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Abstract
Activefluids operate by constantly dissipating energy at the particle level to perform a directedmotion,
yielding dynamics and phases without any equilibrium equivalent. The emerging behaviors have been
studied extensively, yet deciphering how local energy fluxes control the collective phenomena is still
largely an open challenge.We provide generic relations between the activity-induced dissipation and
the transport properties of an internal tracer. By exploiting amapping between active fluctuations and
disordered driving, our results reveal how the local dissipation, at the basis of self-propulsion,
constrains internal transport by reducing themobility and the diffusion of particles. Then, we employ
techniques of large deviations to investigate how interactions are affectedwhen varying dissipation.
This leads us to shed light on amicroscopicmechanism to promote clustering at low dissipation, and
we also show the existence of collectivemotion at high dissipation. Overall, these results illustrate how
tuning dissipation provides an alternative route to phase transitions in active fluids.

1. Introduction

Activematter comprises systemswhere energy is injected at the level of individual constituents [1–4]. Canonical
examples at themicro-scale are given by swimming organismswhich can be either biological or synthetic, such
as bacteria [5, 6] or Janus colloids in a fuel bath [7, 8]. These swimmers are able to convert a source of energy
present in the environment,must often in chemical form, to perform a directedmotion. Thus, the dynamics is
driven by a sustained flux of energy between the system components and their environment, so that active
matter operates far from any equilibrium state [9–14].

A striking property of active systems is their ability to spontaneously form clusters of particles even though
interactions are purely repulsive, up to a complete separation between dense and dilute phases at large scales
[15, 16]. To rationalize such a phase transition, several works have relied on hydrodynamic theories. Some
systematic coarse-graining procedures allowone tomaintain the connectionwith themicroscopic dynamics
[17–20]. Alternatively, continuumdescriptionswhich capture the phase separation are postulated based on
symmetry arguments [21–25]. Despite the success of these approaches, the role of energyfluxes at the basis of
directedmotion is either completely discardedwhenmapping the dynamics into equilibrium [17, 26, 27], or
simply overlooked by using equilibrium-like tools, such as pressure and chemical potential, to describe these
nonequilibrium transitions [28, 29]. Hence, determining how local energyflows control phase transitions at
large scales remains an open challenge.

A phenomenologicalmechanism to describe cluster formation is based on the fact that collisions between
active particles slow down the dynamics [2, 16]. The reduction of transport coefficients by activity is then often
regarded as a precursor of cluster formation.While several works have strived to predict how internal transport
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is affected by activity [30–35], a recent study has put forward an explicit connection between diffusion and
dissipation in amixture of active and passive particles [36].Moreover, for generic driven systems, it has been
shown recently that the diffusion coefficient is generically bounded by dissipation [37–41]. Yet, this
thermodynamic uncertainty relation (TUR) explicitly involves observable currents, thus beingmostly useful for
systems exhibiting directed transport. It remains to determine howTUR can also inform the transport in active
systems in the absence ofmacroscopic particle current.

In this paper, we explore how local energy dissipation controls the transport of particles and the spontaneous
formation of clusters in activefluids. In section 2, we introduce the collisional efficiency to quantify cluster
formation in terms of energy transfers between the particles and their environment. To predict how this
efficiency behaves in terms ofmicroscopic details, we build on themapping of active particles into driven
particles proposed in [36]. It consists in describing the random self-propulsion as a disordered drive, which
allows us to coarse-grain the active dynamics usingmethods of drivenfluids, as detailed in section 3.We then put
forward in section 4 generic relations between efficiency and internal transport: the efficiency equals a reduced
mobility at high activity, and it also bounds the diffusion coefficient in such a regime. Finally, we demonstrate in
section 5 thatmodulating the efficiencywith a specific control parameter amounts to changing the self-
propulsion statistics. This result relies onmethods of large deviationswhere atypical dynamics are promoted to
select a desired level of efficiency [42–44], leading to promote either cluster formation or collectivemotion.
Altogether, our results illustrate how efficiency relates to internal transport and quantifies the emergence of
phase transitions, thus supporting that changing efficiency is a generic route to control the properties of active
fluids.

2. Energy transfers in activefluids

Weconsider a set of self-propelled particles immersed in a solvent at temperatureT and interacting through a
potentialU. Provided that inertia is negligible, the dynamics is given by an overdamped Langevin equation:

x= -  +Ur v , 1i i i i ( )

wherewe have set the particlemobility to unity. The thermalfluctuations stemming from the solvent are
accounted for by the zero-meanGaussianwhite noise xi with correlations

x x d d dá ñ =a b abt T t0 2 , 2i j ij( ) ( ) ( ) ( )

where the Latin andGreek indices respectively refer to particle labels and spatial components. Following recent
works [10, 26, 45, 46], we describe the self-propulsion force vi as another zero-meanGaussian noise,
uncorrelatedwith xi, with correlations

t
d dá ñ =a b ab

t-v t v
T

0 e , 3i j ij
tA( ) ( ) ( )∣ ∣

where τ is the persistence time, andTA is the energy scale of activefluctuations. The self-propulsion
correlations(3) correspond to theOrnstein–Uhlenbeck process

ht = - +v v , 4i i i ( )

where hi is a zero-meanGaussianwhite noise, uncorrelatedwith xi, with correlations:

h h d d dá ñ =a b abt T t0 2 . 5i j ijA( ) ( ) ( ) ( )

Such amodel has then been referred to as activeOrnstein–Uhlenbeck particles. For a vanishing persistence, the
activefluctuations cannot be distinguished from the thermal ones: d d dá ña b

t
ab


v t v T t0 2i j ij

0
A( ) ( ) ⟶ ( ), inwhich

case the system amounts to a set of passive Brownian particles at temperatureT+TA. The deviation from this
equilibrium regime is controlled by the ratio of persistence time τ to equilibrium relaxation time a2/T, where a is
the particle diameter, defined as the Péclet number [10]:

t
=Pe

T

a
. 6( )

Alternatively, setting directlyTA=0 corresponds the equilibrium regime at temperatureT for any value of τ.
The amount of dissipated energy is defined frompurelymechanical arguments as the rate of work that the

particles exert on the solvent [47–50]:

x= á - ñ r r . 7i i i· ( ) ( ) 

Repeated indices are implicitly summed, and the product rule ·is definedwithin Stratonovitch convention, as for
the rest of the paper. In driven systems, such a definition coincides with the rate of entropy production, which
can be deduced from the ratio of forward to backward path probability weights [47, 48, 51]. In active systems,
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different definitions of entropy production have been proposed [9–14], the connectionwith the dissipation is
onlymaintained for some of them.

Substituting the dynamics(1) in the dissipation definition(7), the dissipation can bewritten as =
t á ñr v1 i i( ) · , wherewe have used á  ñ = á ñ =U U tr d d 0i i· and tá ñ - á ñ = á ñ =tr v r v r v1 d d 0i i i i i i· ( ) · ·

in steady state. Thus, is proportional to the swimpressure r= á ñP d r vs 0 0 0( ) · , where v0 and r0 respectively
refer to the self-propulsion force and the position of a given particle, ρ0 is the particle density and d is the spatial
dimension [52–54]. The swimpressure is known to be themain contribution to the total pressure at lowdensity,
where it can bewritten for short-range repulsive interactions asPs=ρ0TA (1−ρ0/ρc), where ρc is the density
near close packing. This provides a direct relation between dissipation and density: t r r= - dNT 1A 0 c( )( )
when ρ0<ρc.

For arbitrary density and interaction, the dissipation can still be separated into distinct contributions
stemming from freemotion and from interactions:

t
= - á  ñ

dNT
Uv , 8i i

A · ( )

wherewe have used that vi and xi are uncorrelated, and tá ñ = dNTv i
2

A . The freemotion term dNTA/τ is the
maximumamount of dissipation. Collisions reduce the dissipation by slowing-down particles, as shown in
figure 1, which points at a natural connection between collision-induced cluster formation and reduced
dissipation. To quantify the propensity of collisions to stabilize clusters, we then introduce the collisional
efficiency, denoted  , which compares the contribution to dissipation from interactions and from freemotion:

t
= á  ñ

dNT
Uv . 9i i

A

· ( )

It takes values between 0 and 1, respectively in the absence of interactions andwhen all particles are in stable
clusters. Besides, it is proportional to the ‘rate of work’ introduced recently in nonequilibrium liquids as a
measure of the drive-induced dynamical and structural changes [36, 55].With this definition, the efficiency is
small whenmost of the dissipation is due to freemotion and the fluid only features a small number of clusters,
whereas the efficiency is largewhen particles dissipate less power in the solvent by forming large clusters. Hence,
the efficiency quantifies the ability of collisions among particles to yield clustering by slowing-down the
dynamics.

3. Coarse-graining activefluids

To study the relation between particle-based efficiency and collective behavior, we use a coarse-grained
description of the dynamics. It generally consists in a set of hydrodynamic equations for the density
r d= å -t tr r r, i i( ) [ ( )]and the polarization dP = å -t t tr v r r, i i i( ) ( ) [ ( )]. The conservation equation for

Figure 1. Snapshots of colliding active particles at four successive times from (a) to (d). The red arrows denote the direction of self-
propulsion. The color code refers to the instantaneous dissipation j=v·(v−∇U) scaled by the free-motion average value á ñv2 . It is
maximumwhen the particles are separated, as shown in (a), (d), and its value gets reduced during the collision, as depicted in (b), (c).
Movie in supplementalmaterial is available online at stacks.iop.org/NJP/22/013052/mmedia formovies corresponding tofigures 1,
and 7.
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density can be explicitly derived from themicroscopic dynamics(1) as

r r r rP L¶ =   - +  +U T T2 , 10t · [ ] ( )

where thefluctuating termL is a zero-meanGaussian noise with correlations

d d dáL L ¢ ¢ ñ = - ¢ - ¢a b abt t t tr r r r, , . 11( ) ( ) ( ) ( ) ( )

In the absence of aligning interactions, instabilities can be detected solely based on the time evolution of density.
To obtain a closed dynamics for density only, the challenge is then to express the polarization in terms of the
density. This commonly relies on combining adiabatic treatments with appropriate closures, valid only in
asymptotic regimes.While such treatments have shown successful to capture the onset of phase transitions
[17–20], they are generally restricted to low activity, thus limiting their ability to describe properly fluctuations
in the homogeneous state.

Our goal is then to bridge the gap between the hydrodynamics offluids driven by external forces, obtained
froma systematic derivationwithout reference to any closure [56, 57], and the hydrodynamics of activefluids.
To this aim, we rely on the fact that the active fluctuations of the self-propulsion can bemapped into a
deterministic drivewith disordered amplitude. Following a recent work [36], we introduce a set of driving forces
fi describing periodic orbits in the reference frame of each particle as

åt
w w= +

=

t
T

n
t tf A Bcos sin . 12i

a

n

ai a ai a
A

1

( ) [ ( ) ( )] ( )

The frequencies {ωi} are identical for all particles, and the amplitudes {Aai,Bai} are taken as uncorrelated zero-
meanGaussian variables with unit variance for each particle:

d d dá ñ = = á ña b ab a bA A B B , 13ai bj ab ij ai bjd d ( )

where á ñd· denotes an average over the disorder. Then, the disordered drive fi is a zero-meanGaussian process
with correlations given for a large number of oscillators (n?1) as

òd d
t

f w
w
p

=a b ab
wf t f

T
0 e

d

2
, 14i j n

ij
t

d
1

A i⟨ ( ) ( )⟩ ( ) ( )∣ ∣


wheref is the density of driving frequencies. In this limit, fi thenmaps into a randomnoisewith spectrum given
byf. Specifically, by choosing the following density

f w
t
wt

=
+

2

1
, 15

2
( )

( )
( )

the drive statistics(14) reproduces the exponential decay of activefluctuations(3).When the typical frequency
of the system response, set by the inverse relaxation time 1/τR, is below the drive frequency 1/τ, the disordered
drive cannot be distinguished fromawhite noise: this is the small Péclet regime (Pe= 1). In contrast, the
response of the systemprobes the non-flat part of the driving density when the cut-off frequency 1/τ is below the
relaxation frequency 1/τR: this is the high Péclet regime (Pe?1), where the drive statistics is now effectively
colored.

Within such amapping, we can nowderive hydrodynamic equations using the standard techniques of
drivenfluids [56, 57]. Thefirst step consists in identifying the source of noise in the disordered dynamics(1),
where now vi is replaced by fi. This is straightforward in the asymptotic Péclet regimes: (i)for Pe= 1, the drive fi
is akin to awhite noise, whose fluctuations can be absorbed into amodified solvent temperatureT+TA, and
(ii)for Pe?1, the drive fi is seemingly a deterministic forcewith constant amplitude and direction.Whether
the drive should be regarded as randomor deterministic is ambiguous in between these regimes, so that the
coarse-graining cannot be employed a priori.

To treat simultaneously both the large and small Péclet regimes, we definemodified thermal noise xi
˜ and

driving force fi
˜ , where the former is the only source offluctuations in the dynamics and the latter is a purely

deterministic drive. This is achieved by enforcing (i) x x d d dá ñ = +a b abt T T t0 2i j ijA
˜ ( ) ˜ ( ) ( ) ( ) and =af 0ĩ when

Pe= 1, and (ii) x x d d dá ñ =a b abt T t0 2i j ij
˜ ( ) ˜ ( ) ( ) and =f fi i

˜ when Pe?1. In short, the correlations of the tilted
processes can bewritten in terms of the dimensionless parameterσ as

x x s d d d

s d d d

á ñ = +

á ñ = á ñ -

a b ab

a b a b ab

t T T t

f t f f t f T t

0 2 ,

0 0 2 , 16

i j ij

i j i j ij

A

d d A

˜ ( ) ˜ ( ) ( ) ( )
˜ ( ) ˜ ( ) ( ) ( ) ( ) ( )

whereσ=1when Pe= 1, andσ=0when Pe?1. This provides an explicit connection between the statistics
of xf ,i i{ }and that of xf ,i i{ ˜ ˜ } in the asymptotic Péclet regimes.

It follows that the dynamics(1) can bewritten equivalently, with now clearly separated randomand
deterministic contributions, as
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x= -  +Ur f . 17i i i i
˜ ˜ ( )

Note that the noise term xi
˜ contains contributions fromboth active and thermalfluctuations at smallPe. Thus,

the thermodynamic interpretation of(17) is deliberately lost, so that it should only be regarded as a convenient
effective dynamics. Using themethods in [56, 57], the dynamics of the density field at fixed disorder then reads

r r s r r s L¶ =   - + +  + +U T T T TF 2 , 18t A A· [ ( ) ( ) ] ( )

where d= å -t t tF r f r r, i i i( ) ˜ ( ) [ ( )] is thedrivingfield. In short,wehave turned thehydrodynamic equation (10),
written for particles subject to thermal and activefluctuationswith respective temperaturesT andTA, into the
closed hydrodynamics(18)of thermal-like particles at temperatureT+σTA subject to an external randomdrive
F. This allowsus to obtain the dynamics of the densityfluctuations atfixeddisorderwithout any closure on the
statistics of thepolarizationP.

From this effective dynamics, we now characterize the fluctuations of a given active particle which acts
as probe of the bath formed by surrounding particles. To this aim, we introduce the reduced fields r =tr,¯ ( )

då -¹ tr ri i0 [ ( )]and d= å -¹t t tF r f r r, i i i0
¯ ( ) ˜ ( ) [ ( )]which characterize the dynamics of particles other than

tracer, where r0 is the tracer position. Considering pair-wise interactions of the form = å -<U Vr r ri i j i j({ }) ( ),
the tracer position evolves according to

ò xr= -  - +t Vr f r r r r, d , 190 0 0 0 0
˜ ¯ ( ) ( ) ˜ ( )

where the density dynamics follows readily from(18) as

òr r r s r

r s L

¶ =   ¢ - ¢ ¢ + - + + 

+  + -

t t t V V T T t

t T T t t

r r r r r r r r r

r r F r

, , , d ,

2 , , , . 20

t 0 A

A

⎡
⎣⎢

⎤
⎦⎥( )¯ ( ) · ¯ ( ) ¯ ( ) ( ) ( ( ) ¯ ( )

· [ ¯ ( )( ) ( ) ¯ ( )] ( )

Following [58, 59], the collectivemodes òdr r r= - -t tr r, e dk
k r

0
i( ) [ ¯ ( ) ] · , can be linearized around the

homogeneous profile ρ0 for weak interactions as

òdr r r s L= - - + + --t s t s V T T s sk k Fd e i 2 , 21s
k k k

k r
k k

2
0

i
0 A

0( ) ( ){ · [ ( ) ( ) ¯ ( )]} ( )· ( )

where = Qs r- + + t te T T V t
k

k k
2

A 0( ) ( )( ) .
In practice, such a linearization only requires the tracer-bath interactions to beweak, without any further

specifications on bath–bath interactions, since density fluctuations are generically Gaussian in the homogeneous
phase [60, 61]. To highlight this, we introduce a small dimensionless parameter h= 1which scales the bath-
tracer potential as =V hVr r( ) ¯ ( ). Substituting(21) in(19), the tracer dynamics then follows in a closed form as

ò ò
ò ò x

r

G

- -

= - - + +

-



t h s t s V

t h s t s V s t t t

r k k

f k k F r

d i e

d e , , 22

t s

t

k
k k

k r r

k
k k

k r
k

0 0
2 2 i

0
i

0 0

0 0

0

( ) ( ) (∣ ∣ ¯ )

˜ ( ) ( ) ¯ [ · ¯ ( )] [ ( ) ] ˜ ( ) ( )

·[ ( ) ( )]

· ( )



where ò ò p= kd 2 d
k

( ) , and G is a zero-meanGaussian noise with correlations

òd r s
s r

áG G ñ = +
+ +

a b ab

-
t t h T T

t V

T T V
r r

k
, 0 , 0

e
. 23

t

k

k k
k r r

k
0 0 0

2
A

2 i 0

A 0

0 0

[ ( ) ] [ ( ) ] ( ) (∣ ∣)(∣ ∣ ¯ ) ( )
·[ ( ) ( )]

Thus, the effect of the bath on the tracer dynamics can be separated into three contributions: (i)a damping
term reflecting the effect of the tracer on the surrounding particles, which in turn is opposed to the tracer
displacement, (ii)a forcing termwhich embodies how driving the surrounding particles affect the tracer, and
(iii)amultiplicative noise term.Note that the tracer dynamics(22) is given at fixed disorder without any prior
assumption on the values of the Péclet number, since our derivation only relies on a perturbation in terms of h.

As a result, following the procedure in [58, 59], we have reduced themany-body description of the system
into an effective dynamics for the tracer only. This leads to introducememory effects containing explicit details
about the interactionswith surrounding particles. Even though the tracer statistics extracted from(22) should
only be accurate for weak interactions a priori, it has been shown that qualitative features remain relevant even
beyond such a regime [62–64]. Note that our derivation does not rely on any response theory at variance with
recent works [65–67].Moreover, we consider here that both the tracer and its surrounding particles are active, in
contrast with [36]which only considered a dilute fraction of active tracers in a bath of passive particles, and the
tracer statistics can nowbe derived for an arbitrary strength of the active force.
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4. Efficiency and transport

To illustrate how energy transfers constrainfluctuations, we now turn to deriving generic relations between
efficiency and transport coefficients. Inwhat follows, we consider particles interacting via short-range soft
repulsionwith a pair-wise potential of the formV(r)=VM (1−r/a)2Θ(a−r), whereΘ denotes theHeaviside
step function.We performnumerical simulations of the original dynamics(1) in two dimensions using periodic
boundary conditions in a box of size L.We focus on regimeswhere the systemdoes not undergo a complete
phase separation between a single cluster and a dilute phase, but rather consists of separated clusters constantly
forming and disintegrating. The efficiency  as a function of the Péclet number vanishes at low activity (Pe= 1),
namelywhen only a negligible amount of clusters are present, as shown infigure 2. It increases withPe, as a
signature of the increasing number of clusters, and it saturates at high activity (Pe?1).When decreasing the
packing fractionj=ρ0πa

2/4, the plateau value at large Pe gets reduced since less clusters are formed.
To capture this behavior analytically, we derive an expression for the efficiency  in terms ofmicroscopic

details. Our derivation consist infirst evaluating  atfixed disorder, using the effective tracer dynamics(22), and
then averaging over disorder to account for activefluctuations.Within themapping in section 3, any observable
depending explicitly on the self-propulsion vi can be computed atfixed disorder by simply replacing viwith the
corresponding driving force fi. The efficiency(9) can thenwritten as t= - áá ñ ñ dNT r f1 i iA d( ) · , where á ñ·
denotes here an average at fixed disorder. As detailed inA,we determine the average tracer velocity á ñri
perturbatively for weak interactions, and the efficiency follows directly by averaging over disorder, see(A.8).
This result does not rely on any perturbation in terms of the Péclet number, yet evaluating the noise
correlations(16), as controlled byσ, is only explicit for asymptotic Péclet regimes. In such regimes, the leading
order of efficiency gets simplified as

ò

ò

tr
r

r
r r

=
+ +

=
+ +





d

V

T T V

d

V

T V T V

k
,

2
, 24

Pe

Pe

k

k

k

k

k

k k

1

0
2

A 0

1

0
2

0 0

(∣ ∣ )

( )( )
( )





wherewe have absorbed the small parameter h back into the bare definition of the bath-tracer interaction
potential =V hVk k¯ , andwe have neglected the contribution of orders higher than h2. Importantly, our
predictions are valid for arbitraryTA, in contrast with [36]where derivations are performed perturbatively in
terms of the driving amplitude. Besides, all particles are active in our case, whereas [36] only considered a small
fraction in a bath of passive particles.

To probe the range of validity of our results, we compare themwith simulations of the original dynamics(1)
for increasing interaction strengthVM, as shown infigure 3. By takingT=TA at all values of the Péclet number,
we enforce that the dynamics remains away from any phase separation. Atweak interactions, we observe a
quantitative agreementwith numerics for awide range ofPe values. Interestingly, the predictions at small and
largePe, corresponding respectively toσ={1, 0} in(A.8), actually reproduce the numerics even close to
Pe=1where onewould expect them to fail a priori. This supports that our analytic approach, based on
separating the averages over white noise and over disorder, captures correctly the tracer dynamics not only in the

Figure 2.Collisional efficiency  , reducedmobility 1−μ and reduced diffusion coefficient - D T1 ¯ , where = +T T TA¯ , as
functions of the Péclet number Pe, for a fluid of active particles with dynamics(1). Numericalmeasurements reveal a generic behavior
where 1−μ evolves between two plateau values: (i) it equals - D T1 ¯ forPe = 1, as expected from the Stokes–Einstein relation, and
(ii) it equals  for Pe?1. Parameter values: L=10, a=1,VM=50 T,T=TA, fP=5×10−2.
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asymptotic Péclet regimes, but also for intermediate Péclet values. Deviations fromnumerics appear at higher
values ofVM, yet we still observe the linear scaling and the saturation of  predicted by(24) at small and largePe,
respectively.

To relate efficiencywith internal transport, we consider the statistics of tracer displacement. The linear
mobilityμ quantifies how a constant perturbation force f eP ˆ affects the average tracer velocity:

m =
á ñ

¥
=

t

f

r e
lim . 25

t
f

0

P 0P

( ) · ˆ
( )

The diffusion coefficientD characterizes the spontaneous tracer excursion in terms of the position variance as

= á á ñ - ñ
¥

D
dt

t tr rlim
1

2
. 26

t
0 0

2[ ( ) ( )] ( )

In the absence of interactions, the tracermobility is the solventmobility, set to unity, and the diffusion coefficient
equals the equilibrium temperatureT+TA. The effect of interactions is to resist the tracer displacement, thus
reducing the transport coefficients. Inwhat follows, we quantify how activefluctuations reduce themobility and
the diffusion coefficient.

Wemeasure the reduction ofmobility and of scaled diffusion coefficient, given respectively by 1−μ and
1−D/(T+TA), as functions of the Péclet number by performing numerical simulations of the original
dynamics(1).We observe three regimes shown in figure 2: (i)bothmeasurements coincide at smallPe in
agreementwith the Stokes–Einstein relation for equilibrium fluids, (ii)they increasemonotonically withPe
showing thatmore andmore collisions hinder the tracer displacement, and (iii)they saturate at largePewith
distinct plateau values. The plateau values increase with the packing fractionj, since the number of clusters
resisting tracer displacement also increases. Interestingly, the reducedmobility 1−μ converges to the
efficiency  at largePe. This can be rationalizedwithin themapping in section 3. Atfixed disorder, the scaled
dissipation = á ñ f r f fj i i j

2 2[ · ] can be regarded as themobilitymeasuredwith respect to fi. In the regime

Pe?1, the drive is seemingly deterministic with small amplitude t= Tfi A∣ ∣ . Then, the scaled dissipation is
similar to the linearmobility in such a regime, so that efficiency andmobility reduction should indeed coincide
asymptotically.

To predict how themobility behaves in terms ofmicroscopic details, we rely again on the effective tracer
dynamics(22). Following the same procedure as for the efficiency, we use a perturbative expansion at weak
interactions, see(A.9). Themobility reduction follows in the asymptotic regimes as

ò

ò

m
r

r r

m
r

r r

- =
+ + + +

- =
+ +

d

V

T T V T T V

d

V

T V T V

1
2

,

1
2

. 27

Pe

Pe

k

k

k k

k

k

k k

1

0
2

A 0 A 0

1

0
2

0 0

( )[ ( ) ]

( )( )
( )





At smallPe, we recover the result for an equilibrium system at temperatureT+TA [59]. The plateau value at
large Péclet coincides with the one of efficiency in(24), as expected.We observe a quantitative agreement
between our prediction and numerical simulations at weak interactions in a large range of Péclet values, see

Figure 3.Collisional efficiency  and reducedmobility 1−μ as functions of the Péclet numberPe. Numerical results are reported for
increasing values of the scaled interaction strength V TM ¯ , where = +T T TA¯ . The solid lines refer to the corresponding analytic
predictions in(A.8) and(A.9), takingσ={1, 0} respectively forPe<1 andPe>1. Parameter values: L=10, a=1, ρ0=1,
T=TA, fP=5×10−2.
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figure 3. Though deviations appear for stronger interactions, themeasurements of reducedmobility 1−μ
always coincide with that of efficiency  at highPe, thus illustrating how energy transfers constrain the tracer
displacement in this regime.

Wenow explore how to relate the diffusion coefficient to efficiency. Recent works have shown that, in
nonequilibriumdynamics, the currentfluctuations are bounded by the coarse-grained entropy production rate
[37–41]. In activefluids, there is no average current of particles provided that no asymmetric external potential is
applied [68–70]. Yet, the bound on currentfluctuations can still be formulatedwithin themapping of section 3.
The coarse-grained entropy production rateΣ quantifies the breakdown of time reversal symmetry in the
hydrodynamic description, given atfixed disorder by(18). Following [48, 51], it is defined in terms of the
probability weights for the forward and backward dynamics, respectively denoted by r and rR, as

S = r

r¥


t

lim
1

ln . 28
t R

( )

The bound on the particle current d= å -t t tV r r r r, i i i( ) ( ) [ ( )] can then bewritten atfixed disorder as

ò á ñ < S
D

V r
1

d . 29
2⎡

⎣⎢
⎤
⎦⎥ ( )

Besides, we show in appendix B thatΣ can bewritten explicitly in terms of the currentV and of the driving field
d= å -t t tF r f r r, i i i( ) ˜ ( ) [ ( )]as

òs r
S =

+T T

V F
r

1
d . 30

A

· ( )

Substituting the explicit definitions of {ρ,F,V} and integrating over space yields

s
S =

á ñ
+T T

r f
, 31i i

A

· ˜
( )

wherewe have used the discernibility condition δ[r−ri(t)]δ[r−rj(t)];δijδ[r−ri(t)]δ[r−rj(t)]which
enforces that distinct particles cannot have identical positions at the same instant.

The value ofσ is arbitrary within this formulation. To obtain explicit result in terms ofmeasurable
observables, we focus on the highPe regimewhereσ=0, so that fi

˜ and fi have the same statistics according
to(16). In this regime, the coarse-grained entropyΣ averaged over disorder is then simply related to dissipation
 as

t
áSñ = = - á á ññ



T T
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Similarly, when averaging over disorder, the squared average current in(29) can be related to efficiency as
follows. Substituting themicroscopic dynamics(1) in d= å -t t tV r r r r, i i i( ) ( ) [ ( )] and considering weak
interactions, we get

ò

t
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wherewe have replaced vi by fiwithin themapping of section 3, andwe have used again the discernibility
condition. Combining(32) and(33), we then deduce

òáSñ
á ñ = - + T hV r

1
d 1 . 34
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Finally, the dissipation bound(29) involving the current statistics of the current can nowbewritten
independently of the current as

> - 
D

T
1 , 35

Pe 1
( )



wherewe have neglected the contribution of orders higher than h2. As a result, the bound on currentfluctuations
translates for activefluids into a bound between diffusion coefficient and efficiency at high Péclet number. This
bound can also be formulated in terms of diffusion coefficient andmobility, given that the latter coincides with
the reduced efficiency - 1 in this regime.Note that the results infigure 2 show that, in practice, the high Péclet
regime is already reached forPe1.

To quantify how far from the bound the dynamics operates, wemeasure the diffusion coefficientD and the
fluid efficiency  for different values of the packing fractionj and of the passive to active temperature ratio
T/TA.We report thesemeasurements in a parametric plot ofD as a function of - 1 , equivalent toD as a
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function ofμ provided that the Péclet number is large enough, see figure 4. Inspired by the numerical results in
figure 2, we also test the empirical bound + - <T T D T1 1A( )( ) .WhenT?TA, this bound combined
with(35) enforces that the scaled diffusionD/T coincides with the reduced efficiency - 1 , or equivalently
with themobilityμ: this is the Stokes–Einstein relation for an equilibrium fluid at temperatureT. In practice,
this relation is confirmed numerically for a large range of packing fractions atT=10TA, see figure 4(a).

When decreasing progressivelyT/TA, the two bounds become increasingly separated as shown in
figures 4(b)–(f). The numerics are close to the empirical bound at low packing fraction, showing that the scaled
diffusionD/(T+TA) coincides with themobilityμwhen interactions are negligible: this is the Stokes–Einstein
relation for an equilibrium fluid at temperatureT+TA, as expected. Conversely, the distance from the
bound(35) reduces with packing fraction, suggesting that the assumption ofGaussian density fluctuations,
fromwhich(29)was originally derived, is essentially valid at high packing fraction.Overall, our numerical
results confirm that the reduced efficiency - 1 bounds the diffusion coefficientD, as another example of how
energy transfers constrain transport coefficients.

5. Phase transitions in biased ensembles

Wenow turn to discuss how the efficiency controls phase transitions. Tomodulate efficiencywith a specific
control parameter, we rely on tools of large deviations which allow one to select an arbitrary value of efficiency by
promoting atypical realisations of the dynamics [42–44]. This has been used extensively in kinetically
constrained dynamics and glassymodels where promoting atypical currents leads to probe system
configurations otherwise inaccessible [71–74]. In active systems, the connexion between clustering and rare
fluctuations has been explored only recently, thus shedding light on phase transitions at constant activity and
density [75–78].

In equilibrium, the energy is commonly changed by varying the temperature of the system,which controls
theweight of configurations according to the Boltzmann distribution. By analogy, changing the efficiency out-of-
equilibrium consists in biasing the path probability of the dynamics, thus constraining the particle trajectories.
For convenience, we focus inwhat follows on regimeswhere thermalfluctuations are irrelevant (T= TA), which
amounts to neglecting xi in(1). The efficiency  can then be simplified as

Figure 4.Parametric plot of the scaled diffusion coefficientD/T and the reduced collisional efficiency - 1 in the regime of large
Péclet number Pe, for different values of the packing fractionj. Numerical results support the existence of a lower bound

> - D T 1 , in black dashed line, and an upper bound + - >T T D T1 1A( )( ) , in colored solid line. Parameter values:
L=10, a=1,VM=50, τ=102,T=10; (a)TA=1; (b)TA=2; (c)TA=10; (d)TA=15; (e)TA=25; (f)TA=40.
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wherewe have used á  ñ = á ñ =U U tr d d 0i i· . Introducing the time-extensive efficiency ε as
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which is related to the bare efficiency as e =
¥
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( ) , we then define the biased path probability l ri
t
0[{ } ] in

terms of the path probability of the original dynamics  ri
t
0[{ } ]as
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The conjugate parameterλ controls the efficiency analogously to how temperature controls the energy in
equilibrium. Setting positive or negative values ofλ corresponds to enforcing respectively lowor high efficiency,
thus allowing us to probe how the system adapts for an arbitrary value of efficiency.

Given that the biased ensemble associatedwith l does not conserve probability density, any connection
with explicit dynamics is generally lost [79, 80]. Yet, a systematic procedure allows one to potentially infer an
auxiliary dynamics which effectively realizes the constraint on trajectories [81–83]. The auxiliary dynamics
considered previously are for exclusion processes [84–87], particle-based diffusive systems restricted to small
noise regimes [88, 89] and non-interacting cases in specific potentials [90–92]. Interestingly, recent works have
also put forward explicit solutions in active systems for amean-field dynamics [93] and for amany-body
dynamics with pair-wise forces [36].

In practice, the Fokker–Planck operator of the auxiliary dynamics aux follows from the one of the original
dynamics  according to a generalizedDoob’s transform [81–83]. Provided that thermal fluctuations are
neglected, themicroscopic dynamics(1)–(4) can bewritten in terms of positions ri and velocities =r pi i as [10]

ht t= - - +   +Up p p1 . 39i i j j i i( · ) ( )

The generalizedDoob’s transform is then given by
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whereΦ({ri}, {pi};λ) satisfies the following eigenvalue problem
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in terms of the operator † adjoint to , and of the scaled cumulant generating functionψ associatedwith ε. To
propose an explicit solution forΦ, we use a perturbative expansion at small Péclet numberwithout any
assumption regarding particle interactions, at variancewith the approximations used in sections 3 and 4.We
demonstrate inC that the first order auxiliary dynamics is given by
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in terms of the exponential integral function ò=
¥ -E z t td en

zt n
1

( ) . As a result, changing efficiency by tuning

the control parameterλ amounts to introducing explicitly particle interactions in the self-propulsion dynamics,
so that the self-propulsion is no longer an independent process for each particle. This clearly differs from a
previousworkwhere biasingwith a dissipation-related observable led to renormalize particle interactions [36].

Provided that collective rearrangements operatemore slowly than the particle dynamics, there is generally a
time scale separation between the fluctuations ofκ and that of vi. Then,κ can be taken as approximately constant
during awell-chosen time interval.When particles get arrested by collisions ( =r 0i∣ ∣ ), the self-propulsion
statistics is independent of interactions as in the unbiased case (λ=0), see(42), inwhich case one recovers the
exponential decay of correlations in(3).When particles do not interact with neighbours ( =U 0i∣ ∣ ), the self-
propulsion correlations also decay exponentially, yet nowwith renormalized amplitudeTA/(1+κ)2 and
renormalized persistence τ/(1+κ). Then, we deduce that the amplitude and the persistence of self-propulsion
are effectively different in dense regions of the system, where collisions are frequent, comparedwith dilute
regionswhere particles aremostlymoving freely.

In that respect, the auxiliary dynamics(42) can be regarded as analogous to a quorum-sensing dynamics
where the self-propulsion adapts to local properties of the system [15, 20]. In practice, large clusters should
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emerge spontaneously whenever the amplitude of self-propulsion fluctuations are reduced in dense regions,
potentially up to a complete phase separation [15, 16]. From the reasoning presented above, this condition is
satisfied forκ<0. According to(43), the sign ofκ is determined byλτ(∇jU)

2/(dNTA)+ψ(λ), whichwe
approximate by l y l+l ( ) using self-averaging property, where t= á  ñl l U dNTj

2
A( ) ( ) is the efficiency in

the biased ensemble.
To evaluate numerically l y l+l ( ) as a function ofλ, we sample the biased ensemble of the original

dynamics(1), wherewe takeT=0 for convenience. The sampling is done using a population dynamics
algorithm as detailed in [94, 95].We consider purely repulsive particles in two dimensions, with short-range
pair-wise interactions given by theWCApotentialV(r)=VM [(a/r)12−2(a/r)6]Θ(a−r)5. Ourmeasurements
show that l y l+l ( ) is negative for allλ, see figure 5(a), and decreases rapidly forλ<0. Then, we deduce that
cluster formation should be strongly enhancedwhenλ<0: this is consistent with the efficiency l taking large
values in this regime, as shown infigure 5(b). Note that l is no longer bounded as in the unbiased dynamics(1),
it can now take values beyond 1.

To determine quantitatively how the bias affects the emerging structure, wemeasure the pair correlation
function of density g in the biased ensemble, as shown infigure 6. For positive and negativeλ, the peaks of
density correlations are respectively reduced and increased, thus showing that an effective attraction among
particles is either tuned down or upwhen enforcing respectively low or high efficiency. In practice, such

Figure 5. (a)Scaled rate function t l y l+l[ ( )] and (b)efficiency in the biased ensemble t= á  ñl l U dNTj
2

A( ) ( ) as functions of
the scaled bias parameterλτ for different values of the persistence time τ. The efficiency decreases rapidly for negativeλτ and vanishes
at large positiveλτ. Simulations are performed using the population dynamics algorithm [94, 95] (see appendix A of [95] for the
details of the algorithm), with number of clones given byNc=6400. Parameter values: L=10, a=1, ρ0=0.32,VM=10−1,
T=0,TA=1.

Figure 6.Density pair correlation in the biased ensemble g as a function of the scaled inter-particle distance r/a for different values of
the bias parameterλ. Numerical results show that biasing towards high and low efficiency leads respectively to increase and reduce the
peaks of pair correlation forλ<0 andλ>0. Parameter values: L=7, a=1, ρ0=0.33,VM=10−1, τ=10−1,T=0,TA=1.

5
This definition is equivalent toV(r)=4VM [(σ/r)12−(σ/r)6]Θ(21/6σ−r)whenwe setσ=2−1/6a.
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attractive effects lead to a complete phase separation at sufficiently high efficiency, as shown infigure 7. This is
analogous to the dynamical arrest already reported in diffusive passive systems [96, 97].

Moreover, a polar phase without any equilibrium equivalent emerges at very low efficiencywhen the density
and the persistent time are sufficiently large, as reported infigure 7. A similar transition to collective directed
motionwas also obtained recently in [78] for active Brownian particles (ABPs)when biasing towards high
dissipation, analogue to the low efficiency regime. At variance withABPs, the amplitude of the self-propulsion is
notfixed in our case, which allows the collective polarization to change directionmore rapidly, seemovie in
supplementalmaterial.We defer further investigations on thefinite-size scaling of this transition to future
works. Overall, our results illustrate how changing efficiencywith a bias on trajectories affects dramatically the
collective dynamics, thus providing a route to promote either phase separation or collective directedmotion.

6. Conclusion

In this paper, we have explored how the local dissipation controls the emerging properties of active fluids, by
investigating how it connects to the transport of particles and how it can trigger phase transitions. Bymapping
the random self-propulsion into a disordered drive, as introduced in [36], we have put forward generic relations
between the collisional efficiency, quantifying the tendency of collisions to stabilize clusters, and the displacement
of a tracer immersed in the fluid. This approach could also be used to explore the connection between transport
and dissipation in other active systems, for instance in aligning [98–100] or self-spinning particles [101–103]. In
particular, it would be interesting to investigate the coupling between translational and orientational dynamics
of spinners, for which atypical transverse response has been reported recently [104, 105].

Using tools of large deviations [42–44], we have also shown that tuning efficiencywith a specific control
parametermodifies the emergent dynamics: one can promote either a phase separation or a collective directed
motion.We have proposed an auxiliary dynamics which captures explicitly the effect of the control parameter
on interactions, thus providing amicroscopicmechanism for phase separation.Overall, these results suggest
that phase diagrams of activefluids, usually determined by Péclet number and density [28, 55, 106], can now also
be described in terms of a parameter conjugate to energy transfers.

It would be interesting to bias active dynamics with other nonequilibriumobservables, for instance the
entropy production quantifying the irreversibility of the dynamics [9–14].More generally, one could explore the
effect of dynamical bias in other active systems, for instance featuring aflocking transition [107, 108] or a
rigidity-induced phase transition [109–111], either from a particle-based or a hydrodynamic perspective. In
short, our work opens the door to the search of new phases and dynamics, as well as unexpected transitions
between them, in biased ensembles of activematter.
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AppendixA. Efficiency andmobility

In this appendix, we derive an expression for efficiency  and linearmobilityμ in terms ofmicroscopic details.
To this aim, we employ a perturbative treatment forweak interactions between a given tagged tracer and the
surrounding particles. This amounts to using the bath-tracer interaction parameter h in the effective tracer
dynamics(22) as an expansion parameter.

The probability for the tracer to follow a given trajectory during the time interval [0, t] is determined by the
pathweight ~ - r ei

t r
0

i
t
0[{ } ] [{ } ], where refers to the dynamic action. It can be split into three contributions

as = + +   h h0 d
2

int, which respectively concern the non-interacting part, the driving part and the
interacting part of the dynamics. Using standard path integral techniques [112, 113], wewrite these
contributions explicitly from the tracer dynamics(22) in terms of the tracer position r0 and the conjugated
process r0¯ as
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The contributions from the drived and from the interactions  int gather all the nonlinearities in the tracer
dynamics.

To evaluate the tracer velocity appearing in dissipation = á á ññ f ri i d·  andmobility
m = áá ññ

¥
t fr elim

t
0 d P( ) · ˆ , where á ñ· denotes here an average atfixed disorder, we expand the path probability 

in terms of the small parameter h for weak interactions. Following [58, 59], this lets uswith expectation values
with respect to only the non-interacting part of the action0, to be evaluated asGaussian integrals. The tracer
velocity then reads
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where á ñ0· denotes an averagewith respect to0. The leading order is simply deduced as á ñ =r f0 0 0 , yielding
t= á ñ = dNTf i

2
d A in the absence of interactions, as expected. Substituting the explicit expression of  int

andd from(A.1) in(A.2), the corrections up to order h2 read
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where = Qs r- + + t te T T V t
k

k k
2

A 0( ) ( )( ) . Thefirst term á ñ rd 0 0 vanishes when averaging over disorder, since
d= å -¹t t tF r f r r, i i i0

¯ ( ) ˜ ( ) [ ( )]has zero average and it is uncorrelatedwith f0
˜ , andwe assume that á ñ rd 0 0 also

vanishes when averaging over disorder, which amounts to setting the two-point correlations of F̄ to zero. Thus,
the effect of the bath on the tracer dynamics is effectively analogue to that of passive Brownian particles at
temperatureT+σTA.

Following [58, 59], we then useWick’s theorem for exponential observables to evaluate the correlation
functions between the tracer position r0 and the conjugate variable r0¯ as
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where f eP ˆ is the constant perturbation force. Averaging over disorder then requires to evaluate the following
correlation functions:
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For the distribution(15), we get
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Finally, the leading contribution to efficiency t= -  dNT1 A and reducedmobility 1−μ then follows as
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Theexplicit integrationover themodes is donewith theFourier transformof thepotentialV(r)=VM(1−r/a)
2Θ(a−r),

given in twodimensionsby p p= - -V V k J ak H ak J ak H ak J ak2 2k M
2

1 0 0 1 2( ){ [ ( ) ( ) ( ) ( )] ( )},where Jn andHn

respectivelydenote theBessel andStruve functionsof ordern.

Appendix B. Entropy production rate of coarse-grained dynamics

This appendix is devoted to deriving the entropy production rateΣ associatedwith the coarse-grained
dynamics(18) atfixed disorder.We introduce an effective free-energy  as

ò r s r= + - + T T U rln 1 d , B.1A[( )( ) ] ( )
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so that the fluctuating hydrodynamic equation (18) can bewritten as
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Following [114], the corresponding dynamic action r , defined from the probability weight as
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The operator  satisfies

ò r d d    ¢ ¢ -  = - ¢¢ r r r r r r r rd , , B.4r r( ) [ ( ) ( )] ( ) ( )

whose explicit solution can bewritten as
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whereG is theGreen function of the Laplace operator:
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2 ( ) ( ) ( )

The action associatedwith the backward dynamics is deduced from the bare action(B.3) under the following
time-reversal transformation
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The entropy production rateΣ, defined in(28), then follows as
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wherewe have replaced a time average by an ensemble average using ergodicity. From(B.5) to (B.6),Σ can then
be simplified by successive integration by parts, yielding
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wherewe have used∂tρ=−∇·V. Thefirst term vanishes in steady state, so that the entropy production rate
reduces to thefinal expression given in(30).

AppendixC. Auxiliary dynamics

In this Appendix, we derive the auxiliary dynamics associatedwith biasingwith the time-extensive efficiency ε
in(37), whose operator aux is defined in terms ofΦ in(40). To this aim,we obtain explicitlyΦ from the
eigenvalue problem in(41) by using a perturbative treatment at small persistence time τ. The Fokker–Planck
operator  associatedwith the dynamics(39) reads

t
t
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Following previous works [10], we scale the particle velocity as t=p pi i˜ , so that the scaled version ̃ of  is
given by

t t
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The stationary statistics of position and velocity is then given by the equilibrium-likeMaxwell–Boltzmann
distribution - +e U Tr p 2i i

2
A[ ({ }) ˜ ] at leading order in τ.Moreover, we scale the conjugate parameter as l lt=˜ .

Replacing  by ̃ in(41) and expanding t tF = F +  3 2˜ ( ), the leading order of the eigenvalue problem reads

15

New J. Phys. 22 (2020) 013052 É Fodor et al



l
y l

¶
¶

-
¶F
¶

=  +T
dNT

U
p

p
p

. C.3
i

i
i

iA
A

2
⎡
⎣⎢

⎤
⎦⎥˜

˜ ·
˜
˜

˜
( ) ( ˜ ) ( )

Given that there is no coupling between particle velocity and position at this order, we deduce that F̃ should be a

function of = åp pi i
2˜ ˜ and {ri} only. As a result, the lhs of(C.3) can be cast in the form
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The explicit solution for ¶F ¶p˜ ˜ then follows as
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where ò=
¥ -E z t td en

zt n
1

( ) is the exponential integral function. At next order, the eigenvalue problem

involves a coupling between position and velocity, so that the corresponding differential equation can no longer
be simplified. This leads us to restrict the derivation of the auxiliary dynamics tofirst order. Substituting this
result into the auxiliary operator(40), the auxiliary dynamics follows in bare units as
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wherewe have used the chain rule∂Φ/∂pi=(pi/ p)∂Φ/∂p. To gain physical insight on the effect of the control
parameterλ, the auxiliary dynamics(C.6) can be cast in a form similar to the original dynamics(1) in terms of
position and self-propulsion, as given in(42).
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