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1 φ4 kinks and impurities

The φ4 scalar field theory in one spatial dimension has Lagrangian

L =
1

2

∫ ∞
−∞

{(
∂φ

∂t

)2

−
(
∂φ

∂x

)2

− (1− φ2)2
}
dx (1.1)

and dynamical field equation

∂2φ

∂t2
− ∂2φ

∂x2
− 2(1− φ2)φ = 0 . (1.2)

The vacuum solutions are φ = ±1 and kinks and antikinks are solutions interpolating

between these vacua [1, 2]. The kink satisfies boundary conditions φ → −1 as x → −∞
and φ→ 1 as x→∞, and for the antikink the boundary conditions are reversed. Small and

moderate amplitude field oscillations around either vacuum are interpreted as radiation,

and tend to disperse.

As is well known, a static kink obeys the first order differential equation

dφ

dx
= 1− φ2 , (1.3)

and the family of kink solutions is φ(x) = tanh(x − a). The constant of integration a is

the centre of the kink, and we refer to it as the kink’s modulus. The manifold of allowed

values of a (the whole real line) is the moduli space of kink solutions. The equation

dφ

dx
= −(1− φ2) (1.4)

has the antikink solution − tanh(x− b), and its centre b is the antikink’s modulus.
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In kink-antikink dynamics one studies the time-evolution of a field that is initially close

to a kink centred at a joined to an antikink centred at b, where b � a. For this configu-

ration, φ → −1 as x → ±∞, but between a and b, φ is initially close to 1. Even at rest,

the kink and antikink attract, but the force is exponentially small in b− a. If the kink and

antikink are given initial velocities toward each other, they approach more rapidly. The

evolution is complicated during the collision. The kink and antikink can completely anni-

hilate into radiation (a rather slow process), or they can quasi-elastically scatter, emitting

less radiation. What happens depends sensitively on the initial velocities [3–6].

Ideally, one would like to model kink-antikink dynamics in terms of a finite number

of degrees of freedom, coupled to radiation. To do this it is helpful to have a moduli

space of field configurations with at least two moduli — one representing the kink-antikink

separation, and the other the centre of mass. Further to these moduli one can consider

oscillations of the shapes of the kink and antikink. But there is no obvious moduli space

available within the original φ4 theory. There are no static fields representing kink and

antikink together, because of the attractive force between them.

One idea is to use the gradient flow curve connecting a well separated kink-antikink

to the vacuum φ = −1. This consists of the instantaneous field configurations obtained by

replacing ∂2φ
∂t2

by ∂φ
∂t in the dynamical field equation, and evolving from a well separated

kink-antikink configuration to the vacuum [7]. These field configurations form a moduli

space which is fairly closely followed in the true, second order dynamics, but the vacuum

configuration is an endpoint of this moduli space, whereas the true dynamics conserves

energy and smoothly passes through the vacuum, or close by it, into field configurations

where φ is everywhere less than −1. The field then continues to evolve, oscillating and emit-

ting some radiation in the process. Gradient flow therefore fails to produce a satisfactory

moduli space in this case.

A promising resolution of this difficulty has recently been identified [8], based on con-

sideration of the modified static, first order equation

dφ

dx
= −(1− φ2)χ(x) . (1.5)

χ is referred to as an impurity field, and eq. (1.5) as the kink equation in the presence of

an impurity [9, 10]. We need to analyse eq. (1.5) in some detail. Throughout, we assume

that χ→ −1 as x→ −∞, with the approach sufficiently rapid that the integral∫ x

−∞
(1 + χ(x′)) dx′ (1.6)

converges. We also assume that χ→ ±1 as x→∞, and that if χ→ −1 then the integral∫ ∞
−∞

(1 + χ(x′)) dx′ (1.7)

also converges. Only impurities satisfying these conditions occur in the context of the

iterated kinks that will be introduced in section 2.

Linearising eq. (1.5), we see that φ = −1 is an attractor as x → −∞, and φ = 1 a

repeller. We can therefore impose the boundary condition φ → −1 as x → −∞, which
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excludes the vacuum solution φ(x) = 1. As x → ∞, φ = 1 is an attractor and φ = −1 a

repeller in the case that χ → −1, so for generic solutions, φ → 1 as x → ∞. Similarly,

φ = 1 is a repeller and φ = −1 an attractor in the case that χ→ 1, so φ→ −1 as x→∞.

Solutions cannot cross φ = ±1 so, apart from the vacuum solution φ(x) = −1, either φ is

trapped between −1 and 1, or φ is everywhere less than −1.

A general impurity field χ that oscillates between −1 and 1 can make eq. (1.5) resemble

the original equations (1.3) and (1.4) in different regions, thus allowing for solutions having

several kinks and antikinks. We stress that these are static solutions of a first order

equation.

We can make some more precise statements about the solutions trapped between −1

and 1 by exploiting Rolle’s theorem. Let us define kink and antikink locations to be

precisely the points x where φ(x) = 0, with dφ
dx positive for a kink, and negative for an

antikink. The non-generic situation where zeros of φ coalesce and dφ
dx = 0 is where a kink-

antikink pair is about to be produced or annihilated. Let us focus on the generic case

where χ and φ have simple zeros. By Rolle’s theorem, between any pair of distinct zeros

of φ there is a point where dφ
dx is zero. Suppose, then, that the impurity χ has N zeros.

These zeros split the real line into N + 1 intervals (two of which extend to ±∞), and there

can be at most one kink or antikink in each of these intervals. φ therefore has at most

N + 1 kinks and antikinks. There can be fewer, by a multiple of 2, and the number varies

as the constant of integration in the solution of eq. (1.5) varies. For our choice of boundary

condition they must alternate as kink-antikink-kink-. . . .

A simple impurity is the φ4 kink itself, χ(x) = tanhx, with its zero at the origin.

The precise solution of eq. (1.5) for this impurity is given below, but let us describe a

subset of the solutions more heuristically here. As tanh x is close to −1 in the region

x � 0, eq. (1.5) resembles equation (1.3) here, and allows a kink solution centred at −A,

with A � 0. For x � 0, tanhx is close to 1, so eq. (1.5) in this region resembles the

sign-reversed equation (1.4), which admits an antikink solution centred at B, with B � 0.

Solving for all x, one finds a kink-antikink configuration, where the kink is at −A and the

antikink is at B = A. The locations are related, because a first order equation has solutions

that depend on only one free parameter.

We see that the impurity χ(x) = tanhx acts as a mirror. The kink part of the

solution, around −A, is reflected in the impurity as an antikink around A. If the impurity

is χ(x) = tanh(x − a), then there is a solution with a kink at a − A and antikink at

a + A. There are now two moduli — one is the centre of the impurity, and the other the

distance of the kink and antikink from the impurity. We propose that the moduli space of

these solutions could be used to model the kink-antikink fields that occur in the original

φ4 theory dynamics. The metric on the moduli space has been calculated [8], but there

is also a potential energy, that has not yet been worked out. Both are needed to define a

dynamics on moduli space.

The exact solutions of eq. (1.5), for χ(x) = tanhx, are

φ(x) =
c− cosh2 x

c+ cosh2 x
. (1.8)
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Figure 1. Kink-antikink and bump solutions φ.

The allowed range of the modulus, the constant of integration c, is c > −1. Outside

this range, φ has singularities. All solutions satisfy the boundary conditions φ → −1 as

x → ±∞. The kink-antikink configurations, described earlier heuristically, occur for c

considerably greater than 1. Then the zeros of φ are approximately where e2x = 4c and

e−2x = 4c, that is, at x = ±1
2 log(2c). These are the locations ±A of the antikink and kink.

We can check the field profile near x = −1
2 log(2c). Just keeping the dominant exponential

term in cosh x, we find the kink φ(x) ' tanh
(
x+ 1

2 log(2c)
)
.

When c = 1 the kink and antikink annihilate, and for c < 1 there is no kink or antikink,

as φ is nowhere zero. The solution that remains we call a bump. For c small, it is a small

positive or negative bump around φ = −1 of the form

φ(x) ' −1 +
2c

cosh2 x
, (1.9)

and for c = 0, it reduces to the vacuum φ(x) = −1, For c near −1 the bump is large and

negative, with φ� −1 near the origin. This set of solutions, over the whole allowed range

of c, forms a good moduli space for kink-antikink annihilation (with centre of mass at the

origin), better than what is obtained using gradient flow, because it interpolates from well

separated kink and antikink, through the vacuum, to a large negative bump. See figure 1.

All these configurations occur in kink-antikink dynamics.

Another impurity that has been considered in [11] is of the bump shape (1.9),

χ(x) = −1 +
2c

cosh2 x
, (1.10)

with c not necessarily small. For c = 0, one solution of eq. (1.5) is the standard kink centred

at the origin, but for c small and non-zero, the kink becomes deformed by a variant of the

shape mode [12]. For c > 1
2 the impurity (1.10) has two zeros. This allows the kink to be

sufficiently deformed that it becomes a kink-antikink-kink configuration.

Recall that the shape mode is a small, normalisable deformation of the kink with

frequency of oscillation ω =
√

3 according to the linearised dynamical equation (1.2) for φ.

The continuum of radiation modes have frequencies ω ≥ 2, and the kink’s translation zero
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mode has frequency ω = 0. A kink distorted by both a zero mode of amplitude α and a

shape mode of amplitude β has the form

φ(x) = tanhx+ α
1

cosh2 x
+ β

sinhx

cosh2 x
. (1.11)

For the impurity (1.10), with c small, there are solutions of eq. (1.5) close to the

standard kink that are similar to (1.11). To see this, set φ(x) = tanhx+ η(x) and work to

linear order in both η and c. Eq. (1.5) then reduces to

dη

dx
= −2 tanhx η − 2c

cosh4 x
, (1.12)

and this linear inhomogeneous equation has the general solution

η(x) = α
1

cosh2 x
− 2c

sinhx

cosh3 x
, (1.13)

combining a zero mode of arbitrary amplitude with a modified shape mode where the power

of coshx in the denominator is 3 not 2.

This is interesting. The shape mode usually arises through oscillations of the kink,

but here a variant arises independently through the effect of a small-amplitude bump im-

purity which itself arises (approximately) as a solution of the kink equation with kink

impurity (1.5). This hints at an exact iterative scheme that could capture more of the de-

grees of freedom needed to model kink-antikink dynamics using a finite-dimensional moduli

space. It has long been recognised that an effective model for kink-antikink dynamics should

allow not only for the kink-antikink separation, but also for the shapes of the kink and

antikink to be deformed [3, 5, 6, 13]. The shape mode also plays a role in (symmetric)

kink-antikink-kink dynamics [14]. A kink-antikink-kink configuration can annihilate into

a single kink, emitting radiation, and the approach towards annihilation is approximately

tangent to the shape mode of the surviving kink.

All this suggests that useful moduli spaces of multiple kink-antikink configurations

can be found as exact solutions of an iterated kink equation with impurity. We describe

this next.

2 Iterated kinks

Our proposed iterated kink equation is

dφn
dx

= −(1− φ2n)φn−1 , n = 1, 2, 3, . . . , (2.1)

where we fix φ0(x) = −1.

We impose the boundary condition φn → −1 as x → −∞, for all n, and also require

that φn has no singularities. This allows the vacuum solution φn(x) = −1 for any n, but

excludes φn(x) = 1. The boundary condition appears to be consistent, by the following

inductive argument. Obviously φ0 satisfies the boundary condition, and linearisation of
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eq. (2.1) about φn = −1 shows that if φn−1 satisfies the boundary condition, then φn(x) ∼
−1 + µe2x for x� 0 and some constant µ, and hence φn satisfies the boundary condition.

The iteration can go on indefinitely, introducing one extra modulus each time. On

the other hand, for each n there is always the vacuum solution φn(x) = −1, whatever the

form of φn−1, and one can iterate this repeatedly and get the vacuum for all larger n. The

iteration has then effectively stopped at the (n− 1)th step.

Iterating the argument in section 1 concerning the attractive and repulsive natures of

φ = −1 and φ = 1, we deduce that for generic solutions of eq. (2.1), φn → 1 (−1) as x→∞
for n odd (even). Exceptionally, the sign may be reversed if one or more fields φk in the

solution sequence is the vacuum, φk(x) = −1.

Equation (2.1) for φn is simply the kink equation (1.5) with impurity φn−1, and as

each equation in the sequence is first order, its solution has one constant of integration.

Iterating, and allowing these constants to be free, we may interpret φn as having n moduli.

The arguments in section 1 concerning zeros of φ imply that φn has at most n zeros, and

if it has the maximal number, it is interpreted as a solution with n kinks and antikinks,

whose locations are a choice for the moduli. In this case, the iterated kink equation adds

one new kink or antikink to the solution at each step. This is reminiscent of a Bäcklund

transformation in sine-Gordon theory, although the details seem quite different.

The first few iterates are field configurations we have previously discussed. φ1 obeys

the standard kink equation (1.3), having solution φ1(x) = tanh(x−a) with arbitrary centre

a. Notice that the equation also has the solutions φ1(x) = −1 and φ1(x) = coth(x − a)

satisfying the boundary condition, but the latter is excluded because it is singular at x = a.

For the second iteration, let us take φ1 to be the kink centred at the origin, as the

effect of a translation is rather trivial. Equation (2.1) for φ2 is the same as equation (1.5)

with impurity tanh x, having the solutions (1.8) illustrated in figure 1. For all x and c,

φ2(x) < 1. As before, the solutions include kink-antikink pairs, and also positive and

negative bumps on the background of the vacuum φ2(x) = −1.

Also acceptable at the second iteration is for the impurity to be the vacuum, φ1(x) =

−1. This gives solutions for φ2 that are either simple kinks or again the vacuum. The family

of solutions φ2 therefore incorporates all acceptable solutions in the φ1 family, including

the starting, vacuum solution φ0. An interpretation is that the family of generic φ2 kink-

antikink solutions is completed by sending the antikink to infinity, and then both the kink

and antikink to infinity.

The third iteration is algebraically more complicated. We need to solve eq. (2.1) for

φ3 with impurity φ2 given by eq. (1.8). The explicit solution is given in section 3. The

three moduli of the solution are the constant of integration x3, the parameter c in φ2,

and the centre of the original kink φ1. Particularly interesting are the solutions with the

reflection symmetry φ3(−x) = −φ3(x), which arise when φ1 is a kink at the origin, φ2
has arbitrary parameter c > −1, and the constant of integration is chosen to preserve

the symmetry. These solutions are shown in figure 2. Use of their 1-dimensional moduli

space could resolve some difficulties in modelling kink-antikink-kink dynamics that arose

in ref. [14]. Note the appearance of a shape deformation when c is close to zero, as we

anticipated in the approximate solutions (1.13), and the occurrence of kink-antikink-kink

– 6 –
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Figure 2. Reflection-symmetric solutions φ3 for various values of c.
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Figure 3. Reflection-asymmetric solutions φ3 for c = 105.

solutions for c > 1. Figure 3 shows a class of solutions φ3 without reflection symmetry,

with fixed c = 105 and various constants of integration x3 (see eqs. (3.10) and (3.11)).

We have not systematically attempted a fourth iteration but can make some general

observations. A class of solutions φ4 consists of kink-antikink-kink-antikink configurations.

If these are well separated we can denote their locations, where φ4(x) = 0, by a1, a2, a3, a4.

The kink-antikink pair at a1 and a2 arises from a kink impurity at their midpoint 1
2(a1+a2).

Similarly the antikink-kink pair at a2 and a3 arises from an antikink impurity at 1
2(a2+a3),

and so on. So φ3 is a solution with kink, antikink and kink locations 1
2(a1 + a2),

1
2(a2 +

a3),
1
2(a3 + a4). In turn, φ3 arises from a kink-antikink solution φ2 with kink and antikink

locations 1
4(a1+2a2+a3),

1
4(a2+2a3+a4), and finally φ2 arises from a single kink impurity

φ1 centred at 1
8(a1 + 3a2 + 3a3 + a4).

Not all solutions φ4 are well separated kink-antikink-kink-antikink configurations.

Some such solutions, and some alternative types of solution involving bumps, are shown in

figure 4. There could also be an interesting class of solutions φ6 with two moduli. These

would be configurations with a reflection symmetry, where a kink on the left is deformed,

and an antikink on the right is similarly deformed. The moduli space could be similar to

that proposed in [3] and further discussed in [6, 13].

3 Space-deformed kinks

The equation for a kink with impurity (1.5) can be formally integrated [8], and this solution

method gives considerable geometrical insight. The method can be applied iteratively to
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Figure 4. Examples of φ4 solutions.

solve the entire set of equations (2.1), but the result involves multiple integrations, and

appears algebraically intractible.

Recall that the right hand side of (1.5) vanishes for φ = ±1, so solutions cannot

cross these values. A solution φ(x) that approaches −1 as x → −∞ is either (i) trapped

between −1 and 1, or (ii) is everywhere less than −1. We ignore here the vacuum solution

φ(x) = −1.

Let us first rewrite eq. (1.5) as

dφ

1− φ2 = −χ(x) dx . (3.1)

In case (i), the solution is

tanh−1 φ ≡ 1

2
log

(
1 + φ

1− φ

)
= −

∫ x

χ(x′) dx′ , (3.2)

where the lower limit of the integral provides a constant of integration. In case (ii), the

solution is

coth−1 φ ≡ 1

2
log

(
φ+ 1

φ− 1

)
= −

∫ x

χ(x′) dx′ . (3.3)

(Note that the argument of the logarithm is positive in both cases.) The solutions exploiting

the hyperbolic functions are more familiar in the context of kinks, but the logarithmic form

can be easier to manipulate algebraically.

The right hand sides of both (3.2) and (3.3) can be expressed as

−
∫ x

χ(x′) dx′ = x− a−
∫ x

−∞
(1 + χ(x′)) dx′ , (3.4)

with a arbitrary. (Recall that we are assuming that the last integral converges.) We refer to

y(x) = x−
∫ x

−∞
(1 + χ(x′)) dx′ (3.5)

as the deformed spatial coordinate. The solutions (3.2) and (3.3) are then simply φ(x) =

tanh(y(x)−a) and φ(x)=coth(y(x)−a). These clearly satisfy eq. (3.1), since dy = −χ(x)dx.
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As y is finite for all (finite) x, the solution tanh(y(x) − a) is always acceptable. The

solution coth(y(x)−a) is acceptable only if y remains less than a for all x, otherwise there is

a singularity. For example, for χ(x) = tanhx, y(x) = − log(2 coshx), which has a maximal

value of − log 2. So the coth solution is acceptable only for a > − log 2. The tanh and coth

solutions together reproduce the solutions (1.8).

The interpretation of the solution tanh(y(x) − a) depends on the behaviour of y as

x increases. If χ is everywhere negative, which means that χ → −1 as x → ∞, then y

increases to ∞ monotonically with x, and the solution is a spatially deformed single kink.

If χ < −1 everywhere, then y increases more rapidly than x. The effect is to produce a

solution φ(x) that is a steepened kink. If χ crosses zero at x = X, then dy
dx changes sign

and part of the profile of φ is reflected about X. Equivalently, there is a spatial fold at X.

If χ crosses zero again, there is another reflection, or fold.

When χ → −1 as x → ∞, we can define the overall stretching or compression of the

deformed kink,

s =

∫ ∞
−∞

(1 + χ(x′)) dx′ . (3.6)

The asymptotic form of φ(x) is tanh(x− a) for x� 0 and tanh(x− a− s) for x� 0. The

kink has been stretched by distance s if s > 0 and compressed by |s| if s < 0. Stretching

by more than a small distance can introduce kink-antikink pairs.

Analogous to the spatial folding in the relation between y and x is to imagine walking

the length of a corridor, when it is uncomfortable to walk very slowly, but comfortable to

sit for a while. One can walk the length in one go (a kink), and sit the rest of the time, or

walk backwards and forwards a few times (kinks and antikinks), sitting less. With more

time available one can walk more often backwards and forwards. If the time available is

short, one must walk quickly (a steepened kink).

All this analysis applies to the iterated kink equation. Consider a generic sequence of

solutions φn(x). For n odd, φn must be of the tanh type, to avoid singularities, but for n

even, φn can be of tanh or coth type. For n odd, φn is a spatially deformed kink,

φn(x) = tanh

(
x− xn −

∫ x

−∞
(1 + φn−1(x

′)) dx′
)
, (3.7)

whose deformed spatial coordinate is

yn(x) = x−
∫ x

−∞
(1 + φn−1(x

′)) dx′ , (3.8)

and whose overall stretching/compression is

sn =

∫ ∞
−∞

(1 + φn−1(x
′)) dx′ . (3.9)

xn is the arbitrary constant of integration.

An explicit solution for φ3 can be found using this approach. Let us assume that φ1
is a kink centred at the origin; φ2 is then given by eq. (1.8). Using the deformed spatial
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coordinate y3 given by the integral (3.8), we obtain for c ≥ 0,

φ3(x) = tanh

(
x− x3 −

2c√
c(1 + c)

tanh−1
(√

c

1 + c
tanhx

))
, (3.10)

and for −1 < c ≤ 0,

φ3(x) = tanh

(
x− x3 −

2c√
−c(1 + c)

tan−1
(√ −c

1 + c
tanhx

))
. (3.11)

The solutions are shown in figure 2 and figure 3. Specifically, in figure 2 we plot φ3 for

x3 = 0. These are the solutions with reflection symmetry. It is clear that the modulus

c, which measures the strength of φ2, controls the emergence of an antikink-kink pair.

For large c such a pair is easily visible in φ2, and the whole solution φ3 represents a

kink-antikink-kink configuration. When c approaches zero, φ2 tends to the constant −1,

which leads to a single kink for φ3. This single kink solution becomes steeper and steeper

as c→ −1.

In figure 3 we show the impact of x3 on φ3 for fixed c. We choose c = 105 to better

visualise the observed behaviour. Here, φ2 represents a well separated kink-antikink pair.

For large x3 the solution describes a single kink monotonically interpolating between the

vacua. The impact of φ2 is negligible, except on part of the kink tail. When x3 approaches

zero, the single kink interacts strongly with φ2 and the kink-antikink pair hidden in φ2 has

a pronounced effect. Finally, for large negative x3, the single kink reappears but on the

opposite side of the origin. This variation with x3 represents a flow on the moduli space,

where an incoming kink creates an antikink-kink pair (due to the interaction with φ2), and

later on annihilates this pair leaving an outgoing kink.

4 φ6 kink as fixed point

The iterated kink equation has a curious fixed point. We find this by setting φn = φn−1.

Then eq. (2.1) becomes the φ6 kink equation

dφ

dx
= −(1− φ2)φ . (4.1)

The generic non-singular solutions, satisfying the boundary condition φ→ −1 as x→ −∞,

are of the form

φ(x) = −
(

1 + 2e2(x−c)
)− 1

2
, (4.2)

with c arbitrary. These all have the property φ→ 0 as x→∞.

We have not constructed an iterated sequence of solutions φn with limiting form (4.2).

The approach to the limit cannot be uniform in x.

There is also an interesting 2-cycle of the iteration, a solution of the pair of equations

dφ

dx
= −(1− φ2)ψ , (4.3)

dψ

dx
= −(1− ψ2)φ . (4.4)
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We assume that φ → −1 and ψ → −1 as x → −∞. Setting ψ = φΩ, we find that these

equations reduce to

dφ

dx
= −(1− φ2)φΩ , (4.5)

dΩ

dx
= −(1− Ω2) . (4.6)

The equation (4.6) for Ω is the usual first order equation for a φ4 antikink. It has trivial

solutions Ω(x) = ±1, and non-trivial solutions Ω(x) = − tanhx and Ω(x) = − cothx, or

translates of these. If Ω(x) = 1 then we recover the fixed point solution (4.2), the φ6 kink.

There is no solution with Ω(x) = −1 satisfying the boundary conditions. When Ω(x) =

− tanhx, then ψ(x) = −φ(x) tanhx, so φ(x) = −ψ(x) cothx. Therefore, multiplication by

− tanhx and − cothx automatically alternate during iteration of the 2-cycle, so we need

only consider the case Ω(x) = − tanhx.

The remaining equation (4.5) can be expressed as

dφ

(1− φ2)φ = tanhx dx . (4.7)

This is the standard equation for a φ6 kink, but in terms of a deformed spatial coordinate

y, defined by dy = tanhx dx. Integrating, we find that φ(y) = ±(1 + 2e−2(y−c))−
1
2 , where

y = log coshx. Choosing the appropriate sign, and rearranging, we obtain the solution

φ(x) = −
(

1 +
a

cosh2 x

)− 1
2

, (4.8)

with a > −1, and this is paired in the 2-cycle with

ψ(x) = sign(x)

(
1 +

b

sinh2 x

)− 1
2

, (4.9)

where b = a+1. See figure 5. For large positive a the field φ describes a well separated kink-

antikink pair of φ6 theory (interpolating between −1 and 0). When a decreases the kink

and antikink approach each other and finally, for a = 0, annihilate to the vacuum φ = −1.

For negative a the field φ forms a negative bump whose strength becomes arbitrarily large

as a approaches −1. Simultaneously, the field ψ represents a kink (interpolating between

−1 and 0) and a second kink (interpolating between 0 and 1) of φ6 theory. They separate

completely as a→∞. When a = 0 these kinks merge into the kink of φ4 theory, and this

becomes steeper and steeper as a→ −1.

5 Energy function for iterated kinks

Here we present an energy function whose stationary points include the solutions of the

iterated kink sequence of equations (2.1). Let us start with eq. (1.5) for a kink with given

impurity χ, rewritten as

− 1

χ(x)

dφ

dx
= 1− φ2 . (5.1)
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Figure 5. 2-cycle solutions φ (left) and ψ (right) for various values of a and b.

We shall suppose that the zeros of χ (if any) are a discrete set of points, and require that
dφ
dx is zero at these points. Recall that φ(−∞) = −1, and φ(∞) = ±1.

Consider the energy

Eχ = −1

2

∫ ∞
−∞

{
1

χ2(x)

(
dφ

dx

)2

+ (1− φ2)2
}
χ(x) dx . (5.2)

Formally, this is the standard static energy of φ4 theory in terms of the deformed spatial

coordinate y, because dy = −χ(x) dx, except that the endpoints of the y-integration may

be non-standard. This energy differs from previous self-dual impurity models which have

eq. (1.5) as the corresponding Bogomolny equation [8].

In the usual way, we can complete the square in the integrand, and obtain

Eχ = −1

2

∫ ∞
−∞

{
1

χ(x)

(
dφ

dx

)
+ (1− φ2)

}2

χ(x) dx+

[
φ(x)− 1

3
φ3(x)

]∞
−∞

. (5.3)

The last term depends only on the field topology — the boundary data of φ. The energy

Eχ is stationary for solutions of eq. (5.1), because a change in φ of order ε changes Eχ at

order ε2, though it is not guaranteed to be a minimum unless χ is everywhere negative.

The energy value is Eχ = 4
3 if φ(∞) = 1 and Eχ = 0 if φ(∞) = −1; it can be zero because

the energy density is negative in any region where χ is positive.

It is straightforward to extend the energy function (5.2) to deal with iterated kinks.

Define

E = −1

2

∫ ∞
−∞

∞∑
n=1

µn

{
1

φ2n−1(x)

(
dφn
dx

)2

+ (1− φ2n(x))2

}
φn−1(x) dx , (5.4)

where µn are fairly arbitrary positive numbers whose sum is finite. We require that φn has

zero derivative at all locations where φn−1 is zero. Completing the square in each term

of the sum, we see that E is stationary when the sequence of iterated kink equations is

satisfied.

6 Summary

We have introduced a new, iterated equation for kinks in φ4 theory. This was motivated

by examples of how impurities can affect a kink. Each equation in the iterated sequence
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is a first order, static ODE, whose solution includes one new modulus, the constant of

integration. In the iterated scheme, the first iteration generates a kink from the vacuum.

At the second iteration, this kink is an impurity which acts like a mirror. It generates a

kink-antikink configuration, or a positive or negative bump solution around the vacuum,

depending on the value of the constant of integration. The third iteration can produce a

kink deformed by a variant of the kink’s shape mode, and also kink-antikink-kink configu-

rations.

More generally, the nth iterate generates an n-dimensional moduli space of solutions

which we propose could be useful for modelling the dynamics of n kinks and antikinks. The

bump-like configurations capture the type of fields that occur dynamically when kinks and

antikinks annihilate, and that are missed in some existing collective coordinate schemes.

It would be interesting to use the standard φ4 theory Lagrangian to calculate the metric

(equivalently, the kinetic energy for time-varying moduli) and potential energy on these

moduli spaces, and to study in detail the classical and quantized dynamics of kinks using

these novel collective coordinates.

A Iterated polynomials

An analogy for the iterated kink equation (2.1) is the iterated equation

dun
dx

= −un−1 , n = 0, 1, 2, . . . . (A.1)

Equation (A.1) is also the linearisation of eq. (2.1) for φn ' 0. We fix u−1(x) = 0. Then,

generically, u0 is a constant, u1 is linear in x, u2 is quadratic, and so on. un(x) is a

polynomial of degree n, so it has at most n real zeros. A zero can be regarded as analogous

to the location of a kink or antikink, depending on whether dun
dx is positive or negative at

the zero. Exceptionally, un is a polynomial of degree n− k if the first non-zero function in

the sequence is uk, a non-zero constant.

At each iteration, the number of zeros can increase by at most 1, by Rolle’s theorem.

If un−1 has N zeros, then un has at most N + 1 zeros, or fewer by a multiple of 2. There

can never be catching up in the number of zeros. un cannot have n zeros if any uk, for

k < n, has fewer than k zeros.

The iteration has fixed points satisfying the equation

du

dx
= −u , (A.2)

whose solutions are

u(x) = Ae−x . (A.3)

As for the iterated kink equation, a fixed point solution u(x) satisfies different boundary

conditions from any of the sequence of solutions un(x). The fixed point u(x) = Ae−x is

the non-uniform limit of the sequence

un(x) = A

(
1− x+

1

2
x2 − 1

6
x3 + · · ·+ (−1)n

n!
xn
)
, (A.4)

which satisfies eq. (A.1).
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A 2-cycle satisfies the equations

du

dx
= −v , dv

dx
= −u . (A.5)

Solutions which are not pure exponentials are of the form

u(x) = −A coshx , v(x) = A sinhx , (A.6)

or translates of this. u and v can also be exchanged. The 2-cycle solution (4.8) and (4.9)

of the iterated kink equation reduces for large a and modest x to the form (A.6), with

A = 1√
a
. See figure 5.
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