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Abstract
The last decade saw a rapid increase in the number of studies where time-frequency changes
of  radiocarbon  dates  have  been used  as  a  proxy for  inferring  past  population  dynamics.
Although its universal and straightforward premise is appealing and undoubtedly offers some
unique  opportunities  for  research  on  long-term  comparative  demography,  practical
applications are far from trivial and riddled with issues pertaining to the very nature of the
proxy under examination. Here I review the most common criticisms concerning the nature of
radiocarbon time-frequency data  as a demographic  proxy,  focusing on key statistical  and
inferential challenges. I then examine and compare recent methodological advances in the
field by grouping them into three approaches:  reconstructive,  null-hypothesis  significance
testing,  and model  fitting.  I  will  then  conclude  with  some general  recommendations  for
applying these techniques in archaeological and paleo-demographic research. 
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Introduction
Population  time  series  have  a  narrative  appeal  that  has  long  been  the  envy  of  many
archaeologists. Sister disciplines,  such as economy and ecology, have developed methods,
theories, and models that link individual-level processes to these macro-scale patterns and
have inspired generations of archaeologists to find ways to borrow and extend these concepts
to the study of the human past. The opportunity to generate something that visually resembles
population time series is a source of major temptation — all those ideas and concepts can
finally be applied to understand the archaeological record. Thus, it comes as no surprise that
the  so-called  dates  as  data (hereafter  DAD)  approach  (Rick  1987),  which  relies  on  the
assumption that the changing frequency of radiocarbon dates related to anthropic events is a
reliable  proxy  of  relative  past  population  change,  is  a  low-hanging  fruit  that  has  been
harvested extensively in the last decade. 

Inferring  population  trajectories  from time-frequency  data  is  hardly  a  novel  concept  and
certainly  not  limited  to  radiocarbon  dates.  Archaeologists  have  long  been  and  are  still
counting different things as a proxy of population size, ranging from classic examples such as
sites, dwellings, or artefacts (Drennan et al. 2015 for a review) to less common applications
like  faecal  stanols  (White  et  al.  2018).  What  makes  DAD different,  and  in  many  cases
controversial, is the unspecified nature of the  thing that is being counted. Sites, dwellings,
potsherds, and faecal stanols represent unique categories of artefacts that can be more or less
directly  related  to  specific  behavioural  processes.  On its  own,  radiocarbon  dates  are  just
numerical attributes of virtually anything carbon-based and relate to a highly diverse range of
anthropic and non-anthropic processes. Population inference based on radiocarbon dates does
not necessarily have to subscribe to the DAD assumption, and time frequencies can relate to
specific types of events (e.g. use of residential features, cf. Oh et al. 2017). More broadly,
radiocarbon frequency data  have also been used  to  examine cultural  phenomena such as
changes  in  burial  or  subsistence  practices  (e.g.  Stevens  and  Fuller  2012,  Glesson  and
McLaughlin 2021) and hence their analyses are not restricted to the reconstruction of past
population dynamics either. These examples, where events associated with the radiocarbon
record are well defined, should not be referred to as DAD. The main appeal and the primary
issue with Rick’s approach stem from the tactical decision of prioritising larger sample sizes
at the cost of being vaguer on the nature of the dates to be included in the analysis. 

There  is,  however,  a  separate  and additional  layer  of  complexity,  issues,  and  challenges
dictated by the statistical nature of the method proposed. Some of these are not specifically
limited to radiocarbon dates and are relevant to other attempts in inferring population changes
from archaeological frequency data (see Brown 2015 for discussion); namely, the: 1) non-
random and systematic nature of chronological uncertainty; 2) the problem of sampling error;
and 3) and the substantially wide range of possible population curves that we are aiming to
reconstruct. The intersection of these three broader issues makes any frequency analyses of
radiocarbon  dates  challenging,  even  when  issues  about  the  nature  of  the  proxy  or  the
definition of the events associated with each date are addressed. More importantly, there are
no  readily  available,  off-the-shelf  solutions  to  many  of  these  analytical  problems.
Consequently,  the  last  few  years  saw  the  proposal  of  a  substantial  wide  range  of  new
statistical approaches developed in prehistoric population studies. 

This paper aims to review and compare the current range of statistical methods designed to
analyse time frequencies of radiocarbon dates. Over the last few years, several review papers
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have examined different  aspects  of radiocarbon based population inference,  including the
problematic nature of the proxy (Attenbrow and Hiscock 2015); the misleading effects of the
calibration process (Williams 2012, Weninger et al. 2015); the importance of growth rates
(Brown 2017) as well as their comparability to ethnographic scales (Tallavara and Jørgensen
2021);  and the  critical  issue of  radiocarbon  sampling  processing  (Becerra-Valdivia  et  al.
2020). A systematic review of more recent methodological solutions does not exist, as most
discussions on the statistical  nature of the problem are either limited to small  sections of
papers arguing in favour of particular solutions (see, for example, Brown 2015, Crema et al.
2017, Bronk-Ramsay 2017,  Timpson et al. 2021, Carleton 2021), or broader criticisms of
particular methodology such as the summed probability distribution of calibrated radiocarbon
dates (hereafter SPD, Carleton and Gourcutt 2021). The substantially wide range of statistical
options available and the idiosyncrasies of contextual issues have made the whole research
area harder to navigate. As a result, unwarranted criticisms are often raised without a clear
understanding  of  what  a  particular  method  entails,  whilst  simultaneously,  there  is  an
increased  risk  of  misuses,  abuses,  and  misinterpretations  of  these  novel  solutions.  The
objective of this paper is also to focus the spotlight on neglected key details that are often
hidden  behind  equations  or  lines  of  code  or  implicit  in  the  description  of  particular
techniques. In most cases, these details have no impact in qualitative terms, but there are
circumstances where conclusions can be drastically different.  

From dates as data to Summed Probability Distributions
Rick’s  seminal  paper  first  introduced  the  core  assumption  that  ‘[a]ll  things  equal,  more
occupation produced more carbon dates’ (Rick 1987, 56), immediately acknowledging in the
following sentence that such an equation will be affected by a variety of intervening factors,
most  notably  creation,  preservation,  and  investigation biases  (ibid.  Fig.1).  The  original
approach  simply  consisted  in  creating  histograms  of  uncalibrated  14C ages.  Still,  it  was
already coupled with more advanced techniques, such as bootstrap confidence intervals to
consider potential spurious effects emerging from sampling error (ibid. Fig.4). The approach
had some discrete success already in the early 90s when several authors have switched from
histograms of uncalibrated  14C ages to curves generated using calibrated dates (e.g., Ames
1991, Dye and Komori 1992, Erlandson et al.  1992, Chatters 1995). Some of these early
applications  have  also  led  to  the  development  of  new  statistical  techniques,  such  as
randomisation  tests1 (Dye 1995),  or  even attempts  to  combine  historical  census  data  and
inferred growth rates to retrodict absolute (rather than relative) population sizes for the pre-
census era (Dye and Komori 1992). The transition from the summation of uncalibrated to
calibrated 14C ages  became  problematic  once  the  calibration  process  no  longer  made  it
possible to describe calibrated dates using symmetric errors. In response to an early work by
Hounsely et al. (1997), who summed uncalibrated dates using Gaussian distributions and a
moving sum, Blockley and colleagues (2000) stressed that uncalibrated dates would provide
unreliable results as they are based on a different, non-linear timescale. They then argued that
“[o]nce dates have been calibrated they can no longer be expressed as a point date with a
Gaussian error because the probability distribution of the date is a function of the shape of the
calibration curve [...] Because of this, a moving sum which gives no weight to the actual
probability distributions of dates is unlikely to be a good assessment of their true distribution.
It is more appropriate to look at the summed probability distributions of the calibrated dates
[...]” (emphasis added). As far as I am aware, this was one of the earliest applications of what

1 While preparing this manuscript, I came across a paper by Tom Dye. He was the first to introduce randomisation tests to compare curves 
generated from the summation of calibrated radiocarbon dates. In 2016, I have, together with my colleagues, effectively reinvented the 
wheel by introducing a similar technique to compare regional demographics in prehistoric Japan (Crema et al. 2016). 

3

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

3
4
5

6



is now undoubtedly the most common form of radiocarbon frequency analyses, often now
simply referred to as SPD. 

The first significant criticisms against SPDs were raised a few years later by Blackwell and
Buck  (2003)  in  the  context  of  reviewing  previous  works  on  the  Late  Glacial  human
occupation in north-western Europe (including both Hounsely et al. 1997 and Blockley et al.
2000) and advocating for a model-based Bayesian solution as a more robust alternative. Their
review stress two core issues: 1) the problematic nature of summing probabilities; and 2) the
fact that “since the calibrated dates being ‘summed’ do not relate to the same event, it is not
clear what interpretation can be placed on the probabilities produced by this method” (ibid,
page 233). While Blackwell and Buck do not provide much detail for the first problem, it is
reasonable to assume that this relates to the mathematical issue of how summed probabilities
are no longer probabilities, and whilst representing in some way the density distribution of
the phenomena of interest,  they cannot be straightforwardly interpreted (see Carleton and
Gourcutt 2021 for a recent exhaustive review on this issue) as they mask the uncertainties
inherited from individual dates. For example, consider a scenario where two time intervals, t1

and t2, are both associated with a summed probability of 10. Now suppose that t1 contains ten
radiocarbon dates, each with a probability of 1, while t2 has 100 radiocarbon dates, each with
a probability of 0.1 for that interval. In other words, we are sure that ten events are associated
with t1, while we have much more uncertainty for t2. Summed probability cannot distinguish
the two and simply conveys a message that there was no change in the number of events from
t1  and t2 without providing a measure of uncertainty on such a claim. In this particular case,
the probability that t2 has exactly ten events is only 0.13, with a probability of increase from t1

to t2 equal to 0.41 and a probability of decrease equal to 0.452. 
 
The second issue raised by Blackwell and Buck concerns the core assumption of  dates as
data, i.e., what is being counted are simply dates, and the events they are associated with are
ambiguously defined (e.g. ‘anthropic’), encompassing a wide range of behavioural processes.
Rick’s gambit hinges on the assumption that the aggregate frequency of radiocarbon dates
associated  with  different  anthropic  events  correlates  with  population  density,  retaining  a
reliable  signal  by evening out  its  underlying  heterogeneity.  A relatively  large  number  of
papers  have  discussed  how this  assumption  can  be  problematic  (Attenbrow and Hiscock
2015, Torfing 2015, Becerra-Valdivia et al. 2020, Ward and Larcombe 2021). While this is
unquestionably an important issue, I will not add much more to the debate for two reasons.
Firstly, the problem is context-dependent — demonstrating that the assumption does or does
not hold for a particular dataset does not allow its conclusion to be generalised to all DAD
applications. Secondly, the problem arises prominently if events associated with the sample
dates  are  not  clearly  identified.  In  other  words,  if  one  decides  to  limit  their  dataset  to
radiocarbon  dates  associated  with  particular  types  of  events  (e.g.  the  constructions  of
dwellings), much of the issue is reduced to the extent by which the correlation between the
frequency of such events and the population under investigation is stationary over time (and
space). Of course, this does not necessarily solve all interpretative problems. Still, it is worth
noting that time-frequency analyses of radiocarbon dates represent a wider class of analyses,
models, and issues than DAD.

2 These probabilities can be computed using the binomial probability mass function.
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The curse of eyeballing
The issues discussed in the previous section are just a fraction of a wider range of problems
associated with the direct interpretation of SPDs discussed in the literature. While readers
concerned with these problems should consult more detailed discussions for each, it is worth
briefly revisiting some of the key matters raised, namely: 1) sampling error; 2) heterogeneity
in sampling intensity; 3) spatial averaging and non-stationarity; 4) taphonomic loss, and 5)
systematic measurement errors associated with the calibration process. 

Sampling Error
A trivial  (but somewhat surprisingly too often disregarded) aspect  of time-frequencies  of
radiocarbon dates (or any other count-based population proxy) is the notion that the observed
data are just samples and not the statistical population. A simple way to conceptualise this is
to consider the observed sample of dates as random draws from a probability distribution
spanning the time window of interest and characterised by an unknown shape that we aim to
recover.  This  effectively  formalises  the assumption  of  any frequency-based proxy — we
expect to find more ‘things’ (e.g., sites, artefacts, radiocarbon dates) during intervals where
there are more people; if we have twice as many people for a given time interval, we should
expect  twice as many ‘things’  we are counting.  In practice,  however,  this  relationship  is
conditioned  by  the  available  number  of  dates,  and  observed  data  can  deviate  from this
expectation. In other words, even if there is a perfect correlation between human population
size and the frequency of radiocarbon dates, there will always be some deviations arising
from sampling  error  and  observed  peaks  and  troughs  might  not  be  a  genuine  signal  of
population change. As mentioned earlier, the problem was already raised in Rick’s original
work and has since then been tackled in a variety of ways (e.g.  Michczyńska and Pazdur
2004, Kelly et al. 2013, Shennan et al. 2013, Manning and Timpson 2014, Brown 2015, Dye
2016, Bronk Ramsey 2017). Larger sample sizes can, of course, minimise the problem of
sampling error, and as such, it is tempting to think whether there is a threshold above which
the problem can be safely ignored. A widely cited work by Williams (2012) has for example,
provided a guideline figure of 500 dates, following previous simulation-based analyses by
Michczyńska and Pazdur (2004) and by Geyh (1980). While a clear answer to the question
‘how many dates do I need for my SPD?’ might sound reassuring, the reality is that this
ultimately  depends  on  the  scale,  the  granularity,  and  the  magnitude  of  the  specific
fluctuations  we  wish  to  identify  (see  Hinz  2020  for  a  simulation-based  study  on  this
problem).  To a large extent, this is akin to the issue of statistical power in null significance
hypothesis testing (NSHT); sample size is only one side of the coin, and its required value
depends on the effect size we wish to determine. Large trends can be detected from smaller
sample  sizes  while  identifying  smaller  fluctuations  requires  more  data.  The  problem  is
exacerbated by the fact that we have much less clue about the shape of the target population
compared to other kinds of data. For example, if we were to examine a small sample of femur
lengths  from  a  particular  cemetery  assemblage,  we  would  expect,  a  priori,  a  normal
distribution following the central limit theorem — if we plot a histogram and observe a small
deviation from a bell-curve we would be inclined to dismiss this as the result of sampling
error. The frequency distribution of radiocarbon dates has fewer and much less formalised
general principles that can help us be sceptical about the peaks and troughs we observe. Aside
from extreme fluctuations, we would regard many of the patterns we observe as plausible
evidence of population change. In other words, we do not have a strong prior on the expected
shape of the SPD, and having an epistemic stance prone to over-interpretation does not help. 
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Heterogeneity in Sampling Intensity
Adopting formal statistical inference (see next section) can address the problem of sampling
error. However, this is ensured only if the two fundamental assumptions of statistical samples
-  randomness  and  independence  -  are  met.  Radiocarbon  dates  are  clearly  not  randomly
sampled from a population of possible dateable artefacts. In most cases (but see Porčić et al.
2021 for an exception), samples for demographic inference are based on the re-use of 14C
dates collected for a wide range of purposes using various sampling strategies. The question
is whether, with a sufficiently diverse set of sampling strategies and designs underlying a
given dataset,  we can treat  the sample  as if it  were random. The answer is,  once again,
context-dependent, but there are a few typical cases where such an assumption does not hold.
The most notable one is that the likelihood of employing radiocarbon dating declines when
investigating historical periods where more accurate,  precise, and cheaper dating methods
become available. It follows that all radiocarbon-based time-frequency data suffer from an
edge  effect  approaching  the  present  day,  with  a  magnitude  and  timing  that  vary
geographically and limit opportunities for cross-regional studies for more recent periods.  

Systematic temporal variations in sampling intensity are harder to detect when they are likely
to  produce  biases  that  do  not  contradict  our  expectations  as  bluntly  as  the  case  of  the
declining density towards the present day. For example, one could postulate that an increased
interest in dating more accurately the earliest  evidence of Neolithisation might promote a
higher sampling intensity  and consequently lead to a higher  density of radiocarbon dates
during the early stages of the Neolithic period. The problem here is that we also expect an
increase in the population size during this period, and as such, we would hardly interpret a
higher density of radiocarbon dates during this interval as an anomaly or the consequence of
a research bias. Heterogeneous sampling intensity across time is perhaps the most concerning
and simultaneously less understood bias that might affect the DAD approach. One possible
way to mitigate its impact is to include statistical  variables aimed to control the potential
impact  of the original  purpose of dating,  e.g.,  by discerning dates  from specific  research
projects to those obtained in rescue excavations. While no attempts have been made in this
direction yet, statistical analyses of different recovery practices do show specific signatures
(Vander Linden 2019) and might provide a baseline for accounting for these kinds of biases. 

The  mixture  of  different  objectives  and  dating  practices  is  particularly  evident  when
examining  inter-site  variations  in  sampling  intensity.   For  example,  in  the  EUROEVOL
database (Manning et al. 2014), the largest number of dates associated with an individual site
is 184, whilst more than half of the sites (2,138 out of 4,213) contained only a single date.
Several solutions have been proposed to tackle this problem. For example,  dates that are
known to be referring to the exact same event can be combined following Ward and Wilson’s
method (1978; see for example Ahn and Hwang 2015). A similar procedure often referred to
as ‘binning’ (see Timpson et al. 2014), consists of generating a ‘local’ SPD by summing the
calibrated probability of dates from the same site that are ‘close’ in time and normalising to
sum to unity the area of the resulting curve. In both cases, the net result is to treat sets of
multiple dates as one and effectively compensate for the unevenness in sampling intensity.
There are, however, different implications between the two approaches. In the first case, the
aggregation process does not alter  the nature of what is being counted as it  relies on the
notion that sets of dates refer to the same event. Thus, for example, if dates are aggregated
based on the construction of residential units (our target event), the resulting frequency data
would still  be a proxy of changes in the number of dwellings over time. The situation is
slightly different in the case of the ‘binning’ approach. Here the aggregation ‘ensures that
each  site-phase is  equally  weighted  when  generating  the  SPD’  (Timpson  et  al.  2021,
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emphasis added), which implies that effectively we are defining the target as loosely defined
‘site occupation’ counts. The problem becomes even more complex as the ‘binning’ approach
requires some temporal threshold for aggregating dates that are ‘close’ in time. Modifying
such a threshold could yield rather different results, and while one can carry out sensitivity
analyses, the nature of what is being counted remains hostage to the value assigned to such
parameter. Shifting the interpretation of the temporal frequencies of radiocarbon dates from
‘population size’ to ‘number of occupied settlements’ can help, but at the same time, this
introduces interpretative consequences. Empirical estimates of growth rates obtained can no
longer be assumed to be directly emerging from demographic events (i.e., birth, death, and
migration) alone but rather as a joint outcome of these processes with episodes of settlement
fission, fusion, and extinction.  Shifts between nucleated and dispersed settlement patterns,
changes  in  the duration  of  settlement  occupation,  or  variations  in  intra-  and inter-annual
residential  mobility  patterns  are just some examples  of processes that can lead to signals
without an actual change in the underlying human population (cf Bevan and Crema 2021).
This is a problem of interpretation,  and while it does not on its own jeopardise the DAD
approach, it further emphasises the issues of comparability between growth rates estimated
from archaeological  data  to  those  observed  in  ethnographic  and  historical  contexts  (see
Tallavaara and Jørgensen 2021), or even how differences between different archaeological
population proxies should be interpreted (see Palmisano et al. 2017, Crema and Kobayashi
2020, Seidensticker et al. 2021) 

Spatial Averaging and Non-stationarity
The ubiquity of radiocarbon data  and the increasing availability  of larger databases (e.g.,
Manning et al. 2016, Chaput and Gajewski 2016, Lucarini et al. 2020, Martínez-Grau et al.
2021, Bird et  al.  2022) has pushed many to attempt reconstructing prehistoric  population
dynamics  for  larger  windows  of  analyses,  often  at  continental  scales  (Williams  2012,
Shennan et al. 2013, Wang et al. 2014) 

Summarising putative population dynamics of a vast geographic area with a single time series
can undoubtedly  be  misleading,  as  it  implicitly  assumes  that  all  sub-regions  had similar
demographic trajectories. The trade-off is between selecting a smaller window of analyses
that accounts for spatial variation but is impacted by higher sampling error or opting for a
wider region that benefits from a larger sample size but yields a ‘space-averaged’ estimate
(Porčić et al. 2021) that might not be representative of any of its sub-regions. The problem is
further  exacerbated  by  the  fact  that  larger  study  areas  are  likely  to  be  characterised  by
variations in sampling strategies and intensity,  as different administrative and geopolitical
units are often associated with substantial variation in wealth, sample design, and research
interests (Crema 2020).

The  use  of  spatial  analyses  that  explicitly  explores  regional  variation  in  demographic
trajectories (Timpson and Manning 2014, Chaput et al. 2015, Crema et al. 2017, Riris and
Arroyo-Kalin 2019) can offer far more informative insights for larger regions than a single
timer-series.  However,  as  for  frequency  time-series,  these  spatio-temporal  density  maps
cannot be based exclusively on visual assessment and needs explicitly account for variations
in sampling intensity (e.g., using relative risk surfaces; see Chaput et al. 2015, Bevan et al.
2017) as well as the delicate balance between spatial resolution and sampling error (e.g., by
using spatial permutation tests Crema et al. 2017, Riris and Arroyo-Kalin 2018)
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Taphonomic loss
Taphonomic loss, and other post-depositional processes, are another key factor that can bias
the raw and direct interpretation of the radiocarbon record and other types of time-frequency
data. As for many of the other biases discussed above, the issue was already raised in Rick’s
seminal paper, which, amongst other things, highlights the implication of older dates being
less likely to survive and included in the sample. A model-based assessment of the potential
magnitude of taphonomic loss has been explored by Surovell and Brantingham (2007), who
showed how under  extreme conditions,  an exponentially  declining  population  could even
yield an exponential growing frequency curve. Adjusting frequency data for taphonomic loss
is straightforward but requires a loss function derived from independent estimates. Surovell
and colleagues have (Surovell et al. 2009, see also Bluhm and Surovell, 2018 for an updated
version) used radiocarbon ages from volcanic deposits to empirically estimate the impact of
taphonomic loss. Their analyses revealed that the rate of taphonomic loss is not constant, but
declines as the age of the site grow and propose a global ‘correction formula’ that accounts
for this factor for time-frequency data between 40,000 and 1,000 cal BP. The implication of
this correction can vary between datasets and is generally expected to have a greater impact
when dealing with multi-millennial scales. Still, several studies have also reported negligible
effects (see for example Zahid et al. 2016, Tremayne and Winterhalder 2017, Broughton and
Weitzel 2018, Fernández-López de Pablo et al. 2019). 

Calibration Effects
The  uncertainty  associated  with  radiocarbon  dates  is  a  combination  of  sample-specific
measurement  errors  and  the  systematic  effect  of  the  information  loss  resulting  from the
calibration process. The random nature of the former makes it  a comparatively negligible
factor for most objectives,  with limitations  primarily  concerning the analytical  resolution.
With  a  sufficiently  large  sample  size,  the  impact  of  these  errors  can,  in  most  cases,  be
considered negligible. The systematic nature of the latter is far more problematic as it can
lead to artificial patterns in the time-frequency data — with all other things being equal, 14C
dates within calibration ‘plateaus’ will tend to produce wider and flat calibrated probability
distributions. In contrast, samples located within steeper portions of the curve will tend to
have narrower and more ‘spiky’ distributions (but see Brown 2015). In this case, increasing
the sample size does not help — the sum of flat probability distributions with similar ranges
will, unsurprisingly, be a flat probability distribution. The cumulative consequence of this
effect is that some of the fluctuations observed in empirical SPDs are just the results of these
calibration effects. This is a well-known problem that has been pointed out repeatedly in the
literature  (Guilderson  et  al.,  2005  Williams  2012,  Brown 2015,  Wenninger  et  al.,  2015,
Crema and Bevan, 2021).

It is worth noting that the problem is not unique to radiocarbon dates and applies to any
dating method where events closer in time have similar systematic information loss. Perhaps
the  most  common  example  is  the  use  of  archaeological  periodisations  and  relative
chronologies, and its implications become tangible when attempts are made to quantify their
uncertainty and convert assignments to particular periods or phases into absolute calendar
dates. Several approaches have been proposed in the literature, starting from the application
of aoristic  analysis  (Johnson 2004, Crema 2012) to the use of more complex probability
models (Baxter and Cool 2016, Collins-Elliot 2019, Crema and Kobayashi 2020) to convert a
given ‘time-span’ of the possible existence of an event into a probability distribution. The
issue, in this case, is that the extent of such temporal intervals is in practice informed by the
presence of some diagnostic features which allow the specialist to assign a particular object
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into a phase (e.g., ‘Early Bronze Age I’). Thus, two events that are separated in time, but
have similar diagnostic features, will be assigned to the same “time span of existence”, and
ultimately have identical probability distributions. It follows that summing these probabilities
(e.g.  using  ‘aoristic  sums’)  will  yield  time-series  with  spurious  artefacts  similar  to  those
observed in SPDs (see Bevan and Crema 2021 for discussion). 

Calibration  effects  have  been tackled  mainly  by  applying some smoothing techniques  to
remove indiscriminately any short-term fluctuations in the SPDs. These can be as simple as
calculating the average summed probability over a sliding window (e.g., Shennan et al. 2013,
Kelly  et  al.  2013)  or  more  complex  solutions  involving  the  joint  use  of  Monte-Carlo
simulations  and Kernel  Density  Estimates  (e.g.,  Brown 2017).  These  and other  solutions
(e.g.,  Wenninger et al.  2015) can help deter over-interpretations of radiocarbon frequency
data,  particularly  for  shorter  temporal  scales  (<500  years)  where  the  impact  of  these
systematic errors is particularly pronounced. However, it is worth noting that many of these
methods are effectively designed to “mask” the effect of calibration for visualisation purposes
and do not address the problem directly and systematically. 

Statistical inference
The brief survey of potential biases affecting radiocarbon time-frequency is a reminder of
how visual inspections of SPDs should be carried out with extreme caution.  Any insights
obtained  from  visual  assessments  should  be  appropriately  examined  to  formally  discern
whether  they  pertain  to  processes  of  interest  or  are  mere  statistical  artefacts.  While  this
principle generally applies to data visualisations, the lurking temptation of making post-hoc
narratives from SPD plots appears to be particularly common despite continuous reminders
and warnings in the literature to consider potential confounding factors. 

The confidence that SPDs can be read as a direct signal of fluctuations in radiocarbon density
(and conversely in population density) has led many to take a further step and carry out
statistical  analyses  directly using the temporal  sequence of summed probability  values in
SPDs. Examples range from simple correlations between SPD curves and other time-series
such as paleoenvironmental data (Palmisano et al. 2021) or other population proxies (Crema
et al. 2020) to more sophisticated analyses, including the use of Granger causality analyses to
explore lagged responses to climatic events (Kelly et al.  2013), attempts to identify early
warning signals  of  collapse  (Downey et  al.  2016),  or  uses  ecological  population  models
(Freeman et al. 2021) with externally induced, time-varying carrying capacities (Lima et al.
2020). The level of sophistication achieved by some of these studies is often very high and
undoubtedly offers a glimpse of the kind of exciting questions that we could answer. Yet,
fundamental concerns regarding sampling error or calibration effects are often ignored or just
mildly acknowledged without a formal exploration of what their impact would be. 

The extent to which inferences based on direct statistical assessments of SPDs are biased will
inevitably depend on the specific context, but the general expectation is that this is a function
of  sample  size,  absolute  time-interval,  and the  temporal  granularity  of  the process  under
investigation.  When  sample  sizes  and  the  chronological  granularity  of  the  analyses  are
sufficiently large, the impact of sampling and calibration is likely negligible compared to the
signal we aim to detect. However, there is no simple way to determine when this is the case.
How many radiocarbon dates do we need to stop being concerned about sampling error?
What is the appropriate temporal scale of analyses so that the impact of calibration can be
safely ignored? As it is always in these cases, the answer is an unworkable and unsatisfying
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‘it  depends’.  As  noted  by  Price  et  al.  (2021),  even  with  an  infinitely  large  number  of
radiocarbon  dates,  an  SPD  would  not  be  able  to  recover  the  shape  of  the  underlying
population as a result  of the summation of the probabilities and the systematic impact  of
calibration.

There are situations where ignoring these issues can lead to strikingly different outcomes. For
example, Lima et al. (2020) have recently constructed an SPD for the Pacific Island of Rapa
Nui  and  fitted  different  logistic  growth  models.  They  utilised  information  criteria  to
demonstrate that the highest support was found in a model where the carrying capacity was a
function of environmental covariates, which they used as an argument in support of the so-
called  ecocide hypothesis.  A  follow-up  study  by  Di  Napoli  et  al.  (2021)  employing
Approximate Bayesian Computation (see below for details),  which accounts for sampling
error and calibration effects, has shown no support for such a model and instead indicated
that, with the available evidence at hand, there was no way to discern between the competing
models. 

However, the direct use of SPD values for statistical analyses does not represent the entirety
of  inferential  approaches  dedicated  to  population  studies  based  on  time  frequencies  of
radiocarbon dates. In less than a decade, a significant number of novel methods that account
for  many  of  the  issues  discussed  in  the  previous  section  have  been  proposed  in  the
archaeological literature. They all share a fundamental dissatisfaction with approaches based
on the direct interpretation of SPDs and offer solutions tailored to specific inferential needs
(see  below  and  Table  1  for  a  summary).   Despite  some  fundamental  differences,  these
techniques can be broadly classified into three groups based on their primary objective: 1)
reconstructive approaches, 2) null-hypothesis significance testing (NHST) approaches, and 3)
model-fitting approaches.  As for any attempts in imposing sharp categorical boundaries, one
should be critically aware that many of the methods presented below do share conceptual
roots, and a combination of techniques  from different approaches can well  coexist  in the
same study. 

Reconstructive approaches
The  section  above  has  repeatedly  highlighted  that  a  visual  inspection  of  SPDs  is  not
warranted and may lead to biased interpretations in some situations. Yet data visualisations
can be  a  powerful  tool  to  highlight  information  that  cannot  be  sufficiently  portrayed  by
numbers  alone  (Anscombe  1973).  Thus,  it  does  not  come as  a  surprise  that  many  have
attempted to tackle this difficult trade-off by implementing a visualisation technique that can
simultaneously correct for the impact of the calibration process whilst acknowledging the
potential  impact  of  sampling  error  by displaying an envelope  surrounding observed SPD
values.  

A few different approaches have been proposed to achieve this objective (see Table 1 and
Fig.  1),  with  the  earliest  application  dating  back  to  the  already  mentioned  bootstrap
confidence interval employed by Rick (1987, fig. 4). Since then, other authors have taken a
similar approach (e.g., Timpson and Manning 2014), sometimes in conjunction with more
sophisticated procedures. For example, McLaughlin (2019) advocates a solution based on a
combination of bootstrapping and kernel density estimates. Given a collection of radiocarbon
dates,  the  approach consists  of  1)  randomly selecting  (with replacement)  a  subset  of  the
sample; 2) calibrating the sampled dates; 3) sampling a calendar date from each calibrated
probability  distribution,  and 4)  running  a  univariate  kernel  density  estimate  (KDE).  The
process is repeated multiple times so that an ensemble of KDEs is obtained, combined, and
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visualised as an envelope (Fig. 1, first row; see also Brown 2017 for a similar approach but
without the bootstrapping step). Such bootstrapped composite KDE (cKDE) addresses the
issue  of  sampling  error  (step  1),  chronological  uncertainty  (step  3)  and  the  problem  of
calibration artefacts (KDE smoothing in step 4). The choice of bandwidth size and the shape
of the kernel can have a significant impact on the final product, with the resulting curve being
either under or over-smoothed. McLaughlin suggests a comparatively small bandwidth (e.g.,
30  years)  for  most  applications  to  capture  sudden  changes  in  density,  but  it  is  an  open
question whether this size can avoid all instances of artificial calibration peaks often observed
in SPDs. While there are a relatively large number of algorithms designed to find optimal
bandwidth  sizes  based  on the  observed data  (Heidenreich  et  al.  2013),  there  is  no  clear
consensus on which one should be preferred, nor a systematic exploration of which methods
are better suited for demographic inference. Finally, KDEs are typically affected by an edge
effect, with a decline in density at the start and the end of the window of analysis. Edge
correction formulas do exist, but their application becomes problematic given the nature of
the resampled data, and the most straightforward approach seems to be the selection of a
wider data window and a narrower visualisation window. 

The problem of bandwidth size selection can be solved by treating this as a parameter to be
estimated using Bayesian inference. This solution was developed by Bronk-Ramsey (2017)
and is implemented in the widely used calibration and Bayesian analyses software OxCal (see
Fig. 1: second row). The approach consists of using a uniform prior for the bandwidth size h
with  an  upper  limit  based  on  Silverman’s  rule  (1986),  which  provides  a  criterion  for
identifying h when the underlying distribution is Gaussian. Bronk-Ramsey considers this as
an  upper  threshold  that  would  over-smooth  multimodal  distributions.  The  predictive
likelihood used to estimate  h is instead based on the product of likelihoods of each date as
modelled by the KDE based on the remaining data, excluding the focal date. The model can
be fitted alongside other distribution models in OxCal (e.g., uniform, Gaussian, exponential,
etc.)  that  will  act  as  a  prior  and  can  modify  the  shape  of  the  kernel  for  each  date.
Alternatively, an extension of this approach (called  KDE_Model in OxCal) can be adopted
where the prior for each observation point is effectively the KDE distribution of all the other
radiocarbon dates. 

While the KDE approach proposed by Bronk-Ramsey has both elements of frequentist and
Bayesian inference, a full non-parametric Bayesian approach is also possible via the finite
Gaussian mixture model (Fig 1: third row). This is a flexible method that is now widely used
in many fields (see for example in isotopic studies Fernandes et al. 2014) and the  Bchron
(Haslett and Parnell 2008) and the baydem (Price et al. 2021) R packages offer functionalities
for  its  application  for  radiocarbon  analyses,  albeit  with  some  minor  differences  in  their
implementation. The core idea of a finite Gaussian mixture is to conceive the observed data
as the aggregation of a finite number of Gaussian distributions, each with its own mean and
standard deviation.  The inferential  process consists of determining the number of mixture
components (i.e., Gaussian distributions), their associated parameters (i.e. mean and standard
deviation),  and  their  relative  contributions  (i.e.  expected  proportion  of  the  data),  which
provides a flexible range of probability distribution shapes. In contrast to other applications
(e.g., isotope-based diet reconstructions), the objective here is not the recovery of particular
parameters but the overall shape of the probability distribution, which effectively portrays
how the density of radiocarbon dates changed over time whilst accounting for sampling error
and calibration effect. Price et al. (2021) have recently developed this technique specifically
for the use of demographic archaeology by stressing the importance of the direct computation
of the likelihood (see also below). They provide a Bayesian workflow and an associated R
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package to facilitate its application (baydem), allowing users to assign specific priors or to
estimate  the  optimal  number  of  mixture  components.  They  illustrate  their  technique  by
examining the radiocarbon record of the Maya city of Tikal, showing how their approach is
consistent  with  previous  studies  based  on  other  lines  of  evidence  and  proxies,  whilst
providing a more precise estimate of the timing of key demographic events. 

The three approaches discussed above provide more robust alternatives to SPD for visualising
the radiocarbon density record. One of the most appealing aspects shared by all solutions is
that, in contrast to other methods described below, some of them require a relatively smaller
number  of  assumptions  by  the  end-user.  OxCal’s  KDE  can  be  fully  automated,  cKDE
requires only the number of bootstrap iterations  and the kernel  bandwidth size.  Bayesian
finite  Gaussian  mixture  models  do,  however,  require  additional  user-defined  settings,
including  hyperparameters  and  the  number  of  mixture  components.  The  latter  is  a  key
parameter as it defines the complexity of the resulting shape of the density distribution, but
users  can  specify  multiple  values  and  carry  out  model  selection  via  Pareto  smoothed
importance sampling (PSIS) to determine the optimal  number whilst  avoiding overfitting.
There  is,  however,  a  substantial  variation  in  terms  of  computational  costs.  cKDE  with
bootstrapping is a relatively fast method that will take just a few minutes even when the
sample size is  relatively  large;  baydem’s  Bayesian finite  Gaussian Mixture Model  would
require a much longer processing time, especially when dealing with larger sample sizes and
the  range  of  mixture  components  to  be  explored  is  high.  OxCal’s  KDE comes  with  the
highest computational cost, with runtimes ranging from several hours to a few days when the
sample  size  is  above  1000  dates.   Despite  these  differences  in  computational  costs,  the
difference in the output (particularly about the “true” population) can be negligible in many
situations (Fig 1, see also figure 2 in Price et al. 2021), particularly when sample sizes are
large.

In contrast to the other methods detailed below, these reconstructive approaches can be seen
as the go-to solution for any preliminary assessment of the available data. These approaches
are particularly appealing because they do not require the user to assume a priori a specific
shape of the underlying density distribution. However, there are two things to consider. The
first relates to the unavoidable weakness of all three approaches when dealing with smaller
sample sizes (see Fig.1, third column). Confidence envelopes are larger in these cases, but
they might  still  fail  to  include the true underlying probability  distribution.  Unfortunately,
because of the very nature of these models, there is no way to determine an optimal minimum
sample size as this would depend on the scale and magnitude of the signals one is hoping to
reconstruct. The second issue stems from the fact that these tools can be abused as inductive
inference engines. The confidence that visual outputs produced by these methods are more
reliable than SPDs can easily entice scholars to develop post-hoc explanations without formal
and direct testing. 
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Figure 1. Comparison of reconstructive approaches to radiocarbon frequency data on small (n=10), 
medium (n=100), and large (n=1000) datasets using bootstrapped Composite Kernel Density Estimate, 
OxCal’s Model_KDE and baydem’s finite Gaussian Mixture model.  The grey area represents the shape of
the underlying probability (identical for the three sets) from which radiocarbon dates were sampled from. 
R scripts required for generating the figures are available at https://github.com/ercrema/c14demoreview 
and archived on zenodo (https://doi.org/10.5281/zenodo.6421345).

Null-Hypothesis Significance Testing (NHST) approaches

Approaches in this category are designed to address the limitation of reconstructive methods
by  formally  examining  specific hypotheses.  For  example,  one  might  be  interested  in
determining whether observed time frequencies of radiocarbon dates conform to or deviate
from what we should expect from an exponential population growth with a particular rate or
whether two regions have experienced similar population trajectories during a specific time
window. These examples are well suited for applying a Null-Hypothesis Significance Testing
(NHST) framework. 

The number of case studies employing NHST for examining radiocarbon time-frequency data
has grown substantially since the publication of the seminal paper by Shennan and colleagues
(2013), who first introduced a Monte-Carlo simulation approach that underpins most of the
current applications. A comprehensive review of these approaches and an introduction to a
dedicated  R package  that  facilitates  their  applications  is  provided elsewhere  (Crema and
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Bevan 2021), but it is worth highlighting here the core idea behind these methods and more
importantly, their limitations in practical applications. 

The  Monte-Carlo  simulation  approach  introduced  by  Shennan  et  al.  (2013)  consists  of
comparing the observed SPD against a distribution of SPDs that one should expect to obtain
given a particular null model. The intuition here is that given a growth model and a sample
size of radiocarbon dates, one can iteratively generate an ensemble of SPDs and determine
whether the observed SPD can be distinguished from those or not. In practical terms, such a
null  model  is  conceptualised  as  a  sequence  of  probabilities  values  associated  with  each
calendar year, e.g. P(t=2500 BP) = 0.001, P(t=2499 BP) = 0.002, P(t=2498 BP) = 0.003, etc.
This effectively formalises the simple notion that if a particular year is assumed to have twice
the population size of another, we would assume that the number of expected dates (hence the
associated probabilities) would be two times larger. This discrete probability distribution is
used to simulate n dates, with n equivalent to the observed sample size. The resulting set of
calendar dates is then converted into 14C age by ‘back-calibration’, and a measurement error,
sampled  with  replacement  from  the  observed  data,  is  randomly  assigned  to  each.  This
workflow generates n radiocarbon dates that we should expect to obtain if the null hypothesis
was true, and the resulting SPD can be constructed using standard procedures. To account for
variations arising from sampling error, this process is repeated many times.  The resulting
distribution of SPDs is then compared against the empirically observed one in two ways. The
first consists of displaying the simulation envelope against the observed data and visually
identifying regions of positive and negative deviations that represent time-interval where the
density of radiocarbon dates was higher or lower than the one expected by the null model.
The second consists of retrieving a single, global P-value based on a test statistic computed
from the aggregate  deviation  from the simulation  envelope (see Timpson et  al.  2014 for
details). 

The MCMC approach effectively addresses two of the most problematic issues (i.e., sampling
error and calibration effect) by emulating their consequences in the Monte-Carlo simulation
routine. While there have been some minor modifications in the method (see for example the
use of different algorithms for generating samples - see Crema and Bevan 2021), as well as
some  follow-up  secondary  analyses  (e.g.,  Edinborough  et  al.  2017),  the  fundamental
approach remains the same and is implemented in the R packages rcarbon (Crema and Bevan
2021) and ADMUR (Timpson et al. 2021).

The method described above is  effectively  a one-sample test  where the observed SPD is
compared against  a user-defined theoretical  model.  In many situations,  however,  the key
objective is to compare two or more SPDs to each other rather than against a theoretical
model.  Examples  include  the  comparison  of  the  population  trajectory  of  two  or  more
geographic regions (Shennan et al.  2013) or the relative proportion of different site types
(e.g., monuments vs settlements; as in Collard et al.  2010) or dated samples (e.g. wild vs
domesticated plants; as in Stevens and Fuller 2012). All these cases can be tackled using a
randomisation test, which simply consists of: 1) assigning a  mark to each radiocarbon date
defining its  membership to a particular  set  (e.g.  region A and region B); 2) generating a
separate  SPD  for  each  set;  3)  randomly  shuffling  the  marks assigned  to  the  dates,  and
generating  an  SPD for  each set  again;  4)  repeating  the  previous  step  multiple  times;  5)
comparing the observed SPD obtained in step 2 against the distribution of SPDs obtained in
step 4 using a similar procedure to the one-sample Monte-Carlo method described above.
Such mark permutation test (Crema et al. 2016; but see also Dye 1995 for a similar earlier
application)  provides  a  direct  test  on  whether  multiple  SPDs have  similar  shapes and  is
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currently implemented in the  rcarbon R package. Extensions of this approach include hot-
spot analyses for detecting spatial  heterogeneity in growth rates (Crema et al.  2017), and
formal testing of resilience-resistance to external perturbation (Riris and de Souza 2021). 

NHST approaches to the analysis of time-frequency data have successfully introduced a more
robust inferential process that overcame many of the limitations imposed by simple visual
assessments of SPDs. Whilst these advances are important steps forward; they also share the
same  kind  of  problems  afflicting  the  NHST  framework  in  general.  Three  of  them  are
particularly noteworthy and deserve some careful consideration. 

Firstly, the interpretation of P-values should account that these are both a function of sample
and effect sizes. While I am not aware of any systematic survey on the misinterpretation of P-
values in archaeology, review studies in other fields that employ statistical inference more
routinely suggest that its definition and interpretation are often incorrect (e.g., Gliner et al.
2010, Greenland et al. 2016). A high P-value should not be interpreted as a goodness of fit of
the radiocarbon record to the proposed null model, whilst low P-values can easily be obtained
if there is a sufficiently large sample size, even if the effect size (i.e., the deviation from the
null  hypothesis)  is  comparatively  small.  The  second point  highlights  the main inferential
limitation of NHST, particularly when quantifiable estimates of effect sizes are not available,
as in  this  case.  Testing whether  an observed SPD deviates  from a particular  exponential
growth rate or determining whether two regions have different trajectories are examples of
point hypotheses, i.e. a hypothesis that evaluates a single value. Strictly speaking, we already
know that the null hypothesis is incorrect — an SPD would unlikely have exactly a particular
exponential growth rate at its 7th decimal point, and two regions would never have perfectly
identical  population  dynamics.  What  matters  is  how  and  how  much  the  observed  data
deviates from a particular null hypothesis, and this is not something that can be inferred from
P-values. Obtaining a statistically significant result might well just tell us only that we have a
large number of radiocarbon dates in our databases.  

Secondly,  while  the  selection  of  the  null  hypothesis  for  permutation  tests  is  typically
straightforward,  one-sample  Monte-Carlo tests  require  a  user-defined growth model.  This
means that depending on the choice of this  null  model,  global P-values,  as well  as local
positive and negative deviations from the simulation envelope, can vary. For example, using
an exponential growth null model for radiocarbon frequency data characterised by a logistic
growth would yield a negative deviation for time intervals where the population reached its
carrying capacity. Similarly, large deviations from the null model during early sections of the
window of analyses can lead to misleading signals in later portions even if the underlying
shape of the SPDs are similar. Comparing rates of change of the SPDs can partly solve the
problem (see e.g. Crema and Kobayashi 2020, Arroyo-Calin and Riris 2021), but clearly,
positive and negative deviations should not be uncritically interpreted as signals of population
boom and busts. It is also worth pointing out that some instances of local  deviations are
expected  to  be  false  positives  (see  Timpson  et  al  2021  for  discussion),  and  as  such,
interpretation  of  these  plots  should  only  be  made  only  if  the  global  P-value  suggests  a
rejection of the null hypothesis in the first place. 

Thirdly, it should be noted that the one-sample Monte-Carlo method is designed to test the
observed SPD against a particular parametrisation of a model. In other words, the question
that is being asked is not whether a given data follows, for example, an exponential growth,
but whether it follows an exponential growth with a  specific growth rate  r. It follows that
rejecting a particular rate r does not necessarily imply that all exponential growth models are
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rejected. In practice, however, one could test against the most probable value of r so that its
rejection would imply the rejection of all other values of r and consequently the model as a
whole.  The  selection  of  r (or  any  other  parameters)  is  typically  obtained  by  fitting  a
regression model to the observed SPD values. As discussed above (and explored in Carleton
2021), these estimates can be biased (see also Fig. 2). It is difficult to determine whether the
impact  of  this  discrepancy can have significant  inferential  consequences,  and it  is  worth
noting that the approach does not necessitate a workflow where the null model is based on the
observed data. For example, Silva and Vander Linden (2017) examined SPDs of Neolithic
Europe  using  the  growth  rate  estimated  from pre-existing  Mesolithic  populations,  whilst
Crema and Kobayashi (2020) have compared an SPD of the Jomon period in central Japan
against a null model based on the fluctuations of independently dated pit-dwellings. 

Model-fitting approaches
Both reconstructive and NHST approaches are commonly used as exploratory devices that
provide the basis for developing more sophisticated explanatory models. These are, however,
mostly limited to speculative statements that are rarely tested directly or formally compared
against alternative hypotheses. The desire to move beyond this inferential framework has led
to a steadily growing number of studies that have attempted to use SPDs in more ingenious
ways. In many cases, however, this endeavour is being pursued by directly using SPDs as the
observed data, effectively ignoring the potential bias of sampling error and calibration effects
(see discussion above). 

In  2021 alone,  four  different  solutions  have  been developed  to  address  these  issues  and
provide a framework that can be used to fit putative growth models, infer their parameters,
and  carry  out  formal  comparisons  between  competing  hypotheses.  While  some  of  these
approaches share similarities from a methodological standpoint, they are effectively distinct
approaches with different accuracy, flexibility, and computational performance levels. 

Carleton (2021) proposes a hierarchical Bayesian workflow named Radiocarbon-dated Event
Count  model  (hereafter  REC  model),  which  models  the  radiocarbon  record  as  a  one-
dimensional  point  process  with  a  time-varying  intensity  parameter  λ(t).  REC consists  of
fitting  a  hierarchical  generalised  linear  model  (GLM)  that  includes  time  as  one  of  its
covariates and optionally a set of additional independent variables (e.g., climate record). The
key idea behind REC is to tackle the problem of chronological uncertainty by sampling n sets
of  random calendar  dates  from  the  calibrated  distribution  of  each  radiocarbon  date  and
generating n vectors of count frequencies based on user-defined temporal bins. These sets of
count  data  are  then  fitted  using  either  a  Poisson  or  Negative  binomial  regression.  The
hierarchical structure of REC ensures that the distribution of the n regression coefficients is
directly modelled using Gaussian distributions, which moments are effectively the estimate
and the associated uncertainty of our parameters of interest. Carleton tested the accuracy of
the REC model by generating a simulated dataset with a known exponential growth rate and
showed that although it fails to recover the correct value within its posterior range, it does
offer a considerable improvement over the direct application of GLM on SPD values (figure
13, Carelton 2021, but see also Fig 2). The two main limitations of this approach are its high
computational cost, which increases when the temporal resolution and the number of sampled
sets of dates n are high, and the requirement for a comparatively large sample size. The latter
point is intrinsically linked to the idea of using a count-based statistic where effectively the
samples are not the observed number of dates but the number of temporal bins. It follows that
an absence of dates in a particular bin could be evidence of low intensity or simply the effect
of sampling error. In other words, the sampling procedures address the issue of chronological
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uncertainty but not sampling error.  When a larger number of radiocarbon dates is available,
the potential  bias  in  the output  is  reduced,  but  when sample sizes  are  small,  one should
interpret the estimates as descriptive statistics of the sample rather than inferred population
parameters.  Despite  these  shortcomings,  the  opportunity  to  directly  integrate  external
covariates  is  appealing  and has  already  led  to  its  application  in  determining  the  role  of
climate change in the extinction of quaternary megafauna in North America (Stewart et al.
2021). A dedicated R package (chronup) with a revised method that addresses some of these
concerns is currently being developed (see Carleton and Campbell 2021). 

Porčić et al. (2021) have instead employed a generative inference approach where estimates
are made by first simulating a large collection of SPDs with the same samples size as the
observed  data  and  using  different  “candidate”  parameter  combinations  of  a  particular
population model. These outputs are then individually compared to the observed SPD, and
the parameter values used in the subset of simulations with the closes fit to this target are
interpreted  as  an  approximation  of  the  estimate.  This  approach,  known  as  approximate
Bayesian  computation  (hereafter  ABC),  was  initially  developed  in  population  genetics
(Beaumont  et  al  2002)  and  has  been  successfully  applied  in  different  fields,  including
archaeology (Kovacevic et al. 2015, Crema et al. 2016, Carrignon et al. 2020). In the case of
radiocarbon  frequency  data,  the  generative  approach  effectively  solves  the  problem  of
sampling  error  and  calibration  effects  following  the  same  principles  of  the  one-sample
Monte-Carlo simulation method described above. The key difference is the definition of an
initial prior distribution of possible parameter values from which these SPDs are simulated.
Porčić et al. (2021) used a distance measure to evaluate the similarity between their candidate
and observed SPDs,  which  they  then  used to  define  a  subset  of  parameter  combinations
yielding the closest fit to data. These subsets are approximations of the posterior distribution
for each of the model parameters. The most appealing feature of ABC is the great flexibility
in defining the generative model, as evidenced by its recent application coupled with agent-
based  simulations  (Carrignon  et  al.  2020).  The  already  mentioned  re-analyses  of  the
radiocarbon record from Rapa Nui by Di Napoli et al. (2021) is an example that showcases
how this approach can be used to fit complex ecological models such as logistic growths with
time-varying and externally dependent carrying capacities. However, the flexibility of ABC
is countered by the extreme computational cost required to obtain a sufficiently large number
of posterior samples for an accurate and precise estimate of the parameter of interest. The
development of more efficient algorithms (Beaumont 2019) is reducing this computational
cost, but part of the issue is also dictated by the details of the simulation model itself. While
there are no dedicated software packages for this approach either, both Porčić et al. 2021 and
Di Napoli et al. 2021 provide R scripts that can be tailored to specific needs (see also the
script used for Fig. 2 below).

ABC is typically employed in situations where the likelihood function of a particular model
cannot be numerically computed and hence substituted by a large number of simulations and
a measure of discrepancy between target and candidate. Numerical solutions of the likelihood
function  are  available  for  common  probability  distributions,  such  as  the  uniform or  the
Gaussian, that are routinely employed in radiocarbon phase modelling (Buck et al.  1992).
However,  these  probability  distributions  rarely  represent  suitable  models  of  population
change (but see the finite Gaussian mixture model discussed), particularly so when the latter
is more complex, as in the example of the time-varying carrying capacity model described
above. From a mathematical standpoint, the complexity arises because time is modelled as a
continuum, and hence the likelihood is based on a probability density function. However, the
likelihood  calculation  becomes  trivial  by  treating  time  as  discrete  (i.e.,  using  individual
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calendar years as units) and using probability mass functions to model changes in the density
of radiocarbon dates over a given interval. Given a population growth model  m with some
parameters 1, 2, … k representing the probabilities of observing a radiocarbon date for each
k year  within  the  window of  analyses,  the likelihood  is  equivalent  to  the product  of  the
probabilities  of  the  observed  events.  For  example,  if  our  sample  consists  of  three  dates
x1=3200, x2=3300, and x3=2800, and their probabilities for a particular growth model with
some defined parameter value y are 1= 0.02, 2=0.023 3=0.001, then the likelihood L(=y|
x1,x2,x3)  is  equivalent  to  1  ⨯ 2  ⨯3,  or  0.00000046.  One  can  estimate  the  parameter  y
yielding the highest likelihood given these three dates. The problem is that radiocarbon dates
are not single values but are instead described by a probability distribution that results from
its measurement error and the calibration process. Timpson et  al.  (2021). account for this
measurement  error  by  basically  calculating  the  scalar  product  between  the  model
probabilities and the probabilities from the calibrated dates. For example, suppose that x1 now
has a probability of being equal to 3200 of 0.4 and a probability of being 3201 of 0.6. We
would update 1 as (0.4  probability of obtaining 3200 according to the model) ⨯ ⨯
(0.6  probability of getting 3201 according to the model). ⨯

This solution effectively enables the use of statistical tools based on likelihood estimation.
Model parameters can be inferred based on maximum likelihood, and alternative hypotheses
can  be  compared  using  information  criteria.   Because  the  calculation  of  the  likelihood
function is effectively always the same, the model is also highly flexible. Any mathematical
model that can generate discrete probabilities within a bounded range of calendar years can
effectively  be  fitted  with  this  approach.  Timpson  et  al.  (2021)  make  good  use  of  this
flexibility  and examined the radiocarbon record from the South American Arid Diagonal
using a continuous piecewise linear (CPL) model. The population growth model they employ
effectively  consists  of  n linear  segments  and  n-1 hinge-points,  which  requires  2n-1
parameters to be inferred. By using information criteria, they explore models with different
numbers of segments and show that 3-CPL (i.e., a three-segment model) provides the best fit
to the data, providing key information such as when major shifts in population growth rate
occurred in the South American Arid Diagonal region. This explicit model-based framework
also enables a more robust approach toward typical problems encountered in the analyses of
SPDs. For example, rather than applying a taphonomic “correction” to the observed summed
probabilities, ADMUR — the R package developed by Timpson et al. (2021) —allows for
the direct integration of the taphonomic loss model in the calculation of the likelihood and
consequently of the parameter estimates. 

Crema and Shoda (2021) offer a Bayesian alternative to the solution developed by Timpson
et al. (2021).  While the calculation of the likelihood function follows the same logic based
on  the  shift  from  probability  density  to  probability  mass  functions,  the  modelling  of
measurements  errors and the possibility  of using priors make their  approach different.  In
contrast to Timpson et al. (2021), their model considers calibrated probability distributions to
be posteriors  that  can  be informed both from the individual  observation  (e.g.,  laboratory
measurement errors) and the higher-level model describing the variation in the density of
dates  over  time.  This  is  conceptually  the same approach used in  Bayesian phase models
typically  employed in software packages such as OxCal and BCal. As a result,  the fitted
model  estimates  the  population-level  parameters  (e.g.,  exponential  growth  rate)  and  the
posterior  probability  of  each  calibrated  radiocarbon  date.  The  second,  and perhaps  more
crucial difference, is the possibility to provide prior distributions to parameters of interest.
While  strong priors  and strict  constraints  as  those occasionally  implemented  in  Bayesian
phase  models  are  unlikely  to  be  useful  in  this  context,  the  opportunity  to  use  weakly
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informative priors that can ‘nudge’ and reduce the possible range of parameters values (e.g.
by,  for  example,  reducing  the  probability  of  biologically  implausible  growth  rates)  can
enormously help the inference process when sample sizes are limited, allowing researchers to
implement stricter inclusion criteria for their available radiocarbon datasets. 

The Bayesian nature of this inferential framework is particularly useful when the full extent
of the uncertainty associated with the individual parameters is of interest. For example, in
their case study, Crema and Shoda (2021) aimed to determine whether and when we observe
a significant shift in population growth rate on the island of Kyushu in South-West Japan at
the onset of the introduction of rice farming. They estimated this change-point to be around
the 8th-7th century BC and used the earliest  dated charred remains of rice to estimate a
temporal lag of several centuries between the putative date of the introduction of farming and
the timing of the demographic response. Similarly, Kim et al. (2021) investigated whether the
population crash that occurred during the latter half of the Chulmun period (10,000 - 3,500
cal BP) resulted from mid-4th millennium climatic deterioration. To evaluate this hypothesis,
they measured the temporal lag between the estimated start point of the population decline (as
inferred from radiocarbon density) and the timing of abrupt changes estimated from Bayesian
age-depth  models  of  different  proxies.  Because  both  measures  are  characterised  by
chronological uncertainty, Kim et al. (2021) computed distributions of age differences from
the estimated posteriors and calculated the probability that the population crash initiated after
the  climatic  deterioration.  While  there  were  some  differences,  they  showed  that  the
probability of such an event was close to zero for at least two of the three proxies examined. 

It is also worth noting that because the computational framework developed by Crema and
Shoda (2021) is  essentially  just  a Bayesian hierarchical  model,  there are opportunities  to
construct models that can benefit from more complex structures. For example, cross-regional
analyses can employ a hierarchical structure where growth rates of each region are inferred
via partial-pooling, i.e. informed to some extent by the growth rates of other regions. This
provides more robust estimates compared to separated analyses for each region and, at the
same time, offers opportunities to directly model inter-regional variability in growth rates. 

The four model-fitting approaches described here all offer substantially more robust ways to
infer model parameters compared to regression models directly applied to SPDs. Figure 2
shows the fitted value and the 95% confidence interval of the growth rate of two samples of
50 and 500 radiocarbon dates. The direct regression fit to the SPD fails to include the actual
growth rate (dashed line), and the difference in sample size has minimal to no impact on the
width of the confidence interval. Three out of the four approaches discussed here successfully
manage  to  include  the  actual  growth  rate  in  their  confidence  intervals,  with  a  wider
confidence interval for the smaller data set. REC shows a mixed outcome instead, with the
actual  rate  recovered  only  for  the  larger  set  and  the  smaller  set  yielding  a  narrower
confidence interval than the other methods examined here. Similarly, although recovering the
true parameter, the ABC approach performs less efficiently with substantially wider posterior
intervals. 

Model-fitting  approaches  also  provide  an  important  additional  benefit  of  being  able  to
formally  compare  alternative  growth  models  against  the  observed  data.   For  example,
Timpson  et  al.  (2021)  employed  Schwarz  Criterion  to  determine  the  optimal  number  of
hinges in their  CPL model,  and similarly,  Di Napoli  et  al.  (2021) used Bayes Factors to
compare  different  ecological  models,  and  Crema  and  Shoda  (2021)  used  the  Widely
Applicable Information Criterion (WAIC) to determine whether a model with change point
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provided more support in contrast to simple exponential growth.  The epistemological shift
from a single to multi-model inference is highly appealing, as it allows for formal grounds for
the contrasting of competing  hypotheses of demographic  histories.  There are,  however,  a
couple of important issues to consider. Firstly, as mentioned earlier, the calculation of AIC
and other information criteria on regression models directly applied to SPD values returns
incorrect estimates. As such, those interested in this inferential framework will have to resort
to one of the approaches described in this section. Secondly, multi-model inference provides
only a relative measure of goodness-of-fit; the best model among the candidates can still be,
in absolute terms, a terrible model. Timpson et al. (2021) tackle this problem by employing a
goodness-of-fit  test  that  is  effectively  equivalent  to  the  one-sample  Monte  Carlo  test
discussed earlier, while both Crema and Shoda (2021) and Di Napoli et al. (2021) employ a
graphical posterior predictive check. While the robustness of these sanity checks is limited
with smaller  sample  sizes,  they  offer  an important  tool  for  the multi-model  inference  of
radiocarbon frequency data. 

Figure 2 Estimates and 95% confidence interval of a fitted exponential growth rate on a simulated dataset
with two different sample sizes (n=50 and n=500) using: a) direct regression fit on the SPD; b) Bayesian 
radiocarbon-dated event count (REC) model; c) maximum likelihood fit via the ADMUR package; d) 
Bayesian hierarchical model via nimbleCarbon package; e) approximate Bayesian computation with 
rejection algorithm. Real growth rate is shown as a dashed line. R scripts and details required for 
generating the figures are available at https://github.com/ercrema/c14demoreview and archived on 
https://doi.org/10.5281/zenodo.6421345 
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Where next?
The  methodological  review  presented  here  showcases  the  growing  range  of  analytical
approaches designed to infer demographic changes from radiocarbon density data. While this
trend is dictated by similar objectives and hence can be conceived as genuine alternatives,
most of the methods discussed above were developed with different needs in mind. Some of
the proposed solutions, particularly those grouped under  model-fitting approaches, provide
the foundation for developing bespoke analyses tailored to specific problems and questions
arising  from  a  given  dataset.  Others,  such  as  those  described  here  as  reconstructive
approaches, offer all-around solutions that are more suitable for an initial assessment of the
available  evidence.  There  is  clearly  no  single  go-to  solution,  and  users  should  consider
options  according  to  their  objectives.  However,  it  is  useful  to  highlight  three
recommendations that transcend these classifications and have often been raised by scholars
who developed these techniques.

1. SPD curves should never be exclusively interpreted from their visualisations nor
directly used  for  statistical  inference.   As  mentioned  repeatedly  throughout  this
paper, the impact of sampling error and calibration effect is simply too significant to
be  ignored.  Visual  assessments  of  SPD  can,  however,  provide  important  cues,
particularly when dealing with broader-scale multi-millennial trends. As such, if the
objective  of  the  analysis  is  data  description  and  exploration,  the  adoption  of
reconstructive  approaches  that  visually  provide  an uncertainty  envelope  should  be
considered. While in some cases these methods might be too conservative and hide
shorter scale fluctuations, they can avoid hasty conclusions based on little evidence.

2. Consider running sensitivity analysis. Many of the methods described above rely on
some fine-tune settings where users are required to provide some numerical figures.
These include, for example, binning window sizes for aggregating radiocarbon dates
from the same site or bandwidth sizes in some Kernel Density Estimates.  Although in
some cases one can justify their choices, the relative impact of how changing these
parameters affects the ultimate inference should be explored when possible (see for
example Riris 2018, Feeser et al.  2019). Similarly,  the inclusion or exclusion of a
particular set of samples should be evaluated when possible. Such sensitivity analyses
would  reveal  how  changing  these  settings  have  no  qualitative  impact  on  the
conclusion  in  the  best-case  scenario.  Conversely,  in  the  worst-case  scenario,  the
ultimate results would depend on these decisions. 

3. Carry-out tactical models and what-if  experiments. Tactical models (Orton 1973,
Lake 2014, Crema 2018) and what-if experiments (Buck and Meson 2015, Hinz 2020,
Holland-Lulewicz  and  Ritchison  2021)  are  simulation  techniques  consisting  of
generating,  in  silico, artificial  archaeological  data  under  known  conditions  to
determine the robustness of analytical  techniques,  explore the impact  of particular
biases,  or  estimate  necessary  sample  sizes  and  guide  data  collection.  These  are
powerful yet relatively underutilised tools that can enormously help in any statistical
analysis. It is thus not surprising that these techniques have been used in radiocarbon
density-based  demographic  research,  either  to  establish  the  robustness  of  new or
existing techniques (Contreas and Meadows 2014, Edinborough et al. 2017, Crema et
al. 2017, Timpson et al. 2021, Carelton 2021, Price et al. 2021), question the impact
of various forms of biases (e.g. Surovell and Brantingham 2007, Davies et al. 2016,
Bevan and Crema 2021), or determine whether the available sample size is sufficient
to recover putative demographic events (e.g.  Hinz 2020, Crema and Shoda 2021).
These techniques provide invaluable insights into the robustness of our analyses. They
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can be tailored to the specific needs and challenges of particular contexts and even
guide alternative solutions or more targeted future sampling strategies. 

Some of these recommendations can be challenging to implement, particularly as they cannot
be part of a generalised workflow and require a good understanding of the data set. Some
techniques, such as ABC and OxCal’s KDE, can also be computational too prohibitive to
allow exhaustive sensitivity analyses or what-if experiments. Nonetheless, the benefit these
tools  provide  is  essential  if  we  wish  to  make  robust  inferences  about  past  population
dynamics. 

Despite  these outstanding challenges,  it  is  unquestionable that  the appeal  of radiocarbon-
based population inference for comparative research remains.  We are now able to, at least in
principle,  develop  demographic  models  that  are  not  limited  to  regional  constraints  of
archaeological  periodisations  and  start  investigating  common  trajectories  and  detect
anomalies.  Several  exciting  studies  have  already started  to  move towards  such a  line  of
research, estimating benchmark figures of long-term population growth rates (Zahid et al.
2016) or identifying shared trajectories in their fluctuation at the global scale (Freeman et al.
2018).  Similarly,  continental-scale  windows  of  analysis  are  revealing  new  insights  and
providing the grounds for developing new hypotheses (Shennan et  al.  2013, Crema et al.
2017,  Riris  and Arroyo-Kalin  2019,  Bird et  al.  2020,  Palmisano  et  al.  2021).  While  the
methodological developments reviewed in this paper showcase the effort made by different
research  groups  in  addressing  many  of  the  concerns  raised  against  early  applications  of
radiocarbon density-based demographic inference,  there is a clear trade-off between these
large-scale comparative analyses  and the inevitable  increase in the number of biases that
larger  datasets  entail.   Local  anomalies  in  the radiocarbon record  might  provide  genuine
insights that can help understand the demographic history of a particular region but might
simply be the result of a spatially or chronologically structured bias. Incorrect inferences are
inevitable, and the stakes can often be high. Still, the methodological advances made over the
last few years and the high reward of expanding comparative demographic research in deep
history suggest it is an endeavour well worth pursuing.  
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Tables

Category Name Parameters Parallel
Processing Computational Cost Software Reference

Reconstructiv
e

Summed Probability 
Distribution - Yes Low OxCal, rcarbon, R 

scripts, ADMUR, baydem Vv.Aa.

Bayesian Gaussian Mixture Number of Mixture Components (+); Number of MCMC 
iterations & burnin (+); Number of chains (+); Hyperpriors

Yes (MCMC 
chains) High-Very High baydem, Bchron Price et al 2021

Composite KDE Kernel bandwidth size; Number of bootstrapped samples (+); 
Number resampled sets of calendar dates (+) Yes Low rcarbon, R scripts Brown 2017; McLaughlin 2018

Bayesian KDE - No High-Very High OxCal Bronk-Ramsey 2017

NHST

Monte-Carlo Summed 
Probability Distribution 
Method

Number of MC Simulations (+) Yes Medium rcarbon, ADMUR Shennan et al 2013; Timpson et 
al 2014; etc.

Mark Permutation Test Number of Permutations (+) Yes Low rcarbon Crema et al 2016; etc.

Spatial Permutation Test Number of Permutations (+) Yes Low rcarbon Crema et al 2017; etc.

Point to Point Post-Hoc Test Number of MC Simulations (+) Yes Low rcarbon, R scripts Edinborough et al 2017; see also 
Riris and De Souza 2021

Model Fitting

Approximate Bayesian 
Computation

Model; Priors; Number of Simulations (+); ABC algorithm; 
Tolerance level (-) Yes Very High R scripts Porčić et al 2021; Di Napoli et al 

2021

Bayesian Radiocarbon Event-
Count Model

Model; Priors; Resolution of the temporal bins (-); Number 
resampled sets of calendar dates (+); Number of MCMC 
iterations & burn-in (+); Number of Chains (+)

Yes (MCMC 
chains) High R scripts; chronup

Carelton 2021; Stewart et al 2021
Bayesian Hierarchical Model 
with Measurement Error

Model; Priors; Number of MCMC iterations & burnin (+); 
Number of chains (+)

Yes (MCMC 
chains) High nimbleCarbon Crema and Shoda 2021; Kim et 

al 2021; Riris and De Souza 2021

Maximum Likelihood Fitting Model; Number of MCMC iterations (+) No High ADMUR Timpson et al 2021

Table 1. Summary of statistical techniques for inferring past demography from radiocarbon frequency data. Plus/minus signs in the Parameters fields indicated whether 
preferences are for larger (+) or smaller (-) settings. Computational costs are indicative as it depends on sample size and availability of parallel processing: Low (<< 1 
hour); Medium (~ several hours); High (~ 24 hours); Very High (~ several days). 
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