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Abstract
Purpose  The known epithelial ovarian cancer (EOC) 
susceptibility genes account for less than 50% of the 
heritable risk of ovarian cancer suggesting that other 
susceptibility genes exist. The aim of this study was to 
evaluate the contribution to ovarian cancer susceptibility 
of rare deleterious germline variants in a set of candidate 
genes.
Methods  We sequenced the coding region of 54 
candidate genes in 6385 invasive EOC cases and 6115 
controls of broad European ancestry. Genes with an 
increased frequency of putative deleterious variants 
in cases versus controls were further examined in an 
independent set of 14 135 EOC cases and 28 655 
controls from the Ovarian Cancer Association Consortium 
and the UK Biobank. For each gene, we estimated the 
EOC risks and evaluated associations between germline 
variant status and clinical characteristics.
Results  The ORs associated for high-grade serous 
ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 
5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 
3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 
12.4; p=0.013). Deleterious mutations in FBXO10 were 
associated with a reduced risk of disease (OR 0.27, 
95% CI 0.07 to 1.00, p=0.049). However, based on the 
Bayes false discovery probability, only the association for 
PALB2 in high-grade serous ovarian cancer is likely to 
represent a true positive.
Conclusions  We have found strong evidence that 
carriers of PALB2 deleterious mutations are at increased 
risk of high-grade serous ovarian cancer. Whether the 
magnitude of risk is sufficiently high to warrant the 

inclusion of PALB2 in cancer gene panels for ovarian 
cancer risk testing is unclear; much larger sample sizes 
will be needed to provide sufficiently precise estimates 
for clinical counselling.

Introduction
Rare, predicted deleterious variants in multiple 
genes have been shown to be associated with a 
moderate to high risk of epithelial ovarian cancer 
(EOC). These include the DNA double stand break 
repair genes BRCA1,1 BRCA,2 BRIP1,3 RAD51C, 
and RAD514, and the mismatch repair genes 
MSH2 and MSH6.5 6 ANKRD11, FANCM, PALB2 
and POLE have recently been reported as possible 
susceptibility genes.7–9 Multiple common variants 
conferring weaker risk effects have also been identi-
fied,10–17 some of which modify EOC risk in carriers 
of more highly penetrant gene mutations.18 19

EOC is heterogeneous with five main histotypes: 
high-grade serous (HGSOC), low-grade serous, 
endometrioid, clear cell and mucinous ovarian 
cancer. These have different clinical characteristics 
and outcomes and are characterised by different 
germline and somatic genetic changes that result 
in the perturbation of different molecular path-
ways. For example, germline mutations in DNA 
double break repair genes predispose to HGSOC 
while germline mutations in mismatch repair genes 
increase risk of the endometrioid and clear cell 
histotypes.6
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The known susceptibility alleles account for less than 50% 
of the excess familial risk of ovarian cancer, suggesting that 
other susceptibility genes and alleles exist.15 The unexplained 
genetic component of risk is likely to be made up of a combi-
nation of common genetic variants conferring weak effects and 
uncommon alleles conferring weak to moderate relative risks 
(less than 10-fold).

The aim of this study was to identify additional ovarian cancer 
susceptibility genes using case-control sequencing of candidate 
genes identified through various approaches including their 
known function in pathways that are associated with ovarian 
cancer development and from whole exome sequencing studies 
(WES) of ovarian cancer cases that have identified putative dele-
terious mutations in genes not previously evaluated for EOC 
risk.

Material and methods
Selection of candidate genes
Genes based on known biological function
As several EOC susceptibility genes are involved in DNA double-
strand break repair and Fanconi anaemia (FA),8 we selected 
genes involved in these pathways. FA is a rare genetic disease 
characterised by chromosomal instability, hypersensitivity to 
DNA crosslinking agents, defective DNA repair, severe bone 
marrow failure, cancer susceptibility and many congenital 
defects. To date, 22 FA genes have been identified, of which 
eight have previously been evaluated in ovarian cancer case-
control studies:3 4 6 8 FANCD1, FNACJ (BRIP1), FANCL, FANCN 
(PALB2), FANCM, FANCO (RAD51C), FANCS (BRCA1) and 
FANCV (MAD2L2). We selected nine FA genes not previously 
studied in ovarian cancer: FANCA, FANCB, FANCC, FANCD2, 
FANCE, FANCG, FANCI, FANCP (SLX4), FANCW. We also 
included FANCN (PALB2), which has been studied previously in 
ovarian cancer3 9 20–22 but its association with EOC risk is equiv-
ocal. Eight candidate genes involved in other aspects of DNA 
repair were also included: ALKBH3, CHEK2, GTF2H4, POLE, 
POLK, RDM1 and XRCC1.

Genes from whole exome sequencing studies (WES)
Twelve genes (BUB1B, C5orf28, C6, DNAJB4, EXO1, LIG4, 
MKNK2, MMRN1, PARP1, RAD52, SMC1A and SNRNP200) 
were selected from WES analysis of EOC cases where putative 
deleterious (truncating) mutations were identified at a greater 
frequency in cases compared with publicly available WES data 
from controls reported by the NHLBI GO Exome Sequencing 
Project and The Exome Aggregation Consortium databases 
(http://​exac.​broadinstitute.​org). Germline WES data for EOC 
cases were available for 412 HGSOC cases from the Cancer 
Genome Atlas ovarian cancer study; 513 ovarian cancer cases 
from an Australian case series 6; 97 familial non-BRCA1/BRCA2 
ovarian cancer cases from Gilda Radner Familial Ovarian Cancer 
Registry and 54 ovarian cancer cases from the UK Familial 
Ovarian Cancer Registry.

Four genes from these WES studies (GANC, KNTC1, PSG6 
and UPK2) were selected because more than one family member 
diagnosed with ovarian cancer from 10 familial cases carried the 
same truncating mutation in one of these genes.

Finally, 21 genes were selected from analyses of several other 
unpublished EOC WES studies (personal communications) 
where the frequency of truncating mutations was greater in cases 
compared with controls. These genes were ANAPC2, CNKSR1, 
DUOX1, FBXO10, NAT10, OSGIN1, PAK4, PHF20L1, 

PIK3C2G, PTGER3, PTX3, RAD54B, RECQL, RIPK3, RNASEL, 
SMG5, SPHK1, SULT1C2, UHRF2, WNT5A and ZFHX3.

Study subjects
We used case-control data from targeted sequencing, exome and 
array-based genotyping.

Targeted sequencing
We included 5914 EOC cases and 5479 controls of European 
ancestries from 19 studies—13 case-control studies, 1 familial 
ovarian cancer study from Poland, 2 clinical trials and 3 case-
only studies (online supplementary table 1).14 HGSOC cases 
were preferentially plated out for sequencing where possible.

Exome sequencing
We extracted data on the 54 candidate genes from 829 case 
and 913 controls from two ovarian cancer case-control studies 
(MDA23–25 and NCO14) for which whole exome sequence data 
were available (online supplementary table 1).

Variants from genotyping array data
For genes that reached nominal significance in the combined 
analysis of the targeted sequencing and exome sequencing data, 
we extracted genotypes of any deleterious variants included on 
the OncoArray and UK Biobank Axiom Array. These two arrays 
were used to genotype up to 18 936 controls and 13 288 cases 
from the Ovarian Cancer Association Consortium (OCAC),15 
9725 controls and 858 cases from UK Biobank GWAS (https://
www.​ukbiobank.​ac.​uk/), respectively. Samples overlapped with 
the sequencing studies were excluded from the analysis.

All studies had ethics committee approval, and all participants 
provided informed consent.

Sequencing methods
Target sequence enrichment followed by sequencing was 
performed on the coding sequence and splice-sites of ALKBH3, 
ANAPC2, BUB1B, C5ORF28, C6, CHEK2, CNKSR1, DNAJB4, 
DUOX1, EXO1, FANCA, FANCB, FANCC, FANCD2, FANCE, 
FANCG, FANCI, FBXO10, GANC, GTF2H4, KNTC1, LIG4, 
MKNK2, MMRN1, NAT10, OSGIN1, PAK4, PALB2, PARP1, 
PHF20L1, PIK3C2G, POLE, POLK, PSG6, PTGER3, PTX3, 
RAD52, RAD54B, RDM1, RECQL, REV3L, RIPK3, RNASEL, 
SLX4, SMC1A, SMG5, SNRNP200, SPHK1, SULT1C2, UHRF2, 
UPK2, WNT5A, XRCC1 and ZFHX3. The target sequence was 
identified from the NCBI Reference Sequence Database48.48 
Fluidigm access arrays as previously described.6 A total of 1663 
amplicons were designed to cover the 159 kb target region. 
Libraries were sequenced using 150 bp paired-end sequencing 
on the Illumina HiSeq4000 or HiSeq2500.

Sequencing reads were demultiplexed and then aligned 
against the human genome reference sequence (hg19) using the 
Burrows-Wheeler Aligner.26 The Genome Analysis Toolkit27 was 
used for base quality-score recalibration, local indel realignment 
and variant calling. Finally, ANNOVAR28 was used for variant 
annotation. Variants were called if (1) genotype information 
was available from a chip genotype for that sample or (2) the 
variants were presented in more than one amplicon or (3) read 
depth ≥15 and alternate allele frequency ≥40% or (4) read 
depth ≥100 and alternate allele frequency ≥25%. These thresh-
olds were defined using the results from sequencing of positive 
controls with known variants and genotype information from 
chip array genotyping of overlapping samples.
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Table 1  Frequency of mutations and estimated risk of EOC in candidate genes (p<0.05) from targeted sequencing and exome sequencing

Set* Histotype Gene Controls Cases Or (95% CI) P value

No. % No. %

TS Overall POLK 9 0.17 29 0.52 3.04 (1.43 to 6.43) 0.0037

PALB2 6 0.12 19 0.34 3.10 (1.23 to 7.78) 0.016

SLX4 4 0.08 13 0.23 3.08 (1.00 to 9.48) 0.0049

FBXO10 9 0.17 3 0.053 0.30 (0.08 to 1.11) 0.071

Non-carrier 5174 99.5 5492 98.8

HGSOC POLK 9 0.17 27 0.53 3.17 (1.48 to 6.79) 0.003

PALB2 6 0.12 18 0.35 3.30 (1.30 to 8.38) 0.012

SLX4 4 0.08 13 0.25 3.51 (1.13 to 10.9) 0.029

FBXO10 9 0.17 3 0.059 0.32 (0.09 to 1.18) 0.086

Non-carrier 5174 99.5 5062 98.8

ES Overall POLK 7 0.77 6 0.72 0.94 (0.32 to 2.82) 0.92

PALB2 2 0.22 3 0.36 1.65 (0.28 to 9.93) 0.58

SLX4 0 0 2 0.24 NA

FBXO10 1 0.11 0 0

Non-carrier 903 98.9 818 98.7

HGSOC POLK 7 0.77 6 0.72 0.94 (0.32 to 2.82) 0.92

PALB2 2 0.22 3 0.36 1.66 (0.28 to 9.94) 0.58

SLX4 0 0 2 0.24 NA

FBXO10 1 0.11 0 0 NA

Non-carrier 903 98.9 817 98.7

*TS: targeted sequencing; ES: exome sequencing.
EOC, epithelial ovarian cancer; HGSOC, high-grade serous ovarian cancer; OCAC, Ovarian Cancer Association Consortium.

We excluded 356 cases and 269 controls because <80% of 
the target sequence bases had a read depth of at least 15. The 
average percentage coverage of the genes at 15X read depth 
ranged from 64% to 99% (online supplementary table 2). The 
mean sequencing depth for these genes ranged from 130 (IQR 
104–152) to 432 (IQR 364–492). Concordance for 111 dupli-
cate pairs was 98% (7384 concordant variants out of total 7572 
variants called).

For the exome sequencing, sonication fragmentation was used 
to fragment DNA samples. Fragments with an average size of 
200 bp were selected to generate libraries for sequencing. Agilent 
SureSelect Clinical Research Exome (CRE) v1 was used for 
exome enrichment and sequencing was performed on an Illu-
mina HiSeq 4000 using 2×150 bp paired-end reads. Cutadapt 
(https://​doi.​org/​10.​14806/​ej.​17.​1.​200) was used to locate and 
remove residual adapters in reads. FLASH (Fast Length Adjust-
ment of SHort reads)29 was used to merge the overlapped 
paired-end reads into one read, using default parameters. Refer-
ence genome alignment and joint genotype calling according to a 
pipeline described in Yu et al.30 The coding sequences and splice 
sites of all 54 genes were extracted. Fifty-three genes with 100% 
average coverage at 10X were included in the analysis. GTF2H4 
was excluded from the analysis, as the average coverage was only 
43%.

Deleterious variants were defined as those predicted to result 
in protein truncation (frameshift indel, splice site, nonsense 
mutations and start loss) or predicted to be deleterious and/
or likely deleterious by Clinvar.31 Any exonic single nucleo-
tide variants within 3 bp of the exon-intron boundary and any 
intronic variants within 20 bp of the exon-intron boundary at the 
5-prime end, and 6 bp at the 3-prime end, were evaluated using 
the software MaxEntScan to identify those most likely to disrupt 
splicing.32 Variants with a MaxEntScan score that decreased 
by more than 40% compared with the reference sequence 
and having a reference sequence score ≥3 were considered 

deleterious. Sequencing alignments were confirmed by visual 
inspection using the Integrative Genomic Viewer.33

Statistical methods
Risk estimation and genotype-phenotype analyses
We used a simple burden test for association between delete-
rious variants and ovarian cancer risk on a gene-by-gene basis. 
The burden test was based on unconditional logistic regression 
adjusted for country (Australia, Denmark, German, Poland, the 
UK and the USA) and sequencing method (targeted sequencing or 
exome sequencing). ORs and associated 95% CI were calculated.

Missense variant analyses
We also identified multiple rare (minor allele frequency <1%) 
missense variants that have an unknown functional effect on the 
protein. We used the rare admixture likelihood burden test34 to 
test these variants for association. We excluded any missense 
variants classified as deleterious and classified the remaining 
variants by whether or not they are predicted to have a damaging 
effect on protein function by two out of three prediction tools—
SIFT (score <0.05),35 polyphen-236 (classified as probably 
damaging or damaging) and Provean37 (score≤−2.5). Subjects 
with a missense variant call rate less than 80% and variants with 
a call rate less than 80% or with genotype frequencies inconsis-
tent with Hardy-Weinberg equilibrium (p<10–5) were excluded.

Results
Germline deleterious mutations in ovarian cancer cases and 
controls
Sequencing results were available for 6385 EOC cases and 6115 
controls after quality control analysis. The characteristics of 
these individuals by study are summarised in online supplemen-
tary table 1. Most EOC cases were serous histotype (n=6304, 
98.7%), of which 5951 were the HGSOC histotype (93.2%).
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Table 2  Frequency of mutations and estimated risk of EOC in candidate genes for validation chip genotyping data

Set* Histotype Gene

Controls Cases

OR (95% CI) P valueNo. % No. %

OCAC Overall PALB2 6 0.03 11 0.08 2.10 (0.74 to 5.94) 0.16

Non-carrier 18 930 99.97 13 277 99.9

HGSOC PALB2 6 0.03 6 0.097 3.48 (1.10 to 11.1) 0.035

Non-carrier 18 930 99.97 6168 99.9

Biobank Overall PALB2 11 0.11 3 0.35 3.12 (0.87 to 11.2) 0.081

POLK 29 0.30 2 0.23 0.78 (0.19 to 3.29) 0.74

Non-carrier 9685 99.6 853 99.4

HGSOC† PALB2 11 0.11 1 0.28 2.49 (0.32 to 19.4) 0.38

POLK 29 0.30 1 0.28 0.92 (0.12 to 6.74) 0.93

Non-carrier 9685 99.6 361 99.4

*OCAC: OCAC sample genotype on the OncoArray; Biobank: genotype from UK Biobank Axiom Array.
†Information on tumour grade was not available for UK Biobank cases, all the serous cases in UK Biobank were assumed to be HGSOC.
EOC, epithelial ovarian cancer.

Table 3  Bayes false discovery probability for the associations 
reported for PALB2, SLX4, POLK and FBXO10 from the meta-analysis of 
all the available data

Gene Histotype OR (95% CI) P value

Prior probability

0.1 0.05 0.01

PALB2 HGSC 3.01 (1.59 to 5.68) 0.00068 0.14 0.26 0.65

SLX4 HGSC 3.92 (1.33 to 11.5) 0.013 0.65 0.80 0.95

POLK HGSC 1.99 (1.15 to 3.43) 0.014 0.65 0.80 0.95

FBXO10 Overall 0.27 (0.07 to 1.00) 0.026 0.75 0.86 0.97

We identified 629 unique, putative-deleterious variants (online 
supplementary table 3) in 1051 ovarian cancer cases (967 high-
grade serous histotype) and 964 controls. There was a nominally 
significant higher frequency of mutations in cases compared 
with controls for POLK, PALB2 and SLX4 and a lower frequency 
of mutations in cases compared with controls for FBXO10 
(table 1). The associated ORs are shown in table 1—for POLK, 
PALB2 and SLX4 the effect size was slightly larger for HGSOC. 
The frequency of deleterious variants in the other genes was 
similar in cases compared with controls (online supplementary 
table 4). Given the evidence for association of multiple FA genes 
with EOC risk, we also carried out a burden test to compare the 
frequency of deleterious variants in any of the eight genes which 
were not significantly associated with ovarian cancer risks indi-
vidually (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCG, 
FANCI and FANCL). A combined analysis will have greater 
power if multiple genes were associated but the effect sizes too 
small to detect individually. There was no significant difference 
in the frequency of deleterious variants in cases (96/6184, 1.6%) 
and controls (85/6089, 1.4%) (p=0.50).

Validation analyses in ovarian cancer case-control studies
We also evaluated risk associations between deleterious variants 
in POLK, PALB2, and SLX4 with EOC risk based on germline 
genotyping data for 13 277 EOC cases and 18 930 controls from 
OCAC and for 858 EOC cases and 9725 controls and from UK 
Biobank. For OCAC samples, data were available for six dele-
terious non-monomorphic variants in PALB2; for UK Biobank 
samples, data were available for seven PALB2 and one POLK 
deleterious variants (table 2, list of variants in online supplemen-
tary table 5).

In OCAC case-control analyses, PALB2 variants showed a 
non-significant increased risk of EOC (OR 2.10, 95% CI 0.74 to 

5.94, p=0.16). The strength of this association increased when 
the analysis was restricted to 6181 HGSOC cases (OR 3.48, 
95% CI 1.10 to 11.1, p=0.035). In UK Biobank, we observed a 
weak association for PALB2 mutations with EOC risk (OR 3.12, 
95% CI 0.87 to 11.2, p=0.081). There was no evidence of risk 
association for mutations in POLK (table 2).

We then performed a meta-analysis by combining the targeted 
sequencing, WES and chip genotyping data. Taken together, puta-
tive deleterious mutations were associated with increased risk 
for PALB2 (OR 2.60, 95% CI 1.45 to 4.64; p=0.0013), POLK 
(OR 1.77, 95% CI 1.07 to 2.93; p=0.026) and SLK4 (OR 3.37, 
95% CI 1.17 to 9.70, p=0.024) and decreased risk for FBXO10 
(95% CI 0.07 to 1.00; p=0.049). After stratifying cases by histo-
logical subtype, the estimated risks were higher for HGSOC for 
PALB2 (OR 3.01, 95% CI 1.59 to 5.68; p=0.00068), POLK 
(OR 1.99, 95% CI 1.15 to 3.43; p=0.014) and SLK4 (OR 3.92, 
95% CI 1.33 to 11.5; p=0.013).

We used an approximate Bayes factor to calculate the Bayes 
false discovery probability (BFDP) described by Wakefield38 for 
PALB2, SLX4, POLK and FBXO10 based on several different 
priors and assuming that the associated risk is unlikely to be 
greater than an OR of 4 (table 3). The evidence for association 
of PALB2 was strong with a BFDP of less than 15% when the 
prior on the alternative hypothesis is 0.1. The nominally signif-
icant associations for the other three genes are likely to be false 
positives.

Predicting the functional impact of missense coding variants
Combining the whole exome and targeted sequencing data, 
we identified 5265 unique missense variants with minor allele 
frequency less than 1% in the 54 genes (online supplementary 
table 6). We used the in silico software programs SIFT, Poly-
phen-2 and Provean to evaluate the predicted impact of these 
variants on protein function for each gene. Of the 5265 variants, 
2111 were classified as ‘deleterious’ based on at least 2 out of 3 
of these classifiers. We found weak evidence for association with 
increased EOC risk for rare missense variants in DUOX1 and 
PAK4 using burden testing (p=0.015 and 0.025, respectively) 
(online supplementary table 7); for DUOX1, the strength of this 
association improved when the analyses were restricted to the 
HGSOC histotype (p=0.0061). When we performed the same 
analyses for 1493 very rare variants (MAF<0.001), we observed 
significant association for missense variants in DUOX1 and 
FANCE (p=0.015 and 0.034, respectively).
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Figure 1  Power to detect association for 5951 cases and 6385 controls 
at a Type I error rate of 0.0001 by deleterious variant carrier frequency and 
effect size (OR).

Figure 2  Estimated cumulative risk (%) of ovarian cancer in a PALB2 
deleterious variant carrier compared with population risks for England and 
Wales, 2016.

Discussion
We have evaluated the association between putative deleterious 
variants in 54 genes with the risk of HGSOC through a combi-
nation of whole exome and targeted sequencing analysis in 5951 
cases and 6115 controls of broad European ancestries. We found 
evidence for four genes—PALB2, POLK, SLX4 and FBXO10—as-
sociated with HGSOC risk. Association analysis in an additional 
14 135 ovarian cancer cases and 28 655 controls genotyped 
through OCAC and the UK Biobank provided further support for 
PALB2 as a HGSOC susceptibility gene.

The probability that a genetic association deemed statistically 
significant is a false positive depends on the prior of the null 
hypothesis and the power of the study to detect an effect size plau-
sible under the alternative hypothesis. We calculated Wakefield’s 
BFDP38 based on several different priors to further evaluate the 
likelihood that PALB2, POLK, SLX4 and FBXO10 are EOC suscep-
tibility genes. If we assume the prior on the alternative to be 1 in 
10 or 1 in 20, the BFDPs for the association of deleterious vari-
ants in PALB2 with HGSOC are 0.14 and 0.26, respectively. These 
moderately strong priors are reasonable given the evidence for 
the association from previously published studies.20 Two studies 
have reported nominally significant associations for PALB2 with 

OR 4.4 (95% CI 2.1 to 9.1)20 and (2.87, 95% CI 1.61 to 4.74).21 
Kotsopoulos and colleagues reported an increased risk that was 
not significant (OR, 4.55, 95% CI 0.76 to 27) and, in a subset of 
the samples included in this study, we also found a non-significant 
increase in risk (OR 3.2, 95% CI 0.86 to 12).3

It is possible that cryptic population structure could cause 
spurious association in these data. Principal component analysis 
is one approach to reducing the risk of such bias, but there are 
too few common variants in the regions covered by the targeted 
sequencing panel to do a principal component analysis and chip 
genotyping data that would be required for such an analysis is 
not available for all the samples. Adjusting for country of origin 
and restricting the analysis to samples from individuals of broad 
European ancestries should reduce any problem with population 
stratification.

We lacked the statistical power to identify susceptibility genes 
conferring relative risks of less than 2 (figure 1). Our use of targeted 
sequencing and a definition of deleterious variants as those that 
likely truncate the protein product will have probably underesti-
mated the true prevalence of deleterious variants in these genes. 
Incomplete coverage of each gene will have missed some small 
indels and single nucleotide variants. Amplicon based sequencing 
will also miss large deletions and rearrangements, which are rela-
tively common in some genes.39 40 Finally, any functional mutations 
in the non-coding region of these genes will have been missed.41

Some commercial gene-panel tests for hereditary breast-
ovarian cancer already include PALB2. However, whether there is 
clinical utility in testing unaffected women for deleterious muta-
tions in PALB2 is not clear given the uncertainties in the risk esti-
mates for this gene. There is no consensus over the risk threshold 
at which preventative surgery should be offered; many cancer 
genetics clinics in the UK will refer women if their predicted 
lifetime risk of EOC is greater than 10%. Others have suggested 
that the risk threshold should be lower given the low risk nature 
of the intervention; prophylactic surgery has been shown to be 
cost-effective for women at a lifetime risk of 5%. Recent updates 
to the US National Comprehensive Cancer Network Guidelines 
recommend considering risk reducing salpingo-oophorectomy 
in carriers of moderate risk genes if the lifetime risk of such 
mutation carriers exceeds 2.6%. Based on our data and popu-
lation data for ovarian cancer incidence in England and Wales 
in 2016, the cumulative risk of ovarian cancer by age 80 for 
a carrier of a deleterious PALB2 mutation is 3.2% (figure  2). 
Thus, a woman carrying a PALB2 deleterious mutation would 
be eligible for prophylactic surgery. However, the CIs for this 
estimate range from 1.8% to 5.7%. Very large, well-designed 
case-control studies will be required to provide more precise, 
unbiased estimates of risk suitable for clinical counselling.

In summary, we have found relatively strong evidence that 
deleterious germline mutations in PALB2 are associated with a 
moderate increase in the risk of HGSOC with weak evidence for 
POLK, SLX4 and FBXO10. Mutations in the other 50 genes we 
tested are unlikely to contribute meaningfully to genetic predis-
position to HGSOC. This study highlights the importance of 
large sample sizes needed to obtain risk estimates with the preci-
sion necessary for clinical use.
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