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Abstract

This paper examines relative performance of electricity distribution
systems in the UK and Japan between 1985 and 1998 using cost-
based benchmarking with data envelopment analysis (DEA) and
stochastic frontier analysis (SFA) methods. The results suggest that
the productivity gain in the UK electricity distribution has been
larger than in the Japanese sector. In particular, productivity
growth accelerated during the last years when the UK utilities were
operating under tightened revenue caps. The findings indicate that
while both sectors exhibit efficiency improvements, the efficiency
gap between the frontier firms and less efficient firms has widened.
The findings also highlight the advantages of using multiple
techniques in comparative analysis and in incentive regulation.

Key words: Technical efficiency, Efficiency analysis, Electricity distribution systems,
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1. Introduction

Electricity sector reforms are transforming the structure and operating environment of
the industry across many different countries throughout the world. Although the main
purpose of the reforms is to introduce competition and market mechanisms into
electricity generation and supply, there is a growing interest in regulatory reforms to
improve the efficiency of the natural monopoly activities of distribution and
transmission networks. Moving away from traditional rate-of-return utility regulation, a
number of electricity regulators in, for example the UK, Netherlands, Norway and
Australia, have adopted price or revenue cap regulation based on the RPI-X formula,
thereby promoting cost savings and lower prices for the end-users.1

UK has a rich experience of adopting the RPI-X type incentive-based regulation for an
electricity network: both the charges for transportation of electricity over the national
high voltage transmission network and over the lower voltage regional distribution
networks have been regulated by this method for over a decade. The initial distribution
price controls on the regional electricity distribution companies (RECs) were put in
place by the government at the time of restructuring in 1990, and permitted price
increases of up to 2.5% above the inflation rate (OFFER, 1994). These initial price caps
were seen by many as generous to the companies.2 In August 1994 OFFER announced
reductions averaging 14% in final electricity prices to take effect in April 1995,
requiring cuts in real terms of 11 to 17% in distribution charges in 1995/96, and further
reductions in real terms of between 10 and 13% in 1996/97. Distribution charges were,
thereafter, required to fall by 3% per year in real terms for the duration of the price
control (until March 2000).3

Evaluation of the performance of UK RECs under RPI-X regulation and private
ownership has been the subject of productivity and efficiency analysis. Several studies
have undertaken panel data analysis focusing on a UK sample (e.g. Weyman-Jones,
1994, and Burns and Weyman-Jones, 1996). On the one hand, it is quite natural to
restrict the sample to domestic utilities, as efficiency analysis requires comparability of
firms. On the other hand, it has been recognized recently that international comparative
analysis may be useful to evaluate the performance of national utilities within the larger
context of international practice.

                                                
1 See Jamasb and Pollitt (2001a), Hall (2000), Comnes et al. (1995), Hill (1995), and Joskow and
Schmalensee (1986) for reviews and comparisons of different incentive regulation models.
2 The 1990-95 period saw large increases in the profitability and share prices of the RECs and the
government announced a £1.25 billion windfall tax on the companies’ profits (Inside Energy, 1997).
3 The price controls were modified in 1998 to allow RECs make additional revenues (approximately £1
per customer) to facilitate competition in supply. The current price controls came into effect in 1 April
2000. OFGEM’s (Office of Gas and Electricity Markets the successor to OFFER) price controls, the
RECs face distribution price reductions averaging 3% per year for the five years to 30 March 2005, with
an initial cut in allowed revenues by up to 23.4% (OFGEM, 1999). Controllable costs for the RECs are
projected to fall by 2.3% per annum over the period 1998 to 2005. These consist mainly of operating
charges net of NGC exit charges, rent and rates, and depreciation etc.
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The addition of international comparators to a sample can improve the validity of the
analysis, as utilities are benchmarked against a greater number of firms. Further,
international comparisons enable us to measure efficiency relative to international best
practice. The advantage of using international best practice is that the measured
efficiencies are more likely to reflect technical possibilities. Thus far, there are a few
cross-country studies of the performance of electric utilities that involve UK RECs.
Pollitt (1995) reports a comparative study of 136 US and 9 UK distribution firms using
1990 data and finds that the relative performance of UK utilities is comparable to those
of the US. The IPART (1999) benchmarking study is primarily focused on efficiency of
Australian utilities but also includes UK companies in its analysis. Jamasb and Pollitt
(2003) report a benchmarking study of 63 distribution utilities from 6 European
countries based on the data for 1997/98. The study finds the performance of the UK
firms does not significantly differ from the mean values in the various models. Yet, most
of these studies use cross sectional data or short-panel data with no analysis of how the
relative efficiency changes over time. Also, the comparison is limited to European and
English-speaking countries.

One country that has not been compared with the UK is Japan. Although it is known
that Japanese electricity prices are the highest among OECD countries, two recent
studies found that the productive efficiency of Japanese utilities is, on average, not
necessarily lower than the U.S. utilities. Goto and Tsutsui (1998) use DEA to measure
technical and allocative efficiency of the vertically integrated utilities in the two
countries, and Hattori (2002b) uses SFA to estimate technical efficiency of electricity
distribution. It is noteworthy that these studies assume that input prices are given to the
utilities, implying that the higher electricity prices in Japan can be explained by the
higher input prices and, in particular, the cost of capital.

The electricity supply industry and its regulation in UK and Japan are somewhat similar
in that there are a similar number of utilities. Utilities are in private ownership in both
countries; the UK firms were privatised in 19904 but the Japanese electricity supply
industry has been privately owned since 1951. The industry in Japan is dominated by 10
Electric Power Companies (EPCOs) responsible for generation, transmission,
distribution, and supply of electricity to final customers.5 There is no independent
regulator in Japan but the Ministry of Economy, Trade, and Industry (METI) acts as
regulator. Thus, in both UK and Japan, one regulator (OFGEM in UK and METI in
Japan) regulates a similar number of utilities.

However, the structure of the industry differs between the two countries. In Japan, the
electricity distribution function is undertaken in vertically integrated electric utilities
                                                
4 The UK electricity supply industry was in public ownership from 1948 to 1990. In England and Wales,
the Central Electricity Generating Board (CEGB) was responsible for generation and transmission and
sold electricity to twelve Area Boards under the terms of the Bulk Supply Tariff, based on its marginal
costs. The Area Boards were responsible for distribution and supply of electricity to consumers. Shortly
before privatisation in 1990, the Area Boards were replaced by 12 Regional Electricity Companies
(RECs). Transmission became the responsibility of the National Grid Company (NGC), a company fully
owned by the RECs.
5 See Navarro (1996) for a historical overview of Japanese electricity industry. In this analysis we look at
the largest firms excluding the very small Okinawa Electric Power Company.
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while in the UK regional distribution companies perform this task. This difference may
be overcome, at least partly, by carefully examining the dataset. Another difference
between the two countries is the regulatory regime. The UK introduced price cap
regulation at privatisation in order to control the distribution tariff while Japan relied on
rate-of-return (ROR) regulation to control the final prices of electricity.6 Although it
would be difficult to separate the effect of a different regulatory regime from other
country-specific factors, with a long panel data set to investigate changes in efficiency
over time, it might be possible to isolate the effect of the regime.

This paper examines relative performance of electricity distribution in the UK and Japan
between 1985 and 1998, applying the benchmarking techniques known as Data
Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). The length of
our panel data enables us to investigate the dynamics of efficiency. We focus on the
development of mean efficiency levels over time in each country.

In the next section we discuss the model for electricity distribution. Specification of the
relevant measures of output, input and environmental factors will be presented. Then in
section 3, we briefly describe the two techniques for efficiency analyses in this paper:
DEA and SFA. In section 4, we discuss the data issues. Section 5 presents the results. In
the final section, we conclude by outlining the issues of international comparisons.

2. Model of Electricity Distribution

To model the technology of electricity distribution, we have to specify the relevant
measures of inputs, outputs, and other (environmental) factors. The basic design
features of electricity distribution systems and the technologies used in them are similar
the world over, however, comparative efficiency studies have adopted different input
and output variables.7 This reflects the lack of consensus on how these utilities should
be modeled. For example, a variable used as an input in one study can be used in others
as output. The variety of variables used may also be explained, to some extent, by lack
of data. This section discusses our choice of inputs, outputs and environmental factors
for the present study.

Inputs
The preferred model in this study uses a single cost input in monetary terms. In the past,
some studies have used operating and capital costs as inputs, while others have instead
used physical measures of the main inputs. In order to account for all the resources, it is
preferable, where possible, to represent inputs in monetary terms. Thus we chose to use
monetary inputs with adjustments to increase accuracy. Of course, accurate
measurements of costs can be difficult to obtain. The problem is compounded in
                                                
6 In 1996, the ROR regulation was slightly modified into a type of yardstick regulation. By setting the
price in each supply territory partly by reference to the performance of the firms relative to that of other
utilities, the new regulatory mechanism aimed at improving efficiency among utilities by encouraging
competition among these. See Hattori (2002a) for an overview of the regulatory reform in Japanese
electricity industry.
7 See Jamasb and Pollitt, (2001c), for example.
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international comparisons due to differences in accounting rules and the need to convert
different currencies into a single unit. We will discuss this issue in detail in Section 4.

We have two candidates for the monetary inputs: regulators around the world evaluate
the performance of regulated firms using either operating expenditure (OPEX) or total
expenditure (TOTEX). TOTEX is the sum of operating and capital expenditures
(CAPEX), as represented by gross addition of capital. Assuming that CAPEX (of our
definition) is largely controllable for the utilities, and recognizing the possibility of
substitution between OPEX and CAPEX, we primarily focus on the model with TOTEX
as a single input with the model with OPEX used for comparison.

Outputs
It is quite difficult to define the output of electricity distribution services and to find the
relevant measures. For the preferred model in this study, we take the “separate
marketability of components” property, suggested by Neuberg (1987), as a necessary
defining property of a vector of outputs. Within this view, for example, the maximum
demand, though often used as an output variable, cannot be priced separately and is
therefore not included in our model. Then, two possible measures can be regarded as
separately priced and sold by the utilities: customers, and electricity units delivered in
megawatt-hours (MWh). In both the UK and Japan, a two-part tariff is adopted for
distribution/bundled price, and thus, with customers priced at fixed charge, electricity
units delivered can still be viewed as separately priced and sold.

If these data are available for each customer segment, then, for example, electricity units
delivered to residential customers and units delivered to other customers can also be
viewed as separately priced. At the same time, increasing the number of outputs may
lead to problems in calculating or estimating efficiency. A review of 20 efficiency
studies of electricity distribution utilities showed that the most widely used output
variables were units of energy delivered and number of customers (Jamasb and Pollitt,
2001b). Thus, based on the “separate marketability of components” property we adopt
models that use total electricity units delivered and total number of customers as output
variables.

Environmental factors (Non-discretionary inputs)
We have defined inputs and outputs in our preferred model, but obviously there are
other factors, generally called environmental variables, that can influence the cost of
electricity distribution. For example, for regulated electricity utilities, population
density and climatic conditions are exogenous factors. Our models include
environmental variables to control for the effect of factors that affect the performance of
utilities that are beyond the control of management.

Although it might be desirable to take many factors into account, the difficulties of data
collection cause us to limit the number of variables. Moreover, the methodologies for
efficiency analyses may restrict the number of variables that can be used (see next
section). In this study, we focus on two environmental factors: customer density and
load factor. We expect that increasing customer density (the number of customers per
network length) and load factor (the ratio of average units of energy delivered to the
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maximum demand) lead to higher technical efficiency, holding other things equal. There
remain other factors that can potentially affect costs, such as service quality, that are not
included in our model due to the lack of comparable data sets.

3. Method

There are several approaches to the measurement of the relative technical efficiency of
firms in relation to an efficient frontier. These approaches can be placed into one of two
broad categories of technique: programming (non-parametric) or statistical (parametric).
Data Envelopment Analysis (DEA) is a linear programming approach, while Stochastic
Frontier Analysis (SFA) is a statistical technique. While DEA has been used extensively
in the regulation of the distribution price of electricity, we use both methods for
methodology cross-checking of the results.

3.1. Data Envelopment Analysis (DEA)

DEA is a non-parametric method and uses piecewise linear programming to calculate a
sample’s (rather than estimate) efficient or best-practice frontier first developed in
Farrell (1957) and Färe et al. (1985). The decision-making units (DMUs) or firms that
make up the frontier envelop the less efficient firms. Firm i is compared to a linear
combination of firms that produce at least as much of each output as the inefficient firm
and minimum possible amount of inputs. Technical efficiency is calculated as a score on
a scale of 0 to 1, with the frontier firms receiving a score of 1 (see Cooper et al., 2000
and Coelli et al. 1998).

DEA models can be input and output oriented, but an input-oriented specification is
generally regarded as the appropriate form for electricity distribution utilities, as
demand for distribution services is a derived demand that is beyond the control of
utilities but has to be met.8 In this case, technical efficiency measures the ability of a
firm to minimise inputs to produce a given level of outputs.

DEA does not require specification of a function to represent the underlying technology.
However, the efficiency scores tend to be sensitive to the choice of input and output
variables. Further, as more variables are included in the models, the number of firms on
the frontier increases.

We incorporate environmental or non-discretionary variables in our DEA models (see
Cooper et al, 2000). The program used here follows the methodology in Banker and
Morey (1986). The linear program calculating the efficiency score of the i-th firm in a
sample of N firms in variable returns-to-scale (VRS) models takes the form specified in
Equation (1) where θ is a scalar (equal to the efficiency score) and λ represents an N×1
vector of constants. Assuming that the firms use K inputs and M outputs, X and Y

                                                
8 Output-oriented models maximise output for a given amount of input factors. Conversely, input-oriented
models minimise input factors required for a given level of output.
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represent K×N input and M×N output matrices respectively. The input and output
column vectors for the i-th firm are represented by xi and yi respectively.
Mathematically, non-discretionary variables can be introduced through the additional
sets of constraints (the second and the third constraint in (1)) where the subscripts D and
ND refer to discretionary (environmental) and non-discretionary variables respectively.
The fourth constraint (the fourth constraint in (1)) ensures that the firm is compared
against other firms with similar size. In CRS models, this convexity constraint is
dropped. The equation is solved once for each firm.
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When non-discretionary variables are specified in DEA, the methodology ensures that
the efficiency scores of inefficient firms are only calculated on the basis of reductions in
their discretionary inputs, while controlling for non-discretionary variables since
reductions in these are not feasible.

We described the DEA technique with cross section data. With panel data, we can
simply calculate efficiency score in each year but this keeps us from identifying frontier
shift due to technological change. The DEA techniques can be used to calculate
Malmquist Index of productivity change over time (see for example Färe, 1989 and
Coelli et al., 1998), assuming the underlying technology is CRS.

We use the Malmquist index as shown in (2) and described in Thanassoulis (2001). For
example, 1
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data and technology from year 1, (D1 and T1) to efficiency of the unit with data of year
0, (D0) and technology of year 1, (T1). The Malmquist indices can be broken down into
productivity catch-up and frontier shift components as in Equation (3). The catch-up
factor is a measure of the extent to which a unit has moved close to the frontier while
the frontier shift component reflects industry level technological change and innovation
(see e.g. Thanassoulis, 2001, and Coelli et al., 1998).
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The components of the Malmquist index as specified in Equations (2) and (3) can be
calculated separately with DEA. The two technical efficiency components that are based
on data and technology from the same period can be calculated using the basic DEA
program described in Equation (1). The cross time efficiency based on year-0
technology and year-1 data can be calculated from Equation (4) using specification in
Thanassoulis (2001).
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The superscripts 1 and 0 for inputs x and outputs y of i-th unit indicate the relevant time
period for data used for calculating efficiency. The superscripts for input matrix X and
output matrix Y indicate the time period for technology used for calculating efficiency.
This procedure can be modified in order to calculate relative efficiency for the
remaining component of Equation (3) with year-1 technology and year-0 data.

3.2. Stochastic Frontier Analysis (SFA)

Stochastic Frontier Analysis is a parametric method used to estimate the efficient
frontier and efficiency scores. This method requires specification of a distance function
involving assumptions about the firms’ production technologies and recognises the
possibility of stochastic errors (see Coelli, et al., 1998). The statistical nature of the
method allows for testing of hypotheses.

The SFA technique can be used to predict efficiency scores of models involving
multiple outputs by estimating input distance functions (see Coelli and Perelman, 1999).
Assuming that the electric utilities use single input x to produce m outputs ym, m =
1,…M, then, the stochastic frontier model for single input distance function in translog
specification for i-th electric utility at time t will be as follows:
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where � and γ are unknown parameters, ν is a random disturbance distributed as iid N(0,
σ2) and u is the (non-negative) technical inefficiency term. Time trend variable, t, is
included to capture non-neutral technological change. A symmetric error term ν
accounts for statistical noise, thereby reducing reliance on measurements of a single
efficient firm. However, it requires specification of a probability function for the
distribution of the inefficiency term. It is usually assumed to be half-normal, N+(0, σ2),
or truncated normal, N+(η, σ2), where the superscript ‘+’ means that it takes only a non-
negative value.

Note that the output elasticity must satisfy the monotonicity condition of the input
distance function. The returns to scale are estimated as the inverse of the sum of output
elasticity. The specification in Equation (5) allows variable returns to scale (VRS), but
CRS can be imposed by the parameter restrictions, Mm

k
mk

m
m ,...,1,0,1 === �� ββ and

0=�
m

mtβ . Technological change is estimated by evaluating the partial derivative of the

input distance function with respect to time trend variable.

Country dummy variable, DUK is included to capture a systematic difference in
technology between the two countries. Interpretation of this variable needs some
caution. This variable captures the effect of systematic differences between UK and
Japan. This allows possibility that a systematic difference in performance is accounted
for by this dummy variable. If the coefficient on this variable turns out to be significant,
then we are comparing the efficiency score relative to different frontier, which is not
compatible with the DEA efficiency score comparison. Thus, we also estimate the
stochastic distance function without the country dummy variable, with the assumption
that there are no systematic differences in technology of the two countries.

It has been pointed out that the translog specification often fails to provide valid
estimates due in part to the multicollinearity among the variables. In fact, our
preliminary investigation revealed that the second order terms associated with time
trend variable (lny1·t, lny2·t, and t2) turned out to be insignificant. Thus we drop these
variables but in order to test the difference in the rate of technological change between
UK and Japan, we included the variable DUK* t. Thus, our stochastic distance function is
modified as follows:
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To account for environmental influences in SFA, we use environmental variables
directly to explain the variation of mean inefficiency, that is, we allow for
environmental influence on mean inefficiency. In the efficiency effects model, reported
in Battese and Coelli (1993, 1995), this is done by assuming a truncated-normal
distribution for inefficiency and its mean to be specified as a linear function of
environmental variables, z. Thus, the technical inefficiency is assumed to have
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distribution N+(η, σ2), and its mean, η, is explained by a set of environmental variables.
More specifically, η is specified as:
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With mean inefficiency as specified in (6), we estimate the input distance function with
environmental variables included in the one-sided error term. The Maximum likelihood
estimation procedure is described in Battese and Coelli (1993). The estimation
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(1996) to obtain the technology parameters, as well as 222
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The technical efficiency predicted can be said “gross measure,” as it involves the effect
of the managerial environment.

We also compute the Malmquist Index by evaluating the changes in technical efficiency
(∆TE) and the technological changes (∆TC, the partial derivative of the distance
function (5) with respect to time) between the two consecutive periods. We follow the
methodology outlined in Coelli, et al. (1998) in computing a parametric version of the
Malmquist Index, which is comparable to equation (3).
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4. Data Issues

The focus of this study is on relative performance of UK and Japanese electricity
distribution systems between 1985/86 and 1997/98. Our dataset is balanced panel data
of 21 utilities (12 UK RECs and 9 Japanese electric utilities) with a total number of
observations of 273. It is critical to construct the dataset in order to make the UK-Japan
comparison meaningful and this section describes how it is done.

Each REC owns and operates the distribution network in its service area. The
distribution systems consist of overhead lines, cables, switchgear, transformers, control
systems, and meters. The pre-privatisation (1985/6-1989/90) costs for the UK firms are
based on the companies’ annual reports, statistical reviews, and share offer prospectus.
The post-privatisation costs for UK firms were obtained from OFGEM. The operating
costs are exclusive of depreciation, exit charges to National Gird (transmission charges),
and rates (local taxes) payable to authorities. Capital expenditures include network
expansion and non-operational expenditures. The costs are also adjusted for estimated
share of supply costs.9 Supply businesses are engaged in the bulk purchase of electricity
and its sale to customers. Compared to the supply business of, basically, billing and
contract management,10 the distribution business is highly capital-intensive.

As the Japanese utilities are vertically integrated, we need to estimate the costs of their
distribution business that are equivalent to those of the UK RECs. We used accounting
reports of the utilities showing the allocation of operating and capital costs into
generation, transmission, transformation (substation), distribution, retail (including
billing and metering), and general and administration. As power generation is not
relevant for this study, we examined the other functions to obtain distribution costs that
are comparable with those of the UK RECs.

Transmission, Transformation (Substation) and Distribution: Transmission and
transformation cost for Japanese utilities include the high voltage electricity
transmission that is not performed by RECs. Thus, we divide the transmission and
transformation costs between high voltage transmission and low voltage regional
transmission activities. We assume that at the voltage level 154kV or less, the Japanese
transmission system is nearly equivalent to the RECs’ regional transmission system that
is at 132 kV and less. In order to calculate the appropriate share of costs, we multiply
the length of transmission network by voltage level (km*kV). We then use the share of

                                                
9 Distribution and supply functions were uncoupled and the RECs could supply large customers outside
their franchise area on the payment of an access charge for the use of another REC’s network. Full supply
competition for all customers was effective by 1999 with RECs’ supply businesses and independent
companies competing for business. In 1995, the government lifted the ‘Golden Share’ which had
prevented mergers and acquisitions since privatisation. By March 1996, four RECs had been taken over
and three others were the subject of take-over bids, including bids from the leading fossil fuel generating
companies PowerGen and National Power (Green, 1996). Since then RECs have separated their
distribution and supply businesses as required by OFGEM although this has been in the form of legal
separation with ownership within the same group.
10 Supply now also includes metering following some reallocation of functions between distribution in
supply post 1997-98.
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transmission with voltage 154kV or less in km*kV to obtain the cost of regional
transmission. Distribution cost for Japanese utilities are all included.

Non-regulated Retail Activity: We also need to allocate the costs associated with retail
into regulated and non-regulated activity. In the UK, during the period under
examination, RECs were responsible for metering as a regulated activity but not for
billing. Therefore, for the Japanese firms, we only use retail costs associated with
metering but not billing.

General and Administration: Finally, we allocate the general and administration costs
among different activities based on the share of labour costs in each activity.

The Japanese cost data for regional distribution is then, the sum of relevant part of
transmission and transformation costs, distribution costs, metering part of retail costs,
and a part of general and administration costs. In order to harmonise the costs over time
and country, all costs are adjusted to 1997-98 price levels and then converted to
Purchasing Power Parity (PPP) values using the $US-based rates for 1997/98.

Output data for the Japanese sector, such as units of energy distributed and the number
of customers, and physical data, such as the length of transmission and distribution lines
and the peak demand are taken from the Statistical Yearbook of Electric Utility Industry.

Table 1 shows the aggregate values of the input and output variables for the UK and
Japanese distribution systems used in this study for 1985/86 and 1997/98. As shown in
the table, the Japanese distribution network is considerably larger than the UK system.
The UK sector shows significant reductions in the operating costs between 1985/6 and
1997/8. During the same period, the operating costs for the Japanese sector show a
marked increase. Both sectors show large increases in capital expenditures as a result of
growth in the main outputs.

5. Results

5.1. Efficiency Analysis Using DEA

Technical Efficiency Scores
We first present the pure technical efficiency scores calculated separately in each year
for our preferred DEA models under the assumptions of CRS and VRS for the
underlying technology. Table 2 shows arithmetic average of the efficiency scores for
each country for the sub-periods 1985/86-1989/90, 1990/91-1994/95, and 1995/96-
1997/98. The first sub-period represents the immediate pre-privatisation years in the UK
while the second and third sub-periods correspond to the first and second distribution
price controls in the UK. It should be noted that, in order to reduce reliance on the PPP
exchange rates, the changes in the relative efficiency of the firms from the two countries
are of more interest.
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The relative performance of UK and Japanese distribution networks depends on the
choice of assumptions about the underlying technology and input (Table 2). As
expected, the efficiency scores from the VRS models are higher than those of the CRS
models. In the TOTEX models, the mean scores for the UK firms are higher than those
for the Japanese firms. However, in the OPEX models, the efficiency gap between the
two countries is generally narrower and the picture is mixed.

In both models, with a few exceptions, the mean efficiency scores for the firms from
both countries tend to decline over time.  This result is somewhat unexpected and, in the
light of cost savings in the UK firms in recent years, runs counter to intuition. However,
a decline in average efficiency scores does not necessarily imply that productivity has
declined. Rather, the likely reason is that while the whole sector has achieved some
efficiency gains, the frontier firms have increased their efficiency lead over other firms.
This observation is also in line with the large efficiency differences calculated by
OFGEM for UK utilities. Nonetheless, this result poses a question as to the
effectiveness of the UK incentive regulation model in closing the efficiency gap among
the firms.

Table 2 also shows the results of a hypothesis test using analysis of variance tests of the
differences in the sample means. We test the null hypothesis that the mean efficiencies
in the UK and Japanese samples are equal in each of the three periods. The test statistic
indicates that, for most sub-periods, the differences in efficiency scores between the two
countries are statistically significant for the OPEX measures but not for the most recent
TOTEX measures.

Malmquist Index
The Malmquist productivity index based on DEA (TOTEX-CRS) model and its
decomposition into catch-up (technical efficiency change) effect and frontier shift
(technological or innovation) effect are calculated for each year relative to the previous
year and are shown in Figure 1. Index values higher than 1 indicate productivity
improvement while values lower than 1 represent productivity regress. Although the
Malmquist indices calculated could fluctuate from one year to the next, the length of the
period under study allows us to examine the underlying long-term productivity trend.
Table 3 shows the average (geometric) annual productivity change for the UK and Japan
sectors (first columns) for the main sub-periods.

Overall, between 1985/86 and 1997/98, the average annual productivity improvement in
the UK sector is 2.5% while the corresponding estimate for the Japanese sector is 0.7%.
The indices suggest that the productivity of the UK RECs declined in the years prior to
privatisation, while productivity in the Japanese sector improved during the second half
of the same period (Figure 1a and Table 3).11 In the second sub-period, the UK sector’s
productivity remains at the same level while the Japanese sector shows a slight decline.
In the third sub-period, both sectors show improvement albeit the trend in the UK sector
is considerably stronger.

                                                
11 Domah and Pollitt (2001) find that costs in the UK firms rise around this time reflecting the cost of
organisational change. IPART (1999, p 80) finds similar Malmquist indices for the UK, 1990/91-1996/97.
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A division of the productivity indices into a catch-up and a frontier shift component
reveals a somewhat more mixed picture. As shown in Figure 1b and Table 3, the UK
and sectors exhibits a weak tendency toward closing the efficiency gap in the second
sub-period followed by a reversal in the third sub-period. The Japanese sector shows a
narrowing efficiency gap in the first sub-period and strong regress during the second.
Between 1985/86 and 1997/98, the average annual change in the catch-up factors for the
UK and Japanese sectors are –0.4% and –0.8% respectively.

With regard to frontier shift, the UK RECs exhibit technological regress for the first
sub-period while the Japanese firms show a positive boundary shift. Both sectors then
show progress for the second and the third sub-periods (Figure 1c and Table 3). The
average annual changes in technological change factors for the UK and Japanese sectors
are 2.9% and 1.5% respectively. It is noteworthy that measured technological regress (or
progress) does not necessarily represent loss (or gain) of technological knowledge.
Rather, the frontier firms may have shifted their input-output mix because of changes in
regulation, relative prices, or non-neutral technical change (see e.g. Førsund, 1993).

Table 3 also shows the hypothesis test using analysis of variance tests of the differences
in the sample means. We test the null hypothesis that the mean productivity growth rates
in the UK and Japanese samples are equal in each of the three sub-periods. The test
statistic indicates that the differences in efficiency scores between the two countries are,
except for the catch-up factor in the second sub-period, statistically insignificant for the
most recent TOTEX measures.

5.2. Efficiency Analysis Using SFA

We now discuss the results from SFA. The estimated parameters are reported in Table
4a. We found that the hypothesis of CRS technology was rejected at the 5% level of
significance and therefore we do not report here the results with CRS assumption. The
average estimated returns to scale are, on average, 1.11 for the whole sample period.
There is no temporal variation in returns to scale in both countries, but the UK
electricity distribution system exhibit higher returns to scale (1.20) as compared to those
of Japanese system (0.99). Note that the returns to scale here are based on the rate of
change in input (TOTEX) when both outputs (units delivered and the number of
customers) increase at the same rate. The estimated technological change shows
statistically insignificant technological progress in both countries and no significant
difference between them throughout the period under study. Assuming that the UK and
Japanese firms employ common technology, using SFA, the results can be interpreted
that UK firms became significantly more efficient relative to the Japanese firms.

The efficiency effect parameters (δ1 and δ2) indicate the effect of environmental
variables (customer density and load factor) on the mean level of technical inefficiency,
that is, negative parameter estimates indicate that inefficiency is systematically lower as
the associated environmental variable increase. The result shows that an increase in
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customer density reduces inefficiency (that is, efficiency improving) but the effect of
load factor is statistically insignificant.

The development of the Malmquist index and the predicted technical efficiency is
shown in Figure 2(a) and Figure 2(b), respectively. Since we have only a small and
constant rate of technological change and there is no significant difference in that
between the two countries, the Malmquist index in Figure 2(a) does not look very much
different from efficiency change in Figure 2(b). This may be because RTS is picking up
technical progress relative to Malmquist that is based on CRS. Thus this result needs to
be interpreted with some caution.

Note that the DEA and SFA results are not directly comparable due to the way in which
panel data are handled, since the DEA scores are calculated independently for each year
while the SFA model includes a time trend variable to capture the technological
progress in electricity distribution that is assumed to be commonly available to all the
utilities in each country. Moreover, in this case, the efficiency scores are predicted
relative to different frontiers making cross-country comparison of efficiency scores
incompatible with that from DEA. It is clear from the results, however, that the
efficiency gain in the UK is larger than that in Japan in the last 3 years of our sample
period during which the UK sector experienced rapid cost savings and end-user price
reductions.

In order to make the efficiency comparison compatible with that of DEA, we impose the
restriction that the UK and Japanese electricity distribution system employ the same
technology and experience the same rate of technological change, so that the efficiency
scores can be predicted relative to the same frontier. Then, in order to test the hypothesis
that the UK electricity distribution is equally efficient as the Japanese electricity
distribution in each of the three periods, we included country specific dummy variables
to explain the mean inefficiency in the right hand side of equation (6). Specifically we
used the following dummy variables:

UK1 = 1, for UK electricity distribution during the period 1985/86 through 1989/90
= 0, otherwise

UK2 = 1, for UK electricity distribution during the period 1990/91 through 1994/95
= 0, otherwise

UK3 = 1, for UK electricity distribution during the period 1995/96 through 1997/98
= 0, otherwise

JP2 = 1, for Japanese electricity distribution during the period 1990/91 through 1994/95
= 0, otherwise

JP3 = 1, for Japanese electricity distribution during the period 1995/96 through 1997/98
        =0, otherwise

By including these dummy variables in equation (6), the efficiency effect of each period
in each country can be estimated relative to the efficiency level of Japanese electricity
distribution during the period 1985/86 through 1989/90. Table (4b) shows the parameter
estimates of these efficiency effects as well as technology parameters of the distance
function. An increase in the load factor has a statistically significant effect on reducing
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inefficiency. The parameter estimates of UK dummy variables (UK1, UK2 and UK3)
are all statistically significantly different from zero and negative, which indicate that the
UK electricity distribution are more efficient relative to the Japanese electricity
distribution in the first period. Log-likelihood tests to examine the relative efficiency in
each period (namely, δ4=δ6 and δ5=δ7) clearly rejects the hypothesis of equal efficiency
between the two countries, indicating that in each period, UK electricity distribution
systems are more efficient relative to the Japanese electricity distribution systems.
These parameter estimates also suggest that the efficiency gap became narrower during
the second period and then wider during the third period.

6. Conclusions

The results of our comparative efficiency analyses indicate that, during our sample
period, the productivity gain in UK electricity distribution utilities has been larger than
that of the Japanese electricity distribution. In particular, productivity growth
accelerated during the last 3-year period of our sample when UK electricity distribution
utilities were operating under tightened revenue caps. The DEA Malmquist index and its
decomposition revealed that while there has been a technological progress in UK RECs,
the efficiency gap between them may have widened. This finding is of interest to
regulators who wish to introduce incentive regulation models using uniform efficiency
improvement requirements for regulated utilities based on Total Factor Productivity.

The transition from single to cross-country regulatory comparisons poses rather
rigorous requirements on data. It is difficult to determine beforehand whether a
particular data set used with a certain technique may produce results that are
“unreasonable” or counter-intuitive. A multi-technique approach can help in revealing
possible peculiarities in data and assessing the results of individual methods for the
purpose of comparisons. It is therefore important to incorporate different techniques in
the study design.

Also, as suggested in Jamasb and Pollitt (2001c), due to the cyclical nature of some
system investment requirements and maintenance costs and exogenous factors such as
regulation, multi-year efficiency studies are preferred. Our findings confirm this
concern. We observed that, in the short-run, there can be significant variations in the
level of costs and, consequently, in relative efficiency measures in relation to preceding
and subsequent years leading to uneven performance patterns.

The make-up of the sample used is important and should not be arbitrary. The countries
included in the sample need be relatively comparable in order to yield most information
on relative performance of domestic firms.  For relatively efficient sectors such as those
of the UK and Japan, it is important that the benchmarking samples include
international best practice. One major step towards this task could be the inclusion of
efficient US utilities.
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An important area for future research is to incorporate additional dimensions of output
such as measures of security and availability of supply in the analysis. The UK regulator
has made considerable effort to address and include quality of supply in regulation of
electricity utilities (see e.g. OFGEM, 2001). However, there is currently a lack of
suitable data for international comparisons. With more data it may be possible to
examine the effects of regulatory changes. Such cross-country comparisons can involve
a large comparability problem. The data issues can only be resolved through long-term
cooperation and coordinated effort among regulators.
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Table 1: Summary Statistics of UK and Japan Electricity Distribution

1985/86 1997/98
UK Japan UK Japan

Operating expenses (mill. $US PPP) 2,225 8,022 1,756 10,846
Capital expenditures (mill. $US PPP) 944 7,584 1,436 9,502
Units of energy delivered (GWh)
   • domestic
   • others

76,926
132,290

126,964
368,754

89,726
172,905

222,288
539,296

Number of customers (000) 21,476 51,019 23,830 63,853
Length of network (km) 609,974 896,971 651,484 1,058,954
Maximum demand (MW) 44,301 106,946 49,392 165,918

Table 2: DEA Efficiency scores for CRS and VRS

Input TOTEX OPEX
Technology CRS VRS CRS VRS

Country JP UK JP UK JP UK JP UK

Mean 1985/86-1989/90 0.796 0.919 0.808 0.984 0.838 0.898 0.850 0.978
1990/91-1994/95 0.770 0.793 0.869 0.945 0.858 0.843 0.933 0.964
1995/96-1997/98 0.719 0.811 0.833 0.910 0.692 0.683 0.865 0.856

Variance 1985/86-1989/90 0.010 0.047 0.046 0.002 0.03 0.010.028 0.0
1990/91-1994/95 0.048 0.018 0.032 0.006 0.022 0.018 0.011 0.004
1995/96-1997/98 0.066 0.027 0.045 0.014 0.074 0.039 0.035 0.028

P-value 1985/86-1989/90 0.000 0.000 0.000 0.000
1990/91-1994/95 0.000 0.000 0.196 0.000
1995/96-1997/98 0.007 0.001 0.039 0.244
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Figure 1: Malmquist productivity index and components - TOTEX Model
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Table 3: Average Malmquist productivity growth rate and decomposition –
TOTEX-CRS model

UK Japan UK Japan UK Japan
Mean Malmquist Catch-up Frontier shift

1985/86 - 1989/90 -3.7% 0.0% 0.0% 2.7% -3.7% -2.6%
1990/91 - 1994/95 0.9% -1.0% -4.6% -4.7% 5.8% 3.9%
1995/96 - 1997/98 10.8% 3.2% 3.5% -0.2% 7.0% 3.4%
1985/86-1997/98 2.5% 0.7% -0.4% -0.8% 2.9% 1.5%

t-Test:*
1985/86 - 1989/90 -3.65 -2.51** -1.54
1990/91 - 1994/95 1.45 0.08 2.35
1995/96 - 1997/98 2.62 1.51 2.81
1985/86-1997/98 2.44 0.490 3.93

P-value
1985/86 - 1989/90 0.001 0.015** 0.130
1990/91 - 1994/95 0.081 0.468 0.015
1995/96 - 1997/98 0.008 0.073 0.006
1985/86-1997/98 0.011 0.310 0.000

Variance
1985/86 - 1989/90 0.0006 0.0004 0.0002 0.0009 0.0003 0.0006
1990/91 - 1994/95 0.001 0.0008 0.001 0.0016 0.0002 0.0005
1995/96 - 1997/98 0.005 0.003 0.003 0.003 0.001 0.0006
1985/86-1997/98 0.00037 0.0002 0.0003 0.0004 0.000058 0.00007

*   Two-sample means test assuming equal variances.
** Two-sample means test assuming unequal variances.
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Table 4: Parameter estimates of input distance function

(a) Separate frontier (b) Common frontier
Coefficient Variable Estimates t-ratio Variable Estimates t-ratio

β0 (Constant) -6.9285 -13.7172 (Constant) -6.4219 -182.1285

β1 ln y1 (customer) -0.5614 -6.3710 ln y1 (customer) -0.5073 -5.2928

β2 ln y2 (energy) -0.4293 -4.8485 ln y2 (energy) -0.5089 -5.2338

β11 0.5*(ln y1)
2 0.7701 2.1059 0.5*(ln y1)

2 0.7965 2.2583

β22 0.5*(ln y2)
2 0.8637 2.5186 0.5*(ln y2)

2 0.8014 2.4101

β12 lny1*lny2 -1.7345 -2.4809 lny1*lny2 -1.7176 -2.5514

βτ t (time trend) 0.0049 1.0347 t (time trend) 0.0094 3.1127

γUK UK-dummy 0.7277 12.0830

γUKτ UK-dummy*t -0.0003 -0.0524

δ0 (Constant) 0.5912 1.0834 (Constant) 1.8235 5.5246

δ1 z1 (density) -2.0868 -1.6079 z1 (density) -6.4500 -3.6338

δ2 z2 (load factor) -0.4534 -1.1366 z2 (load factor) -1.3201 -2.8393

δ3 z3(UK1) -1.1016 -6.2933

δ4 z4(UK2) -0.6555 -11.0259

δ5 z5(UK3) -1.1454 -6.8818

δ6 z6(JP2) -0.0134 -0.3178

δ7 z7(JP3) -0.0235 -0.4166

σ2 0.0303 11.47 0.0272 9.16

γ 0.1616 0.2379 0.1560 1.5962

Log-likelihood 89.90 114.13
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Figure 2: Malmquist index and efficiency change of
UK and Japanese electricity distribution systems

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1986-7 1987-8 1988-9 1989-0 1990-1 1991-2 1992-3 1993-4 1994-5 1995-6 1996-7 1997-8

JP

UK

(a) Malmquist index

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1986-7 1987-8 1988-9 1989-0 1990-1 1991-2 1992-3 1993-4 1994-5 1995-6 1996-7 1997-8

JP

UK

(b) Efficiency change




