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We investigate a longitudinal data model with nonparametric regression functions
that may vary across the observed individuals. In a variety of applications, it is
natural to impose a group structure on the regression curves. Specifically, we may
suppose that the observed individuals can be grouped into a number of classes
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derive the asymptotic properties of the procedure and investigate its finite sample
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1 Introduction

Non- and semiparametric regression models are a flexible framework to analyze longi-

tudinal data from various fields such as economics, finance, biology and climatology.

Most of the literature is based on the assumption that the regression function is the

same across individuals; see Ruckstuhl et al. (2000), Henderson et al. (2008) and Mam-

men et al. (2009) among many others. This assumption, however, is very unrealistic

in many applications. In particular, when the number of observed individuals is large,

it is quite unlikely that all individuals have the same regression function. In a wide

range of cases, it is much more plausible to suppose that there are groups of individuals

who share the same regression function (or at least have very similar regression curves).

As a modelling approach, we may thus assume that the observed individuals can be

grouped into a number of classes whose members all share the same regression func-
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tion. The aim of this paper is to develop a statistical procedure to infer the unknown

group structure from the data.

Throughout the paper, we work with the following model setup. We observe a

sample of longitudinal or panel data {(Yit, Xit) : 1 ≤ i ≤ n, 1 ≤ t ≤ T}, where i denotes

the i-th individual and t is the time point of observation. The time series dimension T is

assumed to be large, or more precisely, to tend to infinity. The cross-section dimension

n, in contrast, may either be fixed or diverging. The data are supposed to come from

the nonparametric regression model

Yit = mi(Xit) + uit, (1.1)

where mi are unknown nonparametric functions which may differ across individuals

i and uit denotes the error term. We impose the following group structure on the

model: Let G1, . . . , GK be a fixed number of disjoint sets which partition the index

set {1, . . . , n}, that is, G1 ∪̇ . . . ∪̇ GK = {1, . . . , n}. We suppose that for each k ∈
{1, . . . , K},

mi = mj for all i, j ∈ Gk. (1.2)

Hence, the members of the class Gk all have the same regression function, which we

denote by gk in what follows. Note that the classes Gk = Gk,n depend on the cross-

section dimension n in general. To keep the exposition simple, we however suppress this

dependence in the notation throughout the paper. Our aim is to estimate the groups

G1, . . . , GK , their number K and the group-specific regression functions g1, . . . , gK in

model (1.1)–(1.2).

The error terms uit in (1.1) are supposed to have the structure uit = αi + γt + εit.

The components εit are standard regression errors that satisfy E[εit|Xit] = 0. The terms

αi are individual specific errors: they control for individual specific characteristics like

intelligence or genetic makeup that are unobserved and stable over time. In a similar

vein, the terms γt capture unobserved time specific effects like calendar effects or trends

that are common across individuals. In many applications, the regressors may be

correlated with unobserved individual or time specific characteristics. To take this

into account, we allow the errors αi and γt to be correlated with the regressors in an

arbitrary way. Specifically, defining Xn,T = {Xit : 1 ≤ i ≤ n, 1 ≤ t ≤ T}, we allow

that E[αi|Xn,T ] 6= 0 and E[γt|Xn,T ] 6= 0. Moreover, whereas the errors εit are assumed

to be independent across i later on, the terms αi may be correlated across i. Hence,

by including αi and γt in the error structure, we allow for some restricted types of

cross-sectional dependence in the errors uit. In the econometrics literature, the error

structure uit = αi + γt + εit is very common; see e.g. the books by Hsiao (2003) and

Baltagi (2013). Following the terminology from there, we call αi and γt fixed effects.

To identify the functions mi in the presence of the fixed effects αi and γt, we normalize

them to satisfy E[mi(Xit)] = 0 for all i and t. This normalization amounts to a harmless
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rescaling under our technical conditions in Section 3.

The group structure imposed in (1.1)–(1.2) is an attractive working hypothesis in a

wide number of applications. In Section 6, we illustrate this by an example from finance.

Up to 2007, primary European stock exchanges such as the London stock exchange were

essentially the only venues where stocks could be traded in Europe. This monopoly was

ended by the so-called “Markets in Financial Instruments Directive” in 2007. Since then,

various new trading platforms have emerged. Nowadays, the European equity market

is strongly fragmented with stocks being traded simultaneously at a variety of different

venues. This restructuring of the European stock market has raised the question how

competition between trading venues, that is, trading venue fragmentation affects the

quality of the market from the point of view of the typical trader. Obviously, the effect

of fragmentation on market quality can be expected to differ across stocks. Moreover,

it is plausible to suppose that there are different groups of stocks for which the effect

is the same (or at least quite similar). Our modelling approach thus appears to be

a suitable framework to empirically investigate the effect of fragmentation on market

quality. In Section 6, we apply it to a sample of data for the FTSE 100 and FTSE 250

stocks.

To the best of our knowledge, the problem of classifying nonparametric regression

functions in the longitudinal data framework (1.1) has not been considered so far in the

literature. Recently, however, there have been some studies on a parametric version of

this problem: Consider the linear panel regression model Yit = βiXit + uit, where the

coefficients βi are allowed to vary across individuals. Similarly as in our nonparametric

model, we may suppose that the coefficients βi can be grouped into a number of classes.

Specifically, we may assume that there are classes G1, . . . , GK such that βi = βj for

all i, j ∈ Gk and all 1 ≤ k ≤ K. The problem of estimating the unknown groups

G1, . . . , GK in this parametric framework has been considered in Su et al. (2014) among

others.

Our modelling approach is related to classification problems in functional data anal-

ysis. There, the observed data X1, . . . , Xn are curves, or more specifically, sample paths

of a stochastic process X = {X(t) : t ∈ T }, where T is some index set and most com-

monly represents an interval of time. In some cases, the curves X1, . . . , Xn are observed

without noise; in others, they are observed with noise. In the latter case, they have

to be estimated from noisy observations Y1, . . . , Yn which are realizations of a process

Y = {Y (t) = X(t) + ε(t) : t ∈ T } with ε being the noise process. In both the noise-

less and the noisy case, the aim is to cluster the curves X1, . . . , Xn into a number of

groups. There is a vast amount of papers which deal with this problem in different

model setups; see for example Abraham et al. (2003) and Tarpey and Kinateder (2003)

for procedures based on k-means clustering, James and Sugar (2003) and Chiou and Li

(2007) for so-called model-based clustering approaches, Ray and Mallick (2006) for a

Bayesian approach and Jacques and Preda (2014) for a recent survey.
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Even though there is a natural link between our estimation problem and the issue

of classifying curves in functional data analysis, these two problems substantially differ

from each other. In functional data analysis, the objects to be clustered are realizations

of random curves that depend on a deterministic index t ∈ T . In our longitudinal model

in contrast, we aim to cluster deterministic curves that depend on random regressors.

Hence, the objects to be clustered are of a very different nature. Moreover, the error

structure in our model is much more involved than in functional data analysis, where

the noise is most commonly i.i.d. across observations (if there is noise at all). Finally,

whereas the number of observed curves n should diverge to infinity in functional data

models, we provide theory both for fixed and diverging n. For these reasons, substan-

tially different theoretical arguments are required to analyze clustering algorithms in

our framework and in functional data analysis.

Our estimation methods are introduced in Section 2. There, we develop a thresh-

olding algorithm to estimate the classes G1, . . . , GK . The algorithm has the very nice

feature that it simultaneously estimates the classes along with their number K. Hence,

we do not need a separate procedure to estimate K. This distinguishes our procedure

from most other classification algorithms such as k-means clustering which presuppose

knowledge of the true number of classes. Once we have constructed our estimators of

the classes G1, . . . , GK , we use these to come up with kernel-type estimators of the

associated regression functions g1, . . . , gK .

The asymptotic properties of our methods are investigated in Section 3. There, we

show that our estimators of the classes G1, . . . , GK and of their number K are consis-

tent. Moreover, we derive the limit distribution of the estimators of the group-specific

regression functions g1, . . . , gK . In Section 4, we discuss how to implement our methods

in practice. Most importantly, our algorithm to estimate the classes G1, . . . , GK de-

pends on a threshold parameter which needs to be tuned appropriately. We provide a

detailed discussion of how to achieve this. We finally complement the theoretical anal-

ysis of the paper by a simulation study in Section 5 and by our empirical investigation

of the effect of fragmentation on market quality in Section 6.

2 Estimation

In this section, we describe how to estimate the groups G1, . . . , GK , their number K and

the group-specific regression functions g1, . . . , gK in model (1.1)–(1.2). For simplicity of

exposition, we restrict attention to real-valued regressors Xit, the theory carrying over

to the multivariate case in a completely straightforward way. To set up our estimation

method, we proceed in several steps: In a first step, we construct kernel-type smoothers

of the individual functions mi. With the help of these smoothers, we then set up

estimators of the classes G1, . . . , GK and of their number K. These are finally used to

come up with estimators of the functions g1, . . . , gK .
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2.1 Estimation of the regression functions mi

To construct an estimator m̂i of the regression function mi of the i-th individual, we

proceed as follows: Let Y fe
it = Yit−αi−γt be the Y -observations purged of the individual

and time fixed effects. If the fixed effects were observed, we could directly work with

the model equation Y fe
it = mi(Xit)+εit, from which the function mi can be estimated by

standard nonparametric methods. In particular, we could employ a Nadaraya-Watson

smoother of the form

m̂∗i (x) =

∑T
t=1Wh(Xit − x)Y fe

it∑T
t=1Wh(Xit − x)

,

where h is the bandwidth and W denotes a kernel function with Wh(x) = h−1W (x/h).

To obtain a feasible estimator of mi, we replace the unobserved variables Y fe
it in the

above formula by the approximations Ŷ fe
it = Yit − Y i − Y

(i)

t + Y
(i)

, where

Y i =
1

T

T∑

t=1

Yit, Y
(i)

t =
1

n− 1

n∑

j=1
j 6=i

Yjt, Y
(i)

=
1

(n− 1)T

n∑

j=1
j 6=i

T∑

t=1

Yjt

are sample averages of the Y -observations. In the definition of Y
(i)

t and Y
(i)

, we leave

out the i-th observation to avoid some bias terms that are particularly problematic

when n is fixed. With this notation at hand, we define the feasible estimator

m̂i(x) =

∑T
t=1Wh(Xit − x)Ŷ fe

it∑T
t=1Wh(Xit − x)

of the function mi. For simplicity, we use the same bandwidth h for all estimators m̂i.

It is however no problem at all to let the estimators depend on different bandwidths hi.

In particular, our theoretical results in Section 3 go through essentially unchanged for

varying bandwidths hi (as long as these fulfill the conditions on the common bandwidth

h summarized in (C4) of Section 3.1). Alternatively to the Nadaraya-Watson smoothers

m̂i, we could work with local linear or more generally local polynomial estimators.

Indeed, our procedure to estimate the groups Gk and the functions gk for 1 ≤ k ≤ K is

the same no matter which type of kernel smoother we employ.

2.2 A thresholding procedure to estimate the groups Gk

We first consider the following estimation problem: Let S ⊆ {1, . . . , n} be some index

set and pick an index i ∈ S. Moreover, let G ∈ {G1, . . . , GK} be the class to which i

belongs and suppose that G ⊆ S. We would like to infer which indices in S belong to

the group G.

To tackle this estimation problem, we measure the distances between pairs of func-

tions mi and mj. Specifically, we work with squared L2-distances of the form ∆ij =
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∫
(mi(x)−mj(x))2π(x)dx, where π is some weight function. These are estimated by

∆̂ij =

∫ (
m̂i(x)− m̂j(x)

)2
π(x)dx,

where m̂i and m̂j are the kernel smoothers introduced in the previous section. We now

sort the distances {∆ij : j ∈ S} along with their estimates {∆̂ij : j ∈ S} in increasing

order. Denote the ordered distances by

∆i(1) ≤ ∆i(2) ≤ . . . ≤ ∆i(nS) and ∆̂i[1] ≤ ∆̂i[2] ≤ . . . ≤ ∆̂i[nS ],

where nS = |S| is the cardinality of S and the symbols ( · ) and [ · ] are used to distinguish

between the orderings of the true and the estimated distances. The ordered distances

∆i(j) have the following property: There exists a point p = pi,S such that

∆i(j)





= 0 for j ≤ p

≥ c for j > p

with c = ∆i(p+1) > 0. From this, it immediately follows that G = {(1), . . . , (p)}. The

ordered estimates ∆̂i[j] exhibit a similar pattern: Since max1≤i,j≤n |∆̂ij − ∆ij| = op(1)

under appropriate regularity conditions, it holds that

∆̂i[j]





= op(1) for j ≤ p

≥ c+ op(1) for j > p
(2.1)

with c = ∆i(p+1) > 0. This in particular says that the first p order statistics ∆̂i[1], . . .

. . . , ∆̂i[p] approximate the distances ∆i(1), . . . ,∆i(p), which in turn implies that the two

sets of indices {[1], . . . , [p]} and {(1), . . . , (p)} should coincide with probability tending

to one. Hence, if we knew the size p = |G| of the class G, we could simply estimate

G = {(1), . . . , (p)} by G̃ = {[1], . . . , [p]}.
As p is not observed in practice, we have to estimate it. This can be achieved by a

thresholding approach: Let {τn,T} be a null sequence of threshold levels that converge

to zero sufficiently slowly. In particular, suppose that

max
j∈G

∆̂ij ≤ τn,T with prob. approaching 1, (2.2)

which says that the threshold parameter τn,T is not allowed to converge to zero faster

than maxj∈G ∆̂ij. By the above considerations, maxj∈G ∆̂ij = ∆̂i[p] with probability

tending to one. Hence, (2.1) immediately yields that

∆̂i[j]




≤ τn,T for j ≤ p

> τn,T for j > p
with prob. approaching 1.
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Figure 1: Graphical illustration of the procedure underlying the estimator Ĝ = {[1], . . . , [ p̂ ]}.
The black dots indicate the ordered estimated distances ∆̂i[1], . . . , ∆̂i[nS ], the dashed line
represents the threshold level τn,T .

This suggests to estimate p = pi,S by

p̂ = p̂i,S = max
{
j ∈ {1, . . . , nS} : ∆̂i[j] ≤ τn,T

}
(2.3)

and to define our estimator of G by Ĝ = {[1], . . . , [ p̂ ]}. Figure 1 provides a graphical

illustration of this estimation approach.

We now set up an algorithm which iteratively applies the thresholding procedure

from above to estimate the class structure {Gk : 1 ≤ k ≤ K}:

1st Step: Set S1 = {1, . . . , n}, pick some index i1 ∈ S1, and denote the ordered esti-

mated distances by ∆̂i1[1] ≤ . . . ≤ ∆̂i1[nS1
]. Compute p̂ = p̂i1,S1 as defined in

(2.3) and estimate the group to which i1 belongs by Ĝ1 = {[1], . . . , [p̂]}.

kth Step: Let Ĝ1, . . . , Ĝk−1 be the class estimates from the previous iteration steps. Set

Sk = {1, . . . , n} \
⋃k−1
`=1 Ĝ`, pick some index ik ∈ Sk, and denote the ordered

estimated distances by ∆̂ik[1] ≤ . . . ≤ ∆̂ik[nSk
]. Compute p̂ = p̂ik,Sk

as defined

in (2.3) and estimate the group to which ik belongs by Ĝk = {[1], . . . , [p̂]}.

We iterate this algorithm K̂ times until ∆̂i
K̂
[j] ≤ τn,T for all j ∈ SK̂ , that is, until our

thresholding rule suggests that all indices in SK̂ belong to the same class. In this case,

SK̂ is not split into two parts any more and ĜK̂ = SK̂ . Our algorithm thus produces

the partition {Ĝk : 1 ≤ k ≤ K̂}, which serves as our estimator of the class structure

{Gk : 1 ≤ k ≤ K}. Importantly, the algorithm does not only estimate the classes

G1, . . . , GK but also their number K. In particular, K is implicitly estimated by the

number of iterations K̂. This is a very nice feature of the method, distinguishing it

from most other classification algorithms which commonly presuppose knowledge of the

true number of classes.

In Section 4, we discuss how to implement the estimators Ĝ1, . . . , ĜK̂ in practice.

In particular, we explain how to choose the threshold parameter τn,T in an appropriate

way. Besides the threshold τn,T , we also need to pick an index ik ∈ Sk in each iteration
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step of the procedure. In principle, there is no restriction on how to do so. In partic-

ular, our theoretical results in Section 3 hold true no matter which indices ik we pick.

Nevertheless, we may try to improve the finite sample behaviour of our estimators by

a good choice of the indices ik. In Section 4, we discuss how to achieve this.

2.3 A k-means procedure to estimate the groups Gk

Overall, our thresholding method performs well in small samples as illustrated by the

simulations in Section 5. However, when the noise level in the data is high, the estimates

m̂i tend to be poor, which in turn may lead to frequent classification errors. In such

cases, we may improve on the performance of the thresholding method by an additional

k-means clustering step. In particular, we may use the threshold estimators Ĝ1, . . . , ĜK̂

as the starting values of a k-means algorithm. As shown in the simulations, the resulting

estimators tend to be quite precise even when the noise level in the data is high.

The k-means algorithm has a long tradition in the classification literature. Since

its introduction in Cox (1957) and Fisher (1958), many people have worked on it; see

e.g. Pollard (1981, 1982) for consistency and weak convergence results and Garcia-

Escudero and Gordaliza (1999), Tarpey and Kinateder (2003), Sun et al. (2012) and

Ieva et al. (2013) for more recent extensions and applications of the algorithm. For the

k-means algorithm to work well, two conditions need to be satisfied: (a) The algorithm

presupposes knowledge of the number of classesK. Hence, if we want to apply it, we first

have to estimate K. (b) Its performance heavily depends on the starting values. When

these are not chosen appropriately, it tends to produce poor results. Our thresholding

method is a neat way to simultaneously satisfy (a) and (b): it estimates the number of

classes K and at the same time produces accurate starting values. It thus provides an

appropriate basis for the k-means algorithm to work well.

Our version of the k-means algorithm proceeds as follows: To start with, we compute

the mean functions ĝ
[1]
k (x) = |Ĝk|−1

∑
i∈Ĝk

m̂i(x) for each class estimate Ĝk with 1 ≤
k ≤ K̂. Defining ∆(q1, q2) =

∫
(q1(x) − q2(x))2π(x)dx to be the squared L2-distance

between two functions q` : [0, 1]→ R with ` = 1, 2, we then proceed as follows:

1st Step: For each i ∈ {1, . . . , n} and k ∈ {1, . . . , K̂}, calculate the distance d̂k(i) =

∆(m̂i, ĝ
[1]
k ) between the function m̂i and the cluster mean ĝ

[1]
k . Define the

classes {G[1]
k : 1 ≤ k ≤ K̂} by assigning the index i to the k-th class G

[1]
k if

d̂k(i) = min1≤k′≤K̂ d̂k′(i).

rth Step: Let {G[r−1]
k : 1 ≤ k ≤ K̂} be the classes from the previous iteration step. Cal-

culate mean functions ĝ
[r]
k = |G[r−1]

k |−1
∑

i∈G[r−1]
k

m̂i and compute the distances

d̂k(i) = ∆(m̂i, ĝ
[r]
k ) for each i and k. Define the new classes {G[r]

k : 1 ≤ k ≤ K̂}
by assigning the index i to the k-th group G

[r]
k if d̂k(i) = min1≤k′≤K̂ d̂k′(i).

This algorithm is iterated until the computed classes do not change any more. For a

given sample of data, this is guaranteed to happen after finitely many steps. We thus
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obtain estimators of the classes {Gk : 1 ≤ k ≤ K} which are denoted by {ĜKM
k : 1 ≤

k ≤ K̂} in what follows.

2.4 Estimation of the functions gk

Once we have constructed estimators of the groups Gk, it is straightforward to come

up with good estimators of the functions gk. In particular, we define

ĝk(x) =
1

|Ĝk|

∑

i∈Ĝk

m̂i(x),

where |Ĝk| denotes the cardinality of the set Ĝk. Hence, we simply average the kernel

smoothers m̂i with indices in the estimated group Ĝk. When we additionally perform

the k-means algorithm from the previous section, the threshold estimators Ĝk should

of course be replaced by the refined versions ĜKM
k in the definition of ĝk.

3 Asymptotics

In this section, we investigate the asymptotic properties of our estimators. We first list

the assumptions needed for the analysis and then summarize the main results. The

proofs can be found in the Appendix.

3.1 Assumptions

(C1) The time series processes Zi = {(Xit, εit) : 1 ≤ t ≤ T} are independent across i.

Moreover, they are strictly stationary and strongly mixing for each i. Let αi(`)

for ` = 1, 2, . . . be the mixing coefficients corresponding to the i-th time series

Zi. It holds that αi(`) ≤ α(`) for all 1 ≤ i ≤ n, where the coefficients α(`) decay

exponentially fast to zero as `→∞.

(C2) The functions gk (1 ≤ k ≤ K) are twice continuously differentiable. The densities

fi of the variables Xit exist and have bounded support, which w.l.o.g. equals

[0, 1]. They are uniformly bounded away from zero and infinity, that is, 0 < c ≤
min1≤i≤n infx∈[0,1] fi(x) and max1≤i≤n supx∈[0,1] fi(x) ≤ C <∞ for some constants

0 < c ≤ C < ∞. Moreover, they are twice continuously differentiable on [0, 1]

with uniformly bounded first and second derivatives. Finally, the joint densities

fi,` of (Xit, Xit+`) exist and are uniformly bounded away from infinity.

(C3) There exist a real number θ > 4 and a natural number `∗ such that for any ` ∈ Z
with |`| ≥ `∗ and a fixed constant C <∞,

max
1≤i≤n

sup
x∈[0,1]

E
[
|εit|θ

∣∣Xit = x
]
≤ C <∞
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max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εit|
∣∣Xit = x,Xit+` = x′

]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εitεit+`|

∣∣Xit = x,Xit+` = x′
]
≤ C <∞.

(C4) The time series dimension T tends to infinity, while the cross-section dimension n

may either be fixed or diverging. Their relative growth is such that n/T ≤ C for

some constant C < ∞. The bandwidth h has the property that cT−2/5+δ ≤ h ≤
CT−δ for some small δ > 0 and positive constants c, C.

(C5) The kernel W is non-negative and bounded. Moreover, it is symmetric about

zero, has compact support (say [−C1, C1]), and fulfills the Lipschitz condition

that there exists a positive constant L with |W (x)−W (x′)| ≤ L|x− x′|. We use

the notation ‖W‖2 =
∫
W 2(x)dx and ‖W ∗W‖2 =

∫
(
∫
W (x)W (x+ y)dx)2dy.

We finally suppose that the weight function π in the definition of the distances ∆ij is

bounded and that its support is contained in that of the regressors, i.e., supp(π) ⊆ [0, 1].

We briefly comment on the above assumptions. First of all, note that we do not

necessarily require exponentially decaying mixing rates as assumed in (C1). These

could alternatively be replaced by sufficiently high polynomial rates. We nevertheless

make the stronger assumption of exponential mixing to keep the notation and structure

of the proofs as clear as possible. (C2) and (C3) are standard-type smoothness and

moment conditions that are needed to derive uniform convergence results for the kernel

estimators on which our methods are based; cp. for example Hansen (2008) for similar

assumptions. (C4) imposes restrictions on the relative growth of the two dimensions n

and T . There is a trade-off between these restrictions and the moment condition that

θ > 4 in (C3). In particular, it is possible to relax (C4) at the cost of a stronger moment

condition. For example, we can weaken (C4) to allow for n/T 3/2 ≤ C, if we strengthen

the moment condition to θ > 5. Importantly, we do not impose any restrictions on the

class sizes nk = |Gk| for 1 ≤ k ≤ K. They only need to fulfill the trivial conditions

that nk ≤ n for 1 ≤ k ≤ K and
∑K

k=1 nk = n. The sizes nk may thus be very different

across the classes Gk. In particular, they may be fixed for some classes and grow to

infinity at different rates for others.

3.2 Main results

We first investigate the asymptotic properties of the threshold estimators {Ĝk : 1 ≤
k ≤ K̂}. To do so, we require the threshold parameter τn,T to fulfill the condition

(Cτ ) τn,T → 0 such that P
(

max
i,j∈Gk

∆̂ij ≤ τn,T

)
→ 1 for 1 ≤ k ≤ K.

This condition is in particular satisfied by any threshold τn,T which converges to zero

more slowly than maxi,j∈Gk
∆̂ij for 1 ≤ k ≤ K. More formally, suppose that maxi,j∈Gk
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∆̂ij = Op(cn,T ) for some null sequence {cn,T} and any k. Then any null sequence {τn,T}
with τn,T/cn,T → ∞ satisfies (Cτ ). In the Appendix, we show that maxi,j∈Gk

∆̂ij =

Op(cn,T ) with cn,T = T−1/5+h3 under the conditions (C1)–(C5) and cn,T = log T/(Th)+

h3 provided that the moment assumptions in (C3) are strengthened to hold for some

θ > 20/3. Notably, these are only upper bounds on the rate of maxi,j∈Gk
∆̂ij. In

Lemma A.2 in the Appendix, we derive the sharp rate maxi,j∈Gk
∆̂ij = Op(1/(Th))

under more restrictive conditions than (C1)–(C5). This lemma also provides us with

a more concise characterization of the threshold sequences that satisfy (Cτ ). It shows

that maxi,j∈Gk
∆̂ij ≤ bn,T + ρn,T , where the leading term bn,T has the form

bn,T =
‖W‖2 max1≤i<j≤n(bi + bj)

Th

with bi =
∫
σ2
i (x)π(x)/fi(x)dx and σ2

i (x) = E[ε2it|Xit = x]. The lower order terms are

summarized by the expression ρn,T = Op(log T/ (Th1/2)). From this, it immediately

follows that any null sequence {τn,T} with τn,T ≥ bn,T + ρn,T fulfills (Cτ ), where ρn,T is

an upper bound on the lower order terms ρn,T satisfying ρn,T/ρn,T →∞.

Our first result shows that the threshold estimators {Ĝk : 1 ≤ k ≤ K̂} are consistent

in the following sense: they coincide with the true classes {Gk : 1 ≤ k ≤ K} with

probability tending to one, provided that the threshold parameter τn,T fulfills (Cτ ).

Theorem 3.1. Let (C1)–(C5) be satisfied and suppose that τn,T fulfills (Cτ ). Then

P(K̂ 6= K) = o(1) and

P
({
Ĝk : 1 ≤ k ≤ K̂

}
6=
{
Gk : 1 ≤ k ≤ K

})
= o(1).

Note that the indexing of the estimators Ĝ1, . . . , ĜK̂ is completely arbitrary. We could,

for example, change the indexing according to the rule k 7→ K̂ − k + 1. In the sequel,

we suppose that the estimated classes are indexed such that P(Ĝk = Gk)→ 1 for all k.

Theorem 3.1 implies that this is possible without loss of generality. The next theorem

shows that the k-means estimators {ĜKM
k : 1 ≤ k ≤ K̂} inherit the consistency property

of Theorem 3.1 from the threshold estimators {Ĝk : 1 ≤ k ≤ K̂}.

Theorem 3.2. Under the conditions of Theorem 3.1, it holds that

P
({
ĜKM
k : 1 ≤ k ≤ K̂

}
6=
{
Gk : 1 ≤ k ≤ K

})
= o(1).

As above, we suppose without loss of generality that the k-means estimators ĜKM
1 , . . .

. . . , ĜKM
K are indexed such that P(ĜKM

k = Gk)→ 1 for all k.

We next turn to the asymptotic properties of the estimators ĝk. To formulate them,

we introduce some notation: Let n̂k = |Ĝk| be the cardinality of Ĝk and let the constant

ck be implicitly defined by the formula h/(n̂kT )−1/5
P−→ ck. Noting that the group size

nk = |Gk| depends on the cross-section dimension n in general, i.e., nk = nk(n), we

11



define the terms

Bk(x) =
c
5/2
k

2

(∫
W (ϕ)ϕ2dϕ

)
lim
n→∞

( 1

nk

∑

i∈Gk

g′′k(x)fi(x) + 2g′k(x)f ′i(x)

fi(x)

)

Vk(x) =
(∫

W 2(ϕ)dϕ
)

lim
n→∞

( 1

nk

∑

i∈Gk

σ2
i (x)

fi(x)

)
,

where we implicitly suppose that the limit expressions exist. The terms Bk(x) and Vk(x)

play the role of the asymptotic bias and variance in what follows. The next theorem

specifies the convergence rate and the limit distribution of ĝk.

Theorem 3.3. Let the conditions of Theorem 3.1 be satisfied. Then for any fixed

x ∈ (0, 1),

ĝk(x)− gk(x) = Op

( 1√
nkTh

)
. (3.1)

Moreover, if n → ∞ and the bandwidth h is such that h/(n̂kT )−1/5
P−→ ck for some

constant ck > 0, then for any fixed x ∈ (0, 1),

√
n̂kTh

(
ĝk(x)− gk(x)

) d−→ N
(
Bk(x), Vk(x)

)
. (3.2)

When deriving the limit distribution in (3.2), we restrict attention to the case that

n → ∞ for the following reason: If n is finite, the estimation error in Ŷ fe
it induced by

subtracting the sample averages Y i, Y
(i)

t and Y
(i)

is asymptotically not negligible but

contributes to the limit distribution. If n → ∞, this error is negligible in contrast,

allowing us to derive clean expressions for the asymptotic bias and variance.

In addition to the pointwise rate in (3.1), it is possible to derive results on the

uniform convergence behaviour of ĝk: Lemma A.1 from the Appendix directly implies

that under (C1)–(C5), supx∈[0,1] |ĝk(x) − gk(x)| = op(1). To derive the exact rate at

which ĝk uniformly converges to gk, we essentially have to compute the uniform rate of

an average of kernel smoothers. This can be achieved by following the usual strategy to

derive uniform convergence rates for kernel estimators; see for example Masry (1996),

Bosq (1998) or Hansen (2008). For the case that nk/n→ c > 0 and that the bandwidth

h is of the order (nT )−(1/5+δ) for some small δ > 0, this has been done in Boneva et al.

(2014b). Their results immediately imply that in this case, supx∈Ih |ĝk(x) − gk(x)| =

Op(
√

log(nkT )/(nkTh)), where Ih = [C1h, 1 − C1h] is the interior of the support of

the regressors. By fairly straightforward modifications of these results, it is possible to

derive this uniform rate under more general conditions on the size of nk.

12



4 Implementation

Our thresholding approach to estimate the class structure {Gk : 1 ≤ k ≤ K} depends

on two tuning parameters: the threshold level τn,T and the bandwidth h of the kernel

smoothers m̂i. In addition, we need to pick an index ik in each iteration step of the

algorithm. In what follows, we give some heuristic arguments on how to choose the

threshold τn,T in an appropriate way. Moreover, we derive a selection rule for the

bandwidth h and discuss the choice of the indices ik. In addition, we outline some

modifications of our estimation methods.

4.1 Choice of the threshold level τn,T

Suppose we are given some index i ∈ G and want to estimate the unknown class G by

our thresholding procedure. As suggested by the discussion in Section 2.2, in particular

by formula (2.2), we would ideally like to choose the threshold τn,T slightly larger than

maxj∈G ∆̂ij. We now explain how to achieve this.

To keep the derivations as clear as possible, we drop the fixed effects αi and γt from

the model. Writing G−i = G \ {i}, we can modify the arguments from Härdle and

Mammen (1993) to show that for any j ∈ G−i,

Th1/2∆̂ij − h−1/2Bij
d−→ N(0,Vij) (4.1)

under slightly strengthened versions of the conditions (C1)–(C5). The bias and variance

expressions in (4.1) are of the form

Bij = ‖W‖2(bi + bj) and Vij = ‖W ∗W‖2(2vii + 4vij + 2vjj),

where ‖W‖2 and ‖W ∗W‖2 are defined in (C5), bi =
∫
σ2
i (x)π(x)/fi(x)dx and vij =∫

σ2
i (x)σ2

j (x)π2(x)/(fi(x)fj(x))dx with σ2
i (x) = E[ε2it|Xit = x]. Roughly speaking, (4.1)

says that

∆̂ij ≈ ∆∗ij :=
Bij
Th

+
1

Th1/2
Zij,

where Zij is Gaussian with mean zero and variance Vij. As a consequence, it holds that

maxj∈G ∆̂ij = maxj∈G−i
∆̂ij ≈ maxj∈G−i

∆∗ij and

max
j∈G−i

∆∗ij ≤ max
j∈G−i

Bij
Th

+ max
j∈G−i

Zij
Th1/2

= max
j∈G−i

Bij
Th

+ max
j∈G−i

√
Vij

Th1/2
Z◦ij

with Z◦ij = Zij/
√
Vij. Since a standard normal random variable Z has the property

that P(Z ≥ z) ≤ (2πz2)−1/2 exp(−z2/2) for z > 0, we obtain that

P
(

max
j∈G−i

Z◦ij ≥ (2 log |G|)1/2
)
≤
∑

j∈G−i

P
(
Z◦ij ≥ (2 log |G|)1/2

)
≤ 1√

4π log |G|
.
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Hence, if the class size |G| is sufficiently large, the maximum maxj∈G−i
Z◦ij will be rarely

larger than (2 log |G|)1/2. We thus obtain that

max
j∈G

∆̂ij = max
j∈G−i

∆̂ij ≈ max
j∈G−i

∆∗ij ≤ max
j∈G−i

Bij
Th

+ max
j∈G−i

√
Vij

Th1/2
(2 log |G|)1/2

≤ bn,T + vn,T (2 log |G|)1/2,

where bn,T = max1≤i<j≤n Bij/(Th), vn,T = max1≤i<j≤n
√
Vij/(Th1/2) and the first in-

equality holds with probability approaching one as |G| tends to infinity. These consid-

erations suggest that an appropriate threshold level is given by

τn,T = bn,T + vn,T (2 log |G|)1/2. (4.2)

Importantly, this heuristically motivated choice of the threshold is essentially in line

with our theoretical results from Section 3.2. As discussed there, under the conditions

of Lemma A.2, we can work with threshold sequences of the form τn,T ≥ bn,T + ρn,T ,

where bn,T is the leading term. The threshold defined in (4.2) has such a form: Its

leading term is bn,T and the expression vn,T (2 log |G|)1/2 is a heuristically motivated

choice of the bound ρn,T on the lower order terms.

Of course, the threshold level in (4.2) is not a feasible choice as (a) it depends on

the unknown class G and (b) the expressions bn,T and vn,T are not known. To get rid of

the dependence on G, we may replace the unknown class size |G| by the trivial bound

n. This leads to the threshold level

τn,T (p) = bn,T + vn,T (2 log p)1/2 (4.3)

with p = n. As n is a quite rough bound on the class size |G|, we refine this choice

as follows: In the first step of our thresholding algorithm, we set the threshold level

to τn,T (n). Next suppose we are in the k-th iteration step and let Ĝ1, . . . , Ĝk−1 be the

estimated classes from the previous steps. Defining n̂` = |Ĝ`|, we set p = n−
∑k−1

`=1 n̂`

and use the threshold τn,T (p) to estimate Gk. We thus exploit the information from the

previous iteration steps to get a better bound on the class size |Gk|. It is straightforward

to show that our theoretical results from Section 3.2 remain to hold true when we

proceed in this way.

To compute the threshold (4.3) in practice, we finally need to estimate the terms

bn,T and vn,T . The only unknown expressions in bn,T and vn,T are the conditional vari-

ances σ2
i and the densities fi, which can be estimated by standard kernel smoothers.

In particular, we may approximate σ2
i by σ̂2

i (x) = (Th)−1
∑T

t=1Wh(Xit − x)ε̂2it/f̂i(x),

where f̂i(x) = (Th)−1
∑T

t=1Wh(Xit − x) and ε̂it = Yit − m̂i(Xit) are the estimated

residuals. Moreover, we may estimate fi by the modified kernel density f̂bc
i (x) =

(
∫ (1−x)/h
−x/h W (ϕ)dϕ)−1f̂i(x), where the correction (

∫ (1−x)/h
−x/h W (ϕ)dϕ)−1 prevents the esti-

14



mator from becoming inconsistent at the boundary.

To make the estimates of bn,T and vn,T more robust, we recommend the following

two modifications: (i) The terms bn,T and vn,T are essentially maxima over the bias and

variance expressions Bij and Vij that depend on the unknown functions σ2
i and fi. It

goes without saying that a poor estimate of σ2
i or fi for some i may strongly influence

our approximations of these maxima. To make our estimates of bn,T and vn,T more

robust to such poor estimates, we suggest to replace the maxima over Bij and Vij by

a high quantile, say the 95%-quantile. (ii) As is well known from other studies, the

conditional variances σ2
i are quite difficult to estimate accurately. We may thus expect

to obtain poor estimates σ̂2
i at least for some indices i. These few poor estimates may

strongly affect our approximations of bn,T and vn,T . To avoid this issue, we recommend

to replace the estimates σ̂2
i by the simple averages ε2i := T−1

∑T
t=1 ε̂

2
it, which estimate

the unconditional variances E[ε2it]. Strictly speaking, this is of course only allowed when

the error terms εit are homoskedastic and thus E[ε2it|Xit = x] = E[ε2it]. However, the

error resulting from replacing σ̂2
i with ε2i can be expected to be much lower than the

error stemming from the unstabilities of the estimates σ̂2
i . Both in the simulations and

the application, we work with the modifications (i) and (ii).

We finally note that the estimation of bn,T and vn,T strongly simplifies if it is possible

to impose some additional restrictions on the functions σ2
i and fi. Suppose for example

that the conditional error variance and the distribution of the covariates are (more

or less) the same across individuals i. In this case, σ2
i = σ2 and fi = f for all i

and some functions σ2 and f . The terms bn,T and vn,T simplify to bn,T = 2(Th)−1

‖W‖2
∫
σ2(x)π(x)/f(x)dx and vn,T = 8(Th1/2)−1‖W ∗W‖2

∫
σ4(x)π2(x)/f 2(x)dx. To

estimate them, we do not have to compute any maxima any more. Moreover, the

common functions σ2 and f can be estimated much more precisely than σ2
i and fi.

4.2 Choice of the indices ik

To compute the threshold estimators {Ĝk : 1 ≤ k ≤ K̂}, we need to pick an index ik

from the index set Sk = {1, . . . , n}\
⋃k−1
`=1 Ĝ` in each iteration step of the algorithm. As

already mentioned in Section 2.2, there is in principle no restriction on how to choose the

indices ik. Nevertheless, there are ways of selecting ik which can be expected to improve

the finite sample performance of the estimators. We now describe such a selection rule:

(R) For each i ∈ Sk, compute p̂i,Sk
as defined in (2.3) and calculate the jump size

Ĵi,Sk
= ∆̂i[pi,Sk

+1] − ∆̂i[pi,Sk
], where we set ∆̂i[nk+1] = (2 + δ)∆̂i[nk] with some δ > 0

and nk = |Sk|. Pick the index i ∈ Sk for which Ĵi,Sk
is maximal, that is, define

ik = arg maxi∈Sk
Ĵi,Sk

.

The heuristic idea behind this rule is as follows: p̂i,Sk
is the position where the ordered

estimates ∆̂i[1], . . . , ∆̂i[nk] exceed the threshold value τn,T . Put differently, p̂i,Sk
estimates

the position where the ordered distances ∆i(1), . . . ,∆i(nk) jump from zero to a positive
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value. The rule (R) suggests to pick the index i for which the estimated jump size is

largest, that is, for which the jump is most clearly visible in the data. Moreover, the

rule is constructed such that we pick an index i with p̂i,Sk
= nk as soon as such an

index occurs. The rationale behind this is the following: If p̂i,Sk
= nk, then all distances

∆̂i[1], . . . , ∆̂i[nk] are smaller than the threshold τn,T , indicating that all indices in Sk

should belong to the same class. We thus stop the algorithm as soon as we encounter

such an index. This in particular prevents our estimator K̂ from strongly overshooting

the true number of classes K.

The rule (R) requires us to compute the positions pi,Sk
for each i ∈ Sk. This is of

course computationally burdensome when the cross-section dimension n is very large.

We thus recommend to use the rule (R) only for data samples with a moderately large

dimension n. For very large n, more rudimentary rules are needed. For example, one

may simply select the indices ik as random draws from the sets Sk.

4.3 Bandwidth choice for m̂i

When deriving our estimation methods, we have implicitly assumed that the smoothers

m̂i depend on a common bandwidth h. We now drop this assumption and allow for

different bandwidths hi. From a practical point of view, it is however not very desirable

to select a different bandwidth for each individual i. The computational cost is simply

too high, in particular when the cross-section dimension n is large. For this reason, we

suggest to choose group-specific bandwidths: For each group Gk, we select a bandwidth

hk which is used to compute the estimators m̂i = m̂i,hk with i ∈ Gk. We derive

our group-specific bandwidth selection rule under the assumption that the stochastic

behaviour of the time series processes Zi = {(Yit, Xit) : 1 ≤ t ≤ T} does not differ

too much within groups. Technically speaking, we suppose that not only the functions

mi are the same within groups but also the densities fi and the conditional variances

σ2
i ( · ) = E[ε2it|Xit = · ]. To keep the derivations as clear as possible, we additionally

make the following simplifications: we drop the fixed effects αi and γt from the model,

we ignore the time series dependence in the data, and we suppose that the errors εit

are independent from the covariates Xit. We now derive our bandwidth selector step

by step.

First suppose we want to optimize the bandwidth h of the Nadaraya-Watson esti-

mator m̂i = m̂i,h for a fixed individual i. This can be achieved by standard methods:

Following Härdle et al. (1988), we take the optimal bandwidth to be the minimizer hopti

of the average squared error

ASEi(h) =
1

T

T∑

t=1

(
m̂i,h(Xit)−mi(Xit)

)2
w(Xit),

where w is some weight function, and approximate it by minimizing some estimate
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of ASEi(h) with respect to h. The estimates of ASEi(h) commonly considered in the

literature are closely related to the residual sum of squares

RSSi(h) =
1

T

T∑

t=1

(
Yit − m̂i,h(Xit)

)2
w(Xit),

but they are not identical with it. Indeed, we cannot minimize RSSi(h) directly but

have to modify it. The heuristic reason is as follows: The residual sum of squares

RSSi(h) can be interpreted as a prediction error. More specifically, it measures the

error which results from predicting the observations Yit by the estimates m̂i,h(Xit) for

t = 1, . . . , T . Since the observation Yit is contained in the estimate m̂i,h(Xit), it is used

to predict itself. This creates a bias term which prevents the minimizer of RSSi(h) to

be a reasonable approximation of hopti . Formally speaking, it holds that

E
[
RSSi(h)

]
= E

[
ASEi(h)

]
+

1

T

T∑

t=1

σ2
iE[w(Xit)]−

2

T 2h

T∑

t=1

σ2
iW (0)E

[w(Xit)

f̂i(Xit)

]

=: E
[
ASEi(h)

]
+Bi,1(h) +Bi,2(h)

with σ2
i = E[ε2it] and f̂i(x) = T−1

∑T
t=1Wh(Xit − x). The first bias term Bi,1(h) is

harmless as it is independent of h. The second bias Bi,2(h), however, is very problematic.

As one can show, it has the effect that minimizing the residual sum of squares leads to

bandwidths which are too small.

To correct for the bias Bi,2(h), cross-validation or penalization techniques are com-

monly used; see e.g. Härdle et al. (1988). In our panel setup, we can circumvent the

above bias issue in a simpler way, in particular by borrowing information from other

individuals j: Suppose we know that i and j belong to the same class Gk. In this

situation, we may replace the residual sum of squares RSSi(h) by

RSS
(j)
i (h) =

1

T

T∑

t=1

(
Yjt − m̂i,h(Xjt)

)2
w(Xjt),

i.e., we may use the estimator m̂i,h to predict the Y -observations of the j-th rather than

the i-th individual. This avoids the bias problem since the data of the j-th individual

are independent from those of the i-th subject. Formally speaking, we obtain that

E
[
RSS

(j)
i (h)

]
= E

[
ASE

(j)
i (h)

]
+

1

T

T∑

t=1

σ2
jE[w(Xjt)],

where

ASE
(j)
i (h) =

1

T

T∑

t=1

(
m̂i,h(Xjt)−mi(Xjt)

)2
w(Xjt).

This shows that we get rid of the problematic bias component. We may thus choose
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the bandwidth of the i-th individual by simply minimizing the residual sum of squares

criterion RSS
(j)
i (h). Since

E
[
ASE

(j)
i (h)

]
= E

[
E
[
ASE

(j)
i (h)

∣∣{(Yit, Xit) : 1 ≤ t ≤ T}
]]

= E
[ ∫ (

m̂i,h(x)−mi(x)
)2
fi(x)w(x)dx

]
=: MISEi(h),

i.e., since the expectation of ASE
(j)
i (h) is nothing else than the mean integrated squared

error MISEi(h), the chosen bandwidth can be regarded as an approximation of the

optimal bandwidth in a MISE-sense.

So far, we have discussed the choice of the bandwidth for a fixed individual i. We

now use the ideas from above to set up a group-specific bandwidth selector. To start

with, suppose that the class Gk is known and write Gk = {i1, i2, . . . , ink
} with nk = |Gk|.

Moreover, pick pairs of indices (i2`−1, i2`) for 1 ≤ ` ≤ L and some L ≤ bnk/2c. We

compute the bandwidth estimate ĥ
(i2`)
i2`−1

= argminhRSS
(i2`)
i2`−1

(h) for each 1 ≤ ` ≤ L and

define our group-specific bandwidth selector by

ĥk =
1

L

∑

1≤`≤L

ĥ
(i2`)
i2`−1

.

Since the mean integrated squared error MISEi(h) is the same for all i ∈ Gk under our

conditions, the bandwidth estimate ĥk can be interpreted as an approximation to the

group-wide optimal bandwidth in a MISE sense. It is worth noting that we need not

take into account all pairs of indices (i2`−1, i2`) to compute ĥk; we may rather pick a

small number L of them in order to keep the computational burden of the selection

procedure to a minimum.

In practice, our group-specific bandwidth selector is implemented as follows:

Step 1: As the classes G1, . . . , GK are not known in practice, we replace them by pre-

liminary estimators. To do so, we choose a preliminary bandwidth h0 which is

the same for all i ∈ {1, . . . , n}. This is done as follows: Pick a small number N

of indices i1, . . . , iN ∈ {1, . . . , n} and apply a standard bandwidth selection rule

to each index separately. For example, we may minimize a penalized version of

the residual sum of squares criterion RSSi(h) for each of the indices or apply a

plug-in type selection rule as described in Fan and Gijbels (1996). We finally

set h0 to be the average of the computed bandwidths. Based on the bandwidth

h0, we can compute preliminary estimators G̃1, . . . , G̃K̃ of the classes.

Step 2: For each estimated class G̃k, we calculate the bandwidth ĥk as described above.

Based on the bandwidths ĥk, we can re-estimate the classes G1, . . . , GK by our thresh-

olding procedure. To do so, we work with a slightly modified threshold parameter

τn,T (p), which exploits the information contained in the preliminary class estimates
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G̃1, . . . , G̃K̃ . In particular, we let τn,T (p) = max1≤k≤K̃{bn,T (G̃k) + vn,T (G̃k)(2 log p)1/2},
where bn,T (G̃k) = maxi,j∈G̃k, i<j

Bij/(T ĥk) and vn,T (G̃k) = maxi,j∈G̃k, i<j

√
Vij/(T ĥ1/2k )

with Bij and Vij defined in Section 4.1. We thus obtain updated estimators Ĝ1, . . . , ĜK̂

of the classes. We finally calculate group-specific bandwidths for the updated class

estimates Ĝk, which we again denote by ĥk. These are used in the next section to come

up with a good bandwidth selection rule for the estimators ĝk of the group-specific

regression functions.

4.4 Bandwidth choice for ĝk

Suppose that the conditions of Section 4.3 are fulfilled. In particular, assume that

the densities fi and the conditional variances σ2
i are the same for all i ∈ Gk. In this

situation, the individual smoothers m̂i(x) = m̂i,h(x) have the same asymptotic bias

bi,h(x) and variance vi,h(x) for all i ∈ Gk. Specifically, bi,h(x) = (h2/2)βk(x) and

vi,h(x) = (Th)−1νk(x) with

βk(x) =
(∫

W (ϕ)ϕ2dϕ
)g′′k(x)fk(x) + 2g′k(x)f ′k(x)

fk(x)

νk(x) =
(∫

W (ϕ2)dϕ
)σ2

k(x)

fk(x)
,

where by a slight abuse of notation, we denote the group-specific density and conditional

variance by fk and σ2
k, respectively. By Theorem 3.3, the asymptotic bias and variance

expressions of ĝk(x) = ĝk,h(x) have a very similar form: they are equal to Bk,h(x) =

(h2/2)βk(x) and Vk,h(x) = (nkTh)−1νk(x), respectively. With these expressions at

hand, we define the criterion functions ξi(h) =
∫

[b2i,h(x) + vi,h(x)]fk(x)w(x)dx and

Ξk(h) =
∫

[B2
k,h(x) + Vk,h(x)]fk(x)w(x)dx. Optimizing the bandwidth of the smoother

m̂i,h with respect to ξi(h) leads to

h∗k =
(∫ νk(x)fk(x)w(x)dx∫

β2
k(x)fk(x)w(x)dx

)1/5
T−1/5

for all i ∈ Gk. Analogously, optimizing the bandwidth of ĝk,h with respect to Ξk(h)

yields H∗k = n
−1/5
k h∗k, where nk = |Gk|.

As bi,h(x) and vi,h(x) are the leading terms in an asymptotic expansion of

Bias(m̂i,h(x)) = E[m̂i,h(x)] − mi(x) and Var(m̂i,h(x)), the criterion function ξi(h) is

closely related to the mean integrated squared error

MISEi(h) = E
[ ∫ (

m̂i,h(x)−mi(x)
)2
fi(x)w(x)dx

]

=

∫
Bias(m̂i,h(x))2fi(x)w(x)dx

+

∫
Var(m̂i,h(x))fi(x)w(x)dx.
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Our group-specific bandwidth selector ĥk can thus be regarded as an approximation of

h∗k. This suggests to estimate H∗k by Ĥ∗k = n̂
−1/5
k ĥk, where n̂k = |Ĝk| is the size of the

estimated class Ĝk. We thus do not need to run a separate bandwidth selection routine

for ĝk,h but can make use of our group-specific bandwidth selector ĥk.

4.5 Rescaling

In many applications, the noise level of the time series data Zi = {(Yit, Xit) : 1 ≤ t ≤ T}
can be expected to vary across individuals i. As a result, the quality of the estimates

∆̂ij can be expected to vary as well. In order to take into account different noise levels

in the data, we may replace the estimators ∆̂ij by suitably scaled versions. This can

be achieved as follows: Let i and j be two indices that belong to the same class Gk.

Equation (4.1) implies that ∆̂ij = Bij/(Th) + lower order terms. We can thus infer

that

∆̂sc
ij :=

∆̂ij

Bij
=

1

Th
+ lower order terms.

The leading term of this expansion is independent of the indices i and j. Hence, the

scaled estimators ∆̂sc
ij should be of comparable size for any pair of indices i and j that

belong to the same group.

To account for different noise levels in the data, we may thus base our methods on

the scaled estimates ∆̂sc
ij rather than ∆̂ij. Of course, we cannot take the expressions ∆̂sc

ij

at face value but have to estimate the scaling factors Bij = ‖W‖2(bi + bj), which can

be achieved by the methods described at the end of Section 4.1. Moreover, we need to

adjust the threshold level τn,T . Applying the heuristic arguments from Section 4.1 to

the scaled estimates ∆̂sc
ij , the threshold parameter τn,T (p) = bn,T + vn,T (2 log p)1/2 from

(4.3) has to be replaced by τ scn,T (p) = bscn,T + vscn,T (2 log p)1/2. Here, bscn,T and vscn,T have

exactly the same form as bn,T and vn,T with Bij and Vij being replaced by Bsc
ij = 1 and

Vsc
ij = ‖W ∗W‖2(2vii + 4vij + 2vjj)/B2

ij, respectively.

5 Simulations

We now investigate the small sample behaviour of our methods by means of a Monte

Carlo experiment. The simulation design is set up to mimic the situation in the appli-

cation of Section 6: We consider the panel model

Yit = mi(Xit) + εit (1 ≤ i ≤ n, 1 ≤ t ≤ T ) (5.1)

with n = 120 and T ∈ {100, 150, 200}, where (n, T ) = (120, 150) approximately cor-

responds to the sample size in the application. The individuals i are supposed to

split into the five groups G1 = {1, . . . , 50}, G2 = {51, . . . , 80}, G3 = {81, . . . , 100},
G4 = {101, . . . , 110} and G5 = {111, . . . , 120}. The functions associated with these
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Figure 2: Plot of the functions gk for 1 ≤ k ≤ 5.

groups are g1(x) = 0, g2(x) = 1 − 2x, g3(x) = 0.75 arctan(10(x − 0.6)), g4(x) =

2.5ϑ((x−0.75)/0.8)−0.75 with ϑ(x) = (1−x2)41(|x| ≤ 1) and g5(x) = 1.75 arctan(5(x−
0.6)) + 0.75. Figure 2 provides a plot of these functions, which are chosen to roughly

approximate the shapes of the estimates ĝ1, . . . , ĝ5 in the application later on.

The model errors εit are i.i.d. draws from a normal distribution with mean zero and

standard deviation 1.3, which matches the average standard deviation of the estimated

residuals in the application. Moreover, the regressors Xit are drawn independently from

a uniform distribution with support [0, 1], taking into account that the regressors in the

application are supported on [0, 1] as well. As can be seen, there is no time series

dependence in the error terms and the regressors, and we do not include fixed effects

αi and γt into the error structure. We do not take into account these complications in

our simulation design because their effect on the results is obvious: The stronger the

time series dependence in the model variables and the more noise we add in terms of

the fixed effects, the more difficult it becomes to estimate the curves mi and thus to

infer the unknown group structure from the simulated data.

To implement our thresholding procedure, we compute the threshold level τn,T as

described in Section 4.1, we pick the indices ik according to the rule (R) from Section

4.2 and work with scaled estimators of the L2-distances ∆ij as defined in Section 4.5.

To compute the Nadaraya-Watson smoothers m̂i, we employ an Epanechnikov kernel

and the bandwidth h = 0.25 throughout the simulations. As a robustness check, we

have repeated the simulations for various other bandwidths. As this yields very similar

results, we however do not report them here. We do not use the bandwidth selection

rule from Section 4.3 but work with the fixed bandwidth h = 0.25, since we focus on the

performance of our classification methods and do not want our analysis to be influenced

by effects of the bandwidth selection procedure. Additional simulations on the small

sample behaviour of the bandwidth selection rule from Section 4.3 can be found in the

Supplementary Material.

For each sample size (n, T ) with n = 120 and T ∈ {100, 150, 200}, we drawn N =

1000 samples from the setting (5.1) and compute the threshold estimators {Ĝk : 1 ≤
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Figure 3: Simulation results for the estimation of the classes G1, . . . , G5. The upper three
panels show the distributions of the number #F of wrong classifications for the threshold
estimators {Ĝk : 1 ≤ k ≤ K} and the time series lengths T = 100, 150, 200. The lower three
panels show the corresponding distributions for the k-means estimators {ĜKM

k : 1 ≤ k ≤ K}.

k ≤ K̂} as well as the k-means estimators {ĜKM
k : 1 ≤ k ≤ K̂}. In order to measure

how well these estimates fit the real class structure {Gk : 1 ≤ k ≤ K}, we calculate the

number of wrongly classified indices i, which is denoted by #F in what follows. For each

sample size (n, T ), we thus obtain N = 1000 values of #F both for the threshold and

the k-means estimators. Figure 3 shows the distribution of these values. In particular,

the bars in the plots give the number of simulations (out of total of 1000) in which a

certain number of wrong classifications is obtained.

We now have a closer look at the simulation results in Figure 3. The upper three

panels show the distribution of the number of wrong classifications #F for the threshold

estimators {Ĝk : 1 ≤ k ≤ K̂}. Overall, the estimates can be seen to approximate the

group structure reasonably well, their precision improving quickly as the sample size

grows. At a sample size of T = 200, all indices are correctly classified in about 80%

of the cases and there is only one wrongly classified index in most other cases. For

T = 150, which is approximately equal to the time series length in the application, our

thresholding procedure also produces accurate results in most simulations with only a

few indices being wrongly classified. Finally, for T = 100, the procedure yields good

results with at most 5 wrongly classified indices in about 70% of the cases. There is

however a substantial fraction of simulations in which many classification errors occur.

This is not surprising since the time series length T = 100 is comparably small given
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T = 100 T = 150 T = 200

K̂ = 4 33 0 0

K̂ = 5 749 932 967

K̂ = 6 194 63 31

K̂ = 7 22 4 2

K̂ = 8 2 1 0

Table 1: Simulation results for the estimation of K. The entries in the table specify the
number of simulations in which a certain value of K̂ is obtained.

the noise level of the error terms. The fits m̂i thus tend to be quite imprecise, which in

turn leads to frequent classification errors.

The lower three panels of Figure 3 depict the distribution of #F for the k-means

estimators {ĜKM
k : 1 ≤ k ≤ K̂}. As one can see, for the smallest sample size T = 100,

i.e., when the signal-to-noise ratio is still quite low, the estimators {ĜKM
k : 1 ≤ k ≤ K̂}

strongly improve on the performance of the threshold estimators {Ĝk : 1 ≤ k ≤ K̂}. As

already discussed in Section 2.3, we thus recommend to refine our threshold estimators

by an additional k-means clustering step when the noise level in the data is high.

For T = 150, we still get a quite substantial improvement on the performance of the

thresholding procedure, while for the largest sample size T = 200, the additional gain

from performing a k-means clustering step is comparably small.

We finally turn to the finite sample performance of the estimator K̂ which approxi-

mates the number of classes K. The simulation results are presented in Table 1. They

suggest that the estimator K̂ performs reasonably well in small samples. Already for

the smallest time series length T = 100, it selects the true number of classes K = 5 in

around 75% of the simulations. This value can be seen to improve to more than 95%

as the sample size increases to T = 200.

6 Application

In 2007, the “Markets in Financial Instruments Directive (MiFID)” ended the monopoly

of primary European stock exchanges. It paved the way for the emergence of various

new trading platforms and brought about a strong fragmentation of the European stock

market. Both policy makers and academic researchers aim to analyze and evaluate the

effects of MiFID. A particular interest lies in better understanding how trading venue

fragmentation influences market quality. This question has been investigated with the

help of parametric panel models in O’Hara and Ye (2009) and Degryse et al. (2014)

among others. A semiparametric panel model with a factor structure has been employed

in Boneva et al. (2014b).

In what follows, we use our modelling approach to gain further insights into the
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effect of fragmentation on market quality. We apply it to a large sample of volume and

price data on the FTSE 100 and FTSE 250 stocks from May 2008 to June 2011. The

volume data is supplied to us by Fidessa. The sample consists of weekly observations

on the volume of all the FTSE stocks traded at a number of different venues in the UK;

see Boneva et al. (2014a,b) for a more detailed description of the data set. The price

data is taken from Datastream and comprises the lowest and the highest daily price

of the various FTSE stocks. From these data, we calculate measures of fragmentation

and market quality for all stocks in our sample on a weekly frequency. As a measure of

fragmentation, we use the so-called Herfindahl index. The Herfindahl index of stock i is

defined as the sum of the squared market shares of the venues where the stock is traded.

It thus takes values between 0 and 1, or more exactly, between 1/M and 1 with M being

the number of trading venues. A value of 1/M indicates the perfect competition case

where the stock is traded at equal shares at all existing venues. A value of 1 represents

the monopoly case where the stock is traded at only one venue. As a measure of market

quality, we employ volatility, or more specifically, the so-called high-low range, which is

defined as the difference between the highest and the lowest price of the stock divided

by the latter. To obtain volatility levels on a weekly frequency, we calculate the weekly

median of the daily levels.

Denoting the Herfindahl index of stock i at time t by Xit and the corresponding

logarithmic volatility level by Yit, we model the relationship between Yit and Xit by the

equation

Yit = mi(Xit) + uit, (6.1)

where the error term has the fixed effects structure uit = αi + γt + εit. In this model,

the function mi captures the effect of fragmentation on market quality for stock i. This

effect can be expected to differ across stocks. In particular, it is quite plausible to

suppose that there are different groups of stocks for which the effect is fairly similar.

We thus impose a group structure on the stocks in our sample: We suppose that there

are K classes of stocks G1, . . . , GK along with associated functions g1, . . . , gK such that

mi = gk for all i ∈ Gk and all 1 ≤ k ≤ K. The effect of fragmentation on market

quality is thus modelled to be the same within each group of stocks.

To determine the number of classes K and to estimate the groups Gk along with the

functions gk for 1 ≤ k ≤ K, we use the estimation techniques developed in the previous

sections. As the data are quite noisy, we refine our thresholding procedure by the

additional k-means clustering step from Section 2.3. To implement the thresholding

procedure, we compute the threshold parameter τn,T as explained in Section 4.1, we

choose the indices ik according to the rule (R) from Section 4.2 and work with scaled

estimators of the L2-distances ∆ij as described in Section 4.5. The Nadaraya-Watson

smoothers m̂i are based on an Epanechnikov kernel and their bandwidths are chosen as

explained in Section 4.3. Prior to estimation, we eliminate stocks i with a very small

empirical support Si of the fragmentation data {Xit : 1 ≤ t ≤ T}. In particular, we
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Figure 4: Estimates m̂i for the n = 125 stocks in our sample.

only take into account stocks i for which the support Si contains the interval [0.275, 0.8].

This leaves us with n = 125 stocks. The time series dimension amounts to T = 151

weeks. These sizes of n and T are broadly consistent with our assumptions from Section

3.

We now turn to the estimation results. Figure 4 depicts the smoothers m̂i for the

n = 125 stocks in our sample. Our thresholding procedure yields the estimate K̂ = 5,

thus suggesting to group the curves m̂i into five clusters. The estimated clusters are

shown in Figure 5. In particular, each panel of Figure 5 depicts the estimated curves

which belong to a particular class ĜKM
k . The corresponding estimates ĝk of the group-

specific regression functions are indicated by the solid red curves and are once again

plotted together in the lower right panel of the figure.

Inspecting Figure 5, the effect of fragmentation on (logarithmic) volatility appears

to be quite moderate for a large number of stocks i: Most of the curves in Cluster IV

are close to a flat line, which is reflected by the shape of the associated function ĝ4. The

fits of Cluster V slightly slope downwards, indicating that the volatility level is a bit

lower in the monopoly case than under competition. Most of the fits in Cluster III are

moderately increasing, suggesting that the volatility is a bit lower under competition. In

contrast to the fits in Clusters III, IV and V, those in Clusters I and II exhibit a more

pronounced effect of fragmentation on volatility: most of the fits substantially slope

upwards, the increase being stronger in Cluster I than in II. Regarding volatility as a

bad, the results of Figure 5 can be interpreted as follows: For the stocks in Clusters I,

II and III, fragmentation leads to a decrease of volatility and thus to an improvement of

market quality. For some stocks – specifically for those of Cluster I – this improvement

is quite substantial. For most of the stocks however – in particular for those in Clusters

III, IV and V – the effect of fragmentation on volatility is fairly moderate and may

go into both directions. In particular, fragmentation may either slightly improve (cp.
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Figure 5: Clusters of the curve estimates m̂i. The black lines are the estimates m̂i, the red
lines the estimates ĝk. The latter are once again plotted together in the lower right panel.
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Cluster III) or deteriorate (cp. Cluster V) market quality.

We shortly compare these findings to the empirical results in Boneva et al. (2014a).

In contrast to our approach, they impose the factor structure mi(x) =
∑K

k=1 βikµk(x)

on the regression curves. The functions µk in this model structure can be interpreted

as common factors that are the same across individuals. The coefficient vectors βi =

(βi1, . . . βiK)> assign different individual-specific weights to these factors. Applying

their model to the data at hand, Boneva et al. (2014a) find evidence that market

quality is better under competition than in the monopoly case. However, their results

also reveal that the improvement is quite moderate. These findings are essentially in line

with our own results. According to the latter, the effect of fragmentation on market

quality is quite moderate for the great bulk of stocks and competition substantially

improves market quality only for a small fraction of stocks. This translates into a

moderate positive effect of fragmentation on market quality when working with the

factor structure of Boneva et al. (2014a).

Appendix A

In what follows, we prove Theorems 3.1 and 3.2. The proof of Theorem 3.3 can be found

in the Supplementary Material. To derive the theorems, we make use of the following

uniform convergence result.

Lemma A.1. Let (C1)–(C5) be satisfied, define Ih = [C1h, 1 − C1h] and set an,T =

T−1/10. It holds that

max
1≤i≤n

sup
x∈Ih

∣∣m̂i(x)−mi(x)
∣∣ = Op(an,T + h2)

max
1≤i≤n

sup
x∈[0,1]\Ih

∣∣m̂i(x)−mi(x)
∣∣ = Op(an,T + h).

If we strengthen the moment assumptions in (C3) to hold for some θ > 20/3, we can

improve this result to hold with an,T =
√

log T/(Th). The proof is deferred to the

Supplementary Material. From Lemma A.1, it easily follows that

max
1≤i,j≤n

∣∣∆̂ij −∆ij

∣∣ = op(1). (A.1)

Moreover, we obtain that

max
i,j∈Gk

∆̂ij = Op(a
2
n,T + h3) (A.2)

for any 1 ≤ k ≤ K. Notably, (A.2) merely provides an upper bound on the rate of

maxi,j∈Gk
∆̂ij. The reason is as follows: Directly applying Lemma A.1 does not take

into account that the argument x of the smoothers m̂i(x) and m̂j(x) is integrated out

in ∆̂ij. We now derive the sharp rate of maxi,j∈Gk
∆̂ij under stronger conditions than

(C1)–(C5).
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Lemma A.2. Let (C1)–(C5) be satisfied, let h ≤ CT−(1/5+δ) for some constant C and

some small δ > 0, and choose the weight function π such that its support is contained

in Ih = [C1h, 1−C1h]. In addition, drop the fixed effects αi and γt from the model and

suppose that the following conditions hold:

(i) The variables Xit and εit are independent both across i and t. Moreover, Xit and

εit are independent of each other for any i and t.

(ii) The second derivatives m′′i fulfill the Lipschitz condition that |m′′i (x) − m′′i (x′)| ≤
L|x− x′| for all x, x′ and a constant L independent of i.

(iii) There exist constants M,γ > 0 such that for all indices i, t and for all c ≥ 0,

P(|εit| ≥ c) ≤M
∫∞
c

exp(−γr2)dr.

Then for any 1 ≤ k ≤ K,

max
i,j∈Gk

∆̂ij = max
i,j∈Gk
i<j

Bij
Th

+Op

( log T

Th1/2

)
= Op

( 1

Th

)
,

where Bij is defined in Subsection 4.1.

Proof of Theorem 3.1

Let S ⊆ {1, . . . , n} be some index set with nS = |S|, pick an index i ∈ S, and let G ⊆ S

be the class to which i belongs. As seen in Subsection 2.2, the group G has the form

G = {(1), . . . , (p)}, where ∆i(1) = . . . = ∆i(p) < ∆i(p+1) ≤ . . . ≤ ∆i(nS) are the ordered

L2-distances. Denoting the ordered estimated distances by ∆̂i[1] ≤ ∆̂i[2] ≤ . . . ≤ ∆̂i[nS ],

we estimate G by Ĝ = {[1], . . . , [p̂]} with p̂ defined in (2.3). In what follows, we show

that

P
({

[1], . . . , [p̂]
}
6=
{

(1), . . . , (p)
})

= o(1), (A.3)

from which the statements of Theorem 3.1 can be easily inferred. For the proof of

(A.3), it suffices to show that

P
({

[1], . . . , [p]
}
6=
{

(1), . . . , (p)
})

= o(1) (A.4)

P
(
p̂ 6= p

)
= o(1). (A.5)

These two statements can be verified as follows: By (A.1), it holds that ∆̂i(j)−∆i(j) =

op(1) uniformly over j ∈ S. As ∆i(j) = 0 for all j ≤ p and ∆i(j) ≥ c for all j > p and

some constant c > 0, we obtain that

max
j≤p

∆̂i(j) = op(1) and min
j>p

∆̂i(j) ≥ c+ op(1). (A.6)
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This immediately implies that the ordered estimates ∆̂i[j] have the same property, i.e.,

max
j≤p

∆̂i[j] = op(1) and min
j>p

∆̂i[j] ≥ c+ op(1). (A.7)

From (A.6) and (A.7), it is obvious that the index sets {[1], . . . , [p]} and {(1), . . . , (p)}
coincide with probability tending to one, which is the statement of (A.4). From (A.4),

it follows that maxj∈G ∆̂ij = ∆̂i[p] with probability tending to one. Moreover, as the

threshold parameter τn,T satisfies (Cτ ), ∆̂i[p] ≤ τn,T with probability approaching one.

Finally, by (A.7), ∆̂i[p+1] > τn,T with probability approaching one as well. We thus

arrive at

P
(
∆̂i[p] ≤ τn,T and ∆̂i[p+1] > τn,T

)
→ 1,

which immediately implies that P(p̂ = p)→ 1.

Proof of Theorem 3.2

As K̂ = K with probability tending to one, we can neglect the estimation error in K̂

and treat K as known. With the help of Lemma A.1, it is straightforward to see that

∫ (
m̂i(x)− ĝ[1]k (x)

)2
π(x)dx =

∫ (
mi(x)− gk(x)

)2
π(x)dx+ op(1)

uniformly over i and k, or put differently,

max
1≤k≤K

max
1≤i≤n

∣∣∆(m̂i, ĝ
[1]
k )−∆(mi, gk)

∣∣ = op(1). (A.8)

By construction, the index i is assigned to the group G
[1]
k in the first step of the k-means

algorithm if d̂k(i) = ∆(m̂i, ĝ
[1]
k ) is minimal, i.e., if d̂k(i) = min1≤k′≤K d̂k′(i). By (A.8),

we know that

d̂k(i) =




r̂k(i) if i ∈ Gk

∆(mi, gk) + r̂k(i) if i /∈ Gk,
(A.9)

where the remainder term r̂k(i) has the property that max1≤k≤K max1≤i≤n |r̂k(i)| =

op(1). Since min1≤k≤K mini/∈Gk
∆(mi, gk) ≥ ∆min > 0 for some positive constant ∆min,

(A.9) implies that

P
({
G

[1]
k : 1 ≤ k ≤ K

}
6=
{
Gk : 1 ≤ k ≤ K

})
= o(1).

Hence, with probability tending to one, our k-means clustering algorithm converges

already after the first iteration step and produces estimates which coincide with the

classes Gk for 1 ≤ k ≤ K.
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