a protein family.

Figure II-3 shows the genetic code through the coloured codons symbols. It is easy to
notice that the symbols were created with consistency to the nucleotides in the triplets:
there are four possible border colours (which stand for the four possible bases in first
codon position), four possible shapes (to represent the middle codon position, the one

most linked to the chemical characteristics of the encoded amino acids) and four
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possible filling colours (which stand for the possibilities in the third position in the

triplet, the "wobbling” one).

An example application of the coloured codons analysis will be given below,
rendering transcript sequences with these symbols (see V D.3). Visual inspection of
sequences (and in particular clusters of sequences, as in the experiment performed) is
greatly eased by use of the coloured symbols (especially if compared to the normal
representation, using the Latin letters TCAG — or UCAG for RNA), allowing an easier

and faster discovery of synonymous triplet preferences or other strong patterns.

Additionally, this process allows recovery and observation of the sequential codon
information which is normally lost in compositional analyses. The order in which the
triplets appear along the gene is made apparent, leading to the possible discovery of
gene positional patterns (for example certain preferences for some synonymous triplets
at the beginning of the transcript) or identification of possible gene fusions when

observing very different codon usages in the two halves of a sequence.

C.5.2 Musical codons

Another alternative way developed to represent biological sequences, specifically the
coding ones, makes use of sound. The interest in representing genetic patterns in music

is both pedagogical and aesthetic.

Most algorithms that convert DNA sequences to music (for example Hayashi and
Munakata, 1984; Ohno and Ohno, 1986) adopt a one-to-one correspondence between
the four nucleotides and four notes. But when representing the coding sequences it is
probably best to facilitate the perception of the triplets and the following of the correct
“listening frame”. For this reason the Musical codons concept makes use of rhythm, in

addition to pitches.

By employing four different rhythm structures and four notes (which can be further
distinguished as appearing at the beginning or at the end of the rhythm structure),
sixty-four musical combinations were defined and assigned to the triplets of the genetic
code (the mapping is represented in Figure II-4). This was done with the same scheme
as the coloured codons described above, following the same principles. The three
properties of shape, inner colour and border colour described above are mirrored in the

corresponding rhythm structure, beginning note and ending note.

I1—32



The programs coded to translate sequence to music are available through a graphical
interface  which can  be  reached from  the  internet  address:
http://www.ebi.ac.uk/~insana/codonprofile/. The conversion of biological information into
tones and rhythms enables the shifting of the pattern search and recognition processes
to the musical (and hence temporal) domain. In addition to allowing a different
approach to the biological sequence analysis, the musical sequences can find application

in works of artistic science (or scientific art) and in popularisation of science.

While not appearing in the work of this thesis, the algorithm to generate musical
codons is used by the Sonic Genes project, with which the author collaborates (The art of
DNA, Economist April 2003). Sonic Genes is an ongoing research project — started in
2001 by Dr. Sophie Dauvois — that investigates ways of converting genetics into music.
This collaboration between geneticists and musicians, which proposes to translate the
human genome into music, merges scientific knowledge and artistic expression to
produce soundscapes from DNA sequences. The project is being supported by the
Wellcome Trust program Science on Stage and Screen through a Research and

Development grant.
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D RESULTS AND DISCUSSION

D.1 Comparison with synonymous codon usage analysis

Synonymous codon usage (CSYN) and Codon profile (CPRO) vectors are computed
from the same source, namely codon occurrences, which is the abundance of the 64
triplets in the coding sequences. Nevertheless they analyse this information in a

different way, focusing on different aspects.

Both eliminate the amino acid bias (i.e. the same CSYN or CPRO would be computed
from sets of data with, for example, a 30:1 or a 1:30 ratio between Alanine and Arginine
residues). Furthermore, both look at relative biases rather than absolute codon
occurrences. But CSYN takes the minimal unit to be the codon, while CPRO has the
individual bases as the minimal unit. Apart from the different perception, labelling,
display methods and generality, the shifted point of view translates into differences in
the treatment of 6-fold and 8-fold degenerate amino acids. Consequently certain
information will be preferentially exposed by one methodology while shielded by the
other.

CPRO is targeted at individual position specific base propensities, while CSYN looks
at differential codon usage. Alternative names for CPRO could hence be synonymous
base specific bias or synonymous TCAG123. In fact, if two data sets are analysed, differing
only in the use of codons for a single amino acid type, CPRO would be equal to

TCAG123 (nucleotide propensities at individual codon positions).

For the majority of amino acids, codon profile vectors are completely equivalent to
synonymous codon usage vectors. The differences are restricted to the 6-fold or 8-fold
degenerate amino acids (three of them present in the Standard code: Arginine, Leucine

and Serine).

For such amino acids, both CSYN and CPRO intrinsically hide and expose some
information. Some examples are useful to better appreciate the differences between the
two techniques; several codon usages for the amino acid Arginine will be presented and

discussed in terms of CSYN and CPRO.
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D.1.1 Shielded information

Some information is hidden in CPRO compared to CSYN. In other words, the codon
profile vectors shield some differential codon preferences that are exposed by

synonymous codon usage.

Two different CSYN sets for Arginine that give rise to the same CPRO are

represented in Table II-2.

Synonymous codon usage Codon profile
CGT 0% position in the triplet
CGC 0% base 1 2 3
CGA 50% T 0 0 0.0
CGG 0% C 0.5 0 0.0
AGA 0% A 0.5 0 0.5
AGG 50% G 0 1.0 0.5

Synonymous codon usage Codon profile
CGT 0% position in the triplet
CGC 0% base 1 2 3
CGA 0% T 0 0 0.0
CGG 50% C 0.5 0 0.0
AGA 50% A 0.5 0 0.5
AGG 0% G 0 1.0 0.5

Table I1-2: Shielded information: two CSYN sets that CPRO considers equal because the base propensities of the
two sets are the same.

This is in the spirit of codon profile, where triplet occurrences that give rise to the
same base propensities are treated equally, ignoring their difference. The decision to
sum these contributions was taken because of the correlations, observed in codon
usages studies, between triplets and nucleotide contents. The triplets that contribute to
the same nucleotide contents are equally considered and this produces higher

separation between data sets in which those triplets are correlated.
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The extent of hidden information can be quantified: if considering discrete relative
frequencies in multiples of 0.1 (i.e. 10%), there are in total 126 possible CSYN vectors for
a 6-fold degenerate amino acid; these translate into 105 unique CPRO vectors. In reality,
using actual biological data, it is quite rare to encounter these cases as they require a
certain symmetry in the distribution of triplets (with frequency distributions such as
<0.20.10.2 0.2 0.1 0.2>) for perfect complementarities of all the elements in the CPRO

vector.

D.1.2 Complementary information

As the information for some dimensions in the 6-fold and 8-fold degenerate amino
acids is the result of the contribution of different synonymous triplets, CPRO vectors
can have data in all useful dimensions in some cases where CSYN vectors would be

missing data.

Consider the following set (Table II-3), where one of the synonymous triplets is

missing in the data element.

Synonymous codon usage Codon profile
CGT 20% position in the triplet
CGC 20% base 1 2 3
CGA 20% T 0 0 0.2
CGG 0% C 0.6 0 0.2
AGA 20% A 0.4 0 0.4
AGG 20% G 0 1.0 0.2

Table 11-3: Arginine set missing one synonymous codon. The CSYN vector lacks data for one dimension while
the CPRO vector has all dimensions present because of complementary information.

Usually the vectors which are atypical because of missing information (generally
coming from short sequences or small clusters of transcripts, susceptible to large
stochastic variation) need to be removed from the data set because of possible

artifactual clustering during multivariate analysis (Perriére and Thioulouse, 2002).

In the cases in which the information provided by a totally missing triplet can be

complemented by another synonymous triplet, the CPRO vector corresponding to this
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data could be kept in the data set. This is the reason why a CPRO-filter removes less
elements than the CSYN-filter (see II C.4 for a description of these filtering schemes).

D.1.3 Exposed information, enhanced distance

Some information is exposed in CPRO compared to CSYN (in other words, CPRO

enhances some differential nucleotide preferences that CSYN treats indifferently).

Assuming these very similar relative synonymous codon distributions for amino acid

Arginine:
CGT CGC CGA CGG AGA AGG
dataset A 0.1 0.2 0.2 0.2 0.2 0.1
dataset B 0.1 0.2 0.2 0.2 0.1 0.2
dataset C 0.1 0.1 0.2 0.2 0.2 0.2

Table 1I-4: Three equidistant CSYN wvectors for Arginine codons. These vectors are not equidistant from the
CPRO point of view.
The three vectors are equidistant in this 6-dimensional space, and the Euclidean

distance between any two of them is equal to 0.141 units.
MultiVariate Algorithms (MVA) would not cluster any of these vectors together:

/TN
ABC
If the same data is observed from the point of view of codon profile vectors, a

different pattern emerges (Table II-5).

dataset A dataset B dataset C
1 2 3 1 2 3 1 2 3
T 0 0 0.1 0 0 0.1 0 0 0.1
C 0.7 0 0.2 0.7 0 0.2 0.6 0 0.1
A 0.3 0 0.4 0.3 0 0.3 0.4 0 0.4
G 0 1.0 0.3 0 1.0 0.4 0 1.0 0.4

Table II-5: The three vectors which were equidistant in CSYN analysis are clustered in CPRO, with A and B

more similar to each other than to C.
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In CPRO terms, A and B are more similar (distance of 0.141) and would be clustered

together, both being at a distance of 0.2 units from C:

AN\
ABC

The same applies to the other 6-fold degenerate amino acids.

The examples presented in the sections above (what is shown and what is shielded
by the two methods) reveal the different targets of CPRO and CSYN. CPRO from this
point of view is not intrinsically better or worse than CSYN. It is instead different: the
different point of view enhances some information while hiding other information, in
accordance with the nucleotide preferences. A real case scenario in which this
difference was observed is presented below (D.4.1). A large scale comparison of
Euclidean distances computed with CPRO and with CSYN vectors is reported in the
next chapter (section III D.1).

D.2 Complete, extensible: generality

CPRO can accommodate any genetic code, all the present ones (16 different tables, 2
of which equal apart from translation initiation codons) and all the ones that will be

discovered or created in the future, without any ad hoc adjustment.

CSYN vectors would have labels for the 64 dimensions that depend on the genetic
table. Hence 15 different CSYN vector types would have to be managed. Codon usage
information coming from organisms with different translation tables (e.g. Mycoplasma
pneumoniae — translation table 4 — and Bacillus subtitlis — translation table 11) would not
be straightforwardly comparable because the dimensions in the two vectors would refer

to different codons. This problem is not present in CPRO, allowing:

1) the use of CPRO vectors without any adjustment for any genome or sequence
coming from any organism. In particular: no need to redefine the labelling of

dimensions in multivariate analysis programs

2) the possibility of comparing codon usages across different genetic codes (between
organisms with different translation tables). In particular: the possibility of comparing

nuclear and mitochondrial genomes of the same organism
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3) the possibility of using CPRO also for novel (artificially created or computationally
modelled) genetic codes. For example, the following CPRO would come from a

modified genetic code with four codons for Methionine (Table I1-6)

Codon profile
position in the triplet
Base 1 2 3
T 0 1 0.2
C 0 0 0.2
A 1 0 0.1
G 0 0 0.5

Table 11-6: Example from a hypothetical modified genetic code having 4 synonymous codons for Methionine.

D.3 Dimensionality

Codon profile uses a high number of dimensions (vectors of 252 components), but
the majority is composed of invariable dimensions. Invariable dimensions are those

containing either always 1 or always 0 (according to the genetic code).

These components do not contribute to the actual analyses: they are ignored by MVA
algorithms. They also do not contribute to the computation of Euclidean distances
because all vectors would have the same value in these dimensions, so the contribution

of them is actually zero.

The real dimensionality of CPRO vectors is the same one of CSYN vectors, in the
Standard code. Out of the 64 triplets, the three terminator (STOP) codons are usually
ignored in compositional analysis (due to their statistical under-representation: only
one STOP codon per transcript) and so are the relative frequencies for Methionine and
Tryptophan (which would always be 100% as they are both coded by a single triplet in
the Standard code). Thus the number of variable dimensions for CSYN vectors is 59.
The three 6-fold degenerate amino acids contribute six variable dimensions each to the
CPRO vectors (relative usage of the two nucleotides that can appear in first position
and relative usage of the four possible nucleotides in third position; actually, there are

eight variables for Serine but those for the second position are completely correlated to
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those in the first). Since the information for the other synonymous sets is equivalent

under both schemes, CPRO vectors have also 59 variable dimensions.

Codon profiling does not hence require higher computational power or a larger

amount of data than other synonymous codon usage techniques.

It is important here to note that although there are 59 variable dimensions in total,
the effective space of synonymous codon usages has a lower effective dimensionality
since the triplets are not independent when measured by their relative frequency (a
higher usage of one triplet implies a lower usage of the synonymous alternatives). The
number of theoretically uncorrelated dimensions in the Standard code is 41 for CSYN
and 38 for CPRO (see section VI B.6 from chapter six), with the lower number for CPRO
due to the summarisation of codon information for Arginine, Leucine and Serine, by
combination of triplet contributions. In practice there are always correlations among the
triplets of observed codon usages (both within and between synonymous sets), like the

correlation of the triplets contributing to the GC3 content.

The CPRO scheme was developed with a focus on the correlation of triplets
according to nucleotide contents and hence combines together the triplets that

contribute to the same base-at-position contents.

For example, the difference in the usage of AGR and CGN codons for Arginine was
found to be one of the major contributions to the separation of bacteria from archaea
(VI D.3.2) and of vertebrates from invertebrates (III D.3.4). AGR codons (AGA and AGG)
are the rarest codons in Escherichia coli (6% relative usage) and amongst the rarest in
many bacterial species (it has been suggested that in these organisms they play a role as

modulators, regulating gene expression; Chen and Inoue, 1990; Ohno et al., 2001).

The CPRO approach lowers the effective number of uncorrelated dimensions (from
41 to 38) and hence the maximum number of orthogonal axes that can be found by a
multivariate ordination procedure to separate the data (q.v. Il C.4). Nevertheless, for
practical purposes a high number of axes such as 38 or 41 is never used in dimensional-
reduction multivariate analyses (such as correspondence analysis or multidimensional
scaling) for the following reasons: 1) the first few axes account for the largest fraction of
variation (usually the number of axes is chosen so that at least 60% of the percentage of

total variation can be accounted for); 2) choosing too high a number of axes increases

11—42



the variability within the groups more than the variability between groups, thus
lowering the usefulness of the procedure in discriminating among labelled sets
(Anderson and Willis, 2003); 3) it is difficult to graphically represent a high number of
orthogonal axes. In codon usage studies two, three or four axes are commonly used,

usually sufficient to account for most of the variation.

If the CPRO vectors can retain useful discrimination power (the ability to separate
transcripts or genomes based on the codon usage information) in practical analyses,
making it easier to see codon usage patterns, then their summarisation of codon

information for the 6-fold degenerate amino acids can be justified.

D.4 Resolving power and sensitivity

In all the analyses presented in this work the CPRO scheme obtained almost identical
results to the CSYN one, since the two methods differ only in the treatment of the
codon information for three amino acids in the Standard code. In some cases a higher
resolving power was noted, namely the ability to discriminate based on codon

similarity.

Although CPRO can help the simple visualisation of codon usage patterns, its
discrimination power will be in absolute terms lower than the one of CSYN vectors,
which contain the information on the relative usages of those triplets whose
contributions are summed in CPRO vectors. There is hence a maximum of 38
orthogonal separation axes that can be found in CPRO compared to the 41 in CSYN, as

discussed in the previous section.

The Euclidean distance computed between two codon profile vectors is generally
greater than the one computed on synonymous codon usage vectors relative to the
same data, as exemplified in the study of heterogeneity on prokaryotic genomes (where
intra-genomic codon profile distances are greater than those computed with

synonymous codon usage vectors; g.0. III D.1).

The different scale between the measures obtained under the two vector schemes
was taken into consideration during the detection and identification of Horizontal Gene
Transfers (described in the IV chapter), lowering the thresholds of codon similarity and
atypicality when repeating the codon profile analysis with synonymous codon usage

vectors. The codon profile appeared more sensitive in that comparison since, even
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taking in account the different scale, similarity thresholds had to be relaxed more when
using synonymous codon usage vectors to detect the probably transferred regions (g.v.
IV D.6). Nevertheless, this sensitivity is only slightly higher, and this is not surprising,
since it would be due only to three amino acids which are treated differently under the

two schemes.

D.4.1 Hierarchical clustering of bacterial genomes

Another case where the codon profile approach produced different results was a
clustering performed on the completely sequenced bacterial genomes. The sequenced
bacterial genomes were hierarchically clustered according to their total synonymous
codon bias and according to their codon profile bias. The whole-genome bias was
computed from all the transcripts coming from the CDS (coding sequences) in the
genomic entries of EMBL database (Stoesser et al., 2003; the list of genomes and

accession codes is reported in III F.1).

Having no pretence of being a taxonomically accurate analysis (as the codon
information is not considered sufficient for reconstructing taxonomic relationships and
comparative analysis of homologous sequences is best used for this), it originated as a
parallel representation of the clustered maps of the prokaryotic codon space (see VI
D.3.2). Although the exact branching pattern between the taxa cannot be reliably
resolved, nevertheless the clustering shows some consistency at family level: bacteria
belonging to the same family (like for example Rhizobiales, Chlamydiaceae or Bacilli)
appear to have very similar genomic codon biases and are clustered together (Figure

II-5; compare also with the multidimensional scaling map of VI D.3.2, Figure VI-9).

The two diagrams are more or less equivalent, with many bacterial families kept
together. One of the biggest differences is the placement of some Enterobacteriaceae,
which appears to be more in agreement with taxonomical views in the CPRO scheme.
In the clustering according to CSYN vectors, the Y.pestis strains and Vibrio cholerae (two
Gram negative enterobacteria; green arrow in the figure) are clustered together with
Gram positive Bacilli (near B.subtilis and B.halodurans). The clustering according to
CPRO correctly places these species next to the other Enterobacteriaceae (E.coli, S.typhi,
S.typhimurium).
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The reason for this result is to be found in the greater distances (for CPRO in relation
to CSYN) in various dimensions of the vectors relative to, for example, Y.pestis and
B.halodurans. The greater distances are due to the combined contributions of codons, as

discussed above (D.1.3), in the 6-fold degenerate amino acids.

For example, inspecting the contribution of the amino acid Serine (Table II-7) to the
clustering under the two vector systems, CSYN considers equally (dis)similar Y.pestis
and B.halodurans (which belong to different bacterial families and Gram stain groups) or
Y.pestis and E.coli (both Enterobacteriaceae). The contribution of Serine to the total
Euclidean distance between the genome vectors is 0.101 for Y.pestis to B.halodurans and
0.102 between Y.pestis and E.coli. Using CPRO vectors, combining the contributions of
the triplets in the base composition point of view, B.halodurans becomes clearly more
distant from Y.pestis (0.177 distance units for the dimensions relative to Serine) while

E.coli and Y.pestis are more similar (0.122 distance units) and hence get clustered

together.
TCT TCC TCA TCG AGT AGC
B.halodurans 0.175 0.142 0.201 0.159 0.153 0.170
E.coli 0.146 0.149 0.124 0.154 0.151 0.277
Y.pestis 0.158 0.118 0.173 0.114 0.207 0.230

Table II-7: CSYN contents for Serine codons in three bacterial genomes.

The different treatment of triplets contributions produces different separation. The
synonymous triplets are not considered as equal possibilities but are summed according

to their contribution towards base composition.

Another interesting aspect that can be noticed in the hierarchical clustering is the
placement of T.tengcongensis, which is a Gram negative anaerobic but is reported to
have 60% sequence similarity with B.halodurans (a Bacillus, hence a Gram positive). In
the hierarchical cluster this is confirmed, with T.tengcongensis close to B.halodurans, in

both CPRO and CSYN clusterings.
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E CONCLUSIONS

Apart from the 6-fold and 8-fold degenerate amino acids, codon profile analysis
(CPRO) behaves exactly like synonymous codon usage analysis (CSYN). For those
amino acids, it instead shows a slightly different picture. Some distinct CSYN vectors
are equivalent from the point of view of CPRO; some vectors which are treated in the
same way under CSYN are differentiated under CPRO. Thus great care should be
exercised when using codon profile vectors; whenever possible analyses should be
carried out using both approaches, comparing the results. Sometimes the codon profile
combination of triplet contributions could hide important differences, while in other

cases it would enhance the bias, and hence be preferable.

The CPRO point of view is more biased towards genomic nucleotidic preferences
and less towards individual triplet preferences, and this is one reason for adopting it in
large scale genomic studies, like those presented in this dissertation. Additionally, its
generality and coherent scheme makes it a very suitable and extensible tool for large
scale genomic analyses. For example it allows comparison of nuclear and mitochondrial
genomes, or the analysis of all bacteria together, including those with non standard

genetic code.

A number of tools to compute, compare and display codon biases and codon
similarity have been developed and their use will be presented throughout the

following chapters.

F  APPENDIX

F.1  Web services and programs

Various public services to perform codon profile and synonymous codon usage
analysis have been set up as web-interfaced tools and are accessible at the internet
address: http://www.ebi.ac.uk/~insana/codonprofile/. Submitting as input either a transcript
sequence (or a concatenation of sequences) or an entry from the CUTG database
(Nakamura ef al., 2000), the user can retrieve the result of a series of calculations based
on codon usage. The calculations included are: codon profile vector, synonymous

codon usages, nucleotide contents (total or for individual triplet positions) and amino
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acid relative frequencies. Various forms of displaying the results can be used, including

codon difference matrices.

The programs used in this work to calculate, manipulate, visualise and characterise
the codon information are, with the obvious exception of those explicitly mentioned
and cited in the Methods sections, scripts written in the Perl (http:/www.perl.org/)

programming language by the author; they are available upon request.

F.2 Databases

Codon profile vectors, synonymous codon usage frequencies, amino acid relative
frequencies, position specific base propensities, total nucleotide contents and other
similar calculations, which were performed on all completed genomes and on their

transcripts, are available in flat-file format at the above mentioned internet address.
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IIl  Genomic heterogeneity

A ABSTRACT

The sequence composition of genomes displays species-specific frequencies with
genome-specific preferential codon usages. This can be wused for hierarchical
classification, screening of Horizontal Gene Transfer events and studies on biodiversity.
On the other hand, codon usage can vary substantially among the genes within one

genome, and average codon biases often conceal the intra-genomic differences.

A study of codon heterogeneity was hence performed, computing the variability of
codon usages inside a genome and providing the statistical background for the

subsequent analyses and a scale for the measures of codon usage similarity.

The distributions of the codon usage of all the completed genomes have been
plotted, showing a consistent range of intra-genomic variability and the amount of
atypical transcripts, which are the transcripts with codon usage significantly different

from the genome bias.

B INTRODUCTION

In 1980 the precursor work of Grantham and co-workers revealed a high degree of
consistency between the preferential usage of codons among genes of the same or
similar organisms. One of the first observations was that viruses and mammals have
widely separate coding strategies. The descriptive hypothesis they stated was “all genes
in a genome, or more loosely genome type, tend to have the same coding strategy”. This was
called the genome hypothesis and suggested that each type of genome preferentially
employs a certain subset of the genetic code, using it differently from other kinds of
species, with choices among synonymous triplets being consistently similar among its
genes. Following research confirmed the initial finding and investigated the possible
causes of such species-specific patterns (from translational efficiency to mutation biases,
as overviewed in the first chapter). It even appears possible to capture whole-genome
characteristics with compositional tools and predict the genome of origin of a genetic

sequence from this species-specific pattern (Kanaya et al., 1999; Sandberg et al., 2003).
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After some years, with more sequence data available, it became clear that most
species displayed also considerable intra-genomic difference, with codon usage found
to vary substantially among the genes within one genome. To prevent concealment of
the underlying heterogeneity, averaging of codon usage over all the genes was
discouraged and the trends in the variability of genes and classes of genes inside a
genome began to be investigated (Sharp et al., 1988). The differences between classes of
genes with highly biased usage of synonymous codons and others with more even

usage attracted considerable research.

To verity the relative merits of the two opposite (but complementary) views, the
intra-genomic heterogeneity was studied in several domains for which complete
genome sequences are available: archaea and bacteria, human infecting viruses and
some animal genomes. In addition to a better picture of the codon heterogeneity, the
results of the analyses provided the statistical background for the subsequent
investigations (presented in the following chapters) and the scale on which to compare

the measures of codon similarity.

C METHODS

C.1 Completely sequenced prokaryotic genomes

Codon information from all available archaeal and bacterial genomes (see appendix
III F.1 for complete list and accession numbers) was computed in the form of codon
profile vectors for all the individual transcripts — annotated coding sequences — and for
the whole genomes. The coding sequences were obtained from EMBL database entries
(Stoesser et al., 2003) using the coderet program from the EMBOSS package (Rice et al.,
2000).

Only transcripts that encode at least one of each amino acid species were analysed,
removing the others from the data set (application of the AA-filter, see II C.4). 140,207
transcripts out of a total of 227,434 (61.6%) were kept in the data set and this resulted in
codon-dissimilarity distributions of the same skewedness but with less deviation, lower
average and shorter tail. Relatively more transcripts are dropped for archaea than for

bacteria.
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The three amino acids which contributed the most to the removal of transcripts are
Cysteine (accounting for 54.5% of the removed transcripts), Tryptophan (20.5%) and
Histidine (7.5%).

For each genome, the Euclidean distance (see II C.2) between all the transcripts and
the genome average was computed and the resulting distributions of distances were

plotted in the form of histograms and in boxplot representations.

C.11 Boxplots

A boxplot is a way of visualising one-dimensional data presenting the distribution of
values in a more compact way than histograms. This is particularly useful when
comparing two or more sets of sample data. Differences in the medians and spreads of
the datasets are clearly visible with a boxplot. It gives a picture of the symmetry of a

dataset, and shows statistical outliers very clearly.
A boxplot comprises the following elements:

1) A central box within which half of the data lies. The central box is bounded below
by the first quartile (also called the x,,; quantile: the middle number in the first half of

the data set) and above by the third quartile (x, ;). A central line marks the median.

2) Two protruding lines (whiskers) extending from the central box. The commonly
accepted method for drawing the whiskers prescribes a maximum length for each
whisker of 1.5 times the interquartile range (IQR). The whisker above the third quartile
can reach the largest data value that is less than (or equal) to the value being 1.5 IQRs
above the third quartile.

3) Outliers marked individually: those data points lying beyond the whiskers.

C.2 Human infecting viruses

Complete genome sequences of human infecting viruses were obtained from
GenBank (Benson et al., 2000). Removing those that do not contain any CDS (coding
sequence) information and keeping (for brevity) only the sequence of four out of the 76
strains of papillomavirus, left 39 complete viral sequences (appendix III F.2 reports the
list and accession numbers). These contained 1,318 transcripts, of which 304 were

removed by AA-filtering (Il C.4).
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The remaining transcripts were used to compute codon profile distances from self
and from human: the distances between the transcripts to their own genome bias and

the distances to the human genome bias, respectively.

The distributions of these two groups of distances were plotted side by side using the

boxplot representation.

C.3 Completely sequenced eukaryotic genomes

C.3.1 Genomes from the Ensembl project

Transcript sequences for eukaryotic genomes were obtained from Ensembl (Hubbard
et al., 2002; http://www.ensembl.org), a project that provides automatic annotation for a
number of eukaryotic genomes, including the human one, which started the project.
The analysed genomes, and their Ensembl release version, are: human (Homo sapiens,
8.30a.1), pufferfish (Takifugu rubripes, 8.1.1), mouse (Mus musculus, 8.3c.1) and mosquito
(Anopheles gambiae, 8.1b.1).

The transcripts were grouped according to the annotation from the Tribes protein
family clustering algorithm (Enright et al., 2002). Families containing less than 5
transcripts were discarded. Additionally, the most restrictive filtering, CSYN filtering
(see II C.4) was applied, keeping only those clusters with a complete set of all codons.
The total number of protein families kept in the analysis is higher than 80% of the total

number for the vertebrates and around 71% for the mosquito genome (Table III-1).

Genomes
s Homo sapiens Takifugu rubripes Mus musculus Anopheles gambiae
Families
Total 1012 1414 1050 762
Analysed 824 1261 881 540

Table 11I-1: number of total and analysed transcript clusters for each Eukaryotic genome. Those clusters not

comprising a complete set of all codons were discarded.

C.3.2 The fly genome

The heterogeneity of the mosquito genome has been compared to the genome of the
main model species for insects: the fruitfly Drosophila melanogaster. At the time of the
analysis, this genome was not yet in the Ensembl project, so the transcripts sequences

were obtained from the website of FlyBase (The FlyBase Consortium, 2002;
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http://www flybase.org/). 5,016 coding sequences from the fruitfly genome satisfy the
CSYN-filter and were compared to 1,386 CSYN-filtered transcripts from the mosquito

genome.

C.4 Multivariate analysis

The study of synonymous codon usage is a high-dimensional data analysis problem,
as it involves the simultaneous investigation of the contributions from all the triplets.
Multivariate analysis has hence been frequently used to study codon usage (Grantham
et al., 1980; Holm, 1986; Shields and Sharp, 1987, Médigue et al. 1991; Mclnerney, 1997;
Kanaya et al., 1999; Lafay et al., 2000; Kanaya et al., 2001a).

The major trends accounting for the variation among codon usages were studied
using correspondence analysis (CA; Benzécri, 1973; Greenacre, 1984) and
multidimensional scaling (MDS; Cox and Cox, 1994), two methods that project high-

dimensional information onto low-dimensional spaces.

In fact, these methodologies yield a series of ordered orthogonal axes (also referred to
as factorial axes) that account for smaller and smaller proportions of the original

variance present in the data set.

Both are unconstrained ordination procedures, in that they do not use a priori
hypotheses but they reduce dimensions according to general criteria, such as
maximizing dispersion or keeping distances in the new dimensional space equal to the
original distances. These unconstrained procedures are extremely useful for the
visualisation and discovery of broad patterns across the set of points in a
multidimensional space; in particular, where the data is classified into labelled groups,
they enable the visualisation of potential patterns of relative dispersion or location

differences among the groups.

For both methods it is possible to estimate the accuracy of the representation, namely
the amount of variation information retained when lowering the number of
dimensions, which can be approximated by the cumulative percentage contributions

from the eigenvectors associated with the projection to the low-dimensional space:
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2i=1 4

where [ is the number of axes chosen for the low-dimensional representation, n is the

I
Zi:l 2”‘

total number of positive eigenvalues and 4, are the eigenvalues sorted in descending

order (i.e. 4, > 4, ... > ).

Since smaller eigenvalues contribute much less weight to the total distance between

the points, these can be usually truncated with less error for low-dimensional display.

The total number of positive eigenvalues is related to the number of uncorrelated
dimensions: the number of orthogonal axes needed to account for the total variation
among the points of the multidimensional space. Both procedures assess the departure
from a null hypothesis of no dependence between the original dimensions of the data.
If there is no correspondence, the number of orthogonal axes needed to account for all

the variation among the points is equal to the number of original dimensions.

It is also important to note that, when looking for patterns among labelled groups of
data in a low-dimensional overview, choosing too many axes has (apart from the
difficulty in the visualisation) the drawback of increasing, after a certain number of axes,
the intra-group variability compared to the inter-group one, and hence diminishing the

ability of discriminating among the groups (Anderson and Willis, 2003).

The obvious shortcoming of these low-dimensional representations is the loss of the
individual variate values. To overcome this, the low-dimensional data overviews need
to be integrated with other techniques to recover more of the multivariate information.
Unfortunately most visualisation and analysis techniques are limited in their practical
use by both the dimensionality and the amount of the multivariate data (Wong and
Bergeron, 1997). For example, a scatterplot matrix (an array of panels presenting
pairwise adjacent scatterplots) of all 59 triplets of a synonymous codon usage would

require 1711 plots.

In almost all low-dimensional plots presented in this work, multidimensional scaling
(also known as principal coordinate analysis; Gower, 1966) was chosen for presenting the
results because it generally had a higher amount of variation explained with less axes,

making it particularly useful for two-dimensional data representation. Additionally,
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MDS preserves the Euclidean distances, which were chosen as the dissimilarity measure
between codon usages. In fact, in the plots produced after multidimensional scaling the
distances between the points in the plot reproduce the dissimilarities between the
points in the high-dimensional space. In other words, the larger the dissimilarity
between two points in the high-dimensional space, the farther apart they should be in

the low-dimensional representation.

The values appearing at the tick marks on the axes of a multidimensional scaling plot
represent the variation along the two (in the case of two-dimensional plots) principal
coordinates. Unless no principal coordinate can be found (as in the case of random
distributions), the x-axis has a higher range of values, indicating a greater separation of
the data along that axis. This is the case for all the multidimensional scaling plots

appearing in this work, where the first principal coordinate is related to G+C content.

The R statistical computing environment (Ihaka and Gentleman, 1996) was used to
perform these multivariate analyses, which are implemented by the functions cmdscale
(library MVA) for multidimensional scaling and ca (library multiv) for correspondence

analysis.

D RESULTS AND DISCUSSION

D.1 Completed prokaryotic genomes

The transcript sequences of all the completely sequenced archaeal and bacterial
genomes were compared in terms of codon composition with the average codon bias of
their genome. The distribution of the codon similarity values (measured using
Euclidean distance in the codon profile vector space) was analysed for each genome in
order to determine the amount of variability in codon composition. Figure III-1 and
Figure III-2 show these distributions for archaea and bacteria, respectively, in boxplot

(box-and-whiskers plot) representation.

All the distributions share a similar range and shape: they are all skewed toward
lower values and they exhibit a long tail for the higher values. In almost every case, the

75% of the distances, the X,,; quantile, falls below 1.5, and all minima are around 0.4.

III—>55



The long tails of the distribution show that all genomes have some transcripts (less than

5%) with highly atypical codon usage.

If codon similarity is computed with synonymous codon usage (CSYN) vectors, the
distributions are equivalent but shifted in scale. This is due to the fact that CSYN
Euclidean distances are generally lower than codon profile (CPRO) Euclidean distances
of the same data, because of the combined contributions of triplets in CPRO which

leads to enhanced differences (as explained in II D.1.3).

Comparing the Euclidean distances of all transcripts shows that CPRO distances are,
on average, around 4.5% (slightly more, 4.68%, for bacteria than for archaea, 4.31%)
greater than CSYN ones. This is a constant trend for all genomes (see Figure III-4).
Although the differences between the distances in the two vector schemes are restricted
to between two and six percentage points of difference for the majority of transcripts,
there are several transcripts in which the treatment of sixfold degenerate amino acids
results in a CPRO Euclidean distance as much as 30% greater than the corresponding

CSYN distance.

There are also negative differences: in some cases CPRO has lower similarity values
(up to 10% lower) than CSYN. These are those cases in which the synonymous triplets
are not differentiated in CPRO, because contributing to the same nucleotide contents,

but differently in CSYN (as in the extreme case shown in II D.1.1).

In fact, the base orientated approach does not equally consider the synonymous
triplets in the 6-fold degenerate sets but combines them according to their contribution
to the genomic nucleotidic composition (see the previous chapter for a discussion on
the different treatment of 6-fold degenerate codon information between CPRO and

CSYN).
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Euclidean distances of transcripts to their genome bias
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Figure I1I-1: Distributions of the codon similarity of transcripts to the genome biases for archaea, in codon profile Euclidean distances

(list of complete genome names and accession numbers in appendix F.1).
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(list of complete genome names and accession numbers in appendix F.1).
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Figure III-3: Distributions of the codon similarity of transcripts to the genome biases for archaea, in synonymous codon usage

Euclidean distances (in black) compared to the codon profile Euclidean distances (underneath, in gray) from Figure I11-1.
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D.2 Human infecting viruses

Many of the human infecting viruses that have been completely sequenced were
analysed for their intra-genomic heterogeneity and additionally their codon usage was

compared to that of their host, viz. Homo sapiens.

For each transcript, the distance to self and to human were computed. The former
refers to the difference in codon usage between the single viral transcript and the viral
average codon bias; the latter is the difference between the viral transcript and the
human codon bias (a short distance indicates similar codon usage to the human average

one).

A comparison of the distributions of these distances shows that the distances to
human are always higher than those to self. What had been repeatedly observed for
whole genomes is now confirmed at the level of single transcripts: the majority of the
viruses have a codon usage quite different from that of the host they infect, with
distributions of distances to human almost completely above the maximum of the
corresponding distributions of distances to self (Figure III-5). There are almost no viral
transcripts with a codon similarity to the human codon bias lower than 1.0 units, with

the distances to human mainly centred at 1.5 or 2.0 units of distance.

The prominent exceptions are represented by the adenoviruses, in particular
adenovirus type B, some herpes viruses and papilloma type 2a. In these viruses the distances

to the host genome are comparable and in some cases shorter than the distances to self.

The majority of self Euclidean distances are distributed between 0.5 and 1.5 units. The
analysed viruses appear hence not dissimilar as a whole from the bacteria or the
archaea, but they are characterised by higher inter-genomic variability (represented by
the large spread in their distance distributions): some viruses encode transcripts with a
very homogeneous codon set (e.g. hepatitis E, parainfluenza) while other viruses employ
very diverse codon usages in their transcripts (e.g. coronavirus, herpesvirus 5,

immunodeficiency viruses).
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Figure II1-5: Comparison of codon profile Euclidean distances of viral transcripts to their own genome bias and to the human one.

“>H" indicates distances to the human bias.
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D.3 Eukaryotic genomes from the Ensembl project

For each genome, boxplots and multidimensional scaling plots of the protein family
clusters were created on the basis of synonymous codon usage vectors and codon
profile vectors. In multidimensional scaling plots the major component of separation
along the x-axis can be ascribed to G+C content (with principal contributions from GC3
and GC1). The shown plots refer to codon profile vectors. Unless stated otherwise in the
text, the results are the same (same separation and topology of the distributions) if
synonymous codon usage vectors are used. The analyses expose the intra-genomic
variability and allow the identification of the most deviant families or the possibility of

inter-genomic classification.

D.3.1 Homo sapiens and Takifugu rubripes

Figure III-6 shows the results of multidimensional scaling on the codon profile
vectors corresponding to human and pufferfish transcripts clustered by the Tribes
protein family classification algorithm. The pufferfish genome appears more compact
than the human one, reflecting lower heterogeneity in the codon usage of its transcripts
and transcript families. This is also made obvious in the boxplot comparisons of section

D.3.4 below (g.v. Figure III-11).

The plotted distribution of GC3 shows that coding sequences have mainly values of
60-80% (Figure III-7), with G+C content being around 54%, much higher than the
genome-wide G+C content reported in the recent pufferfish genome paper (Aparicio et
al., 2002), where it is shown to be around 43-44% with a very narrow distribution. This
indicates that the intra/inter-genic regions of the pufferfish have a much lower G+C
content than the coding sequences, and this would balance the observed high 54%

G+C content of the coding part of the genome to the reported genomic 43-44%.

The distribution of codon similarity for human families is here reported in histogram
representation (Figure III-8). It also appears in boxplot representation in Figure III-11,
where it is compared to the distributions for single transcripts and unfiltered families
for the human genome and for the other Ensembl genomes analysed. Human protein
families were analysed in relation to human infecting viruses and the results are

presented in chapter five (V D.1).
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D.3.2 Mus musculus

As the chimpanzee genome sequencing project nears completion (the sequencing
began in January 2003), the closest Eukaryote to human which has been sequenced and

is available from the Ensembl project is Mus musculus, the mouse.

A comparison of mouse families with human families shows that they are very
similar in codon usage and in the intra-genomic heterogeneity (although the
distribution of codon usages from mouse is more compact than the one from the human
genome). There is very little possibility to discern human transcripts from mouse ones
according to codon usage (Figure III-9 a). In fact, the average genome biases of these
two species differ by only 0.146 Euclidean distance units and the average distance
between all human and all mouse families is 0.968 units. Neither multidimensional
scaling (MDS) nor correspondence analysis (CA) can discriminate between the
transcript families from the two genomes. The first component of separation between
the points is mainly due to G+C content and accounts for over 50% of the total
variation (58% in MDS, 54% in CA). The second axis (accounting for 5%) is particularly
associated to Arginine codons (with higher usages of AGR codons, over 60%, for the
points towards the bottom side of the plot) and to the CG3 content of two-fold
degenerate amino acids, while the third axis (4% relative weight; figure not shown)

separates according to the usage of Cysteine triplets.
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D.3.3 Anopheles gambiae

A comparison between CSYN-filtered transcripts from the mosquito genome and
from the fly genome (Drosophila melanogaster) confirms that the latter is less
heterogeneous than the mosquito genome. Although the codon similarity between the
two genomes is quite high, with an Euclidean distance of 0.54 units between the
respective genome biases, multidimensional scaling is able to separate the majority of
the transcripts of the two species in two clusters (Figure III-9 b). The first component of
separation (accounting for 43% of the total variation) is G+C content, with high total
G+C on the left side of the map and low G+C transcripts on the right side. The second
and weaker component (7% of the total variation), which effectively separates the
transcripts of the two genomes, is mainly accounted by a differential preference for
NAT codons over NAC ones (N = any nucleotide), i.e. the T-ending codons for
Aspartate, Asparagine, Tyrosine and (to a lower extent) Histidine have higher relative
frequencies in fly while mosquito transcripts preferentially use the synonymous C-
ending triplets. These principal components identified are the same if correspondence

analysis is used instead of multidimensional scaling.

D.3.4 Together

When plotted in the same map, the invertebrate genome clearly stands out (Figure
III-10 a, bottom side of the plot) and compresses the other genomes because of the great
difference. The relative compactness of the pufferfish genome is also noticeable in this
map, revealing its narrow spread in G+C contents and homogeneity of codon usage.
The major component of separation (the x-axis) can once more be equated to G+C or
GC3 content. For the y-axis, along which the vertebrate genomes are separated from the
mosquito, one of the main contributions is the content of Arg A1l (A-beginning codons
for Arginine, which are almost absent in the Anopheles genome; Figure III-10 b). Another
important component to the separation is the content of the CCG codon for Proline
(Pro_G3) which has a very high relative content in mosquito (for many clusters it is the
most abundant synonymous triplet for Proline, with more than 50% usage and even
reaching values of 80%) while it is mostly under-represented in vertebrates (see also the

analysis of vertebrate codon space, chapter VI section D.3.1).
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The intra-genomic codon heterogeneity of the analysed Ensembl genomes is lower
than the one observed in the prokaryotes, with the exception of Anopheles gambiae which
has a distribution of transcript distances comparable with archaea and bacteria (Figure
III-11). For the vertebrate genomes, the x,,; quantile is under 1.2 distance units (and
even under 1 for the pufferfish, whose codon usage is very homogeneous for the

majority of transcripts).
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D.4 Ranges, definition of atypicality

The results of the above described analyses reveal the relatively consistent trend in
intra-genomic heterogeneity for several different genome types. The distributions of

codon similarity always fall between nearly equivalent ranges and have the same shape.

It is hence possible to quantify the amount of codon similarity and codon atypicality
using the Euclidean vector distance between a transcript and the average genomic bias.
A transcript whose distance from the average codon bias is more than 1.5 units can
rightly be called atypical in any genome, being more diverse than the 75% of the
transcripts (a bit more diverse under Eukaryota, a bit less in Archaea). A transcript
whose distance is 2.0 is definitely characterised by a very exceptional codon usage (in its

genomic context), an outlier in the genomic distribution.

The possibility to define a quantitative measure of codon similarity in a consistent
way was applied to the detection of Horizontal Gene Transfers and the identification of
donor genomes (chapter four) and to the isolation and characterisation of groups of

transcripts with atypical codon usage (chapter five).

E CONCLUSIONS

The intra-genomic heterogeneity was represented as the distribution of codon usage
distances from the average genomic bias. The heterogeneity was then compared across
the species. The intra-species heterogeneity and the genome hypothesis — according to
which each genome holds a specific codon usage signature — are evaluated and in
particular the complementarity of the two views is reaffirmed. Even if a considerable
codon usage diversity exists between transcripts in the same genome, it is still possible
to observe a clearly limited and well defined pattern in the variability, with codon
similarity among transcripts coherently bound between comparable ranges. The
determination of consistent ranges for similarity and atypicality allows clustering
studies based on this information and provides them the necessary statistical

background.
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F APPENDIX

F.1  List of analysed prokaryotic genomes
Genomes analysed with their abbreviation, accession number and scientific name.

Archaea: afulgidus (AE000782: Archaeoglobus fulgidus), apernix (BA000002: Aeropyrum pernix), halobacterium_NRC1

(AE004437: Halobacterium sp. NRC-1), macetivorans_C2A (AE010299: Methanosarcina acetivorans C2A), mjannaschii (L77117:
Methanocaldococcus jannaschii), mkandleri_AV19 (AE009439: Methanopyrus kandleri AV19), mmazei (AE008384: Methanosarcina
mazei Goel), mthermoautotrophicum (AE000666: Methanothermobacter thermautotrophicus str. Delta H), pabyssi (AL096836:
Pyrococcus abyssi), paerophilum (AE009441: Pyrobaculum aerophilum), pfuriosus_DSM3638 (AE009950: Pyrococcus furiosus DSM
3638), phorikoshii (BA000001: Pyrococcus horikoshii), ssolfataricus (AE006641: Sulfolobus solfataricus), stokodaii (BA000023:
Sulfolobus tokodaii), tacidophilum (AL139299: Thermoplasma acidophilum), tvolcanium (BA000011: Thermoplasma volcanium)

Bacteria: aaeolicus (AE000657: Aquifex aeolicus), atumefaciens_Cereon (AE007869, AE007870: Agrobacterium tumefaciens

str. C58), atumefaciens UW (AE008688, AE008689: Agrobacterium tumefaciens str. C58), baphidicola_Sg (AE013218: Buchnera
aphidicola str. Sg), bburgdorferi (AE000783: Borrelia burgdorferi), bhalodurans (BA000004: Bacillus halodurans), bjaponicum
(BA000040: Bradyrhizobium japonicum), blongum (AE014295: Bifidobacterium longum NCC2705), bmelitensis (AE008917,
AE008918: Brucella melitensis), bsubtilis (AL009126: Bacillus subtilis), bsuis_1330 (AE014291, AE(014292: Brucella suis 1330),
buchnera_APS (BA000003: Buchnera sp. APS), cacetobutylicum (AE001437: Clostridium acetobutylicum), ccrescentus (AE005673:
Caulobacter crescentus CB15), cefficiens YS314 (BA000035: Corynebacterium efficiens YS-314), cglutamicum (AX114121:
Corynebacterium glutamicum), cglutamicum_ATCC13032 (BA000036: Corynebacterium glutamicum ATCC 13032), cjejuni
(AL111168: Campylobacter jejuni subsp. jejuni NCTC 11168), cmuridarum (AE002160: Chlamydia muridarum), cperfringens
(BA000016: Clostridium perfringens str. 13), cpneumoniae (AE001363: Chlamydophila pneumoniae CWL029), cpneumoniae_AR39
(AE002161: Chlamydophila pneumoniae AR39), cpneumoniae_]J138 (BA000008: Chlamydophila pneumoniae J138), ctepidum_TLS
(AE006470: Chlorobium tepidum TLS), ctrachomatis (AE001273: Chlamydia trachomatis), dradiodurans (AE000513, AE001825:
Deinococcus radiodurans), ecoli CFT073 (AE014075: Escherichia coli CFT073), ecoli_K12 (U00096: Escherichia coli), ecoli_O157
(AE005174: Escherichia coli O157:H7 EDL933), ecoli_O157_RIMD (BA000007: Escherichia coli O157:H7), fnucleatum_ATCC25586
(AE009951: Fusobacterium nucleatum subsp. nucleatum), hinfluenzae (L42023: Haemophilus influenzae Rd), hpylori_26695
(AE000511: Helicobacter pylori 26695), hpylori_j99 (AE001439: Helicobacter pylori J99), linnocua_Clip11262 (AL592022: Listeria
innocua), linterrogans_lai_56601 (AE010300, AE010301: Leptospira interrogans serovar lai str. 56601), linterrogans, llactis_IL1403
(AE005176: Lactococcus lactis subsp. lactis), Imonocytogenes EGDe (AL591824: Listeria monocytogenes), mgenitalium (L43967:
Mycoplasma genitalium), mleprae_ TN (AL450380: Mycobacterium leprae), mloti (BA000012: Mesorhizobium loti), mpenetrans
(BA000026: Mycoplasma penetrans), mpneumoniae (U00089: Mycoplasma pneumoniae), mpulmonis (AL445566: Mycoplasma
pulmonis), mtuberculosis (AL123456: Mycobacterium tuberculosis H37Rv), mtuberculosis_CDC1551 (AE000516: Mycobacterium
tuberculosis CDC1551), nmeningitidis MC58 (AE002098: Neisseria meningitidis MC58), nmeningitidis_Z2491 (AL157959: Neisseria
meningitidis Z2491), nostoc_PCC7120 (BA000019: Nostoc sp. PCC 7120), oiheyensis (BA000028: Oceanobacillus iheyensis),
paeruginosa (AE004091: Pseudomonas aeruginosa PAOI1), pmultocida (AE004439: Pasteurella multocida), pputida_KT2440
(AE015451: Pseudomonas putida KT2440), rconorii_Malish7 (AE006914: Rickettsia conorii), rprowazekii (AJ235269: Rickettsia
prowazekii), rsolanacearum_GMI1000 (AL646052: Ralstonia solanacearum), sagalactiae (AE009948: Streptococcus agalactiae
2603V/R), sagalactiae. NEM316 (AL732656: Streptococcus agalactiae NEM316), saureus_ MW2 (BA000033: Staphylococcus aureus
subsp. aureus MW2), saureus_Mu50 (BA000017: Staphylococcus aureus subsp. aureus Mub50), saureus_N315 (BA000018:
Staphylococcus aureus subsp. aureus N315), scoelicolor (AL645882: Streptomyces coelicolor), sepidermidis_ ATCC12228 (AE015929:
Staphylococcus epidermidis ATCC 12228), sflexneri2astr301 (AE005674: Shigella flexneri 2a str. 301), smeliloti_1021 (AL591688:
Sinorhizobium meliloti), smutans_UA159 (AE014133: Streptococcus mutans UA159), soneidensis MR1 (AE014299: Shewanella
oneidensis MR-1), spneumoniae (AE005672: Streptococcus pneumoniae TIGR4), spneumoniae R6 (AE007317: Streptococcus
pneumoniae R6), spyogenes (AE004092: Streptococcus pyogenes M1 GAS), spyogenes_ MGAS315 (AE014074: Streptococcus
pyogenes MGAS315), spyogenes_ MGAS8232 (AE009949: Streptococcus pyogenes MGAS8232), styphiCT18 (AL513382: Salmonella
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enterica subsp. enterica serovar Typhi), styphimurium_LT2 (AE006468: Salmonella typhimurium LT2), synechocystis (BA000022:
Synechocystis sp. PCC 6803), telongatus_BP1 (BA000039: Thermosynechococcus elongatus BP-1), tmaritima (AE000512: Thermotoga
maritima), tpallidum (AE000520: Treponema pallidum), ttengcongensis_MB4T (AE008691: Thermoanaerobacter tengcongensis),
uurealyticum (AF222894: Ureaplasma urealyticum), vcholerae (AE003852, AE003853: Vibrio cholerae), vvulnificus_ CMCP6
(AE016795, AE016796: Vibrio vulnificus CMCP6), wbrevipalpis (BA000021: Wigglesworthia brevipalpis), xaxonopodis (AE008923:
Xanthomonas axonopodis pv. citri str. 306), xcampestris (AE008922: Xanthomonas campestris pv. campestris str. ATCC 33913),
xfastidiosa (AE003849: Xylella fastidiosa 9a5c), ypestis_ CO92 (AL590842: Yersinia pestis CO92), ypestis KIM (AE009952: Yersinia
pestis KIM)

F.2 List of analysed viral genomes

Human infecting viruses analysed (with genome identifier and GenBank accession

number): adenovirus A (10190 - NC_001460), adenovirus B (246 - NC_004001), adenovirus C (10108 - NC_001405), adenovirus D

(15049 - NC_002067), adenovirus E (15868 - NC_003266), adenovirus F (10182 - NC_001454), astrovirus (13969 - NC_001943),
coronavirus 229E (15577 - NC_002645), foamy virus (11546 - NC_001736), Hepatitis B virus (16449 - NC_003977), Hepatitis E virus
(10157 - NC_001434), herpesvirus 1 (12187 - NC_001806), herpesvirus 2 (12163 - NC_001798), herpesvirus 3 (10044 - NC_001348),
herpesvirus 4 (10040 - NC_001345), herpesvirus 5 (10043 - NC_001347), herpesvirus 6 (10586 - NC_001664), herpesvirus 6B (15112 -
NC_000898), herpesvirus 7 (10884 - NC_001716), herpesvirus 8 (15951 - NC_003409), immunodeficiency virus 1 (12171 - NC_001802),
immunodeficiency virus 2 (10902 - NC_001722), JC virus (10684 - NC_001699), metapneumovirus (16593 - NC_004148),
papillomavirus type la (10055 - NC_001356), papillomavirus type 2a (10051 - NC_001352), papillomavirus type 3 (10440 -
NC_001588), papillomavirus type 4 (10187 - NC_001457), parainfluenza virus 1 Washington/1964 (15991 - NC_003461), parainfluenza
virus 2 (15975 - NC_003443), parainfluenza virus 3 (12158 - NC_001796), respiratory syncytial virus (11728 - NC_001781),
spumaretrovirus (12157 - NC_001795), T-lymphotropic virus 1 (10159 - NC_001436), T-lymphotropic virus 2 (10260 - NC_001488),
Zaire Ebola virus (15507 - NC_002549).
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IV Applications of codon profiling I: HGT detection

A ABSTRACT

A computationally inexpensive procedure to discover potential horizontal transfer
events, and to identify the donor species, was developed and tested on complete

bacterial and archaeal genomes.

Comparing the codon usage of all the transcripts which are atypical in their own
genomic context against the codon biases of all the genomes identifies a number of
transcripts which could be the result of horizontal gene transfer events. Only those that
resulted in similar codon usage as some other genome were considered. By retrieving
their location on the chromosomes it was possible to predict potentially transferred

regions and donor genomes.

These predictions were tested with an automatic sequence search, multiple
alignment and construction of phylogenetic trees, hence combining a compositional

approach with a phylogenetic one.

B INTRODUCTION

There is growing evidence (Jain et al., 2002; Dutta and Pan, 2002) that natural
exchange of genetic information is an essential mechanism for genetic plasticity in
archaeal and bacterial genomes. The ability to thrive in new environments, metabolize
new substrates or resist to new compounds, most often results from the rapid
acquisition of new genes through horizontal transfer rather than by gradual alteration
of the existing gene functions by mutations. Horizontal gene transfer (HGT) is the

transfer of genes across species, including those belonging to different kingdoms of life.

Anomalous nucleotide or codon composition has been widely used to detect
horizontally transferred genes (Garcia-Vallvé et al., 2000; Mréazek and Karlin, 1999;
Lawrence and Ochman, 1997; Lawrence and Ochman, 1998; Karlin, 1998; Médigue et al.,
1991; Koonin et al., 1997; Ragan, 2001; Xie et al., 2003). Those genes which present

sequence composition significantly differing from the average one of their genome are
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considered probable lateral acquisitions. Nevertheless, the likely origin of these genes

can rarely be identified (Koonin et al., 2001).

Comparison of phylogenetic trees among individual genes allows identification of
those with unusual origins (Smith et al., 1992; Nelson et al., 1999; Nesbo et al., 2001). The
phylogenetic methods are very powerful but require extensive sequence information
and rigorous manual analysis. Furthermore, they are computationally challenging and
sensitive to database sequence sampling (Ragan 2001, Lawrence and Ochman 2001;

Koski et al., 2001).

This chapter presents a fast and multifaceted procedure to predict the donor genome
(the source of the horizontally transferred genes) or its higher taxon through analysis of
codon profiles (see chapter II for a discussion on the codon profile scheme) in
completely sequenced genomes. It combines the compositional and the phylogenetic

approaches to circumvent the limits of both.

The number of sequenced species is extremely limited compared to the huge number
of prokaryotic species in nature. The methodology presented will hence inevitably
produce many false positive signals and few true positive ones, but it is bound to
improve with the steadily growing number of genomic sequences being determined.
Since the procedure is scalable and does not require high computing power, it can deal

with very large data sets.

C METHODS

C.1 HGT detection: atypical to self, similar to other

The codon profile vectors from all completely sequenced archaeal and bacterial
genomes were used in this analysis. They were computed as outlined in section III C.1

of the previous chapter.

Only transcripts that encode at least one of each amino acid species were analysed
(AA-filtering, see II C.4). The Euclidean distances between the removed transcripts
(which lack triplets for some amino acid) and the whole genomes are very high. They
would hence always appear atypical and never similar to any genome: the removed

genes would not be predicted as possible results of HGT. The filtering prevents
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unnecessary calculations: even if the amount of dropped transcripts is high, these

would not be transcripts valuable to the presented HGT detection methodology.

Codon similarity was measured by the Euclidean distance in the codon profile vector

space and computed between each transcript and each genome.

The distributions of distances for all the prokaryotic genomes were previously
plotted (chapter III, section D.1) and compared to determine what values of codon
similarity are to be considered normal and what values are to be considered atypical.
The histogram and boxplot representations were used to investigate shapes and ranges
of the distributions. The transcripts representing the upper outliers of those
distributions (from a distance of 1.7-1.8 upwards, see Figure III-1 and Figure III-2) are

taken to be sufficiently different to be analysed against other genomes.

The codon similarity of each deviant transcript to all other genome averages was
then computed, isolating those transcripts which presented anomalous codon usage:

different from self but very similar to some other genome.

Different levels of similarity and deviance were tried in order to determine which
distance values, in codon profile space, between transcripts and genomes would set the

limit for the identification of possible HGT (see for example Figure IV-4 in section D.6).

C.2 Chromosome localisation

Retrieving the genome location of these transcripts, some regions were predicted as
being potentially originating from HGT events: the finding of consecutive transcripts
which are all atypical in relationship to their own genome bias, and all similar to
another genome, increases the feasibility of the transfer hypothesis, since they can
represent transferred (and positively selected) operons. This is based on the fact that
there is little conservation of gene order between distantly related genomes and the
presence of three or more genes in the same order in two such genomes has been

determined very unlikely unless the genes are part of an operon (Wolf et al., 2001).

A cut-off distance can be specified for the definition of region, as the maximum
distance, in base pairs, between beginning and end of transcripts for these to be linked
in the same region. For the presented results, the distance limit of 2500 base pairs was

chosen. The actual average distance between the matching transcripts was found to be
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512 bp, with 40% of the distances under one hundred bp and only 10% more than 1000
bp. Considering that the average length of the prokaryotic transcripts in the analysis
was 1122 base pairs (with a standard deviation of 696), one or two unmatched genes are
allowed in the region definition. This might be considered a restrictive constraint (since
there could be inter-genic sequences longer than 2500 bp between genes from the same

HGT event) that could be relaxed in order to detect more regions.

The delineation of possibly transferred regions enabled fine-tuning of the thresholds
for codon similarity and atypicality: if limits for similarity were set too low, almost no
region would appear (since there is deviation among the similarities between any
assembly of consecutive transcripts); the same would hold true if limits for atypicality
were set too high. Conversely, if limits for atypicality are set too low, or limits for
similarity too high, then too many transcripts would be predicted as being the result of

horizontal gene transfer.

A codon profile distance threshold of 2 was judged too restrictive, as it yields only
4,412 atypical transcripts. On the other hand a threshold of 1.6 marks 16,501 transcripts
as atypical. After repeated testing, the threshold of 1.8 was chosen for atypicality. 9,273
bacterial transcripts and 1,426 archaeal ones satisfied this constraint. The extension and
diversity of the codon usages of these atypical transcripts is represented in section D.3.2
of chapter VI, where the average genomic biases and the codon usages of the atypical

transcripts are plotted on a multidimensional scaling map (Figure VI-10).

As for the lower threshold, the limit of similarity, it was set to 1.25 units (lower values
could be used when analysing closely related species, as outlined in section D.5.2
below). With these thresholds, 1,548 atypical transcripts showed codon similarity to one
or more genomes. On average, each of these transcripts had nine matching genomes.
See Figure IV-4 in section D.6 for the correspondence between several similarity

thresholds and the number of matches between atypical transcripts and genomes.

The longest regions (or multi-regions) were chosen as the best predictions of the
composition-based detection methodology, like in the example case reported in Table

IV-1.
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Table IV-1: The possible donor genomes for a region detected in the S.oneidensis genome (genes nuoN to nuoH)
and the selection of the best match as the one with the linked region containing more transcripts: P.putida. The
transcripts belonging to the regions are indicated by their location in the EMBL file (note that the “complement”

keyword, indicating a transcript encoded on reverse strand, was removed).

C.3 Semi-automated phylogenetic verification

As for the comparative genomics procedure, all transcripts were translated to
proteins and the resulting data set was searched against NR, the non-redundant protein
database (February 2003), using PSI-BLAST (Altschul et al., 1997). Only matches with an
E-value lower than 5:10* and a sequence identity higher than 25% were included. If the
number of BLAST hits for any target protein turned out to be lower than 25, constraints

were relaxed to a maximum E-value of 4-10° and a minimum sequence identity of 15%.

The scripts for automated large-scale PSI-BLAST analyses and the computational

resources to run them were generously provided by Park Jong Hwa.

Multiple alignments of the matches were generated with Clustalw (Thompson et al.,
1994) with calculation of neighbour-joining trees (Saitou and Nei, 1987) which were
plotted using the drawgram program from the PHYLIP package (Felsenstein, 1989). The

cladogram-like trees were assessed for evidence of horizontal gene transfer.
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C.3.1 Assessment of generated trees

Probable HGT was considered where proteins from the same species were
consistently found (for the majority of the transcripts belonging to a region) in the
closest clades to the target sequence, in positions higher than that of some other species

accepted as taxonomically closer to the target species.

If the probable donors found by this procedure matched the ones predicted on the
basis of codon profile similarity and genome location, the prediction was considered

positive.

To cope with the low sampling of all the existing genomes represented by the
available sequenced ones, predictions were also considered positive if the phylogenetic
procedure identified as a probable donor a species belonging to the same lineage (in the
same genus or family) as the one being predicted by the compositional approach. These

cases are marked as v? in Table IV-2.

In many cases no consensus could be found among the resulting trees: no single
taxon would consistently appear as probable donor. That is, proteins for the same taxon
would not be found in close proximity to the target sequence for at least half of the
transcripts belonging to the analysed regions. For example in a region consisting of four
genes, the best hits are all from different genomes and even considering hits with lower

similarity, there would be no consensus. These cases are marked as x? in Table IV-2.

D RESULTS AND DISCUSSION

D.1 Overview: the multifaceted and lightweight approach

Several authors (in particular Koski et al., 2001) advocate the necessity for combined
approaches to the detection of HGT events, stressing the requirement of a phylogenetic
approach for the main purpose of avoiding to predict as HGT those vertically evolved
genes with atypical composition. Furthermore, the phylogenetic methods are
computationally challenging and very time consuming in the analysis of results, while

compositional methods are very fast and easy to automate.
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The methodology here presented combines a very fast compositional method based
on codon information with a slower and computationally expensive phylogenetic

method.

The compositional detection phase can be run in only three hours on a modest 400
Mhz PC for all the completed bacterial genomes (enabling repeated testing with
different threshold settings).

By comparison, the phylogenetic data is obtained after BLAST searches, sequence
extraction (from the constantly growing public databases), multiple alignments and tree
generation, with much higher computational requirements. The analysis of the results
(visual inspection of the phylogenetic trees) is the most time consuming part, especially

when the number of trees becomes very large.

The combination of the two approaches increases the significance of the results and
eliminates the high number of false positives that the compositional method alone
would produce. But equally importantly, it restricts the use of the phylogenetic
approach to a reduced and filtered set, thereby making the procedure practical and

more efficient.

D.2 The predicted regions

Each transcript showing sufficient difference from its genomic codon composition
was compared to the average codon profile of every other genome to identify

transcripts showing codon similarity to one or more genomes.

To select transcripts with a high probability of having been acquired through HGT, it
was assumed that several genes would be transferred in one event. A transferred region
was defined as a sequential array of at least three transcripts with a codon profile similar
to the same genome. 134 transcripts in 28 transferred regions (Table IV-2) were

identified as highly probable HGT and chosen to validate the detection methodology.

These transcripts were further tested by performing automatic BLAST searches on
protein sequence space, multiple alignments of all hits and visual scrutiny of the
generated cladogram-like trees. It was required that most or all transcripts in a

transferred region formed a clade with proteins from the same candidate donor species.
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The clade had to be tight enough to exclude matches to any other species in the same

genus as the recipient species.

Sequence similarity clustering confirmed the codon profile prediction in seven
studied regions. Two other regions fulfilled the phylogenetic criteria for an HGT event,
but the donor species differed from the codon profile prediction (regions 10 and 20 in
Table IV-2). Figures Figure IV-1 and Figure IV-2 report some of the phylogenetic trees.
The remaining candidate regions were taken to be false positive predictions of the
codon profile method, ruled out by the phylogenetic approach. Table IV-3 reports the
Euclidean distances of each region to its own genome bias and to the predicted donor
genomes. Often, but not always, the confirmed donor is equivalent to the one with the
shortest Euclidean distance to the region (marked with bold typeface in the table). That
table also includes the distances between the genomic codon bias of the recipient and

the donors.
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Genome region's | gene size | predicted donor | probable donor, if | notes(4) (5)
(predicted limits(1) | names(2) 3) genomes any, after
recipient) verification
1 A.aeolicus 273-280 aq_378- 4 P.furiosus, S.tokodaii, | ? x?
aq_386 S.solfataricus
2 | A.aeolicus 370-375 aq_509-mtfC | 3 C.acetobutylicum, ? x?
C.perfringens
3 A.pernix 1224-1235 | APE1182- 7 S.solfataricus, ? x?
APE1193 S.tokodaii
4 B.longum 192-195 BL0206- 3 C.pneumoniae, ? x?
BL0209 B.halodurans,
5 B.longum 209-214 BL0230- 6 B.subtilis, ? x?
cps2F Nostoc sp.,
S.pneumoniae
6 E.coli_K12 534-536 ybcK-ybeM 3 C.muridarum, ? maybe the donor is | x?
O.iheyensis, another strain of
R.conorii, E.coli
S.agualactige
7 E.coli_K12 1991-1997 | wbbK-rfbC 6 B.burgdoferi, S.pneumoniae (4/6) v
R.conorii,
L.interrogans,
S.pyogenes,
S.pneumoniae
8 E.coli_K12 3545-3551 | rfaK-rfaS 3 B.burgdoferi, ? x?
B.aphidicola,
L.lactis,
O.iheyensis,
R.conorii,
S.agalactige
9 E.coli 0157 2860-2866 | Z3198-wbdN | 6 R.conorii, S.tokodaii ? x?
10 | E.coli_O157_RIMD 3507-3512 | ECs3507- 4 B.burgdoferi, P.multocida ? too similar in CPRO | x!
ECs3512 C.acetobutylicum, (3/4)
R.conorii, S.tokodaii
11 | M.thermoautotrophicum | 329-334 MTH332- 4 C.acetobutylicum, ? x?
MTH337 T.tengcongensis,
S.solfataricus,
S.tokodaii
12 | N.meningitidis_MC58 1887-1890 | NMB200S- 3 L.interrogans, Nostoc | ? x?
NMB2013 sp., R.prowazekii
13 | N.meningitidis_ MC58 675-677 NMB0725- 3 Nostoc sp., | H.parainfluenzae ~ or | same  genus as | v?
NMB0727 H.influenzae, H.paragallinarum H.influenzae but
L.innocua, S.galactiae complete  sequence
not available (3/3)
14 | P.aeruginosa 1369-1371 | PA1370- 3 T.volcanium ? x?
PA1372
15 | P.aeruginosa 2222-2226 | PA2224- 3 T.volcanium ? x?
PA2228
16 | P.aeruginosa 3143-3149 | wbpL-hisF2 7 X fastidiosa, Y.pestis ? x?
17 | P.putida_KT2440 4402-4408 | PP4461- 4 X fastidiosa ? x?
PP4467
18 | S.flexneri2astr301 2093-2100 | SF2093-rfbE | 5 O.iheyensis, R.conorii | ? (2/5) x?
19 | S.oneidensis_MR1 995-1001 nuoN-nuoH | 5 P.putida ? x?
20 | S.typhiCT18 2110-2118 | rfbP-rfbS 7 O.iheyensis, Y.pseudotuberculosis or | too similar in CPRO | x!
R.conorii, S.tokodaii Y.enterocolitica (4/7)
21 | S.typhiCT18 2166-2173 | STY2350- 3 R.conorii 0 x0
STY2358
22 | S.typhiCT18 4483-4485 | STY4822- 3 R.conorii, S.tokodaii, | ? x?
STY4824 L.innocua,
L.monocytogenes,
Oiheyensis
23 | X.axonopodis 1472-1487 | orf2- 8 B.subtilis ? x?
XAC1509
24 | Xfastidiosa 1714-1723 | XF1718- 5 P.aeruginosa, P.aeruginosa or | (3/5) v
XF1727 P.putida, P.putida

R.solanacearum
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25 | X.fastidiosa 1724-1734 | XF1728- 7 P.aeruginosa, A.vinelandii Awvinelandii  is  in | v?
XF1738 P.putida, Pseudomonadaceae
R.solanacearum family but its
complete sequence is
not available (6/7)
26 | X.fastidiosa 1738-1748 | XF1742- 8 P.aeruginosa, R.solanacearum or one | (5/8) v
XF1752 P.putida, Pseudomonas
R.solanacearum
27 | Xfastidiosa 1754-1764 | XF1758- 7 P.aeruginosa, P.aeruginosa or other | (5/7) v
XF1768 P.putida, Pseudomonas
R.solanacearum
28 | Xfastidiosa 1769-1778 | XF1773- 4 P.aeruginosa, P.aeruginosa (4/4) v
XF1783 P.putida,

R.solanacearum

Table IV-2: probable HGT identified by the methodology. Predictions are in general not unique since there is
usually more than one genome with codon usage similar to that of the atypical transcripts. Regions 24 and 25 are
contiguous but separated in this table because of different results from the philogenetic verification procedure.

(1): the boundaries of the regions are indicated by the sequential number of the transcript coding sequence as it
appears in the deposited sequence - e.g. the first region is the one between the 273th and the 280th CDS appearing in
its genome sequence file (AE000657). See Table IV-5 in appendix F.1 for a complete list of the coding sequences.

(2): the gene names of the boundary transcripts - e.g. the first region, is the one between the genes aq 378 and
aq_386 in the sequenced genome of A.aeolicus

(3): size of region in number of transcripts (some transcripts in between the regions limits are not included in the
region either because they were filtered out - too short or lacking codons for certain amino acids - or because their
codon profile is similar to that of the host)

(4): a question mark indicates that there is no consensus among blast hits; a zero indicates that there are no
xenologous blast hits; the numbers between brackets indicate the consistency index of the probable donor, in other
words in how many transcripts (out of the total in the region) that genome can be found among the top blast hits

(5): a very condensed symbolic representation of the results: v=positive x=negative, ?=no consensus among

blast hits, 0=no xenologous blast hits, |=missed
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Region average
recipient genome (self)

to

Region average to predicted donors

Recipient genome to predicted or verified
donor genomes

1 A geolicus: 1.985 P.furiosus:  1.238,  S.tokodaii:  0.579, | C.acetobutylicum: 2.086, C.perfringens: 2.432,
) o S.solfataricus: 0.825 P.furiosus: 1.125, S.solfataricus: 1.625, S.tokodaii:
2 | A.aeolicus: 2.007 C.acetobutylicum: 0.617 1.923
3 | Apernix: 2.074 S.solfataricus: 0.470, S.tokodaii: 0.623 S.solfataricus: 2.155, S.tokodaii: 2.525
4 C.pneumoniae: 0.761, B.halodurans: 0.708, )
B.longum: 2.073 Bsubtilis: 0.860, Nostoc sp. 0927, | bhalodurans: 2183
. B.subtilis: 1.993
S.pneumoniae: 0.739 C preumoniae: 2.409
5 C.pneumoniae: 0.594, B.halodurans: 0.849, I\Ifstocs '24'95'
B.longum: 2.508 B.subtilis:  0.854, Nostoc sp.: 0.878, S P 2 .
. .pneumoniae: 2.411
S.pneumoniae: 0.769
6 . ) C.muridarum: 0.940, O.iheyensis: 0.802,
E-coli_K12:1.898 R.conorii: 0.722, S.agalactiae: 0.878 B.aphidicola: 2.391, B.burgdoferi: 2.287
7 B.burgdoferi:  0.775, R.conorii:  0.664, | C.muridarum: 1.563, L.interrogans: 1.766
E.coli_K12:1.729 L.interrogans: 0.769, S.pyogenes: 0.840, | L.lactis: 1.788, O.iheyensis: 1.854, R.conorii:
S.pneumoniae: 0.912 1.941, S.agalactiae: 1.737, S.pneumoniae: 1.329
8 B.burgdoferi: 0.948, B.aphidicola: 0.899, S.pyogenes: 1.447
E.coli_K12:1.891 L.lactis: 0728,  O.iheyensis:  0.602,
R.conorii: 0.747, S.agalactiae: 0.628
9 E.coli O157:1.776 R.conorii: 0.555, S.tokodaii: 0.805 R.conorii: 1.815, S.tokodaii: 2.119
10 ) ) B.burgdoferi: ~ 0.708,  C.acetobutylicum: | C.acetobutylicum: 2.309, P.multocida: 1.423
E.coli_O157_RIMD: 2.061 | 748" R conorii: 0.918, S.tokodaii: 0551 R.conorii: 1.895, S.tokodaii: 2.236
11 . icum: 0. . is: ) )
M.thermoautotrophicum: gggztomgzggf:;zﬂcgggob ;égﬂggogif)z;z;' C.acetobutylicum: 2.418, S.solfataricus: 1.958,
1.874 0'735’ ' Lo T " | S.tokodaii: 2.266, T.tengcongensis: 1.778
12 | N.meningitidis_MC58: L.interrogans: 0.871, Nostoc sp.: 0.946,
2.392 R.prowazekii: 0.579 H.influenzae: 1.879, L.innocua: 0.561,
13 L ) H.influenzae: 0.859, L.innocua: 0.934, L.interrogans: ~ 2.003,  Nostoc  sp.. 1.618,
N.meningitidis_MC58: Nostoc sp.: 0.984, R.prowazekii: 0.579, | R.prowazekii: 2.505, S.galactiae: 2.085
2.397 .
S.galactiae: 0.754
14 | P.aeruginosa: 2.488 T.volcanium: 0.707 L o .
15 | P.aeruginosa: 2.462 T volcanium: 0.902 ;".Zgécamum. 2.824, X fastidiosa: 1.919, Y.pestis:
16 | P.aeruginosa: 2.151 X.fastidiosa: 0.671, Y.pestis: 0.782 ]
17 | P.putida_KT2440:1.731 X.fastidiosa: 0.762 X fastidiosa: 1.351
18 ‘ is: inosa:
S.flexneri2astr301: 1.895 O.iheyensis: 0.573, R.conorii: 0.591 ZOOzl;;y ensis: 1.830, R.conorit: 1.914, P.aeruginosa:
19 | S.oneidensis_MR1:1.968 P.putida: 0.802 P.putida: 2.007
20 i is:  0.555; R. i: - 0.602;
S.typhiCT18: 1.867 Ozheyen'sfzs 0.555;  R.conorii:  0.602;
5.tokodaii: 0.930 L.innocua: ~ 1.668,  L.monocytogenes: — 1.615,
21 | S.typhiCT18: 1.909 R.conorii: 0.670 - Lo Ove  LIMOnOcylogenes: | o5,
— — O.iheyensis: 1.932, R.conorii: 1.998, S.tokodaii:
22 R.conorii: ~ 0.653,  S.tokodaii:  0.737, | , 336
S.typhiCT18: 2.006 L.innocua: 0.969, L.monocytogenes: 1.016, | ~
O.iheyensis: 0.807
23 | X.axonopodis: 1.961 B.subtilis: 0.554 B.subtilis: 2.098
24 o P.geruginosa:  0.463, P.putida: 0.694,
X fastidiosa: 1.857 R.solanacearum: 0.514
25 o P.aeruginosa:  0.548,  P.putida: 0.835,
X fastidiosa: 1.964 R.solanacearum: 0.368
26 L P.aeruginosa:  0.569, P.putida: 0.874, | P.aeruginosa: 1.919, P.putida: 1.351,
X fastidiosa: 2.054 R.solanacearum: 0.435 R.solanacearum: 1.828
27 — P.aeruginosa:  0.579, P.putida: 0.644,
X fastidiosa: 1.705 R.solanacearum: 0.452
28 P.geruginosa:  0.683, P.putida: 0.774,

X fastidiosa: 1.806

R.solanacearum: 0.426

Table 1V-3: Euclidean distances of the identified HGT regions. The distances of the region to its own genome and

to the predicted genomes are indicated. Furthermore, the distances between donor and acceptor genomes are reported.

A bold typeface marks the shortest region-donor distances.
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D.3 The X fastidiosa/P.aeruginosa case

The most striking case of identified HGT comprises several regions of Xylella
fastidiosa, which were detected as originating from Pseudomonas aeruginosa (or from
another species in that lineage). As they are all relatively close in the genome (62.6
kilobases between the first and the last transcript), they could all be the result of the

same HGT event.

The transcripts belonging to these regions in X fastidiosa have a very atypical codon
profile in the Xfastidiosa genomic context (Figure IV-3 a) while being practically
identical to the one of P.aeruginosa (Figure IV-3 b). Since P.aeruginosa has one of the most
extreme codon usages (Grocock and Sharp, 2002) — 2.34 distance units from the codon
profile vector averaged in all its dimensions — it is even more striking to find such a
close correspondence of codon usage (only 0.5 units of distance, practically equal)

within the X fastidiosa genome.

Further evidence for the hypothesised HGT comes from a nucleotide alignment
search of the X.fastidiosa region which identified zones of extremely high sequence

identity with P.aeruginosa.

The first gene (XF1718) in the first predicted transferred region is annotated as phage-
related integrase, with a 91% sequence identity with Int-B13, a recombinase of the
bacteriophage P4 integrase family responsible for HGT of the clc element (containing
chlorocatechol degradative genes) in genus Pseudomonas (Ravatn et al., 1998). The clc
element integrates in various bacterial recipients with a Glycine tRNA structural gene; a

tRNA-Gly lies 227 bp upstream of XF1718.

The other genes are annotated as hypothetical proteins identified through sequence
similarity (with matches to - among others - B.subtilis, E.coli, S.coelicor, A.vinelandii and
P.aeruginosa) and are mainly ketoreductases/dehydrogenases and transcriptional

regulators.

The 67kb region encompassing the predicted transfer had been identified as GI,
(Genomic Island 2) by Nunes et al. (2002) while it was identified as a cryptic prophage
by Bhattacharyya et al. (2002).
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D.4 Sensitivity and selectivity

Since the available collection of completely sequenced genomes is only a tiny fraction
of all the existing genomes, the probability of finding the exact sequence match is low;
nevertheless, the methods presented could allow narrowing down the suspects for the

donor genome to genus or family level.

The HGT detection methodology based on codon usage information is scalable,
extremely fast and computationally inexpensive. It only requires calculation of the
codon profile of each sequence (an operation based solely on counting and normalising)
and measures of distance between vectors. Furthermore, the distances are computed

only between atypical transcripts and the genome averages.

Considering the kind of information used and the very low number of bacterial
genomes of known sequence, this method yields a considerable number of positive
predictions (25%; 17% if the X fastidiosa regions are considered — as they probably are —

result of a single transfer event).

The number of false predictions is nevertheless very high and these need to be ruled
out by a verification procedure (employing a phylogenetic approach) after the
detection. The verification can be a computationally expensive procedure, but since it is
applied to an already small and filtered set of cases it will not excessively affect the

performance of the analysis.

D.4.1 Causes of error

The adopted phylogenetic procedure identified some possible HGT events which the
compositional method failed to detect (for example region 20, S.typhi, which could be
originating from Y.pseudotubercolosis; see Figure IV-2). The failure in the detection is due
to two main causes: 1) high similarity in codon usage between donor and recipient

genome; 2) lack of annotated genomic sequence data.

As for the former cause, high codon similarity, this is an intrinsic limit of the
methodology which could only be avoided at the price of a steep increase in the
number of false predictions. If the donor and receiving genomes have very similar
codon usage, the transcripts in the recipient genome which are very different from their

genome average bias will also be different from the average bias of the donor genome.
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These transcripts (if they are really the result of a horizontal gene transfer and not
atypical because of other causes: like selection acting on translational efficiency,
compositional symmetry of leading versus lagging strand, and others) do not share the
characteristic codon usage of either the donor or the recipient and hence would not be

detected by this methodology.

Some example genomes, which have similar codon usage and between which the
methodology would not have been able to predict HGT events, are: V.cholerae and E.coli
(codon profile distance between the two genomes of 0.69 units), R.solanacearum and
P.aeruginosa (distance of 0.62), Y.pestis and S.typhi (0.71). See D.5.2 below for a possible

solution to the detection of intra-family transfers.

The other main cause, lack of annotated genomic sequence data, will be less and less
relevant as more genome sequences are deposited in the public databases. As more
genomes get sequenced, the methodology will yield better predictions without a
substantial loss of computational performance. Fine tuning with more restrictive codon
similarity thresholds (including thresholds on a genome-per-genome basis, see below)

could be used, leading to a higher sensitivity during detection.

D.4.2 Undistinguishable codon usage of ameliorated genes

There is another class of false negatives to which all the compositional prediction
methods are susceptible. These procedures cannot detect fully ameliorated genes whose
sequences adjusted to the base composition and codon usage of the resident genome to
become undistinguishable from ancestral sequences (Lawrence and Ochman, 1997).
Such methods are hence restricted to discovery of relatively recent acquisitions (few

millions of years, depending on the extent and rate of the amelioration process).

At the time of introduction, HGT genes have the codon usage pattern of the donor
genome and will progressively accumulate substitutions (due to the mutational
processes in the recipient genome) to eventually reflect the codon bias of the recipient
genome. This process of amelioration was estimated to produce divergence with a rate
of 0.47% and 0.0195% (for synonymous and nonsynonymous sites, respectively) per
million years (Myr) (in E.coli when compared to S.enterica; Lawrence and Ochman,
1998). The average age of an HGT gene in E.coli was estimated in the same work as

being 6.7 Myr.
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The elaborated methodology is inherently biased (as all statistical compositional
procedures) towards recently transferred genes (e.g. under 10 Myr) which have not
undergone an extensive amelioration process. Comparative genomics, analysis of
sequences and of phylogenetic trees are the requirements to possibly identify the

ameliorated Horizontally Transferred genes.

D.4.3 Distinct codon usage for highly translated genes

For various bacterial species there is considerable evidence that intra-genomic codon
usage can distinguish several classes in which the genes can be clustered, with a class of
highly translated genes employing an optimised codon usage. This physiological codon
bias could then be perceived as an impediment to the presented HGT detection

methodology.

Without a specific study for each species, it is not trivial to differentiate the two
phenomena (although some authors indicate that in general the highly expressed genes
do not deviate in G+C content from the mean values of the genome; Garcia-Vallvé et
al., 2000). This is particularly relevant for those studies which aim at estimating the

amount of horizontally transferred genes in the genomes.

The described methodology has a different scope, namely the identification of donor
genomes, which had not been computationally done before, especially in this very
general and automated way (Kanaya and co-workers identified matches for seven E.coli
0157 genes in V.cholerae according to proximity on a bacterial Self-Organising Map,

comparisons with a similarity measure and BLASTP searches; 2001b).

This work does not attempt to give an estimate on the extent of cross-species transfer
but to identify precise transfers. To this end, the thresholds for codon atypicality (to self)
and codon similarity (to alien genome) have been set very high. The first part of the
procedure, selecting atypical genes, could select genes which are atypical from the
genome average not because of HGT origin but because of high-translational efficiency

(e.. ribosomal genes).

But the second part, the search for codon similarity matches between these atypical
genes and other genomes, would remove many, if not all, of those false positives. A
cross-species transfer is a more parsimonious explanation for an observed very high

codon similarity between a gene in species A and a very different genome bias of
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species B, rather than the coincidence between the codon usage of high-translated
genes in species A and the normal codon usage of the genes in genome B, especially
considering the extremely high number of possible codon usages (q.v. chapter VI for a
discussion on the size of the codon usage space and the number of codon usages for

specified levels of similarity).

D.5 Possible improvements to the methodology

D.5.1 Genome specific thresholds

With the continuously increasing number of sequenced genomes, the success rate
can only improve (because the donor species is more likely to be present in the data
corpus) and tighter requirements of codon similarity can be set, to detect the donor

directly at species level (lowering the number of multiple matches).

One logical step in this direction is represented by the possibility of setting genome
specific thresholds. Although the intra-genomic heterogeneity is coherently bounded
between certain ranges (as shown in chapter three), there is still a certain amount of
variability which could be tapped in order to raise the specificity of the detection
procedure. Instead of choosing a constant atypicality threshold of, for example, 1.8
units, a specific atypicality threshold could be defined for each genome: for instance the
bacterium Buchnera aphidicola has lower intra-genomic heterogeneity (q.v. Figure III-2)

and hence its atypicality threshold could be set to about 1.5 units.

Genome specific atypicality thresholds could be easily computed from the
distributions of intra-genomic codon similarity. Additionally, the threshold specificity
could be extended to all possible pairs of donor/acceptor genomes (n°-n couples, where
n is the number of sequenced genomes) with an automatic procedure to determine

correct thresholds on the basis of the number and size of the detected regions.

D.5.2 Detection of intra-family transfers

As noted above, one of the intrinsic limits of the methodology is due to the high
codon similarity between certain related genomes. Discrimination would decrease as

donor and recipient genomes are more compositionally similar.

Furthermore, HGT is expected to be more likely between closely related bacteria,

although HGT events have also been observed between distant species. The proposed
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methodology uses conservative thresholds to lower the number of many false positives

but in so doing it prevents detection of intra-family transfers.

To circumvent this problem, and detect transfers between closely related taxa
without generating too many false positives, their genomes would need to be analysed
separately: for example transfers between Enterobacteriaceae could be detected, applying
the procedure only on the sequences of genomes belonging to this family and setting
lower and finer thresholds (in particular, the threshold of atypicality would need to be
greatly lowered).

D.6 HGT detection performed on synonymous codon usage vectors.

The compositional approach, resulting in the detection of the transcripts alien in their
own genomic context but similar in codon usage to another genome, was performed at
various thresholds of similarity and using both codon profile (CPRO) and synonymous

codon usage (CSYN) vectors for the computation of distances.

CSYN distances are generally lower in scale than CPRO ones, as explained in II D.1.3
and as observed in the study of heterogeneity of prokaryotic genomes in section III D.1,
Figure III-3 and Figure III-4. CSYN distances are around 4-5% lower than the
corresponding CPRO ones. For this reason, the thresholds of similarity and atypicality
for CSYN were reduced to 95% of their values when used with CPRO vectors. The
confirmation that the scale adjustment is appropriate comes from the number and
distribution of regions identified with the two schemes and the respective thresholds
(Figure IV-4): the number of matches is highly comparable between the two schemes

for all the examined thresholds.

The results presented in this chapter were obtained with CPRO vectors and distance
settings of 1.80 for codon atypicality and 1.25 for codon similarity (Methods section C.1).
The corresponding thresholds for CSYN are 1.71 and 1.20 for atypicality and similarity
distances, respectively. These settings produce a number of total region matches (and a
distribution of their sizes) very comparable to CPRO, with actually slightly more
matches (Table IV-4).
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Region size CPRO 1.8 to 1.25 CSYN 1.71 to 1.20
12 1 1
11 5 6
10 2 3
9 3 3
8 6 4
7 6 9
6 44 29
5 57 93
4 113 127
3 263 229
2 1036 984
1 7515 7605

Table 1V-4: Distribution of detection matches (linked in regions) for the two schemes CPRO and CSYN.

Nevertheless, when unique regions are selected (the numbers in the previous table
refer to the multiple matches) to choose the best regions (those that contain more
matches), a lower number of long unique regions are found using CSYN vectors
compared to the results obtained using CPRO ones. To recover all the regions (as in
Table IV-2) and obtain the same results with both schemes, the CSYN similarity
threshold needs to be raised to 1.25. Thus CSYN obtains the same results of CPRO with
atypicality thresholds lowered to 95% and similarity thresholds kept at 100% of the

corresponding values used in the CPRO analysis.

The similarity threshold has hence to be set to a more permissive value for CSYN
vectors, increasing the total number of matches (and hence also the number of false
positives). This might indicate a higher sensitivity, although slight in nature, of the

codon profile scheme.
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E CONCLUSIONS

The elaborated methodology is computationally inexpensive and the codon profiling
appears sensitive enough to successfully identify the donor genomes of the predicted
HGT (something existing compositional methods do not provide). The combination of
the phylogenetic approach to the compositional detection removes the many false
positives that a method of compositional detection would yield if used alone.
Furthermore, the sequence database searches and the assessment of phylogenetic trees,
which usually require a great amount of time and resources, are restricted to a small
and filtered set. The compositional detection is automated and very fast: it can be run in

three hours on a 400 Mhz PC for all bacterial genomes.

Comparing with the statistical procedure — based on G+C content and codon usage —
developed by Garcia-Vallvé et al. (2000), the number of predictions of the presented
methodology is very low. This is due to the fact that HGT cases are proposed only when
a probable donor genome can be identified. Of all the atypical transcripts, only those
with codon usage very similar to some other genome are considered. This ensures that
the detected transcripts are atypical only to their genomic context and not absolutely
anomalous, thus eliminating many false positives. Out of 10,699 possible atypical
transcripts, only 1,548 have a clear similarity to another genome. This might be due to
the low number of sequences which have been determined (with comparison to the
enormous number of species). Alternatively, the codon usage heterogeneity of those

anomalous transcripts is not to be found in HGT origin.
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F APPENDIX

F.1 Coding sequences belonging to the predicted regions

Region | Genome Sequential numbers for the coding sequences as they
appear in the deposited sequence of the genomes

1 A.aeolicus 273 275 276 280

2 A.aeolicus 370 374 375

3 A.pernix 1224 1225 1226 1228 1229 1230 1235

4 B.longum 192 193 195

5 B.longum 209 210 211 212 213 214

6 E.coli K12 534 535 536

7 E.coli_K12 1991 1993 1994 1995 1996 1997

8 E.coli K12 3545 3548 3551

9 E.coli_O157 2860 2861 2862 2863 2865 2866

10 E.coli_0157 RIMD 3507 3510 3511 3512

11 M.thermoautotrophicum 329 331 332 334

12 N.meningitidis_MC58 1887 1889 1890

13 N.meningitidis_MC58 675 676 677

14 P.aeruginosa 13691370 1371

15 P.aeruginosa 2222 2225 2226

16 P.aeruginosa 3143 3144 3145 3146 3147 3148 3149

17 P.putida_KT2440 4402 4403 4406 4408

18 S.flexneri2astr301 2093 2097 2098 2099 2100

19 S.oneidensis_MR1 995 996 997 1000 1001

20 S.typhiCT18 21102113 2114 2115 2116 2117 2118

21 S.typhiCT18 2166 2170 2173

22 S.typhiCT18 4483 4484 4485

23 X.axonopodis 1472 1474 1476 1479 1481 1484 1485 1487

24 X fastidiosa 1714 1719 1720 1722 1723

25 X fastidiosa 1724 1725 1726 1730 1731 1733 1734

26 X.fastidiosa 1738 1739 1741 1742 1745 1746 1747 1748

27 X.fastidiosa 1754 1757 1758 1759 1761 1762 1764

28 X fastidiosa 1769 1771 1775 1778

Table IV-5: Coding sequences belonging to the predicted regions (those that satisfy the filtering procedure and

that represent matches of the compositional detection methodology).
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V' Applications of codon profiling II: Investigation of atypicality

A ABSTRACT

Another application of the codon profiling technique is a procedure for the detailed
analysis of those elements (genomes, transcripts or protein families) that present a

codon usage atypical in a specified context.

Atypical codon usages can first be identified by multivariate analysis, and their
dissimilarity to the codon usage context (for example to a genomic average bias) can be
presented by a single measure, namely the Euclidean distance between the codon
vectors. Subsequently, the contributions to the observed distances can be decomposed
and displayed as difference matrices. Finally, the usage of the codons which contribute
the most to the dissimilarity can be analysed, with the additional possibility of
recovering and graphically representing the positional information (the sequential

distribution along the coding sequences).

A complete methodology for the identification and study of genes with highly
heterogeneous codon usage is presented in this chapter and exemplified by a real case

analysis of human infecting viruses in the context of the human genome.

B INTRODUCTION

B.1 Levels of approximation and averaging effects

Transcripts with atypical codon usage can be identified at first approximation by
their high Euclidean distance from the average codon bias of their genome. In this way
their dissimilarity is summarised in one single measure that comprises all the
contributions. This index of (dis)similarity is by its very nature extremely coarse and
concise, combining the high dimensionality of the codon information into a single scalar
value. A large Euclidean distance between two codon vectors could be due to the sum
of many relatively small differences, or conversely to few but very significant
differences in the usage of specific codons. To differentiate between such cases and
properly identify the causes of codon usage atypicality, other instruments of analysis

are used, for either automatic or manual investigation.
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The suitable integration of complementary techniques and instruments at different
approximation levels provides the researcher with the possibility of, firstly, rapid
convergence to the more interesting data in the domain analysed and, secondly,

extensive in-detail study of those aspects.

The Euclidean distance can be thought of as the average of the contributions of the
individual codon preferences, a summarisation, which inevitably masks some
information while revealing general trends. Also the synonymous frequencies are a
summarisation (of the absolute codon occurrences) which reveal the trend (the
preference for some codons) while masking the information about quantity, about
absolute abundances. Additionally, the information on the position of codons in the

gene is lost when either codon occurrences or frequencies are computed.

Similarly to these averaging effects in the methodology used, the averaging effects in
the data can be recognised and opportunely exploited or circumvented. Compositional
measures can be applied to data sets of different magnitudes and to different levels of

biological detail.

For example the total G+C content or codon bias of whole genomes can be
computed. This proves very useful in species-to-species comparisons but at the same
time hides the variability inside the genomes. Alternatively, the same measures can be
conducted on chromosomes or chromosomal regions (for example with a sliding
window), on protein families or on single genes, with different possible aspects being

investigated in each of these biological entities.

B.2 Viruses and hosts

Viruses are taxonomically classified into more than sixty families according to their
genome type (like RNA or DNA based, circular or linear, double or single strand) and to
their gene content. Human infecting viruses are very diverse, with genome sizes
spanning from little more than a kilobase to hundreds of thousands of bases,

characterised by different life-styles and different transmission routes.

As first reported in the pioneering work of Grantham et al. (1980, 1981) and later by
Ikemura (1992) and others, the codon usage of many viruses is often quite different
from the codon usage of the host organisms they infect. An exception to this trend is

found in many bacteriophages which usually exhibit the codon usage of their bacterial
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hosts, unless they carry their own polymerase and are hence subject to different
mutational pressure (Kunisawa et al., 1998). In higher Eukaryotes, factors like
polymerase replication errors and translational efficiency seem to play a less important
role (as outlined in section I C.1.5) and this would probably also be reflected in the
genome of the viruses infecting them. The codon usage of viral genomes is mostly
influenced by the coexistence of many overlapping biological messages (g.v. section I

C.3.3).

An analysis of the heterogeneity in the codon usage of viral transcripts for human
infecting viruses is reported in chapter three, showing that not only the average
genomic bias, but also the codon usage of the individual transcripts is significantly
different from the human codon bias, with few exceptions (IIl D.2). But in that and in
similar analyses the human genome was treated as a coherent whole, with a single
average measure of codon preference, which would conceal the intra-genomic
heterogeneity. It was hence decided to analyse human transcripts, comparing the codon
usages of clusters of them, instead of averaging over all of them in a single genomic
bias. The clusters analysed enclose transcripts which share similarity in the sequence or

structure of the proteins they encode (and are hence related in the function).

The aim was to investigate possible similarities between the codon usage of viruses
and of human transcripts, and to explore the possibility of shaping forces inside the
viral genomes which might be influenced by the human genome. In other words, to
find out whether there are niches of human codon biases towards which the viral
codon usages would tend (by way of selection). The codon usage of a virus could be
different from the human average bias but similar to the codon usage of particular

classes of human transcripts.

C METHODS

C.1 Human protein families

Human transcripts were obtained from the Ensembl genome annotation project
(Hubbard et al., 2002; http://www.ensembl.org/). Releases 100, 110 and 120 have been

subsequently used to obtain human transcripts, comparing the results and observing
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their consistency across the releases. Perl scripts were written to retrieve and
manipulate the sequences, either through mySQL direct access to Ensembl servers or by

parsing the information retrieved from EnsMart (Ensembl data retrieval web interface).

The transcripts are clustered according to protein sequence similarity, using the
Tribes protein classification (Enright et al.,, 2002; their database of protein family
resources is accessible at http://www.ebi.ac.uk/research/cgg/tribes/) or according to the
SCOP-HMM  structural classification (Gough et al.,, 2001, website available at
http://supfam.mrc-Imb.cam.ac.uk/SUPERFAMILY/). In this way the transcripts analysed
are grouped in functional classes according to the proteins they encode. 85 families
were analysed from the Tribes and 130 from the SCOP classification: those with low
codon profile deviation (average of intra-family distances lower than 1.7 distance units),

to prevent including families containing transcripts too diverse in codon usage.

C.2 Human infecting viruses

The codon profile vectors for viral genomes (56 of them) were computed from the
entries in the CUTG database (Nakamura et al., 2000), which stores the codon usage
information for all species that have been (even partly) sequenced. The codon usage
tabulated for a species is an average of the codon usages of the individual sequences
that have been determined for that species. The latest release of this database
encompasses more than sixteen thousand species and strains. On one hand, this
database contains redundant copies of the genes, and is thus avoided by several authors
because this redundancy might introduce some bias. For the same reason it can be
preferred in some studies: for example the presence of data from multiple strains of the
same bacterium or virus can favour the discernment of inter-species codon usage

differences over intra-species ones.

A non-redundant source for viral codon usage data is represented by the completely
sequenced viral genomes, which can be obtained from the GenBank (Benson et al., 2000)

database. Appendix III F.2 lists the analysed viruses and their accession numbers.

C.3  Clustering algorithms

In addition to the multidimensional scaling (g.v. IIl C.4), two clustering algorithms
based on unsupervised learning were jointly employed for this work. A clustering

algorithm attempts to find natural groups of points based on some general criteria.
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Unsupervised classification methods are used to automatically find clusters in the
input data without a priori knowledge. They do not need to be told the number of
classes in which to divide the data and they do not need a training set (supervised
learning, on the contrary, implies the generation of class descriptions from labelled

examples).

The Self-Organising Map (Kohonen et al., 1996) is an unsupervised neural network
algorithm that maps high-dimensional data to a lower dimensional grid (usually two-
dimensional), with a nonlinear projection. The grid can be considered an elastic surface
which iteratively updates its nodes, with the goal of preserving the structure of the

high-dimensional space. The SOM_PAK program package was used in the analyses.

AutoClass (Cheeseman and Stutz, 1996) is a Bayesian classifier that finds a set of
classes (with the goal of finding the most probable one) to which the data elements can
be assigned, adopting a trade-off between the fit to the data and the complexity of the
class descriptions. The trade-off prevents extreme (and practically useless) over-fitting,
where each element would be assigned to single case classes. AutoClass searches both
by trying alternative class models and by re-assigning the elements across the different

classes.

D RESULTS AND DISCUSSION

D.1 Human families and human infecting viruses

For simplicity, the term protein family will also be used to refer to the groups of
transcripts clustered according to the Tribes algorithm (transcripts clustered on the basis
of the amino acid sequence they encode). This terminology may seem inappropriate,
but could be partly excused since the results shown for the Tribes clusters are highly
comparable with those obtained using transcripts belonging to real protein families — as

defined in the SCOP (Murzin et al., 1995) structural domain database.

D.1.1 Clustering of Tribes families

Among the clusters analysed, the protein family 13122 (marked with a green pointer in
the figures) was used as a control, as the representative of the average human codon

bias. Its annotation is “Cytochrome P450” and groups 37 transcripts. It was chosen as
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representative because it has a confirmed annotation and because its codon usage is

almost the same as the average one for Homo sapiens.

The codon profile vectors relative to the human protein families and to the human-
infecting viruses have been clustered combining two different multivariate analysis
methods: a neural-net based clustering (SOM), and an unsupervised Cclassifier

(AutoClass).

The clustered map of protein families and human-infecting viruses (Figure V-1)
shows that the majority of human families occupy a well defined (although broad)
space, not too far from the average human bias and, as expected, distant from the

majority of the viruses.

AutoClass suggests fives classes in which the data can be sorted, marked with a

different colouring on the SOM of Figure V-1.

Classes identified by the colours yellow, magenta and violet are mainly populated by
human protein families. Some Herpes and Adenovirus (Adenovirus types 2, 5 and 17;
Herpes virus types 1, 2, 4 and 5) fall in these classes, their codon usage being similar to
the average human bias, possibly an indication of adaptation to the human codon
usage. This result is consistent with the study on viral transcripts presented in the
previous chapter (g.v. IIl D.2). The yellow class also includes three families of histone
transcripts, which are generally considered among the genes with the highest
expression levels. They have very biased codon usages which might be due to selection
for rapid translation of mRNA (Wells et al., 1986; DeBry and Marzluff, 1994; but see
Kanaya et al., 2001a).

The green-coloured class groups viruses whose codon usage is most dissimilar from
that of human proteins. Among these are the Papilloma viruses, rotavirus and torovirus.
The last remaining class (coloured in light blue) can be considered an interface class,
comprising several viruses and human protein families with atypical codon usage.
Some of these families are very close (in the clustering and hence in terms of codon
usage) to a group of viruses, in particular to the RNA viruses parainfluenza and Human

Immunodeficiency Virus — HIV.
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Table V-1 shows the human protein families that are closer to these viruses than to
the average human codon bias. The transcripts in these families all show a very atypical
(when compared to the human codon bias) codon usage. The most atypical is 12898
(annotated as RNA binding protein), which has an Euclidean distance from the average
human codon bias of 1.680, almost three standard deviations further away than the
average distance of all the human families from the human codon bias. The values for
these atypical transcript clusters can be compared to the histogram showing the
distribution of distances for all the human protein families (Figure III-8, from section III
D.3.1): over 75% of human protein families have a distance from the human bias less

than 1 and the average for all families is 0.657.

All these families that have a codon usage similar to that of parainfluenza and HIV
are annotated as being functionally related to RNA and DNA: RNA binding,
retrotranscriptase, DNAse I, RNA polymerase.

Distance from family A.V erage Deviation of Maximum
control distance distances from | distance from
13122 | 12898 | 13089 | 13161 | 12754 | from all all families all families
families
Homo sapiens 0.574 | 1.680 | 1.589 | 1.307 | 1.554 0.657 0.368 1.680
parainfluenzal | 1.723 | 1.204 | 0.959 | 1.055 | 1.376 1.424 0.387 2.575
parainfluenza2 | 1998 | 0.828 | 1.269 | 1.186 | 1.259 1.633 0.466 2.862
HIV-1 2.005 | 1.075 | 1.309 | 1.092 | 1.102 1.671 0.432 2.929
HIV-2 1.687 1.184 | 1.012 | 0.912 | 1.311 1.409 0.386 2.573
Total 37 32 74 463 21 3837 (in 85 families)
transcripts

Table V-1: Codon profile Euclidean distances between Tribes human protein families and the genomic biases of
human, parainfluenza and HIV. Consensus annotations: 13122: Cytochrome P450; 12898: RNA binding protein;
13089: LINE1 reverse transcriptase; 13161: LINE1 retrotransposon; 12754: Heterogeneous nuclear Al helix
destabilising protein single strand binding protein HNRNP core protein.

13089, 13161: LINE1s (Long INterspersed Element 1) are long (6-8kb) GC-poor
transposable sequences (accounting for 15% of the human genome) encoding an RNA

binding protein and a reverse transcriptase/endonuclease (Smit, 1996).

12898: The genes coding for the transcripts in the RNA binding protein cluster are
located in the Y chromosome and encode a nuclear protein implicated in
spermatogenesis. It has been proposed that these genes arose from transposition of an

ancestral autosomal gene, hnRNPG (Chai et al., 1998).
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12754: The heterogeneous nuclear ribonucleoproteins (HNRNP) have a general role
in processing, packaging and transport of RNA but some of them display also sequence-

specific binding (Krecic and Swanson, 1999; Shan et al., 2000).

D.1.2 Clustering of SCOP superfamilies

The results obtained on the Tribes families were compared to those obtained from
the analysis performed on transcripts grouped according to the SCOP-HMM structural
classification (Gough et al., 2001). In this way two different classification schemes were
used to group the transcripts, to assess to what extent the observed correspondences are
dependent on the family clustering. The resulting SOM map (Figure V-2) has a very
similar topology, but since the clustering of the transcripts is different (based on Hidden
Markov Models of structural domains rather than on sequence similarity), it is not quite
identical. AutoClass identifies in this data set one additional class which comprises

coxsackie and polio viruses (grouped in the light blue class by the previous analysis).

The majority of the transcripts that Tribes classification groups in the families 12898
and 12754 (RNA binding proteins and HNRNP) are part of the SCOP superfamily d.58.7
(Annotated as “RNA-binding domain, RBD”).

Other SCOP protein superfamilies close to HIV codon profiles are shown in Table
V-2. Being superfamilies, they contain in general more transcripts than Tribes families —
the average family size is twice as large — and because of this fact their average distance

to the human bias is lower.
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Distance from family A.V erage Deviation of Maximum
control distance distance from | distance from
e8.1 | d.151.1 | d.58.7 | b.69.5 from all e .
a.104.1 - all families all families
families
Homo sapiens 0342 |1.324 | 1.258 | 0.985 | 0.917 0.359 0.221 1.324
parainfluenzal | 1.536 | 0.801 | 0.823 | 1.008 | 0.952 1.312 0.237 1.996
parainfluenza2 | 1.788 | 1.128 | 1.170 | 1.067 | 0.911 1.516 0.292 2.289
HIV-1 1.788 | 1.173 | 1.202 | 1.164 | 1.027 1.557 0.262 2.313
HIV-2 1.491 | 0.834 | 0.863 | 0.959 | 0.943 1.321 0.233 1.997
Total 81 80 90 273 20 12093 (in 130 families)
transcripts

Table V-2: Codon profile Euclidean distances between SCOP-HMM human protein superfamilies and the
genomic biases of human, parainfluenza and HIV. Superfamily descriptions: a.104.1: Cytochrome P450; e.8.1:
DNA/RNA polymerases; d.151.1: DNase I-like; d.58.7: RNA-binding domain; b.69.5: Regulator of chromosome
condensation RCC1

D.1.3 Clustering repeated together with the pufferfish genome

To verify the hypothesised similarities between human genome families and human
infecting viruses, the clustering was repeated in conjunction with families from the
recently sequenced genome of the pufferfish, Takifugu rubripes (Figure V-3). In this case
multidimensional scaling (MDS) was used, a multivariate ordination procedure that

preserves Euclidean distances in the low-dimensional plot (III C.4).

Apart from some exceptions — like the protein family with identifier 33518
(annotated as “reverse transcriptase/ribonuclease H”) that clusters near some polio and
coxsackie viruses — pufferfish transcripts generally have a different codon usage from
that of the human infecting viruses; human families are located in between the regions

of the map occupied by the codon usages of the pufferfish and of the viruses.

This new clustering confirms that the observed correspondences are not
methodological artefacts: human and pufferfish families are separated like in Figure
IlI-6 from section III D.3.1, while the topological arrangement of human infecting
viruses (with respect to human protein families) is highly comparable with that found

in the previously presented analyses.
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D.2 The human RNA binding protein

The cluster of RNA binding transcripts was found to have one of the most atypical
codon usages in both SOM and MDS multivariate analyses. There are in fact significant
differences between the codon usage of the RNA binding protein family (family
identifier 12898 in the Tribes analysis) and the average human codon bias, while its
differences with the HIV or with parainfluenza are minor (as shown in Table V-1). By
contrast, Cytochrome 450 (13122) shows almost no difference from the human bias,
while its difference from retroviral genomes is very pronounced. These differences,
which were summarised by the Euclidean distances in the previous sections, are more
accurately shown by the codon difference matrices (I C.3), which reveal the exact
causes of the codon usage dissimilarities. The single scalar value represented by the

dissimilarity measure is thus decomposed into its multivariate components.

The major cause accounting for the observed atypicality of the RNA binding protein
family is AT-richness, with some synonymous sets particularly contributing to it, as
detailed in Figure V-4. That figure also shows a comparison between the codon usage of

the RNA binding transcripts and those of parainfluenza and HIV.
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D.3 Coloured codon analysis of RNA binding proteins

The investigation has now progressed from the analysis of whole genomes to the
analysis of protein families, and from the presentation of scalar measures of
dissimilarities to their decomposition into synonymous frequencies, at each step
increasing the level of detail and decreasing the averaging effects. The final logical step
is to analyse the single transcripts individually, and to recover the information on the
absolute codon occurrences and on the location of the codons along the sequences.
These informations are both ignored when the codon usage is analysed with relative

frequencies.

Two sets of synonymous codons that are major contributors to the atypicality (in the
context of the human codon usage) of the RNA binding protein are presented in this

section by the individual codon occurrences along the single transcripts.

In the following figures (Figure V-5 and Figure V-6), every line represents a sequence
belonging to the analysed protein families and only the relative usage of the triplets
coding for a single amino acid is shown. For each transcript the synonymous codons for
the analysed amino acids were isolated and plotted using the corresponding symbol (a
coloured codon; g.v. I C.5.1). The symbols used, their correspondence to the codon
triplets and the average codon bias of these triplets in Homo sapiens, are reported in the
figure legends. This representation of the individual triplets helps the visual inspection
of sequences, and in particular allows the observation of patterns in the usage of the
triplets along a sequence. The recovery of positional information would reveal, for
example, the presence of a rarely used codon at the beginning of the transcript (a fact
believed to play regulatory effects in the genes of the bacterium Escherichia coli; Ohno et
al., 2001) or would make the presence of different usages in different regions of the

genes visible.

In all transcripts of the RNA binding protein (12898) it is possible to observe an
almost exclusive preference, 87%, for a synonymous codon for Histidine (CAT) whose
average codon bias in Homo sapiens is tabulated as being 41%. The Cytochrome P450
transcripts instead show a distribution closer to the average, with the relative frequency

of the CAT triplet being 32% (Figure V-5).
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As for the amino acid Arginine, the RNA binding protein transcripts have a very high
preference for the AGR codons (represented as squares with black borders, accounting
for 65% of total Arginine codons) and in particular for AGA (represented as a yellow
square with black border, accounting for 53%) whose usual distribution would be the
one appearing in the Cytochrome P450 transcripts, since its average codon usage in the

human genome is tabulated as 21% (Figure V-6).
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D.4 Hypotheses to explain the observed similarities

The exact reasons that account for the similarity between the codon usage of the
human RNA binding proteins and that of the parainfluenza and HIV genomes are
currently unknown and would require further investigation. Three main hypotheses

can be outlined as follows:

First of all, the simplest and most probable hypothesis is that the similarity is just
coincidental, the result of the overlap between the viral codon usages and the codon
usage of those significantly atypical protein families. The reasons for the atypicality of
these protein families are most probably not related to the forces shaping the codon

usage of the viruses.

The second hypothesis is related to translational efficiency. Both the human RNA
binding protein families and most of the viruses have a codon usage which is AT-rich
and very different from that of the histones. This could indicate a suboptimal (from the
point of view of expression levels) codon usage. By contrast, several herpes viruses and

adenoviruses have very similar codon usage to that of the histones (Table V-3).

Distances from histone families

Tribes Tribes Tribes

12736 12925 12963

Homo sapiens average | 1.078 1.553 1.204
RNA binding protein 2.512 3.031 2.647
Parainfluenza 1 2.164 2.575 2.202
Parainfluenza 2 2.404 2.862 2.495
HIV-1 2.363 2.929 2.531

HIV-2 2.121 2.573 2.252
Herpes 1 0.940 0.976 0.779
Herpes 2 1.117 0.933 0.913
Adenovirus 17 0.768 1.065 0.836

Total transcripts 21 25 25

Table V-3: Codon profile Euclidean distances of the RNA binding protein family (Tribes 12898) and of the
genomic biases of human and several viruses from the human histone families. Consensus annotations: 12736:
Histone H3, 12925: Histone H2B, 12963: Histone H2A.

Inefficient translation due to codon usage was in fact reported for HIV transcripts,
and several groups studying vaccine approaches against this virus engineered HIV
transcripts with optimised codon usage (Haas et al., 1996; zur Megede et al., 2000; Deml
et al., 2001). For the viruses, low levels of expression could be a way of evading detection

by the immune system or it could be the result of stronger constraints on their codon
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usage that would prevent adaptation towards higher translational efficiency. In fact, the
HIV codon usage is one of the most constrained: more than 90% of its sequence is
coding and certain regions code simultaneously for two or even three genes (each one
following one of the three possible codon reading frames). For the identified transcripts
with atypical codon usage, a lower translational efficiency could be one of the ways to

regulate their expression levels.

A third possibility (related and complementary to the previous one) would be the
necessity of preserving particular mRNA secondary structures in these transcripts (for
example in relation to their stability or, conversely, propensity for degradation; I C.3.3).
Recently published studies by Peleg and co-workers (2002; 2003) seem to be pointing in
this direction. Their work analysed the sequence conservation and the possible RNA
structure of HIV transcripts and confirmed the presence of highly conserved RNA folds
in the coding regions for the proteins Env (envelope glycoprotein) and Nef (whose
function is not completely understood but which has been observed as being involved,
among others, in down-regulation, alteration of cellular signalling and RNA binding;

Geyer et al. 2001; Echarri et al., 1996).

The transcripts of the identified protein families (such as RNA binding proteins,
Linel retrotranscriptase and HNRNP) are very rich in AT, with GC3 values between
30% and 40%, while the average GC3 for the coding part of the human genome is 58%.
They could contain inhibitory sequences that reduce mRNA stability and inhibit

translation.

A characterisation with molecular biology techniques (for example assaying the
degradation of these mRNA transcripts) would be the next step to evaluate these
hypotheses, integrating the complementary disciplines of bioinformatics and molecular

biology.

E CONCLUSIONS

A complete procedure to identify and characterise genes with anomalous codon
usage was presented. The atypicality can be observed and analysed at different scales

(different sample groups), outlining codon usage patterns for whole genomes, for
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transcripts taken in clusters or for single sequences. Furthermore, the multivariate
codon information can be summarised in a single measure or observed in all its
components. The coarser levels of detail enable easy observation of general trends and
faster convergence to the most interesting domains, which can then be extensively
explored, recovering the information that had been ignored or concealed by

computation of average measures.

A real case scenario was investigated with this procedure, employing different
techniques and data sets, identifying some human protein families whose codon usage
is very atypical in the human genome context but similar to that of the viruses
parainfluenza and HIV. Conversely, several adenoviruses and herpes viruses were

shown to have codon usage patterns similar to those of the human histones.
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VI Codon usage space

A ABSTRACT

The codon usage space is the multidimensional space of all the possible synonymous
codon distributions. An investigation of this space was conducted, with particular focus
towards the examination of the portion represented by currently available biological
sequences. The interest lies in the characterisation of correlations between non-
synonymous triplets, hence evaluating the non-randomness of the codon usages, and in

the discovery of universal constraints.

A binning algorithm was used to create a model of the codon space at a desired level
of granularity, reducing the data set to a lower number of codon usages, each
representing a populated region of the entire space. In this way the continuum of the
codon space is modelled by a discrete grid of codon vectors, uniformly spaced, in which
a large part of the sequencing sampling bias (more data available for specific taxonomic

groups) has been removed.

This enabled the identification of the major components in the variation among the
codon usages, those possibilities for variability which have been most ‘explored” by
extant codon usages. It hence outlined the order and the characteristics of the global

constraints to the possible variability.

The biological and the theoretical space were compared, revealing the high degree of
correlation between synonymous triplets in the whole populated space, estimating its
coverage and compactness, and showing the very confined region of the theoretical

space in which codon usages can be found.

B INTRODUCTION

B.1 Defining the codon space

The codon usage space (from here on referred simply as codon space) is here defined as
the set of all possible codon usages, all the possible relative utilisations of the
synonymous triplets in coding sequences. The concept of codon space parallels the one
of protein fold space which encompasses all possible protein folds (Holm and Sander,

1996; Holm and Sander, 1998; Zhang and DelLisi, 1998). It was first analysed by Rowe
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and co-workers in 1984, using nucleotide frequencies at the three codon positions

(Rowe et al., 1984; Rowe, 1985).

A total codon profile space would include all possible codon profile vectors deriving
from all possible genetic codes, while the codon space presented in this chapter is

restricted to codon usages from the Standard code.

An incomplete codon usage is a codon usage vector missing information for particular
amino acids or triplets. A total codon space also encompasses all the possible incomplete
vectors, but the analyses will be mostly restricted to filtered spaces containing only

complete codon usages.

The codon space can be analysed as the multidimensional space of vectors whose
components are the relative frequencies for synonymous triplets, with each vector in
this space representing a codon usage. A measure like the Euclidean distance between
any two vectors (II C.2) can be used to assess the degree of similarity between the codon
usages associated to the vectors. With this distance function defined on it, the codon
space is a metric space, as it satisfies the three properties of non-negativity, symmetry

and triangle inequality.
B.2 Measuring the size of the codon space

B.2.1 The number of vertices

How large is a codon space? In particular, narrowing the focus of interest to a better-
defined subset of the total codon space, in how many ways can the codons be used in a
coding sequence, so that there is at least one triplet coding for each amino acid? This
subset of the space takes the name of AA-filtered space (see II C.4 for vector filtering

schemes).

One possible answer to this question is given by calculating the number of minimal
codes (all possible set of codons with only one triplet present for each amino acid
species) for the Standard genetic code. The product of the number of synonymous
triplets for each amino acid computes the total number of minimal codes as amounting

to roughly 340 million:

4-2:2:2-2-4:2-3-2:6-2-4-2:6:64-4-2=339,738,624
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These represent the vertices of the AA-filtered space, the extreme perimeter. For a
better understanding of this concept, a two-dimensional space can be considered,
where the vectors have components restricted to the values between 0 and 1. All the
possible vectors can be represented by the points inside the square ABCD, where
A=(0,0), B=(0,1), C=(1,1) and D=(1,0). There are infinite points in this space but all are
restricted to the region inside the square, with the extremes being the four vertex points

A, B, CandD.

In the multidimensional space of AA-filtered codon usages, there are 340 million
extreme vertices, defining the boundaries between which all the other data points can

be found (all the other codon usages with more than one triplet for each amino acid).

Two other subsets of the codon space, the CPRO-filtered and CSYN-filtered space (II
C.4), lie inside the AA-filtered one, at a certain non-zero distance from those extremes,
but with limits approaching those of the AA-filtered one: when for example one
synonymous triplet for Isoleucine has a relative usage of 96% and the other two only
2% (like in the case of the Streptomyces coelicolor genome), it approaches the extreme case

of a minimal code data point (which would be 100% - 0% - 0%).

B.2.2 The number of combinations

Another possible way of estimating the extension of the codon space is by restricting
the estimation to the Standard code CSYN-filtered space (all synonymous triplets
present, ignoring the terminator/STOP ones), with a minimum frequency of 0.1 (i.e.
10%) for each triplet, and considering frequencies only in multiples of 0.1 (0.1, 0.2, 0.3,
..., 1.0). This is equivalent to setting a granularity in the space, where only these discrete

values are allowed, representing the continuum of real values in between.

With these boundary conditions it is possible to calculate how many possible
distributions of frequencies for each set of synonymous triplets exist (e.g. for the four
triplets coding for Alanine) and hence (by multiplication of the distributions for each

amino acid) how many possible codon usages exist.

The frequency distributions of two synonymous triplets are nine (0.9:0.1, 0.8:0.2,
0.7:0.3, 0.6:0.4, 0.5:0.5, 0.4:0.6, 0.3:0.7, 0.2:0.8, 0.1:0.9) and there are nine amino acids
coded by two triplets. For three synonymous triplets (the case of the Isoleucine amino

acid) there are 36 possible distributions of frequencies. There are 84 possible
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distributions for four synonyms (and there are five amino acids coded by four codons)
and 126 in the case of six synonymous triplets (amino acids Leucine, Arginine and

Serine in the Standard code).

The total number of relative synonymous codon frequencies for the entire codon
usage, with these boundary conditions, would hence be: 126*84°-36:9°= 1.17-10°, clearly
an unmanageable number of possibilities to analyse by exhaustive search methods.
Since some combinations of distributions in the cases of six synonymous triplets are
equivalent from the point of view of codon profiles (as explained in II D.1.1), the

number of codon profile vectors is slightly smaller: 6.752:10.

The shortest Euclidean distance between two data points in this space amounts to
0.141 units (the square root of 0.1°+0.1%. Two codon usages with an inverted extreme
bias for a synonymous couple (for example one having 90% usage of Phe TTT and the

other one having 90% usage of Phe_TTC) have vectors whose distance in the codon

space is 1.13 units (\/ (0.9-0.1)* +(0.1-0.9)* ). The longest possible distance is the one

between two codon usages with completely inverted biases in the codon frequencies for
all amino acids. It amounts to 4.28 units. This is the measure of the longest diagonal of

this multidimensional space.

If only the most extreme codon usages were considered (such as 0.9:0.1 distributions
for synonymous couples or 0.7:0.1:0.1:0.1 in the case of four synonymous triplets), we

return to the number of the minimal codes previously computed: 6>43-2°=339,738,624.

B.3  Granularity of the codon space

Setting coarse frequencies (multiples of 0.1) can be thought of as the equivalent to
setting the granularity in the codon space, with elements existing as discrete entities
rather than as a continuum. The 10* elements calculated above for the codon space are
a huge but finite number of representatives for the infinite codon usages. Each of those
elements stands for all the possible codon usages inside a hypersphere with the radius
0.141 (V2/10): a grid of points uniformly spaced at 0.141. This process is usually defined

as binning of the data points.

Choosing a higher granularity setting — i.e. choosing a longer radius for the

hypersphere whose centre is taken as representative for all the points inside its radius —
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lowers the number of total points of the codon space grid. In other words, the number

of total possible theoretical codon usages that exist at a higher granularity radius is less.

The following Table VI-1 shows the numbers of grid points (in orders of magnitude)

for each granularity level (the radius of the representative spheres).

granularity | number of
radius points
0.283 10"
0.424 10"
0.566 10"
0.707 10°
0.849 107
0.990 10°
1.414 10*

Table VI-1: Estimated number of grid points — bins — for each granularity level of the CSYN-filtered codon space,
in orders of magnitude. Estimations were obtained computing the number of points that could be found at the given
distance (the granularity radius) in exhaustive subsets of the codon vectors (all the possible distributions of coarse
frequencies for a subset of the total codon dimensions). These estimations are in agreement with those obtained from
randomly generated codon usage vectors used to sample the codon space, although the sampling is feasible only for
longer granularity radii (q.0. C.2).

Longer radii are best used to explore the codon space. The coarser granularities
enable dealing with the vast amount of possibilities, and attempt to chart the codon
space at a certain level of detail, which could, if necessary, be increased — analogous to
changing from a large scale map to one of a smaller scale. In addition to the
requirement of feasibility, the granularity radius needs to be sufficiently large to
effectively sample the space and to group similar codon usages, without resulting in
bins containing single elements. As will be shown in the Methods (C.1.1), there is a

definite range of radii that should be used for useful and coherent binning.

B.4 Exploring the codon space

In order to chart the codon space — to create a map which represents the codon
usages employed by genomes — the concept of representative hyperspheres was applied.
When analysing all codon usages coming from all the coding sequences determined so
far, only one representative element can be kept for each region of the codon space in

which codon usages cluster.

All the transcripts whose codon usage closely reflects their average genomic bias are

clustered together. Only one representative kept, standing for occupancy of that region
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of the codon space, while atypical transcripts would need their own representatives. In
this way the populated space (the region of the codon space that encompass the codon
usages observed in sequenced genes) can be mapped at a defined level of granularity.
In other words, all codon usages contained inside a hypersphere whose radius is the
granularity radius, are represented by a single codon vector, located at the centre of the
hypersphere. The number of elements needed to characterise the dataset is reduced,
since each selected codon vector represents a class of codon usages that shares similar

features.

The non-populated space can also be analysed. These are the remaining zones of the
codon space for which no equivalent codon usage can be observed in the available
sequence data. If the codon space mapping is imagined as the charting of land masses,

the non-populated space could be thought of as the oceanic regions.

Comparisons of the populated space with the non-populated regions can help in
understanding the size and structure of the former, with the scope of characterising
universal constraints and correlations in codon usages. Why are these regions non-
populated? In other words, why it is not possible to observe those codon usages in
nature? Have they not been observed yet (because still so little has been sequenced) or
are they always avoided in coding sequences due to some constraint? If they are
avoided, why is it so? Are there “universally” optimal codons, or conversely, universally
under-represented ones? Similarly, are there regions preferentially occupied or avoided
by some taxonomical group? Is there any broad codon usage pattern preferentially
found or never found within a group of similar organisms? The charting of the codon

space is a way of providing answers to these and similar questions.

B.5 Fractal structures

In 1975 Mandelbrot introduced the term fractal (from Latin fractus: broken) to
describe those phenomena that are continuous but not differentiable. Every attempt to
divide a fractal into smaller parts results in the resolution of more structure: fractals are
said to display self-invariant properties. Fractal structures will look the same regardless
of the observation scale: the property of scale independence. Other fractal properties are

self-similarity, self-affinity, complexity and infinite length or detail.

VI—128



Recognition of the fractal geometry of nature has important implications to biology,
as evidenced by the numerous applications: fractal properties have been studied - to
name but a few examples — for chromosome architecture (Takahashi, 1989), protein
surfaces (Lewis and Rees, 1985), cellular complexity (Smith et al., 1989), DNA sequences
(Xiao et al., 1995), branching systems in the organs of animals or in the plant structures
(Deering and West, 1992; Fitter and Strickland, 1992) and in the relations between size

and populations of organisms (Jeffries, 1993).

Formally, a mathematical fractal is defined as any series for which the Hausdorff
dimension D (a continuous function) exceeds the discrete topological dimension (Tsonis
and Tsonis, 1987). The fractal dimension D is most commonly estimated from the

regression slope of a log-log plot.

Unlike theoretical curves (such as the Koch curve or Sierpinski gasket), natural
structures do not display exact self-similarity but many display some degree of
statistical self-similarity (at least over a certain range of spatial or temporal scales) and

are thus better referred to as scale invariant (Vicsek, 1989).

One of the first methods used to empirically estimate the fractal dimension is the
dividers method, in which the length of a fractal curve is measured at various scale values.
This procedure is analogous to moving a set of dividers of fixed size along the curve. By
measuring the contour using different sizes of dividers one finds that, if the object is
fractal, the length of the contour will increase as the size used to measure the contour is

decreased.

In some cases the log-log plot does not have a constant slope (i.e. the fractal
dimension is not constant). This may indicate different generative processes or it may

simply reflect the limited spatial resolution of the analysed data.

Another method that can be applied to structures lacking strict self-similar properties
is the box-counting method. For an image depicting a two dimensional curve, this
technique subdivides the image into a number of equal sized boxes; the number of
boxes which contain portions of the curve is then counted and the process is iterated
with different sizes of the boxes. The fractal dimension of the contour is related to the
slope of the plot between the logarithm of the number of boxes through which the
contour passes and the logarithm of the size of the boxes (Longley and Batty, 1989).
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B.6 Dimensionality of the codon space

B.6.1 Dimensionality of the synonymous sets

Although the synonymous codon vectors have 59 components (excluding
Methionine and Tryptophan, coded by a single codon, and the STOP codons), the
codon space is not a 59-dimensional space, because the components are not
independent values but are instead relative frequencies. Taking for example the amino
acid Cysteine, with its two synonymous codons TGT and TGC, it is probably intuitively
clear that all the possible values corresponding to these two dimensions can be
represented as a one dimensional segment, since the sum of the frequencies of TGT and
TGC must be equal to one: if a two-dimensional square is considered, with the possible
values for TGT and TGC as its x and y dimensions, all the possible distributions of

frequencies lie on one of the two diagonals of the square.

Similarly, for the case of the three-fold degenerate amino acids the distribution of
frequencies can be represented as a triangle (two-dimensional, “diagonal” of a cube),
while for four-fold ones it has the three-dimensional shape of a tetrahedron (from the
four-dimensional hypercube which would represent the four components if these were

independent).

More difficult to visualise is the case of the triplets for six-fold degenerate amino
acids, but by comparison with the other cases it is a five-dimensional space. In other
words, in the theoretical case of six uncorrelated triplets the points lie on a five
dimensional surface inside the six-dimensional hypercube. Having one less degree of
freedom, the space of CPRO dimensions relative to those triplets is instead four-

dimensional.

A way to calculate the dimensionality of the triplet distributions is to use the box-
counting method which is usually employed in fractal analysis: subdividing the six-
dimensional space in boxes of increasingly smaller size and counting the number of

boxes which contain data points (see previous section).

When this method is applied on the biological data for 6-fold synonymous sets or on
randomly generated frequencies, the result approximates but does not reach the
expected value of five dimensions. In reality, this kind of procedure is heavily limited by

the sparsity of data in high dimensions (see also C.2) and its limits are already perceived
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in this six-dimensional application. With approximately one million of biological
frequencies for each synonymous set of six triplets, the slope of the linear regime of the
log-log curve estimates a fractal dimension of 4.4. This result is with all probability an
underestimation, due to the extremely high number of samples required by the
boxcounting method for high-dimensional spaces. It is thus not possible to apply these

methods to the analysis of the full-length codon vectors of the codon space.

B.6.2 Dimensionality of the entire codon usage

The synonymous codon usage space has a maximum of 41 uncorrelated dimensions,
which is the product of the orthogonal subspaces with the different dimensionalities
described above for each type of synonymous set. The total dimensionality derives from
the sum of nine one-dimensional subspaces, one two-dimensional, five three-
dimensional and three five-dimensional ones. If the distributions for the synonymous
triplets were completely independent, with the relative usage of codons for one amino
acid not correlated to the relative usage of codons for another amino acid, then all the
possible distributions of relative usages could theoretically be found among the
biological sequences. In other words, if the usage of the codons were random, or if there
were no constraints, global trends and correlations, then the populated space should

resemble the theoretical space.

In reality, the synonymous sets for the different amino acids are often observed as
being not independent: when analysing biological data a correlation is almost always
found, for example, between the triplets contributing to G+C content. The effective
heterogeneity among codon usages is hence expected to be lower than what could be
theoretically possible. Correlations between triplets and other constraints would limit
the possible “exploration of the codon space” by biological sequences, i.e. the maximum

divergence between codon usages.

C METHODS

C.1 Mapping the populated space

A filtered space was the object of the investigation, restricting the analyses only to

complete codon usages, either in the sense of comprising at least a triplet for each
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amino acid (AA-filtered space), or encoding the full repertoire of triplets (CPRO or
CSYN filtered space). The decision to filter the data was taken in order to investigate a
coherently defined set, consistently removing any aberrant codon usage, like those
deriving from very short transcripts and susceptible to large stochastic variation (the
filtering procedure was presented in section II C.4). The more restrictive filters limit the
amount of codon usages that can be analysed: considering all the analysed data sets,
there are 948,938 transcripts encoding all the amino acids (AA-filtered), while 133,231 is
the number of CPRO-filtered ones and 93,032 the number of CSYN-filtered ones.
Although there is less data available for them, the codon usages encoding the full
repertoire of codons are better suited at investigating the correlations among all the

triplets in the genetic code.

Firstly, the transcripts obtained from the completed genomes were analysed. An
annotated completely sequenced genome ensures a high level of quality for the
sequences. Secondly, the space mapping was extended to the whole EMBL database
(Stoesser et al., 2003), thus significantly enlarging the size of the data set. Release 75
(June 2003) of this database was used. The sequences chosen were those employing the
Standard genetic code and the equivalent Bacterial code (almost all prokaryotic
sequences employ EMBL translation table 11, the bacterial code, which is the same as the
Standard code, with the only difference of having additional potential initiation

codons).

For too many data points (one for each transcript sequence) multivariate analysis
requires an exponential amount of allocated memory and computation time (for
example many MVA algorithms rely on the computation of matrices of distances
between all the data vectors). Additionally, comparisons and visualisations are difficult

to perform when there are too many data points.

A simple binning algorithm was hence adopted in order to keep only a minimal set
of representatives, thus mapping the populated space at a specified level of granularity.
The algorithm proceeds sequentially through the data set and accepts new data points
only if their Euclidean distance to all the previously accepted data points is greater than

the defined cut-off (the granularity level).
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The result is that a reduced number of representative points are kept to characterise
the dataset, all at a certain minimal distance from each other (see Figure VI-1). Each
point represents the class of points that shares similar features, in this case similar codon
usages. Taken together, the representative points reflect the topology of the region
occupied by all the data points. In other words, they represent the portions of the codon

space corresponding to the codon usages of the biological data.

Different distances can be used to sample the space, with shorter distances leading to
more representatives but a tighter fit of the high-dimensional region. Granularity radii
which are too short produce too many representatives. Conversely, granularity radii
which are too long incur the risk of a loss of features in the representative space (Figure

VI-lefg).

Apart from making the codon space manageable, the binning procedure has the
benefit of producing a more uniform data set, where redundancies are eliminated and
the sequencing sampling biases greatly reduced. For high enough granularity radii, the
resulting space is even and unbiased, with all the representative points equally
identifying the populated regions of the space (i.e. all points are treated equally and
together they represent the total coverage of the populated space).

Alternatively, when it is desirable to maintain the density information (how many
data points are in a given region) the algorithm can be set to compute the number of
codon usages covered by each representative and that information can hence be
analysed (as in Figure VI-4 and Figure VI-5 of section D.2). The density information
reveals: 1) which are the main trends for specific subsets inside the codon space (for
example, if there are preferential regions of the space where plant codon usages can be
found); 2) the significance of the representative points (which points stand for many
codon usages and which are instead marking isolated or rare occurrences); 3) which are
the most populated areas of the codon space and what are the most commonly

employed codon usages (in absolute terms or for selected taxonomical groups).
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C1.1 Number of identified representatives and choice of granularity radius

The logarithm of the number of representatives is linearly proportional to the
logarithm of the granularity radius (as shown in the following Figure VI-2). The
linearity holds as long as the number of identified representatives does not become too
close to the total number of points. Plotting this information can help decide on the
choice of the granularity level at which analysing the codon space. Too short a radius
would yield too many points representing only themselves (inefficient binning). Too
large a radius loses any structure in the codon space (to the absurd limit case of a single
representative for all the codon usages). Furthermore, it is possible to predict the
number of representatives, limited to the linear regime, which can be found at a given

radius, after a few iterations have been computed with different radii.

It is important to note that the number of representatives identified by the developed
binning algorithm needs to be considered an approximate rather than an exact number.
In fact the number of representatives can fluctuate, depending on the order in which

the vectors appear in the data set when the algorithm is run.

It was experimentally determined that a near-optimal coverage can be obtained by
randomising the order of the total data set analysed: if the order of the vectors of the
original data set is randomised, the number of representatives found is about 16% lower
than the number of representatives which are obtained from data sets to which a
sorting procedure is applied (for example sorting by the values assumed by the vectors
along a specified dimension). The representatives of sorted data sets would have a

tighter packing (with more overlap between their hyperspheres).

Iterating the binning procedure over data sets in different randomised orders allows
the estimation of the amount of fluctuation, measured as the deviation in the number of
identified representatives, at a given granularity radius. The fluctuation is dependent
on the size of the data set and on the granularity radius. It is low for short radii,
increases with the radius and eventually decreases again when the granularity radius
becomes too large and the number of found representatives becomes very low. For the
size of the analysed data sets the standard deviation in the number of representatives is

lower than 1% (percentage of the average representative number) for granularity radii
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below 1; it reaches 2% around 1.25, 4% for 1.4 and after reaching its maximum at 1.5

(6%) it decreases again, indicating loss of features in the codon space.

From these two approaches, calculating the number of representatives and the
deviation for different granularity radii, it is possible to choose the level at which to
analyse the codon space, i.e. to determine the range of granularity radii that are neither

too short nor too long.

The numbers that will be presented in Results for the total representatives are the
averages among 50 iterated binning. A possible alternative would be to use the

minimum number of selected representatives instead.
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Figure VI-2: Number of representative points kept for the populated space at each granularity level (for each choice of cut-off
radius). (a) linear scale (b) logarithmic scale for both axes. The logarithm of the number of representative points is linearly proportional
to the logarithm of the granularity radius. This figure additionally reveals the high number of similar codon usages: from a total of

133,232 non-identical codon vectors, 55,117 can be found lying at a distance shorter than 0.2 from another codon usage.



C.1.2 Shortcomings and future improvements

The binning algorithm described above is not efficient for low granularity radii and
large amounts of data. In fact, since every codon usage needs to be sequentially
compared for proximity to all the previously accepted representatives, the algorithm
slows down considerably as the number of representatives grows. This needs to be
addressed with more efficient binning, otherwise the computational requirements for a
high amount of representatives could be prohibitive. In fact the analysis of the AA-
filtered space (roughly one million codon usages) becomes impractical at low
granularity radii: in the worst case, the creation of bins containing single elements, the

algorithm goes through n?2 distance evaluations.

The results presented in this chapter are hence those relative to the CSYN-filtered
and CPRO-filtered data sets, which were compared against a CSYN-filtered theoretical
space (i.e. all triplets are required to be present, although very low frequencies,
approximating the zero-frequency case, are permitted). Apart from the lower
computational requirements, these more restrictive spaces can be better compared with
the theoretical space, because they can reveal correlations among the complete codon

usage, i.e. among all the triplets.

The topology for the AA-filtered space at high granularity levels was found to be
largely comparable to the ones investigated for the more restrictive codon spaces, so
most of the results presented can be applied to it. Nevertheless, a thorough

investigation is needed to appropriately compare these data sets.

Another possible improvement to the binning algorithm could address the
fluctuations in the number of representatives (non-optimal coverage; previous section).
One possible solution would be to pre-scan the data set with longer radii and use them
to guide the binning at shorter-radii, and using the centroids of the bins (the points
whose coordinates are the average of all the members of the bins) as representative
points. This approach would increase the computational requirements (as the data set
would need to be scanned more than once) but would produce better coverage and a
more exact value for the number of representatives needed at the specified granularity
level. Apart from the higher computational complexity, querying the model would

become less direct, since the representatives would not be existing codon usages but
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codon usages averaged over existing ones. With the algorithm presented in this work, it
is instead straightforward to obtain the accession number of the sequence-database
entries whose codon usage is kept as representative, and retrieve their annotation and

their sequence.

C.2 Random sampling and identification of the non-populated regions

In order to characterise the biological space, it is useful to compare it with the

theoretical space, which could be approximated by randomly generated codon usages.

There are several possible studies that can be accomplished with a source of random
codon vectors. For example, they can be used to sample the codon space in search for
regions which are not populated (not visited by the biological sequences analysed). In
this case the procedure consists of randomly generating codon usage vectors and
sampling the mapped codon space (the representatives obtained after binning at the
desired granularity level). Alternatively, the procedure could be used with an empty
space to estimate the number of theoretical codon usages at a given granularity level.
Each new random vector gets compared to all the stored data points, and if its distance
from all points is found to be higher than a specified cut-off, the sample is accepted and
added to the codon space. The cut-off can be the same as the one used for the mapping
or a coarser one can be adopted, in order to reach saturation (indicated by a steep
decrease in the number of new non-populated representatives being found) with a

lower number of accepted random points.

In fact, these kinds of direct-sampling methods suffer from the sparsity of data in
high dimensions (an effect usually called the curse of dimensionality, due to the
exponential growth of hyper-volume as a function of dimensionality; Bellman, 1961). In
order to maintain a given level of accuracy, the number of required samples increases
exponentially with the number of variables. In practice this means that sampling at low
granularity levels is both unfeasible and inaccurate, but it is possible to sample at

coarser levels.

Additionally, both the number of representatives at a given radius and the change in
the number of representatives found for different radii can be compared between the

biological codon usages and the randomly generated ones. This allows the estimation of
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the total coverage and density of the biological space with respect to the theoretical

space.

Four different algorithms have been subsequently developed to generate random
codon vectors adopting different criteria. For each of these algorithms it is possible to
specify the application of a filter (see II C.4), in order to generate only vectors which

would satisfy that filter.

C.2.1 ‘Random triplets’ codon usage generation algorithm

The first algorithm is based on randomly deciding how many triplets to assign to
each amino acid and then randomly selecting between the triplets coding for that
amino acid, until the decided amount has been assigned. The total size of the transcript

is also randomly chosen, within a specified range.

This algorithm produces codon vectors which are not very different from the codon
usage average vector: for a high number of triplets, the randomness will approximate a
uniform distribution (e.g. 25% for each of four synonymous codons), while for low

numbers the stochastic variation would be greater.

C.2.2 ’‘Random frequencies’ codon usage generation algorithm

The second algorithm proceeds by determining a priori position-specific relative base
frequencies (TCAGI123, relative use of the nucleotides at the three codon positions) and
then generating random triplets whose total nucleotide content would be equivalent to
those pre-determined frequencies. In this way the algorithm manages to generate more
diverse codon usages. Additionally, the generated codon vectors for the 20 amino acids
are not probabilistically independent as they reflect the total base frequencies. In this
way they approximate the correlations observed in the codon usage of many genomes:

for example the correlation between total G+C content and codon usage.

C.2.3 ‘Random usages’ codon usage generation algorithm

The third algorithm removes this inter-dependence by determining a priori
frequencies for the synonymous triplets for each amino acid species. For example it will
randomly assign the four codons for Alanine to be in a proportion of 10:30:5:55. A
minimum frequency can be set for each codon species (for example setting a minimum

of 20% for triplets of 2-fold degenerates, while allowing a minimum of 10% for triplets
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of 4-fold degenerates). Additionally, it is possible to specify the granularity level for the

resulting frequencies, for example producing only frequencies in multiples of 0.1.

This algorithm can produce very deviant codon usage vectors and hence explore
zones of the codon space which are prevented to the previous algorithm due to its
inter-dependency in nucleotide contents: the ‘random frequencies’ algorithm would
rarely produce a codon usage which is GC-rich for the triplets coding for half of the
amino acids and GC-poor for the other half. Also for this algorithm it is possible,
specifying a total and minimum frequency for the triplets, to regulate the granularity in

the generated random usages.

C.24 ’‘Random distributions’ codon usage generation algorithm

The possible arrangements of triplet frequencies of the random codon vectors
generated by the ‘random usages’ algorithm are uniformly distributed. The ‘random
distributions” algorithm can be set to produce coarse frequencies which obey certain
specified distribution schemes. For example this algorithm can be instructed to generate
vectors missing the most extreme triplet distributions (like 0.9:0.1 for 2-fold degenerate
amino acids or 0.7:0.1:0.1:0.1 for 4-fold degenerate ones). Conversely, it can generate
vectors whose frequency distributions are only the most extreme ones (with one triplet
greatly over represented over the synonymous ones for each amino acid type). There is

no inter-dependence between the frequencies among different amino acids.

This is by far the most versatile and also the fastest of the presented algorithms, as it
exploits a pre-generated library of all possible frequency distributions for the desired
scheme (schemes like “only extremes”, “no extremes”, “coarser”) from which to

randomly select the distribution of triplets for each amino acid species in the vector.

C.2.5 General considerations on the developed random algorithms

Theoretically, the maximum Euclidean distance from the average codon vector is
3.629 and there are 340 million possible AA-filtered possible vectors with this distance
from the average (the minimal codes, where only one codon is used per amino acid).
For AA-filtered transcripts, all algorithms manage to generate these extremely deviant
transcripts. CPRO/CSYN-filtered transcripts could theoretically get very close to that

limit (with individual relative frequencies as low as 0.002, for example; enough to satisfy
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the filter) but in practice these extremes are never reached in random searches with the

first two algorithms.

For the first algorithm (‘random triplets’), a distance from the average codon vector
of no more than 1.771 units could be achieved even after extremely long searches (of
several millions of generated vectors), while the other ones can easily generate more

deviant vectors.

Besides the maximally deviant codon usage that an algorithm can generate, another
important property is the heterogeneity of the generated vectors, how diverse and
independent from each other they are. This property is fundamental for a

comprehensive exploration of all regions of the theoretical codon space.

The importance of a good source of randomness, to generate very diverse vectors in
the exploration of the codon space, can be easily underestimated. The codon bias of the
bacterium Streptomyces coelicolor is 2.627 distance units from the average vector (this
genome — which represents one of the most deviant data points in the CPRO-filtered
mapped space — has a total G+C content of 72.5%, with a GC3 averaging 93%), so

vectors as diverse as this one need to be generated for sensible sampling.

Conversely, the algorithms can be set to avoid generating too extreme data points by
measuring the distance to the average codon vector and discarding those vectors whose
distance is larger than a specified threshold; for example discarding vectors whose

distances from the average are greater than 2.3 units.

C.2.6  Characteristics of the generated codon usages

Figure VI-11 (presented in section D.4 of Results) compares the biological codon
usages and the random codon usages generated by the different algorithms, binning

them with a range of granularity radii.

The codon usages generated by ‘random distributions” are the most diverse (they do
not have correlations between non-synonymous triplets) and hence their number of
representatives is always higher than that found for the biological codon usages or for

the other randomly generated ones.

A similar reasoning can be applied to those generated by ‘random usages’, with the

exception of the behaviour observed at high granularity radii. Since this algorithm was
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set to generate frequency distributions with a minimum of 0.2 (20%) for the 2-fold
degenerate amino acids, the generated codon usages are not as deviant from the
average as some of those which can be found in the biological space: there are biological
codon usages in which some triplets are used almost exclusively over their synonymous
alternatives. For this reason the number of representatives at very high granularity radii
(which keep only very diverse codon usages) for the ‘random usages” vectors is lower

than the number of biological representatives.

The ‘random usages’ at these higher radii, beyond 1.5, are also less diverse than those
generated by ‘random frequencies’. In fact, these two algorithms are complementary:
‘random frequencies’ has correlation between the non-synonymous frequencies but it
can generate very deviant vectors from a nucleotide compositional point of view (like a
very extreme distribution for all GC-rich codons) while ‘random usages’ generates more
diverse codon usages but (since it was limited to 0.2 minimum frequency for the

synonymous couples) these do not reach the extreme perimeter of the space.

D RESULTS AND DISCUSSION

The scope of this study was to understand the topology and extension of the
populated codon space. In other words, to compare the theoretical codon usages with
those that can be found in the biological sequences, to examine the heterogeneity of
codon usages employed by diverse organisms or groups of organisms, to quantify how

diverse the biological codon usages can be or, conversely, how constrained.

Obviously the biggest impediments to the creation of a full picture of the biological
codon space are the inevitable sampling bias and the low sampling size. The former
relates to both the technological limits (only recently it has been possible to determine
the sequence of large genomes) and to the differential relevance that guides the choice
of species to analyse (model species and pathogens are the first to be studied). As for the
sampling size, the sequences presently stored in the databases are a mere fraction of the
global biological patrimony (even limiting ourselves to the existing species, not
considering those which became extinct). Estimates of global species diversity vary
greatly, ranging from as low as two to as high as one-hundred million species (Ozanne

et al., 2003). Even if the number of genes and genomes being sequenced grows
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dramatically day by day, when we consider that there are only 17,140 species with at
least one coding sequence in the database (as to the February 2003 GenBank release) it
is clear that the best possible picture of the biological codon space can only be a very

blurred and minuscule one.

Nevertheless it is interesting to draw the picture, however tiny and inaccurate, with
the awareness of its limits but also of the fact that the existing data can still be a

representative of the total data.

D.1 Mapping the populated codon space

Following the aim of mapping the complete space, the analysed data sets contain
codon usages employed by very diverse species from the main taxonomical
subdivisions of life. Nevertheless it is also possible to chart the populated space of
specific subsets, and two of them, namely the vertebrate and the prokaryotic spaces,

will be briefly presented below.

D.1.1 Completed genomes

At a granularity level of 1.3 Euclidean distance units, 460 representatives are selected
for the completed genomes; 49 of which come from archaea, 220 from bacteria, 26 from
Anopheles gambiae, 15 from Takifugu rubripes, 14 from Homo sapiens, 4 from Mus musculus,
14 from the yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and 118 from

the viruses.

At that granularity level, 14 data points are identified by the binning algorithm as
necessary to represent the extension of the codon space relative to Homo sapiens: the first
covers the great majority of human genes, whose codon usage closely reflects the
average genomic bias; the other points represent the codon usages of atypical
transcripts. Together, they capture the variability that the human genome transcripts
can reach inside the codon space. Very few human transcripts have a codon usage
significantly different from the average codon vector (the vector with averagely
distributed synonymous frequencies). Conversely, the Pseudomonas aeruginosa genome
bias is more extreme than any of them, with an Euclidean distance from the average
vector of 2.34 units. This great distance is due to the very high GC3 content of 88% in
this genome and to the almost exclusive usage of some synonymous triplets, for

example the TTC triplet for Phenylalanine used at 95% (Grocock and Sharp, 2002).
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If representatives are selected among the total data (all the sequences from the
completed genome analysed together rather than split in different groups), the
mapping is reduced from 460 to 201 data points which lie no less than 1.3 Euclidean
distance units apart, a measure of the extent of the redundancy and overlap that exists

between the codon space extensions reached by these groups.

This data set was considered too limited to represent the complete biological space so

the procedure was extended to a broader data set.

D.1.2 All sequenced transcripts

The whole EMBL database (see Table VI-2 for a list of the division files examined and
release information) was then analysed and representatives for the codon space were

selected at different levels of granularity.

If the representatives from EMBL are compared to the codon space binned in the
previous analysis (when only sequences from completed genomes where analysed),
approximately double the number of codon usage representatives are found: data
points representing codon usages not covered by the previously mapped codon space.
At the same granularity radius of 1.3 there are in fact 201 representative points
describing the space of the completed genomes, while there are 397 for the EMBL data

set.

Those are the values when the two sets are independently binned. If instead the
completed genomes codon space is used as the starting space for binning the EMBL
codon usages (to prevent overlap: only those from previously empty regions are

added), the novel EMBL codon usages are 179 (an increase of 89%).

The majority of the new data points found (in the EMBL data set compared to the
completed genomes data set) are codon usages from plants and invertebrates (mainly
from the genomic projects of model species: like A.thaliana, O.sativa, C.elegans,
D.melanoguster), as was expected due to the bias towards prokaryotes in the data from

completely sequenced genomes.

To integrate the two sources of data, a new comprehensive data set was constructed
by joining the codon usages computed from the EMBL database sequences and those

relative to the completely sequenced genomes. These codon usages were arranged in
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nine groups, as detailed in Table VI-2. The obvious redundancy between the two sets

was eliminated in the process of selection of representative elements.

average number of

groups Data origin representatives
1.1 1.2 1.3 14 1.5
prokaryotes archaeat, bacteriat, PRO 880 426 213 104 63
fungi FUN, yeastsA 193 101 56 29 19
plants PLN 398 189 90 44 25
invertebrates INV, A.gambiae, D.melanogaster() 487 239 121 64 37
vertebrates VRT, T.rubripest 118 63 31 16 11

mammals | MAM, ROD, H.sapiens}, M.musculus} 112 58 33 18 12

viruses VRL 373 192 101 52 32

phages PHG (bacteriophages) 67 40 24 14 11

other | ORG (organelles), UNC (unclassified) 72 42 27 16 11

total | 2700 | 1351 695 358 220

without overlap | 1736 792 376 179 106

overlapping points | 36% | 41% | 46% | 50% | 52%

Table VI-2: The groups in which the data for the populated space was sorted and the representative elements for
each group at different granularity radii. Uppercase codes in the second column refer to EMBL divisions (Release 75
June 2003). t: Completely sequenced archaea and prokaryotes as from appendix III F.1; A: genomes of S.pombe,
S.cerevisiae; t: from Ensembl; : from FlyBase. The values in the “without overlap” row refer to the representatives
computed from the total data set, without creating overlapping representatives between the nine groups. These are
hence the real estimation of the size of the codon space at the set granularity level. Note that all the numbers
presented are the rounded up average values on fifty randomised-order runs of the binning algorithm: see Methods
C11

As mentioned above, considerable overlap exists between the groups: those
representative points of different groups lying at a distance shorter than the granularity
radius (having approximately the same codon usage). The amount of overlap increases

with the length of the granularity radius, since the total number of all the possible

codon usages decreases for higher granularity radii (B.3).

Prokaryotes (and in particular the bacteria) constitute the most diverse group and

this is reflected both in the number of representatives as well as in the extension of the
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codon space that they cover, with the maximum distance between two points of this
group being 4.227 Euclidean distance units (basically spanning two opposite “corners”
of the codon space, completely opposite codon usages). Independently from the
granularity level at which the codon space is mapped, the representative data points for
the prokaryotes are the most numerous. But apart from the diversity between the
prokaryotic species, this could also reflect the sampling bias in sequencing: up to now
only few eukaryotes have been sequenced completely (or even partially), while

prokaryotes account for half of the sequences in the analysed EMBL divisions.

A large part of such sampling bias is removed by the binning procedure: selecting
representatives using relatively high granularity radii produces a more uniform data
set, lowering redundancy and reducing the bias towards the most populated groups.
Without binning, or using short granularity radii, the similar codon usages between
certain highly populated groups (those for which more sequences are available)
influence analyses of the codon space: for example when plotting the distribution of the
values for each dimension in the codon space, the distributions for the total space are
skewed towards the values found for the prokaryotic space, because of the higher
amount of data. Increasing the granularity radius, this effect diminishes considerably
and the distributions become more flattened and less skewed, although remaining
almost in the same ranges (i.e. covering the same extension of codon space), as shown in

Figure VI-3.

It is then important to use relatively long granularity radii in order to reduce the
sampling bias (so that any over or under-representation observed can be attributed to a
universal feature rather than to the bias given by a single group). Very long radii are
also to be avoided, because the number of representatives becomes too low and too

many features could be lost at the coarser levels (as explained in Methods, section C.1).

Although not all sequencing sampling bias can be removed in this way (since the
number of species sequenced for the different groups varies greatly), the prokaryotes
do appear the most biologically diverse group in codon usage, both in the number of
representatives and in the extension over the codon space. Invertebrates, plants and
then viruses follow them in terms of codon diversity. The vertebrates are a quite

compact group, with a maximum distance between two vertebrate representative codon
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usages amounting to 2.549 units (thus not a large span over the codon space, if

compared to the prokaryotes, spanning 4.227 at their maximum).

It is now too premature to extrapolate from the existing sequenced data, but it will be
interesting to follow the number of representative codon usages identified as more
sequences get determined. At some point a plateau effect should become visible (like it
happened for the number of protein folds being discovered), with less and less new
codon usages being found (at a certain specified granularity radius). It is probable that
the number of representative points describing the total biological codon space will
raise greatly, but without an extreme change in the order of magnitude (an expected
estimate of the maximal upper bound being in the order of thousands, at 1.41
granularity; possibly under one thousand). This guess is based on the observation of the
distributions of genomic nucleotide frequencies, compactness of the populated space

and comparison with the randomly generated codon usage vectors (presented below).

D.2 Analyses of the populated space

The space of codon usage representatives can be analysed in several ways: looking
for universal biases between synonymous triplets, computing the ranges of total
nucleotide contents, investigating particular regions or particular subsets of it and
measuring its extension and density. The main advantage of this model is the reduction
of the number of points that can be kept while maintaining the topology of the total
space and removing redundancy. This makes very large scale analyses possible and
allows the easy extension of the model with new data. Every newly determined
sequence can be tested against the representative space to see if it represents a novel
codon usage. Similarly the representative space could be used for studies on
biodiversity, species evolution or sequence identification. One possible application is
that the model can instantly provide the codon usages most similar to that of a query

sequence, with the desired amount of similarity.
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D.2.1 Low-dimensional representations and principal coordinates of separation

Two multivariate analysis procedures (II C.4), correspondence analysis (CA) and
multidimensional scaling (MDS), were used for reducing the dimensionality of the
space and understanding the major trends in codon usage. Adopting multiple
techniques allows the comparison between the separation axes identified by each, to see

if they diverge in the determination of the major trends.

A multidimensional scaling plot of the populated space appears in Figure VI-4.
Density information (the number of effective codon usages being represented by the
points) is included in the form of gray discs. If this information is ignored, the plot
represents the populated space in an effectively unbiased way, showing the spread of
the groups over the regions of the codon space, even if occupied only by one codon
usage; if conversely this information is considered, it reveals the most populated
regions of the space and where the majority of the codon usages for the different

groups are to be found.

At the edges of the map there are extreme (very biased) codon usages while the
centre contains more average ones. For example, on the rightmost side there are two
very GC-rich representatives: AK094712, a human transcript coding for a probable zinc
finger protein (87% GC3 content) and ANG14849, a mosquito transcript coding for the
sizeable 4095 amino acid long glycoprotein gp330/megalin (Saito et al., 1994) with its
93% GC3 content. On the left of the map lie the representatives of the most GC-poor
codon usages, like that of the bacterium B.aphidicola with its 13% GC3 content.

The codon space can also be represented using three dimensions, obtaining a cloud
of points which could be rotated and observed from different angles. Figure VI-5
presents three of these plots at different granularity radii and with density information.
Several points that appear superimposed in the two-dimensional plot (Figure VI-4) can

be discriminated along the third principal coordinate.
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Figure VI-6 reports the contributions for the orthogonal axes identified by
multivariate ordination procedures as accounting for the largest fraction of variation
among the codon space. The contributions are shown as codon difference matrices.
These were computed for each orthogonal axis as the difference between the centroid of
the 10% points with higher positive coordinate on that axis and the centroid of the 10%
points with higher negative coordinate (a centroid is the point whose coordinates are

the averages of the coordinates of all the points belonging to a cluster).

The principal axis, accounting for the largest variation among the codon usages
(22.5% of the total), is the one related to G+C content (in particular to GC3), with the

presence of extremely GC-rich and GC-poor codon usages.

The main contribution to the second coordinate is the usage of AGR codons (Arg-Al
in codon profile labelling), which effectively separates the majority of bacterial codon

usages (and those coming from bacteriophages) from the other taxonomical groups.

The third axis is mainly related to the usages for the aminoacids Lysine, Glutamate
and Glutamine, the three synonymous couples with A/G alternative in third position
(i.e. the NAA/NAG triplets with the exclusion of TAA and TAG which are terminators),
with high A3 content in the usage for these triplets at positive coordinates of the z/blue
axis of Figure VI-5 and conversely higher G3 content at negative coordinates.
Additionally there is a common TG3 correlation (T+G over A+C in third coding
position).

The fourth axis separates according to T+C content (over A+G content) in all the 4-
fold and 6-fold degenerate amino acids, while the fifth axis is mainly accounted by the
NCG codons (Alanine, Proline, Serine and Threonine) over their NCC synonyms and
by Phenylalanine triplets. The separation along the sixth axis is due to relative usage for
Cysteine triplets. The major contributors to the seventh axis are the synonymous

couples for Histidine, Phenylalanine and Cysteine.

The axes identified at a granularity level of 1.1 are almost identical, although there is
a stronger contribution from Phenylalanine codons in the fifth axis and from

Asparagine codons in the sixth axis.
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D.2.2 Analysis of the individual dimensions and identification of common biases

A detailed representation of the relative usage of the synonymous triplets is given in

Figure VI-7, where each boxplot stands for a dimension of the codon space.

There are only few extremely deviant distributions for three-fold, four-fold and six-
fold degenerate amino acids: for these synonymous sets there are few cases in which a
single triplet is extremely over-represented over all its synonymous alternatives. In the
two-fold case, however, the complete range of the frequency values (almost from 0 to 1)
is present. Of course this is largely due to the use of filtered data, codon usages
containing the full repertoire of triplets. In the AA-filtered space, when only one
synonymous triplet is used to code for an amino acid, its relative frequency is 1 and 0

are the relative frequencies of its synonyms.

The distributions of the values (which come from almost uniformly spaced codon
vectors) identify some triplets which are universally under-represented, often very
slightly, while in other cases more substantially (like the ATA triplet for Isoleucine or
CTA for Leucine). The most noticeable under-representations are those of NTA codons
(where N stands for any nucleotide), which in the case of Leucine triplets is made more
obvious by the codon profile combined-contribution dimensions La3 and Lg3
(corresponding to YTA and YTG, where Y = C or T), markedly more different than the
equivalent third position combined-contribution dimensions of Arginine and Serine.
This observation is consistent with previous studies on dinucleotide abundances (Karlin
and Burge, 1995; Karlin et al., 1998; see also section I C.4.1) which identified under-
representation of the TA dinucleotide in both eukaryotes and prokaryotes. Here it
becomes apparent that this is an almost universal state, which indicates the probable
presence of a constraint (either due to a mutational bias or to negative selection

pressure).

The reasons for the relative scarcity of TA in nucleotide sequences are not clearly
understood. It may be due to selection related to the susceptibility of UA in the
messenger RNA, which appears to be a preferential target for ribonucleases (Beutler et
al., 1989), although bias against TA has been reported also for noncoding regions (in
humans; Karlin and Mrazek, 1996). However, according to a study by Duret and Galtier

(2000), a substantial part of the observed departures from expected frequencies of the
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dinucleotide TA (in humans) are a mathematical artefact. A more general reason could
be the low thermodynamic stacking energy of this dinucleotide (Delcourt and Blake,
1991). Furthermore, because of the presence of TA in many regulatory signals (like
TATA box or the polyadenylation signal) it has been suggested that TA suppression
could reduce inappropriate binding of regulatory factors (Karlin and Mrézek, 1997).
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D.2.3 Convexity of the space

One of the possible tests which can be applied to the populated codon space model is
a test of convexity. This question naturally arises both from a desire to get a better
understanding of the shape of the populated space, and from the need to verify the
amount of features which could be lost in the mapping by using long binning radii. As
exemplified by Figure VI-1 above, a longer radius can conceal certain features in the

shape of the data set, such as the presence of “holes”, empty inner regions.

A very basic search for convexity was hence performed, computing the middle points
(midpoints) between each couple of vectors belonging to the populated space, and
testing whether they lie in a non-populated region. If the shape of the space were
similar to the letter “C” (as an example in two-dimensions), the number of midpoints
found in non-populated space would be very high. If instead the space had the shape of
a solid disc without holes, all the midpoints would lie inside populated space. Even
very long granularity radii would not hide a situation like the “C-shape”, while small
internal cavities (“holes”) might not become apparent. Small holes (identified by no
more than one midpoint found in a non-populated area) are probably not significant,
whereas when many midpoints are found in non-populated space (a large hole), this
would indicate the possibility of a relevant constraint preventing codon usages with

those codon frequencies.

As a matter of fact, there are no midpoints found to lie in non-populated space for
granularity radii equal to or longer than 1.3, while only seven of them are found at a
granularity of 1.2. Testing the codon space model for proximity of these points to the
representatives reveals that they are well inside the core, not far from the average (they

are marked in the map of Figure VI-4).

These results exclude the possibility of a very convex shape or the presence of
significant cavities in the codon space, which appears instead to have a solid hyper-

spherical shape.

D.3 Subsets of the codon space

Beyond representing the extension of the biological world in the codon space —
according to the available sequences - it is also possible and desirable to analyse subsets

of it, like the space of vertebrate codon usages or the one occupied by prokaryotic ones.
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D.3.1 The vertebrate space

The under-representation of synonymous triplets that can be observed in the
vertebrate space (Figure VI-8) is consistent with previous reports of dinucleotide
frequencies and optimal codons (for example Karlin and Mréazek, 1996; Kanaya et al.,
2001a). There are strong biases in the usage of NCG triplets (Alanine GCG, Proline CCG,
Serine TCG, Threonine ACG), which are under-represented. This is due to the well
known CG deficiency observed in vertebrates: the frequency of the dinucleotide CG is
up to five times lower than the product of C and G frequencies (Bird, 1980). This
deficiency is the consequence of a mutational bias: the methylation dependent CG—-TG
mutation. The TA deficiency observed for the whole codon space (see previous section
for possible causes) appears stronger in the vertebrate space, with the third quartile of
the distributions of NTA triplets being lower than the first quartile of the synonymous

alternatives.

Less pronounced, but still noticeable, is the under-representation of NAT, NTT and
NAA triplets. Besides a certain tendency towards GC-rich codons, this could be
explained by a preference for WWC codons over WWA (where W = T or A). WWC
codons were found to be preferred over their WWA synonyms in several unicellular
organisms (Sharp and Devine, 1989; Andersson and Sharp, 1996; Kanaya et al., 1999) for
reasons of optimal codon-anticodon interaction energy: translational efficiency is
greater for triplets favouring a codon-anticodon interaction with higher binding

strength.

Mutation biases or translational selection? The question is still unresolved and the
answer is most probably a combination of these and other factors (g.v. I C.3), as found in
several prokaryotic species. Nevertheless, differences in isoaccepting tRNA gene copy
numbers (found correlated to tRNA abundances in species where translational
efficiency is a codon usage shaping force) are low in vertebrates, which also have a
larger set of tRNA species, a fact that, together with small effective population sizes (see
I C.1.5) would tend to suggest an absence of selection acting towards translational

efficiency (Urrutia and Hurst, 2001; but see Haas et al., 1996).
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Figure VI-8: The dimensions of the vertebrate space, in boxplot representation. The usage of synonymous codons is clearly biased, even when all
vertebrate sequences are considered together, where biases are observed between distributions of codon usages rather than between single codon

usages.



D.3.2 The prokaryotic space

The prokaryotic space is one of the subsets of the codon space for which many
completely sequenced genomes are available. The low-dimensional representation of
the genomic (average) codon usage vectors for all the completely sequenced prokaryotic
genomes, Figure VI-9, reflects the one relative to the whole codon space. Since the
prokaryotes are more widely spread over the codon space, this is not surprising. But
analysing this subset reveals how archaea and bacteria occupy two different regions
identified by the second axis of separation (particularly associated with the AGR triplets
for Arginine; see D.2.1). The first coordinate of separation for these genomes is related

to G+C content (in particular GC3).
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Archaea occupy a well defined region in which only three of the sequenced bacteria
can be found, namely T.maritima, A.aeolicus and T.tengcongensis, hyper-thermophilic
bacteria (their optimal growth temperature being beyond 80° Celsius) whose placement
indicates codon usage patterns similar to those of archaea, in line with the observation
that they contain a large number of genes similar to those of thermophilic archaea

(Nelson et al., 1999; Ochman et al., 2000).

The bacterial kingdom is phylogenetically extremely diverse (Olsen et al., 1994), there
was even a proposal to create twelve bacterial kingdoms to reflect the great differences
inside this group. The biggest separation is the one between high and low G+C

content. The biodiversity of bacteria is here reflected by their codon usage diversity.

The codon usages of the atypical transcripts (those differing significantly from their
genomic bias) are plotted over the map of prokaryotic genomes in Figure VI-10. This
reveals how even the most atypical transcripts are mainly restricted to their own region,
either bacterial or archaeal. In fact the average distance computed between all archaeal
versus all bacterial atypical transcripts is 2.957 units (with a standard deviation of 0.525).
There are nevertheless several contact points, many archaeal transcripts in ‘bacterial

codon space’ and vice versa.
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D.4 Comparisons with the theoretical space

A very important feature which emerges from the sampling of the populated space is
the observation that it is tightly confined, occupying but a fraction of the theoretical
space. A quantification of its limited coverage is possible by comparison with randomly

generated codon usages.

The change in the number of representative points identified at different granularity
radii for the biological space (previously shown as Figure VI-2) was compared to those
identified on random codon spaces (codon spaces comprising only randomly generated

codon usages): Figure VI-11 (see also section C.2.6).

For lower granularity radii the theoretical space is exceedingly large and the
randomly generated codon usages are extremely sparse, they are not grouped together
by the binning procedure under a radius of 0.7-0.8, with the exception of the codon
usages generated by ‘random triplets’, which are not very deviant from the average
codon vector (i.e. not far from average frequency distributions). The biological codon
space instead contains many very similar codon usages (higher proximity, less
scattering between the codon vectors), which are grouped together in representatives
even when very short radii are used. The biological codon space hence appears more
compact, not very sparse and not very diverse (as was shown also by the multivariate
ordination techniques, with the high correlation between triplets and the first

separation axes accounting for most of the variation).
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against the granularity radius. The absence of a constant regime (slope=0) at low granularity radii for the curve corresponding to the biological space
is due of the high number of very similar codon usages: a total of 133,232 codon vectors are grouped in 78,115 representatives at a 0.2 granularity
radius. All the randomly generated codon usages (100,000 for each algorithm) are instead separated in individual bins at that radius, indicating the

high sparsity (heterogeneity) of the random usages.



D.4.1 Non-populated sampling

Another comparison between biological and theoretical spaces can be made by
sampling the populated codon space using randomly generated codon usages (C.2). In
this procedure the random usages are tested for proximity to the representative points
of the populated space: if the generated vector is found at a distance greater than a cut-
off distance from all representative data points in the space (the representatives for the
populated space and the previously accepted random vectors), then it is included in the

space (hence preventing further sampling in that zone).

The random usages/distribution algorithms have uncorrelated synonymous sets and
find many more vectors representing the non-populated space than those that are
found by the random frequencies algorithm (whose codon usages are constrained by total
nucleotide relative frequencies, similar to how the biological codon usages are

constrained). A brief resume of the sampling is reported in Table VI-3.

Algorithm samples estimation of
non-populated space
random frequencies 1013 85.0%
random usages minimum 0.2 7794 97.8%
Random distributions (coarse) 38349 99.5%

Table VI-3: Estimation of the ratio between populated and non-populated space from a comparison at 1.4
granularity radius between the representatives of the biological codon usages (179 representatives see Table VI-2) and
random codon usages generated by different algorithms. The randomly generated vectors are all at a distance of at
least 1.4 units from any point of the populated space. The percentage indicated is the amount of non-populated space
over total space (total space as populated plus non-populated). If the estimation is done on the minimum number
found for populated space representatives (near-optimal coverage: 163 representatives) instead of on the average, the
percentages are slightly different: 86.1%, 98.0% and 99.6%.

The proportion between non-populated space and populated space increases with
shorter radii, so the percentages reported in the table (relative to a granularity radius of

1.4) are biased towards the populated space and should be considered an under-

estimation.

D.5 General considerations regarding the populated space

Using several different and complementary analyses, it was possible to show how

constrained and confined the region of the populated space is.
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The distribution of values for each dimension (D.2.2) revealed the ranges for the
maximum variation of the synonymous frequencies and identified a common trend of
under-represented triplets. The absolute ranges indicate that not all of the most deviant
distributions of frequencies are present (those with a triplet used almost exclusively
over its synonymous alternatives, which would show values approximating 1 for that

dimension).

The observations on the convexity of the codon space (D.2.3) precluded the
possibility that the codon space is “C-shaped” or “L-shaped” (using a two-dimensional
analogy) or that it contains significant empty regions (cavities) and instead suggested a

solid hyper-spherical shape.

The low-dimensional representations and the identification of the axes accounting
for the largest fractions of the variation between codon usages (D.2.1) showed how the
very general correlations between triplets limit the total ‘exploration” of the theoretical
space by the biological sequences. In other words, they indicate the presence of

constraints limiting the divergence of codon usages.

This aspect was verified using randomly generated codon usages of different
inherent degrees of correlation (D.4) which identified a very large number of non-
populated regions and hence a very limited extension of the populated space, whose

coverage over the theoretical one was estimated.

The whole populated space is hence mainly composed of codon vectors with
interdependent relationships, apparently preventing a more heterogeneous spread over
the theoretical space. This result will need to be verified as more sequence data becomes

available.

Using a linguistic analogy, there is a maximum number of consecutive consonants (in
consonantal clusters) that can be pronounced and recognized. Furthermore, there are
correlations in the set of phonemes present in a natural language. For example, if there
is one phoneme for a place of articulation, such as palatal or labial, then the language

will also include other phonemes produced at the same place.

The mechanisms of speech production and perception limit the effective possible

divergence of natural languages. In a conceptually similar way, constraints such as

VI—168



DNA structure, information content, translational efficiency and message

superimposition, limit the divergence of codon usages.

E CONCLUSIONS

The theoretical set of all possible codon usages was defined as codon space and several
tools to represent it and to analyse it were devised. The region encompassing all the
codon usages found in the currently determined sequences (the populated space) was
mapped at different levels of detail into models, in which a limited number of codon
vectors represent the populated space without redundancy. The aim was to obtain an
even and unbiased representation without losing information on the occupancy of even

lowly populated regions.

The codon space model was developed to find features common to all codon usages
and allowed to quantify the limitations to the divergence of codon usage among the

species.

This model can also find practical applications like proximity searching, namely the
comparison of a codon usage to the model, allowing rapid retrieval of the codon usages
which are most similar to the query. Furthermore, the model could be used in

theoretical studies of evolution and in gene-prediction algorithms.

Comparing the biological data to several types of randomly generated codon usages
made the estimation of the extension and heterogeneity of the populated space
possible, showing the very small portion of the theoretical space which is populated
and the high correlation between non-synonymous triplets. The populated space
appears as a convex and non-hollow region inside the multivariate space, centred on

the average codon vector and with a high degree of correlation between its dimensions.

Using multivariate ordination procedures the codon space was represented in low-
dimensional plots and the principal coordinates of separation revealed the general
trends of variation between large taxonomical groups, which were also characterised in
their maximum spread over the codon space. The triplet contributions to the most

significant axes of separation were presented as codon difference matrices.
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Common biases to synonymous usage, in the form of universally under-represented
synonymous triplets (codons which are never found in high relative proportion to their
alternative synonyms), were observed and commented on in the light of previous

studies.

A comprehensive picture of the biological codon space is very difficult to obtain, for
two main reasons. Firstly, the available data is but a fraction of the extant species and a
very biased one. Secondly, humans are poor at seeing structure in a large number of
dimensions, such as those of the codon space. A blurred shadow (blurred because of
limited data, shadow because of the projection onto few dimensions) is the best to be
expected, but this first approximation can still prove useful in the investigation of
universal constraints or of the major trends among taxonomic groups. More points of
view need to be investigated, in a similar way as to how several projections of an object
onto a wall can better reveal its three dimensional shape. More data needs to be
obtained, to understand what percentage of the observed trends is a result of sampling

bias or of missing data.

As the genomic sequences of more and new species are determined, it will be
possible to verify whether the total coverage of the theoretical codon space will remain
as low as it was observed in this study. Although it might not be possible to reach a final
conclusion on this issue (as we might never have the complete sequence of every
species), a periodic re-evaluation of the codon space will show the trend in novel data:
when the discovery of novel codon usages will decrease (and how steeply) and how the

coverage of the theoretical codon space will change.
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General conclusions

With the exponentially increasing volume of DNA sequences becoming available, it is
important to develop general and automated procedures to analyse, to compare and to
present this data. In fact, as in many other fields, the gap between the amount of data
that is generated and stored, and the amount of data which is actually studied, is

rapidly growing.

Codon usage is probably the most informative aspect that can be analysed in the
coding sequences, which are known to contain several superimposed messages. The
knowledge of codon usage patterns can be used, among others, to optimise the levels of
translation, to estimate the degree of sequence conservation and the rate of mutation, to
back-translate protein sequences to their probable nucleotide counterparts, to identify

imported genes and to assist in the prediction of protein-coding sequences.

In this work the codon usage information was studied in several domains, including
the recently determined sequences from the eukaryotic genome projects. Different
approaches were combined and new tools and methodologies were developed for
comprehensive systematic analyses. It was shown that an alternative point of view on
synonymous codon usage is possible, and that it performs as well as the classical
method. Both schemes were used to study codon usage patterns, to predict horizontally

transferred genes and to identify significantly atypical codon usages.

A measure of genomic heterogeneity was devised as a function of codon usage
distances from the average bias. The histogram of distances reveals which species have
the most diversified codon usage patterns. Intra-genomic heterogeneity was also
compared across the species, with the simple but effective boxplot representations, or
with the less straightforward but more accurate visualisation of the principal
components of variation. Viruses were shown to have very different degrees of intra-
genomic heterogeneity, while prokaryotic species have similar proportions of normal

and atypical codon patterns.

The acquired knowledge on the patterns of intra-genomic heterogeneity lead to the
development of a methodology for the identification of Horizontal Gene Transfers. The

measure of codon usage dissimilarity was used in the comparison of all the transcripts
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which are atypical in their own genomic context to the codon biases of all the other
genomes. The identified matches were linked in regions according to their location in
the genome and their sequence homologues were retrieved from protein databases. It
was shown that it is possible to characterise donor/acceptor relationships combining the

compositional detection method with a phylogenetic verification.

All the developed procedures are general, efficient, automated and scalable, all of

which are fundamental requirements in the genomic era.

Finally, the non-randomness of the codon usages was explored at the largest possible
scale. This was made possible by the construction of models, which represent the
spread of the available sequences over the theoretical space of possible codon usages.
The characterisation of the codon space provided both qualitative and quantitative
evaluation of the limitations which influence codon usage divergence among the

species.

The knowledge about the absolute ranges of the variation among synonymous usage
and of the major trends of correlation (computed either globally or for a specific subset
of the codon space), can find applications in gene prediction, in the analyses of
information content, in the estimation of sequence conservation and in the studies on

the overlap of biological messages.

Since the currently available data, which may or may not be representative, is only a
tiny fraction of the actual biodiversity, the picture drawn using these methods might
change significantly with the determination of a wider range of genomic sequences.
Hence, a periodic update of the codon space model can also provide a measure of the

sequence diversity which has been so far observed and stored.
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