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Abstract

We propose a novel class of Sequential Monte Carlo (SMC) algorithms, appropri-

ate for inference in probabilistic graphical models. This class of algorithms adopts a

divide-and-conquer approach based upon an auxiliary tree-structured decomposition

of the model of interest, turning the overall inferential task into a collection of re-

cursively solved sub-problems. The proposed method is applicable to a broad class

of probabilistic graphical models, including models with loops. Unlike a standard

SMC sampler, the proposed Divide-and-Conquer SMC employs multiple independent

populations of weighted particles, which are resampled, merged, and propagated as

the method progresses. We illustrate empirically that this approach can outperform

standard methods in terms of the accuracy of the posterior expectation and marginal

likelihood approximations. Divide-and-Conquer SMC also opens up novel parallel im-

plementation options and the possibility of concentrating the computational effort on

the most challenging sub-problems. We demonstrate its performance on a Markov ran-

dom field and on a hierarchical logistic regression problem. Supplementary material

including proofs and additional numerical results is available online.
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1 Introduction

Sequential Monte Carlo (SMC) methods are a popular class of algorithms for approximating

some sequence of probability distributions of interest, (πt(xt) : t = 1, . . . , n). This is done

by simulating, for each distribution in the sequence, a collection of N particles {xit}Ni=1 with

corresponding nonnegative importance weights {wi
t}Ni=1, such that the weighted empirical
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distribution π̂Nt (dxt) := (
∑

j w
j
t )
−1∑

iw
i
tδxit(dxt) approximates πt. The weighted particles

are generated sequentially, in the sense that the particles generated at iteration t depends

on the particles generated up to iteration t− 1.

The most well-known application of SMC is to the filtering problem in general state-

space hidden Markov models, see e.g., Doucet and Johansen (2011) and references therein.

However, these methods are much more generally applicable and there has been much recent

interest in using SMC for sampling from probability distributions that do not arise from

chain-shaped probabilistic graphical models (PGMs). This typically involves using SMC

to target a sequence of auxiliary distributions which are constructed to admit the original

distribution as an appropriate marginal (Del Moral et al., 2006). Examples include likelihood

tempering (Del Moral et al., 2006), data tempering (Chopin, 2002), and sequential model

decompositions (Bouchard-Côté et al., 2012; Naesseth et al., 2014), to mention a few.

For many statistical models of interest, however, a sequential decomposition might not be

the most natural, nor computationally efficient, way of approaching the inference problem.

In this contribution we propose an extension of the classical SMC framework, Divide-and-

Conquer SMC (D&C-SMC), which we believe will further widen the scope of SMC samplers

and provide efficient computational tools for Bayesian inference within a broad class of

probabilistic models.

The idea underlying D&C-SMC is that an approximation can be made to any multivariate

distribution by splitting the collection of model variables into disjoint sets and defining, for

each of these sets, a suitable auxiliary target distribution. Sampling from these distributions

is typically easier than sampling from the original distribution and can be done in parallel,

whereafter the results are merged to provide a solution to the original problem of interest

(correcting for the discrepancy between the approximating and exact distributions by im-

portance sampling techniques). Using the divide-and-conquer methodology, we recurse and

repeat this procedure for each of the components. This corresponds to breaking the overall

inferential task into a collection of simpler problems. At any intermediate iteration of the

D&C-SMC algorithm we maintain multiple independent sets of weighted particles, which

are subsequently merged and propagated as the algorithm progresses, using rules similar to

those employed in standard SMC. The proposed method inherits some of the theoretical

guarantees of standard SMC methods. In particular, our simulation scheme can be used to

provide exact approximations of costly or intractable MCMC algorithms, via the particle

MCMC methodology (Andrieu et al., 2010).

Furthermore, we introduce a method for constructing the aforementioned decompositions

for a broad class of PGMs of interest, which we call self-similar graphical models. To con-

struct auxiliary distributions, we remove edges and nodes in a PGM of interest, creating

smaller connected components as sub-graphical models. These sub-graphical models are
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then recursively decomposed as well. Note that this decomposition does not assume that

the PGM of interest is tree-shaped. Indeed, we demonstrate that the proposed methodol-

ogy is effective not only when the model has an obvious hierarchical structure (for example,

Figure 3), but also in cases where the hierarchical decomposition is artificial (Figure 5). In

either case, one iteratively exploits solutions to easier sub-problems as a first step in the

solution of a more complex problem.

We conclude this section with a summary of the structure of the remainder of the paper.

Section 2 provides details on the background of the work presented here: algorithms upon

which it builds and those to which it is related. The basic D&C-SMC and decomposition

methodology is presented in Section 3, including a discussion of its theoretical properties.

A number of methodological extensions are presented in Section 4—these comprise funda-

mental components of the general strategy introduced in this paper, and may be required to

obtain good performance in challenging settings. In Section 5 two numerical illustrations are

presented. The paper concludes with a discussion. Online Supplementary material contains

proofs and additional numerical examples.

2 Background and problem formulation

2.1 Problem formulation

We let π denote a probability distribution of interest, termed the target distribution. With

a slight abuse of notation, we also denote its density by π(x), x ∈ X (with respect to an

anonymous reference measure). The set X is called the state space, and could be discrete, con-

tinuous or mixed (we assume throughout the paper that all spaces are Polish and equipped

with Borel σ-algebras). We assume that the density π can be written as π(x) = γ(x)/Z,

where the unnormalized density γ(x) can be computed point-wise, whereas evaluating the

normalization constant Z =
∫
γ(x)dx may be computationally challenging. The two prob-

lems with which we are concerned are (1) approximating the normalization constant Z, and

(2), computing integrals under π of some test function f : X → R,
∫
f(x)π(x)dx, where

f(x) can be computed point-wise. In a Bayesian context, (1) corresponds to approximating

the marginal likelihood of the observed data, and (2), computing the posterior expectation

of some function, f , of the parameters and latent variables, x.

2.2 Probabilistic graphical models

Problems (1) and (2) often arise in the context of PGMs, a formalism to encode dependen-

cies between random variables in a probabilistic model. Two sorts of graphical structures

are commonly used by statisticians to describe model dependencies: the Bayesian Network
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(Pearl, 1985), which summarizes the conditional independence structure of a Bayesian model

using a directed acyclic graph, and undirected graphs, which are often used to describe mod-

els specified via the full conditional distribution of each node such as Markov random fields

(see below) and many spatial models such as conditional autoregressions (Besag, 1974). Here,

we focus on the abstract factor graph formalism, and remind the reader that the two for-

malisms mentioned above can be easily converted to factor graphs; see, e.g., Bishop (2006)

for details.

Two assumptions are required in order to write a model as a factor graph. First, that

the state space, X, takes the form of a product space, X = Xn = X̃1 × X̃2 × · · · × X̃n. It is

convenient to define the set of variables, V = {1, . . . , n}, corresponding to the elements of

this factorization. Second, that the unnormalized density γ can be decomposed as, γ(xn =

(x̃1, . . . , x̃n)) =
∏

φ∈F φ(Sφ(x̃1, . . . , x̃n)), where F is a set of factors and the function Sφ

returns a sub-vector of (x̃1, . . . , x̃n) containing those elements upon which factor φ depends.

Under these assumptions, a factor graph can be defined as a bipartite graph, where the

set of vertices is given by F ∪V , and where we place an edge between a variable v ∈ V and a

factor φ ∈ F whenever the function φ depends on X̃v, i.e. when x̃v is included in the vector

returned by Sφ(x̃1, . . . , x̃n). Throughout the paper, we use the convention that a variable

with a tilde denotes a variable taking values in a single subspace (x̃n ∈ X̃n), while variables

without tilde are elements of a product space (xn = (x̃1, . . . , x̃n) ∈ Xn = X̃1 × . . . X̃n). Note,

however, that each X̃j may be multi-dimensional.

2.3 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods constitutes a class of sampling algorithms capable

of addressing problems (1) and (2) defined in Section 2.1. More precisely, SMC can be used

to simulate from a sequence of probability distributions defined on a sequence of spaces of

increasing dimension. Let πt(xt), with xt := (x̃1, . . . , x̃t), be a probability density function

defined on the product space

Xt = X̃1 × X̃2 × · · · × X̃t. (1)

Furthermore, as above, assume that πt(xt) = γt(xt)/Zt where γt can be evaluated point-wise,

but where the normalizing constant Zt is computationally intractable. SMC provides a way

to sequentially approximate the sequence of distributions π1, π2, . . . , πn. As a byproduct,

it also provides unbiased estimates of the normalizing constants Z1, Z2, . . . , Zn (Del Moral,

2004, Prop. 7.4.1).

The SMC approximation of πt at iteration t (1 ≤ t ≤ n) takes the form of a particle

population. This population consists in a collection of N pairs of particles and weights :
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{xit,wi
t}Ni=1, where xit ∈ Xt and wi

t ≥ 0. The particle population provides an approximation

of πt, in the (weak) sense that expectations of a (sufficiently regular) test function, f , with

respect to the discrete probability distribution obtained after normalizing the weights,

π̂Nt (·) :=
1∑N

j=1w
j
t

N∑
i=1

wi
tδxit(·), (2)

approximate the expectation of that test function under πt:∫
πt(xt)f(xt)dxt ≈ (

N∑
j=1

wj
t )
−1

N∑
i=1

wi
tf(xit).

One can consider test functions of direct interest (as well as considering the weak convergence

of the approximating distributions which can be established under various conditions) for

example, one would use f(x) = x to approximate a mean, and f(x) = 1A(x) to approximate

the probability that x ∈ A.

We review here the simplest type of SMC algorithm, Sequential Importance Resampling

(SIR), and refer the reader to Doucet and Johansen (2011) for a more in-depth exposition.

Pseudo-code for the SIR method is given in Algorithm 1. We present the algorithm in a

slightly non-standard recursive form because it will be convenient to present the proposed

D&C-SMC algorithm recursively, and presenting SIR in this way makes it easier to compare

the two algorithms. Furthermore, since the focus of this paper is “static” problems (i.e., we

are not interested in online inference, such as filtering), the sequential nature of the procedure

need not be emphasized. For ease of notation, we allow the procedure to be called for t = 0,

which returns an “empty” set of particles and, by convention, γ0(∅) = 1. (Hence, we do not

need to treat the cases t = 1 and t > 1 separately in the algorithm.) The main steps of the

algorithm, resampling, proposal sampling, and weighting, are detailed below.

Resampling (Line 3), in its simplest form, consists of sampling N times from the previous

population approximation π̂Nt−1, as defined in (2). This is equivalent to sampling the number

of copies to be made of each particle from a multinomial distribution with number of trials N

and probability vector (w1
t−1, . . . ,w

N
t−1)/(

∑N
i=1w

i
t−1). Since resampling is done with replace-

ment, a given particle can be resampled zero, one, or multiple times. Informally, the goal

of the resampling step is to prune particles of low weights in order to focus computation on

the promising parts of the state space. This is done in a way that preserves the asymptotic

guarantees of importance sampling. After resampling, the weights are reset to 1/N , since

the weighting is instead encoded in the random multiplicities of the particles. Note that

more sophisticated resampling methods are available, see, e.g., Douc et al. (2005). Proposal

sampling (Line 4), is based on user-provided proposal densities qt(x̃t |xt−1). For each particle
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Algorithm 1 sir(t)

1. If t = 0, return ({∅, 1}Ni=1, 1).

2. ({xit−1,wi
t−1}Ni=1, Ẑ

N
t−1)← sir(t− 1).

3. Resample {xit−1,wi
t−1}Ni=1 to obtain the unweighted particle population {x̌it−1, 1}Ni=1.

4. For particle i = 1, . . . , N :

(a) Simulate x̃it ∼ qt(· | x̌it−1).

(b) Set xit = (x̌it−1, x̃
i
t).

(c) Compute wi
t =

γt(x
i
t)

γt−1(x̌it−1)

1

qt(x̃it | x̌it−1)
.

5. Compute ẐNt =
{

1
N

∑N
i=1 w

i
t

}
ẐNt−1.

6. Return ({xit,wi
t}Ni=1, Ẑ

N
t ).

sir(0)

π1

sir(1)

π2

sir(2)

πn

sir(n)

Figure 1: Computational flow of SIR (analogous for any SMC sampler). Each node corresponds to a call
to sir, the labels above show the corresponding target distribution, and the arrows illustrate the recursive
dependencies of the algorithm. Note that this “computational graph” of SMC is a chain, even if the sequence
of target distributions does not correspond to a chain-structured PGM.

x̌it−1 ∈ Xt−1 output from the resampling stage, we sample a successor state x̃it ∼ qt(· | x̌it−1).
The sampled successor is a single state x̃it ∈ X̃t which is appended to x̌it−1, to form a sample

for the t-th product space, xit = (x̌it−1, x̃
i
t) ∈ Xt. Finally, weighting (Line 4c) is used to

correct for the discrepency between πt−1(x̌
i
t−1)qt(x̃

i
t|x̌it−1) and the new target πt(x̌

i
t−1, x̃

i
t).

Importantly, weighting can be performed on the unnormalized target densities γt and γt−1.

The algorithm returns a particle-based approximation π̂Nt of πt, as in (2), as well as an

unbiased estimate ẐN
t of Zt (Line 5). In practice, an important improvement to this basic

algorithm is to perform resampling only when particle degeneracy is severe. This can be done

by monitoring the effective sample size (ESS): (
∑N

i=1 w
i
t)

2/
∑N

i=1(w
i
t)

2, and by resampling

only when ESS is smaller than some threshold, say N/2 (Kong et al., 1994). In Figure 1 we

illustrate the execution flow of the algorithm as arising from the recursive function calls.

The sequence of target distributions {πt : t = 1, . . . , n} can be constructed in many

different ways, which largely explains the generality and success of SMC. The most basic

construction, which is the classical application of SMC, arises from chain-structured factor

graphs (for example, state-space models or hidden Markov models). For a chain-graph, the

joint probability density function can be factorized as π(x) = 1
Z

∏n
t=1 φt(x̃t−1, x̃t), where

x = (x̃1, . . . , x̃n); see Section 2.2. (As above, to simplify the notation we have, without
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loss of generality, introduced a “dummy variable” x̃0 = ∅.) To simulate from the target

distribution, the standard SIR algorithm employs a sequence of intermediate distributions :

πt(xt) ∝
∏t

s=1 φs(x̃s−1, x̃s), where xt = (x̃1, . . . , x̃t), x̃s ∈ X̃s. Each πt can be written as

γt/Zt, where again γt can be evaluated point-wise, but Zt is hard to compute. Importantly, we

also have that πn = π by construction. In fact, it is possible to make use of similar sequential

decompositions even when the original graph is not a chain (Naesseth et al., 2014), as long

as it is possible to find a sequence of auxiliary distributions defined on increasing subsets of

the model variables.

2.4 SMC samplers and tempering

Another common approach is to make use of a sequence of auxiliary distributions for which

we are interested only in one of the marginals. Suppose that the densities of interest are

defined over spaces which are not product spaces, π̃t : X̃t → [0,∞). For example, we may

have π̃t(x̃) ∝ (π̃(x̃))αt as a tempered target distribution, with X̃t = X̃t−1 = · · · = X̃1, and

qt(x̃t | x̃t−1) derived from a local MCMC move. We can transform problems of this type into

a form suitable for SMC by an auxiliary construction proposed by Del Moral et al. (2006).

The construction used by Del Moral et al. (2006) is to re-introduce a sequence of distri-

butions defined on product spaces Xt = X̃1 × · · · × X̃t by defining,

πt(xt) = π̃t(x̃t)
t−1∏
s=1

Ls(x̃s | x̃s+1), (3)

where xt = (x̃1, . . . , x̃t) ∈ Xt as before. In the above, Ls is a transition kernel from X̃s+1 to

X̃s—for instance an MCMC kernel—chosen by the user. For any choice of these backward

kernels, πt admits π̃t as a marginal by construction, and it can thus be used as a proxy for

the original target distribution π̃t. Standard SMC algorithms can then be applied to the

sequence of auxiliary distributions πt, t = 1, . . . , n. Using the structure of πt in (3), the

weight computation (Line 4c of Algorithm 1) is given by:

wi
t =

γ̃t(x̃
i
t)

γ̃t−1(x̃it−1)

Lt−1(x̃
i
t−1 | x̃it)

qt(x̃it | x̃it−1)
, (4)

where γ̃t ∝ π̃t. While the backward kernels Lt are formally arbitrary (subject to certain

support restrictions), they will critically influence the estimator variance. If qt is a π̃t−1-

reversible MCMC kernel, a typical choice is Lt−1 = qt which results in a cancellation in the

weight expression (4): wi
t = γ̃t(x̃t)/γ̃t−1(x̃t). See Del Moral et al. (2006) for further details

and guidance on the selection of the backward kernels.
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2.5 Related work

Before presenting the new methodology in Section 3 we note that a number of related ideas

have appeared in the literature, although all have differed in key respects from the approach

described in the next section.

Koller et al. (1999); Briers et al. (2005); Sudderth et al. (2010); Lienart et al. (2015) ad-

dress belief propagation using (sequential) importance sampling, and these methods feature

coalescence of particle systems, although they do not provide samples targeting a distribu-

tion of interest in an exact sense (Andrieu et al., 2010). In contrast, the method proposed

here yields consistent estimates of the marginals and normalization constant, even when ap-

proximating a graphical model with loops. Moreover, our method can handle variables with

constrained or discrete components, while much of the existing literature relies on Gaussian

approximations which may not be practical in these cases.

Coalescence of particle systems in a different sense is employed by Jasra et al. (2008) who

also use multiple populations of particles; here the state space of the full parameter vector

is partitioned, rather than the parameter vector itself. The island particle model of Vergé

et al. (2015) employs an ensemble of particle systems which themselves interact according

to the usual rules of SMC, with every particle system targeting the same distribution over

the full set of variables. The local particle filtering approach by Rebeschini and van Handel

(2015) attempts to address degeneracy (in a hidden Markov model context) via an (inexact)

localisation technique. Numerous authors have proposed custom SMC algorithms for the

purpose of inferring the structure of a latent tree, see Teh et al. (2008); Bouchard-Côté et al.

(2012); Lakshminarayanan et al. (2013). These methods generally employ a single particle

population. In contrast, our method assumes a known tree decomposition, and uses several

particle populations.

3 Methodology

The proposed methodology is useful when the inference problem described in Section 2.1

can be decomposed into a “tree of auxiliary distributions”, as defined in Section 3.1 below.

We present the basic D&C-SMC method in Section 3.2, followed by fundamental conver-

gence results in Section 3.3. Thereafter, we provide a concrete strategy for constructing the

aforementioned tree-structured auxiliary distributions on which the D&C-SMC algorithm

operates. This strategy applies to many directed and undirected graphical modelling sce-

narios of practical interest (including models with cycles). It should be noted that, as with

standard SMC algorithms, a range of techniques are available to improve on the basic method

presented in this section, and we discuss several possible extensions in Section 4.
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πc1 πcC

. . . . . .

πt
. . .

πr

Figure 2: Computational flow of D&C-SMC. Each node corresponds to a target distribution {πt : t ∈ T} and,
thus, to a call to D&C-SMC (Algorithm 2). The arrows illustrate the computational flow of the algorithm
via its recursive dependencies.

3.1 Tree structured auxiliary distributions

The proposed D&C-SMC methodology generalizes the classical SMC framework from se-

quences (or chains) to trees. As noted in Section 2, the SMC methodology is a general

framework for simulating from essentially any sequence of distributions. Any such sequence

can be organized on a chain, with subsequent distributions being associated with neighbour-

ing nodes on the chain; see Figure 1. Note that the graph notion here is used to describe

the execution flow of the algorithm, and the sequence of distributions organized on the chain

does not necessarily correspond to a chain-structured PGM.

In a similar way, D&C-SMC operates on a tree of distributions, which need not correspond

to a tree-structured PGM. Specifically, as in Section 2.3, assume that we have a collection

of (auxiliary) distributions, {πt : t ∈ T}. However, instead of taking the index set T to be

nodes in a sequence, T = {1, 2, . . . , n}, we generalize T to be nodes in a tree. For all t ∈ T ,

let C(t) ⊂ T denote the children of node t, with C(t) = ∅ if t is a leaf, and let r ∈ T denote

the root of the tree. We assume πt to have a density, also denoted by πt, defined on a set

Xt. We call such a collection a tree structured auxiliary distributions a tree decomposition

of the target distribution π (introduced in Section 2.1) if it has two properties. First, the

root distribution is required to coincide with the target distribution, πr = π. The second

is a consistency condition: we require that the spaces on which the node distributions are

defined are constructed recursively as

Xt =
(
⊗c∈C(t)Xc

)
× X̃t, (5)

where the “incremental” set X̃t can be chosen arbitrarily (in particular, X̃t = ∅ for all t in

some proper subset of the nodes in T is a valid choice). Note that the second condition

mirrors the product space condition (1). That is, the distributions {πt : t ∈ T} are defined

on spaces of increasing dimensions as we move towards the root from the leaves of the tree.

Figure 2 illustrates the execution flow of the D&C-SMC algorithm (which is detailed in

the subsequent section), which performs inference for the distributions {πt : t ∈ T} from
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Level 2:

Level 1:

Level 0:

y1 y2 y3

x̃1 x̃2 x̃3

y1 y2 y3

x̃1 x̃2 x̃3

x̃4

y1 y2 y3

x̃1 x̃2 x̃3

x̃4

x̃5

Figure 3: Decomposition of a hierarchical Bayesian model.

leaves to root in the tree. As pointed out above, the computational tree T does not necessarily

correspond to a tree-structured PGM. Nevertheless, when the PGM of interest is in fact a

tree, the computational flow of the algorithm can be easily related to the structure of the

model (just as the computational flow of standard SMC is easily understood when the PGM

is a chain, although the SMC framework is in fact more general). Let us therefore consider

an example of how the target distributions {πt : t ∈ T} can be constructed in such a case,

to provide some intuition for the proposed inference strategy before getting into the details

of the algorithm.

Example (Hierarchical models). Consider the simple tree-structured Bayesian network of

Figure 3 (rightmost panel), with three observations y1:3, and five latent variables x̃1:5. The

distribution of interest is the posterior p(x̃1:5 | y1:3). To put this in the notation introduced

above, we define x5 = x̃1:5 and π(x5) = π5(x5) = p(x̃1:5 | y1:3). To obtain a tree decomposition

of π5 we can make use of the hierarchical structure of the PGM. By removing the root

node x̃5 we obtain two decoupled components (Figure 3, middle) for which we can define

the auxiliary target distributions π4(x4) = p(x4 | y1:2) and π3(x3) = p(x3 | y3), respectively,

where x4 = (x̃1, x̃2, x̃4) and x3 = x̃3. If the marginal priors for the root nodes in the

decomposed models (here, p(x̃4) and p(x̃3)) are intractable to compute, we can instead

define the auxiliary distribution πt(xt), t = 3, 4, using an arbitrary “artificial prior” ut(x̃t)

for its root (similar to the two-filter smoothing approach of Briers et al. (2010)). This

arbitrariness is ultimately corrected for by importance weighting and does not impinge upon

the validity of the proposed inference algorithm (see Section 3.3), although the choice of

ut can of course affect the computational efficiency of the algorithm. Finally, by repeating

this procedure, we can further decompose π4(x4) into two components, π1(x1) and π2(x2),

as illustrated in Figure 3 (left). The target distributions {πt(xt) : t ∈ {1, . . . , 5}} can be

organised on a tree (with the same graph topology as the PGM under study, excluding the

observed variables) which satisfies the conditions for being a tree decomposition of the sought

posterior p(x̃1:5 | y1:3).

In Section 3.4 we formalise the decomposition strategy illustrated in the example above,

and also generalise it to a broader class of, so called, self-similar PGMs.
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Algorithm 2 dc smc(t)

1. For c ∈ C(t):

(a) ({xic,wi
c}Ni=1, Ẑ

N
c )← dc smc(c).

(b) Resample {xic,wi
c}Ni=1 to obtain the equally weighted particle system {x̌ic, 1}Ni=1.

2. For particle i = 1, . . . , N :

(a) If X̃t 6= ∅, simulate x̃it ∼ qt(· | x̌ic1 , . . . , x̌
i
cC ), where (c1, c2, . . . , cC) = C(t);

else x̃it ← ∅.
(b) Set xit = (x̌ic1 , . . . , x̌

i
cC , x̃

i
t).

(c) Compute wi
t =

γt(x
i
t)∏

c∈C(t) γc(x̌
i
c)

1

qt(x̃it | x̌ic1 , . . . , x̌icC )
.

3. Compute ẐNt =
{

1
N

∑N
i=1 w

i
t

}∏
c∈C(t) Ẑ

N
c .

4. Return ({xit,wi
t}Ni=1, Ẑ

N
t ).

3.2 Divide-and-Conquer Sequential Importance Resampling

We now turn to the description of the D&C-SMC algorithm—a Monte Carlo procedure for ap-

proximating the target distribution π = πr based on the auxiliary distributions {πt : t ∈ T}.
For pedagogical purposes, we start by presenting the simplest possible implementation of

the algorithm, which can be thought of as the analogue to the SIR implementation of SMC.

Several possible extensions are discussed in Section 4.

As in standard SMC, D&C-SMC approximates each πt by a collection of weighted sam-

ples, also referred to as a particle population. Unlike a standard SMC sampler, however, the

method maintains multiple independent populations of weighted particles, ({xit,wi
t}Ni=1 : t ∈

Tk), which are propagated and merged as the algorithm progresses. Here Tk ⊂ T is the set

of indices of “active” target distributions at iteration k, 1 ≤ k ≤ height(T ).

The D&C-SMC algorithm uses a bottom-up approach to simulate from the auxiliary

target distributions defined on the tree, by repeated resampling, proposal, and weighting

steps, which closely mirror standard SMC. We describe the algorithm by specifying the

operations that are carried out at each node of the tree, leading to a recursive definition of

the method. For t ∈ T , we define a procedure dc smc(t) which returns, (1) a weighed particle

population {xit,wi
t}Ni=1 approximating πt as π̂Nt in Equation (2), and (2) an estimator ẐN

t

of the normalizing constant Zt (such that πt(xt) = γt(xt)/Zt). The procedure is given in

Algorithm 2.

The first step of the algorithm is to acquire, for each child node c ∈ C(t), a particle

approximation of πc by a recursive call (Line 1a). Jointly, these particle populations provide
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an approximation of the product measure,

⊗c∈C(t)πc(dxc) ≈ ⊗c∈C(t)π̂Nc (dxc). (6)

Note that this point-mass approximation has support on NC , C = |C(t)|, points, although

these support points are implicitly given by the NC unique particles (assuming no duplicates

among the particles in the individual child populations).

To obtain a computationally manageable approximation of the product measure, we

generate N samples from the approximation in (6). This is equivalent to performing stan-

dard multinomial resampling for each child particle population (Line 1b), obtaining equally

weighted samples {x̌ic, 1}Ni=1 for each c, and for all i = 1, . . . , N , combining all indices i of

the c lists to create N equally weighted tuples, {(x̌ic1 , . . . , x̌
i
cC

), 1)Ni=1. This basic merging

strategy can thus be implemented in O(N) computational cost, since there is no need to

explicitly form the approximation of the product measure in (6).

The latter, resampling-based, description of how the child populations are merged provide

natural extensions to the methodology, e.g. by using low-variance resampling schemes (e.g.,

Carpenter et al. (1999)) and adaptive methods that monitor effective sample size to perform

resampling only when particle degeneracy is severe (Kong et al., 1994).

Remark 1. Note, however, that if we perform resampling amongst the child populations

separately and then combine the resulting particles in this way, we require P(x̌ic = xjc) =

(
∑N

l=1w
l
c)
−1wj

c, j = 1, . . . , N , for each i = 1, . . . , N , since the particles are combined

based on their indices (i.e., it is not enough that the marginal equality
∑N

i=1 P(x̌ic = xjc) =

N(
∑N

l=1 w
l
c)
−1wj

c holds). Consequently, if the resampling mechanism that is employed results

in an ordered list of resampled particles, then a random permutation of the particles indices

should be carried out before combining particles from different child populations.

Proposal sampling (Line 2), similarly to standard SMC, is based on user-provided pro-

posal densities qt. However, the proposal has access to more information in D&C-SMC,

namely to the state of all the children c1, c2, . . . , cC of node t: qt(· | x̌ic1 , . . . , x̌
i
cC

). For each

particle tuple (x̌ic1 , . . . , x̌
i
cC

) generated in the resampling stage, we sample a successor state

x̃it ∼ qt(· | x̌ic1 , . . . , x̌
i
cC

). Note that in some cases, parts of the tree structured decomposition

do not require this proposal sampling step, namely when X̃t = ∅. We simply set x̃it to ∅ in

these cases (the resampling and reweighting are still non-trivial).

Finally, we form the i-th sample at node t of the tree by concatenating the tuple of

resampled child particles (x̌ic1 , . . . , x̌
i
cC

) and the proposed state x̃it (if it is non-empty). The

importance weight is given by the ratio of the (unnormalised) target densities, divided by

the proposal density (Line 2c). We use the convention here that
∏

c∈∅(·) = 1, to take into

account the base case of this recursion, at the leaves of the tree.
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Example (Hierarchical models, continued). A simple choice for qt( · | x̌c1 , . . . , x̌icC ) in this

example is to use ut, the (artificial) prior at the sub-tree rooted at node x̃t. An alternative

is to select ut as a conjugate prior to the distributions of the children, p(x̃c | x̃t), c ∈ C(t),
and to propose according to the posterior distribution of the conjugate pair. To illustrate

the weight update, we show its simplified form in the simplest situation, where qt = ut:

wi
t =

γt(x
i
t)∏

c∈C(t) γc(x̌
i
c)

1

qt(x̃it | x̌ic1 , . . . , x̌icC )
=
ut(x

i
t)
∏

c∈C(t) p(x̌
i
c | x̃it)∏

c∈C(t) uc(x̌
i
c)

1

ut(xit)
=
∏
c∈C(t)

p(x̌ic | x̃it)
uc(x̌ic)

.

If executed serially, the running time of D&C-SMC is O(N ·|T |). However, a running time

ofO(N ·height(T )) can be achieved via parallelized or distributed computing (see Section 5.3).

In terms of memory requirements, they grow at the rate of O(N ·height(T ) ·maxt |C(t)|) in a

serial implementation. The height(T ) factor comes from the maximum size of the recursion

stack, and N maxt |C(t)| comes from the requirement for each level of the stack to store a

particle population for each child. In a parallel implementation where one compute node is

used for each leaf of the computational tree the total memory requirement grows at the rate

O(N · |T |).
Note that the D&C-SMC algorithm generalizes the usual SMC framework; if |C(t)| = 1

for all internal nodes, then the D&C-SIR procedure described above reduces to a standard

SIR method (Algorithm 1).

3.3 Theoretical Properties

As D&C-SMC consists of standard SMC steps combined with merging of particle populations

via resampling, it is possible (with care) to extend many of the results from the standard, and

by now well-studied, SMC setting (see e.g., Del Moral (2004) for a comprehensive collection

of theoretical results). Here, we present two results to justify Algorithm 2. The proofs of

the two propositions stated below are given in Section ?? of the Supplementary material.

First of all, the unbiasedness of the normalizing constant estimate of standard SMC

algorithms (Del Moral, 2004, Prop. 7.4.1) is inherited by D&C-SMC.

Proposition 1. Provided that γt � ⊗c∈C(t)γc ⊗ qt for every t ∈ T and an unbiased, ex-

changeable resampling scheme is applied to every population at every iteration, we have for

any N ≥ 1:

E[ẐN
r ] = Zr =

∫
γr(dxr).

An important consequence of Proposition 1 is that the D&C-SMC algorithm can be used

to construct efficient block-sampling MCMC kernels in the framework of particle MCMC

Andrieu et al. (2010); see Section 4.3. Our second result shows that the particle system
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generated by the D&C-SMC procedure is consistent as the number of particles tends to

infinity.

Proposition 2. Under regularity conditions detailed in Section ?? of the Supplementary

material, the weighted particle system {xir,N ,wi
r,N}Ni=1 generated by dc smc(r) is consistent

in that for all functions f : X → R satisfying the assumptions listed in Section ?? of the

Supplementary material,

N∑
i=1

wi
r,N∑N

j=1 w
j
r,N

f(xir,N)
P−→
∫
f(x)π(x)dx, as N →∞.

3.4 Tree structured auxiliary distributions from graphical models

We now present one strategy for building tree structured auxiliary distributions from graph-

ical models. There are other ways of constructing these auxiliary distributions, but for

concreteness we focus here on a method targeted at posterior inference for PGMs. On the

other hand, the method we present here is more general than it may appear at first: in

particular, although the flow of the algorithm follows a tree structure, we do not assume

that the graphical models are acyclic.

To illustrate the concepts in this section, we will use two running examples: one coming

from a directed PGM, and one coming from an undirected one. We use the factor graph

notation from Section 2.2 to introduce the features of these examples salient to the present

discussion. We give a more detailed description of the two examples in Section 5.

Example (Hierarchical models, continued). Consider a situation where the data is collected

according to a known hierarchical structure. For example, test results for an examination

are collected by school, which belong to a known school district, which belong to a known

county. This situation is similar to the example shown in Figure 3, but where we generalize

the number of level to be an arbitrary integer, α. This yields the factor graph shown in

Figure 4(a), where we assume for simplicity a binary structure (this is lifted in Section 5).

The nodes in the set V correspond to latent variables specific to each level of the hierarchy.

For example, a variable, x̃v, at a leaf encodes school-specific parameters from a set, X̃v, those

at the second level, district-specific parameters, etc. The set of factors, F , contain one binary

factor, φ(x̃v, x̃v′), between each internal node, v′, and its parent, v. There is also one factor,

ur, at the root to encode a top level prior.

Example (Lattice models). Two-dimensional regular lattice models such as the Ising model

are frequently used in spatial statistics and computer vision to encourage nearby locations

in a spatial latent field to take on similar values; see Figure 4(b). We denote the width of

the grid by α(1) and the height by α(2). The cardinality of V is thus α(1)α(2). The bivariate

factors connect variables with Manhattan distance of one to each other.

14



ϕ

ϕϕ

ϕϕϕ

G3

≅ G2≅ G2

u3
(1)

u3
(2:9)

ϕ ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

ϕ ϕ

≅ G(2,4) ≅ G(2,4)

G(4,4)(a) (b)

Figure 4: Examples of factor graph families, and self-similarities among them. (a) A hierarchical model for
α = 3. The unaries uα consist in a product of 9 individual unary factors: one for the root, and 8 for the
leaves (note that the binary factors connected to the 8 observed leaves can be considered as unary factors
since one of their arguments is fixed and known for the purpose of posterior inference). Hence, |V3| = 7,
|F3| = 6, kα = 2, α1 = α2 = 2. (b) A rectangular lattice model (e.g., an Ising model) for α = (4, 4). Here,
kα = 2, α1 = α2 = (2, 4).

Note that the previous two examples actually describe a collection of factor graphs in-

dexed by α: in the hierarchical model example, α in a positive integer encoding the num-

ber of hierarchical levels; in the lattice model example, α is a pair of positive integers,

α = (α(1), α(2)) encoding the width and height of the grid. To formalize this idea, we define

a model family as a collection of factor graphs: M = {Gα = (Vα, Fα)}, where Vα 6= ∅. Since

we would like the concept of model family to encode the model structure rather than some

observation-specific configurations, it will be useful in the following to assume that the sets

Fα only contain factors linking at least two nodes. Given Gα and a dataset, it is trivial to add

back the unary factors, denoted uα. We assume that for all α, adding these unary factors to

the product of the factors in Fα yields a model of finite normalization,
∫
uα
∏

φ∈Fα φdµ <∞.

To build a tree of auxiliary distributions, we rely on a notion of self-similarity. We start

with an illustration of what we mean by self-similarity in the two running examples.

Example (Hierarchical models, continued). Consider the factor graph G3 = (V3, F3) corre-

sponding to a three-level hierarchical model. If we exclude the unary factor at the root, we

see that G3 contains G2 as a subgraph (see Figure 4(a)). In fact, G3 contains two distinct

copies of the graph G2.

Example (Lattice models, continued). Consider the factor graph G(4,4) corresponding to a

4-by-4 Ising model (Figure 4(b)). The graph G(4,4) contains the graph G(2,4) as a subgraph.

Again, G(4,4) contains in fact two distinct copies of the subgraph.

Formally, we say that a model family is self-similar, if given any Gα ∈M with |Vα| > 1,

we can find α1, α2, . . . , αkα , kα > 1 such that the disjoint union tiGαi can be embedded in

Gα. By embedding, we mean that there is a one-to-one graph homomorphism from tiGαi

into Gα. This graph homomorphism should respect the labels of the nodes and edges (i.e.
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differentiates variable, factors, and the various types of factors).

Example (Lattice models, continued). Therefore, if |Vα| > 1, then at least one of α(1) or

α(2) is greater than one, let us say the first one without loss of generality. As shown in

Figure 4(b), we can therefore pick kα = 2 and α1 = (bα(1)/2c, α(2)), α2 = (dα(1)/2e, α(2)).

Given a member α0 of a self-similar model family, there is a natural way to construct

a tree decomposition of auxiliary distributions. First, we recursively construct T from the

self-similar model indices: we set r = α0, and given any t = α ∈ T , we set C(t) ⊂ T to

α1, α2, . . . , αkα . This recursive process will yield a finite set T : since Vα is assumed to be

non-empty, it suffices to show that |Vαi | < |Vα| for all i ∈ {1, . . . , kα} whenever |Vα| > 1.

But since kα > 1, and that the disjoint union tiGαi can be embedded in Gα, it follows that

|Vα| ≥ |Vαi | +
∑

j 6=i |Vαj |. Since |Vαj | > 0, the conclusion follows. Second, given an index

t = α ∈ T , we set πt to uα
∏

φ∈Fα φ. Note that by the embedding property, this choice is

guaranteed to satisfy Equation (5), where Xci corresponds to the range of the random vector

defined from the indices in Vαi .

4 Extensions

Algorithm 2 is essentially an SIR algorithm where the variables are not rejuvenated after

their first sampling. Inevitably, as in particle filtering, this will lead to degeneracy as the

repeated resampling steps reduce the number of unique particles. Techniques employed to

ameliorate this problem in the particle filtering literature could be used—fixed lag techniques

(Kitagawa, 1996) might make sense in some settings, as could incorporating MCMC moves

(Gilks and Berzuini, 2001). In this section we present several extensions to address the

degeneracy problem more directly, and we also discuss adaptive schemes for improving the

computational efficiency of the proposed method.

4.1 Merging subpopulations via mixture sampling

The resampling in Step 1b of the dc smc procedure, which combines subpopulations to target

a new distribution on a larger space, is critical. The independent multinomial resampling of

child populations in the basic D&C-SIR procedure corresponds to sampling N times with

replacement from the product measure (6). The low computational cost of this approach is

appealing, but unfortunately it can lead to high variance when the product
∏

c∈C(t) πc(xc)

differs substantially from the corresponding marginal of πt.

An alternative approach, akin to the mixture proposal approach (Carpenter et al., 1999)

or the auxiliary particle filter (Pitt and Shephard, 1999), is described below. The idea is to

exploit the fact that the product measure has mass upon N |C(t)| points, in order to capture
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the dependencies among the variables in the target distribution πt(xt). Let π̌t(xc1 , . . . ,xcC )

be some distribution which incorporates this dependency (in the simplest case we might

take π̌t(xc1 , . . . ,xcC ) ≈
∫
πt(xc1 , . . . ,xcC , x̃t)dx̃t or, when X̃t = ∅, π̌t ≡ πt; see below for an

alternative). We can then replace Step 1b of Algorithm 2 with simulating {(x̌ic1 , . . . , x̌
i
cC

)}Ni=1

from

Qt(dxc1 , . . . , dxcC ) :=
N∑
i1=1

. . .

N∑
iC=1

vt(i1, . . . , iC)δ
(x
i1
c1
,...,x

iC
cC

)
(dxc1 , . . . , dxcC )∑N

j1=1 . . .
∑N

jC=1 vt(j1, . . . , jC)
, (7)

vt(i1, . . . , iC) :=

 ∏
c∈C(t)

wic
c

 π̌t(x
i1
c1
, . . . ,xiCcC )

/ ∏
c∈C(t)

πc(x
ic
c ),

with the weights of Step 2c computed using wi
t ∝ πt(x

i
t)/
[
π̌t(x̌

i1
c1
, . . . , x̌iCcC )qt(x̃

i
t | x̌i1c1 , . . . , x̌

iC
cC

)
]
.

It is necessary to be able to evaluate π̌t only pointwise and up to a normalising constant, as

in the standard setting. Naturally, if we take π̌t(xc1 , . . . ,xcC ) =
∏

c∈C(t) πc(xc) we recover the

basic approach discussed in Section 3.2. The same unbiasedness and consistency properties

detailed in Propositions 1 and 2 holds if this strategy is employed—see Section ?? of the

Supplementary material for details.

The computational cost of simulating from Qt will be O(N |C(t)|). However, we envisage

that both |C(t)| and the number of coalescence events (i.e. combinations of subpopulations

via this step) are sufficiently small that this is not a problem in many cases. Furthermore,

if the mixture sampling approach is employed it significantly mitigates the negative impact

of resampling, and it is possible to reduce the branching factor by introducing additional

(dummy) internal nodes in T . For example, by introducing additional nodes in order to

obtain a binary tree (see Section 5.1), the merging of the child populations will be done

by coalescing pairs, then pairs of pairs, etc., gradually taking the dependencies between the

variables into account.

Should the computational cost of evaluating the full joint distribution Qt still be pro-

hibitive, a computationally efficient alternative is to make use of a technique similar to

multiple matching as in the independent particle filter by Lin et al. (2005, Section 2.2).

Instead of sampling from the full product distribution (7), we sample first mN offsprings

from each child population independently, according to their importance weights. We then

resample N particles from the mN matchings {(xic1 , . . . ,x
i
cC

)}mNi=1 with weights proportional

to π̌t(x
i
c1
, . . . ,xicC )

/∏
c∈C(t) πc(x

i
c), i = 1, . . . , mN to obtain {(x̌ic1 , . . . , x̌

i
cC

)}Ni=1. The re-

sulting importance weights wi
t are computed as above. Essentially, this is an intermediate

route between the basic D&C-SIR method and using the full product distribution (7), where

1 ≤ m � N is a tuning parameter controlling the trade-off. Since this strategy aims to

reap the benefits of mixture sampling, but at a smaller computational cost, we refer to it as
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lightweight mixture sampling.

Other possibilities, on which we do not elaborate here, include using the strategy of

Briers et al. (2005) for efficiently sampling from a product of mixtures and (when dealing

with simple local interactions) using techniques borrowed from N -body problems (Gray and

Moore, 2001), at the cost of introducing a small but controllable bias.

4.2 SMC samplers and tempering within D&C-SMC

As discussed in Section 2.3, a common strategy when simulating from some complicated

distribution using SMC is to construct a synthetic sequence of distributions (3) which evolves

from something tractable to the target distribution of interest (Del Moral et al., 2006). The

SMC proposals can then, for instance, be chosen as MCMC transition kernels—this is the

approach that we detail below for clarity.

Step 2 of Algorithm 2 corresponds essentially to a (sequential) importance sampling

step. Using the notation introduced in the previous section, we obtain after the resam-

pling/mixture sampling step an unweighted sample {(x̌ic1 , . . . , x̌
i
cC

)}Ni=1 targeting π̌t, which

is extended by sampling from qt(x̃t |xc1 , . . . ,xcC ), and then re-weighted to target πt(xt). We

can straightforwardly replace this with several SMC sampler iterations, targeting distribu-

tions which bridge from πt,0(xt) = π̌t(xc1 , . . . ,xcC )qt(x̃t |xc1 , . . . ,xcC ) to πt,nt(xt) = πt(xt),

typically by following a geometric path πt,j ∝ π
1−αj
t,0 π

αj
t,nt with 0 < α1 < . . . < αnt = 1. Step 2

of Algorithm 2 is then replaced by:

2′. (a) For i = 1 to N , simulate x̃it ∼ qt(· | x̌ic1 , . . . , x̌
i
cC

).

(b) For i = 1 to N , set xit,0 = (x̌ic1 , . . . , x̌
i
cC
, x̃it) and wi

t,0 = 1.

(c) For SMC sampler iteration j = 1 to nt:

i. For i = 1 to N , compute wi
t,j = wi

t,j−1γt,j(x
i
t,j−1)/γt,j−1(x

i
t,j−1).

ii. Optionally, resample {xit,j−1,wi
t,j}Ni=1 and override the notation {xit,j−1,wi

t,j}Ni=1

to refer to the resampled particle system.

iii. For i = 1 to N , draw xit,j ∼ Kt,j(x
i
t,j−1, ·) using a πt,j-reversible Markov kernel

Kt,j.

(d) Set xit = xit,nt and wi
t = wi

t,nt .

The computation of normalizing constant estimates has been omitted for brevity, but follows

by standard arguments (the complete algorithm is provided in Section ?? of the Supplemen-

tary material); again this leads to unbiased estimates (see Section ?? of the Supplementary

material). Consistency follows directly from proposition 2, noting that annealing steps can

be modeled as standard D&C-SMC steps by introducing empty dummy nodes to the tree.
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We believe that the mixture sampling (or lightweight mixture sampling) approach in-

troduced in Section 4.1 can be particularly useful when combined with SMC tempering as

described above. The reason is that it enables efficient initialization of each (node-specific)

SMC sampler by choosing, for α? ∈ [0, 1],

π̌t(xx1 , . . . ,xcC ) ∝

 ∏
c∈C(t)

πc(xc)

1−α? [∫
πt(xc1 , . . . ,xcC , x̃t)dx̃t

]α?
. (8)

That is, we exploit the fact that the mixture sampling (or lightweight mixture sampling)

distribution has support on N |C(t)| (or mN) points to warm-start the annealing procedure at

a non-zero value of the annealing parameter α?. In practice, this has the effect that we can

typically use fewer temperatures nt, since we only need to bridge between α = α? > 0 and

α = 1. In particular, if simulating from the MCMC kernels Kt,j is computationally costly,

requiring fewer samples from these kernels can compensate for the O(N |C(t)|) (or O(mN))

computational cost associated with mixture sampling (or lightweight mixture sampling).

4.3 Particle MCMC

The seminal paper by Andrieu et al. (2010) demonstrated that SMC algorithms can be

used to produce approximations of idealized block-sampling proposals within MCMC algo-

rithms. By interpreting these particle MCMC algorithms as standard MCMC algorithms on

an extended space, incorporating all of the variables sampled during the running of these

algorithms, they can be shown to be exact, in the sense that the apparent approximation

does not change the invariant distribution of the resulting MCMC kernel. Proposition 1, and

in particular the construction used in its proof, demonstrates how the class of D&C-SMC

algorithms can be incorporated within the particle MCMC framework. Such techniques are

now essentially standard, and we do not dwell on this approach here.

4.4 Adaptation

Adaptive SMC algorithms have been the focus of much attention in recent years. Del Moral

et al. (2012) provides the first formal validation of algorithms in which resampling is con-

ducted only sometimes according to the value of some random quantity obtained from the

algorithm itself. We advocate the use of low variance resampling algorithms (Douc et al.,

2005, e.g.) to be applied adaptively. Other adaptation is possible within SMC algorithms.

Two approaches are analyzed formally by Beskos et al. (2014): adapting the parameters of

the MCMC kernels (step 2′(c)iii.), and the number and locations of tempering distributions,

i.e., nt and α1, . . . , αnt ; see e.g., Zhou et al. (2015) for one approach to this.
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Figure 5: The disconnected components correspond to the groups of variables that are targeted by the
different populations of the D&C-SMC algorithm. At the final iteration, corresponding to the rightmost
figure, we recover the original, connected model.

Adaptation is especially appealing within D&C-SMC: beyond the usual advantages it

allows for the concentration of computational effort on the more challenging parts of the

sampling process. Using adaptation will lead to more intermediate distributions for the

subproblems (i.e., the steps of the D&C-SMC algorithm) for which the starting and ending

distributions are more different. Furthermore, it is also possible to adapt the parameter

α? in (8)—that is, the starting value for the annealing process—based, e.g., on the effective

sample size of the N |C(t)| particles comprising (7), or the mN subsampled particles if using

the lightweight mixture sampling approach. In simulations (see Section 5.1) we have found

that the effect of such adaptation can result in α? = 1 for many of the “simple” subproblems,

effectively removing the use of tempering when this is not needed and significantly reducing

the total number of MCMC simulations.

As a final remark, we have assumed throughout that all particle populations are of

size N , but this is not necessary. Intuitively, fewer particles are required to represent simpler

low-dimensional distributions than to represent more complex distributions. Manually or

adaptively adjusting the number of particles used within different steps of the algorithm

remains a direction for future investigation.

5 Experiments

5.1 Markov Random Field

One model class for which the D&C-SMC algorithm can potentially be useful are Markov

random fields (MRFs). To illustrate this, we consider the well-known square-lattice Ising

model. Each lattice site is associated with a binary spin variable xk ∈ {−1, 1} and the

configuration probability is given by p(x) ∝ e−βE(x), where β ≥ 0 is the inverse temperature

and E(x) = −
∑

(k,`)∈E xkx` is the energy of the system. Here, E denotes the edge set for the

graphical model which we assume correspond to nearest-neighbour interactions with periodic

boundary conditions, see Figure 5 (rightmost figure).
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Let the lattice size be M ×M , with M being a power of 2 for simplicity. To construct

the computational tree T we make use of the strategy of Section 3.4. That is, we start

by dividing the lattice into two halves, removing all the edges between them. We then

continue recursively, splitting each sub-model in two, until we obtain a collection of M2

disconnected nodes; see Figure 5. This decomposition of the model defines a binary tree T of

height 2 log2M , on which the D&C-SMC algorithm operates. At the leaves we initialize M2

independent particle populations by sampling uniformly on {−1, 1}. These populations are

then resampled, merged, and reweighted as we proceed up the tree, successively reintroducing

the “missing” edges of the model (note that X̃t = ∅ for all non-leaf nodes t in this example).

This defines the basic D&C-SIR procedure for the MRF. We also consider four extensions

of this procedure:

D&C-SMC (mix) uses the mixture sampling strategy described in Section 4.1 with π̌t =

πt, i.e., the edges connecting any two sub-graphs are introduced before the correspond-

ing sub-populations are merged.

D&C-SMC (ann) uses the tempering method discussed in Section 4.2, i.e., when the edges

connecting two sub-graphs are reintroduced this is done gradually according to an

annealing schedule to avoid severe particle depletion at the later stages of the algorithm.

D&C-SMC (ann+mix) uses tempering and mixture sampling, with π̌ selected as in (8).

D&C-SMC (ann+lw) uses tempering and mixture sampling, with π̌ selected as in (8), but

employs the lightweight mixture sampling method described in Section 4.1 to reduce

the computational cost of the merge step from N2 to mN . We chose m = 32.

The D&C-SMC methods without annealing gave inferior results in this example, and D&C-

SMC (ann+mix) performed similarly to D&C-SMC (ann+lw). We therefore focus our at-

tention on D&C-SMC (ann) and D&C-SMC (ann+lw) in this section. The results for all

other methods are given in Section ?? of the Supplementary material.

For the annealed methods, we use single-flip Metropolis-Hastings kernels. The annealing

schedules are set adaptively based on the conditional ESS criterion of Zhou et al. (2015),

with threshold of 0.995. For D&C-SMC (ann+lw) we warm-start each annealing process by

selecting α? in (8) based on the ESS of the mN particle system with threshold 0.5; thus,

α? is increased until the ESS is 0.5mN = 16N after which the system is subsampled to

obtain N particles, for which the annealing process is then executed for α ranging from α?

to 1. We also compare these methods with, (i) a standard SMC sampler with adaptive

annealing Del Moral et al. (2006), and (ii) a single-flip Metropolis-Hastings sampler. In the

Supplementary material we furthermore compare with a blocked Gibbs sampler—the results

are qualitatively the same as the ones presented here. All methods were implemented in

Matlab 9.0 on a Dell E7470.
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Figure 6: Box-plots (min, max, and inter-quartile) of estimates of logZ (top) and E[E(x)] (bottom) over 50
runs of each sampler (excluding single flip MH in the top panel since it does not readily provide an estimate
of logZ). The boxes, as plotted from left to right, correspond to increasing number of particles N (or number
of MCMC iterations for single flip MH). This figure is best viewed in color.

We consider a grid of size 64× 64 with β = 0.4407 (the critical temperature). The SMC-

based methods used a number of particles ranging from N = 26 to 211. The single-flip MH

sampler was run for 214 MCMC iterations (each iteration being one complete sweep), with

the first 29 iterations discarded as burn-in. We ran each method 50 times and considered

the estimates of (i) the normalising constant Z and (ii) the expected value of the energy

E[E(x)]. The results are given in Figure 6. In this example, D&C-SMC (ann) and D&C-

SMC (ann+lw) gave the overall best performance, significantly outperforming both standard

SMC and single flip MH sampling for the same computational time. The two D&C-SMC

samplers have comparable performances, slightly in favour of D&C-SMC (mix+lw).

It is interesting to note that D&C-SMC (ann+lw) has a lower computational cost than

D&C-SMC (ann) for the same number of particles. This might at first seem counter-intuitive,

since it employs a more costly merge step, but the reason is that using (lightweight) mixture

sampling can result in that fewer annealing steps need to be taken. Indeed, for the simulations

presented above, the SMC sampler used on average (over all different settings and runs)

685 MCMC updates for each site. The corresponding numbers for D&C-SMC (ann) and

D&C-SMC (ann+lw) were 334 and 197, respectively. That is, for this example lightweight

mixture sampling reduces the number MCMC iterations that are taken compared to D&C-

SMC (ann) with about 40 % (which in turn uses only half the number of MCMC iterations

compared to standard SMC). Hence, for models where simulation from the MCMC kernel is

computationally expensive it can be worthwhile to use (lightweight) mixture sampling, even

though the computational cost of the merge step itself is higher.
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Table 1: Statistics for the merge steps of D&C-SMC (ann+lw) with 2 048 particles. The method runs
for 12 iterations (not counting initialisation). #pop is the number of independent particle populations at
the beginning of each iteration. The populations are then merged pair-wise before proceeding to the next
iteration. #edges is the number of edges of the original MRF that are introduced in the merging of each
pair of populations. α? (mean and standard deviations computed over all sites and the 50 independent runs
of the sampler) is the value at which the annealing parameter is warm-started as explained in Section 4.2.

Iteration 1 2 3 4 5 6 7 8 9 10 11 12

#pop 4096 2048 1024 512 256 128 64 32 16 8 4 2
#edges 1 2 2 4 4 8 8 16 16 32 64 128
α? (mean) 1.0 1.0 1.0 0.971 0.965 0.585 0.581 0.371 0.370 0.245 0.169 0.111
α? (std ·103) 0 0 0 3.9 4.0 4.3 3.1 2.5 2.5 1.7 1.2 1.0

The fact that (lightweight) mixture sampling automatically results in more computational

effort being spent on the most difficult subproblems can be further illustrated by considering

the values obtained for the parameter α? in (8) (recall that α? is chosen adaptively based on

an ESS criterion). As pointed out above, α? ∈ [0, 1] is the value of the annealing parameter

at which the annealing process is warm-started. In Table 1 we summarize some statistics

recorded during the execution of D&C-SMC (ann+lw) with N = 2 048 particles (similar

results were obtained for the other settings as well). Note that, due to the way T is con-

structed, the number of edges that are “added to the model” at the merge steps increases

as we move upward in T . Indeed, for this model the height of T is 2 log2(64) = 12 and the

number of edges that are added during the merge-steps of the 12 non-leaf levels are: 1, 2, 2,

4, 4, 8, 8, 16, 16, 32, 64, 128. From Table 1 we can see that at the first few iterations, when

few edges are added in the merge steps, we obtained α? = 1, meaning that no annealing

was performed during these steps of the algorithm. For the subsequent levels we obtained

values of α? less than 1, as can be seen in Table 1, but we were still able to warm-start the

annealing at a non-zero value, effectively reducing the number of annealing steps needed.

In Section ?? of the Supplementary material we report additional numerical results for

the Ising model (including different temperatures) as well as for another square-lattice MRF

model with continuous latent variables and a multimodal posterior. These additional results

are in general agreement with the ones presented here.

5.2 Hierarchical Bayesian Logistic Regression

In this section, we demonstrate the scalability of our method by analysing a dataset con-

taining New York State Mathematics Test results for elementary and middle schools.

After preprocessing (data acquisition and preprocessing are described in detail in Sec-

tion ?? of the Supplementary material), we organize the data into a tree T . A path from the

root to a leaf has the following form: NYC (the root, denoted by r ∈ T ), borough, school

district, school, year. Each leaf t ∈ T comes with an observation of mt exam successes out
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of Mt trials. There were a total of 278 399 test instances in the dataset, split across five

borough (Manhattan, The Bronx, Brooklyn, Queens, Staten Island), 32 distinct districts,

and 710 distinct schools.

We use the following model, based on standard techniques from multi-level data analysis

(Gelman and Hill, 2006). The number of successes mt at a leaf t is assumed to be binomially

distributed, with success probability parameter pt = logistic(θt), where θt is a latent param-

eter. Moreover, we attach latent variables θt to internal nodes of the tree as well, and model

the difference in values along an edge e = (t→ t′) of the tree with the following expression:

θt′ = θt+∆e, where, ∆e ∼ N(0, σ2
e). We put an improper prior (uniform on (−∞,∞)) on θr.

However, when mt /∈ {0,Mt} for at least one leaf, this can be easily shown to yield a proper

posterior. We also make the variance random, but shared across siblings, σ2
e = σ2

t ∼ Exp(1).

We apply the basic D&C-SIR to this problem, using the natural hierarchical structure

provided by the model (see Section 3.4). Note that conditionally on values for σ2
t and

for the θt at the leaves, the other random variables are multivariate normal. Therefore, we

instantiate values for θt only at the leaves, and when proposing at an internal node t′, we only

need to propose a value for σ2
t′ as the internal parameters θt′ can be analytically marginalized

conditionally on σ2
t′ and θt′ using a simple message passing algorithm.

Each step of D&C-SMC therefore falls in exactly one of two cases: (i) At the leaves we

propose a value for pt from a Beta distribution with parameters 1 + mt and 1 + Mt −mt,

which we map deterministically to θt = logit(pt). The corresponding weight update is a

constant. (ii) At the internal nodes we propose σ2
t ∼ Exp(1) from its prior. The weight

update ratio involves the densities of marginalized multivariate normal distributions which

can be computed efficiently using message passing. Our Java implementation is open source

and can be adapted to other multilevel Bayesian analysis scenarios (see Section ?? of the

Supplementary material for instructions on how to do so).

The qualitative results obtained from D&C-SMC with 10 000 particles (Figure ?? of the

Supplementary material) are in broad agreement with other socio-economic indicators. For

example, among the five counties corresponding to each of the five boroughs, Bronx County

has the highest fraction (41%) of children (under 18) living below poverty level (New York

State Poverty Report, 2013). Queens has the second lowest (19.7%), after Richmond (Staten

Island, 16.7%). However the fact that Staten Island contains a single school district means

that our posterior distribution is much flatter for this borough.

For comparison, we also applied three additional methods (further details on the baselines

and the experimental setup can be found in Section ?? of the Supplementary material):

Gibbs: A Metropolis-within-Gibbs algorithm, proposing a change on a single variable using

a normal proposal of unit variance. As with D&C-SIR, we marginalize the internal θt

parameters. (Java implementation.)
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STD: A standard (single population) bootstrap particle filter with the intermediate distri-

butions being sub-forests incrementally built in post-order. The internal θt-parameters

are marginalized. (Java implementation.)

Stan: An open-source implementation of the Hamiltonian Monte Carlo algorithm (Carpen-

ter et al., 2016). We did not implement marginalization of the internal θt-parameters.

Stan includes a Kalman inference engine, however it is limited to chain-shaped PGMs

as of version 2.6.0. (C++ implementation.)

We measure efficiency using effective sample size (ESS) per minute, as well as convergence

of the posterior distributions on the parameters. For the MCMC methods (Gibbs and Stan),

the ESS is estimated using the standard auto-regressive method, as implemented by Plummer

et al. (2006). For the SMC methods (D&C-SMC and STD), the non-sequential nature of the

samples dictates a different estimator, hence, again following standard practices, we use the

estimator described by Kong et al. (1994). For both MCMC and SMC methods, wall-clock

time is measured on Intel Xeon E5430 quad-core processors, running at 2.66 GHz. These

experiments are replicated ten times. Standard deviations are indicated in parentheses.

We begin with the ESS per minute results for the SMC methods ran with 10 000 particles.

For D&C-SMC, we obtained a mean ESS/min of 636.8 (19.3), and for STD, of 537.8 (53.2).

The diagnostics suggest that both methods perform reasonably well, with a slight advantage

to D&C-SMC. In contrast, the MCMC diagnostics raised inefficiency concerns. For Gibbs

(300 000 iterations), we obtained a mean ESS/min of 0.215 (0.010). The performance of Stan

(20 000 iterations) was inferior, and more volatile, with a mean of 0.000848 (0.0016). We

attribute the poor performance of the Stan baseline to the fact that it does not marginalize

the parameters θ (the reason for this is explained in the previous section).

Since the different types of samples impose the use of two different ESS estimators, direct

comparisons of ESS/min between an SMC and an MCMC method should be taken with a

pinch of salt. However, these results show that the sampling problem we are investigating in

this section is indeed a challenging one. This is not a surprise, given the high-dimensionality

of the latent variables (3 555 remaining parameters after marginalization of the multivariate

normal). Moreover, our results on the convergence of the posterior distributions on the pa-

rameters (Section ?? of the Supplementary material) recapitulate that (i) the SMC methods

strongly outperform the MCMC baselines in this problem, and (ii) D&C-SMC and STD

perform similarly, with a slight advantage for D&C-SMC.

Next, to better differentiate the two SMC methods, we investigate estimation of the log-

normalizing constant log(Z). The results are shown in Figure 7. By combining Proposition 1

with Jensen’s inequality, we have the bound E[log ẐN ] ≤ logZ. Since both D&C-SMC and

STD have this property, we can conclude that higher mean values for the estimates are

indicative of better performance (see also Section ?? of the Supplementary material, where
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Figure 7: Left: Estimates of log(Z) obtained using D&C-SMC and STD with different numbers of particles.
Each experiment was replicated 110 times (varying the Monte Carlo seed), except for the experiments with
1M particles, which were replicated only 10 times. Right: Wall-clock times for the distributed D&C-SMC
algorithm. See Section ?? of the Supplementary material for speed-up results.

we use an example such that the true value of Z is known, to empirically validate the

correctness of our implementation of the log normalization computation). Therefore we can

conclude that D&C-SMC outperforms STD on all computational budgets.

5.3 Distributed Divide-and-Conquer

To demonstrate the suitability of D&C-SMC to distributed computing environments, we

have implemented a proof-of-concept distributed D&C-SMC algorithm. The main idea in

this implementation is to split the work at the granularity of populations, instead of the more

standard particle granularity. The description and benchmarking of this implementation can

be found in Section ?? of the Supplementary material. Using this distributed implementa-

tion, we see for example (Figure 7, right) that the running time for 100 000 particles can be

reduced from 4 557 seconds for one machine (about 11
4

hours), to 279 seconds (less than five

minutes) using 32 compute nodes (each using a single thread).

6 Discussion

We have shown that trees of auxiliary distributions can be leveraged by D&C-SMC sam-

plers to provide computationally efficient approximations of the posterior distribution of

high-dimensional and possibly loopy probabilistic graphical models. Our method, which

generalizes the SMC framework, is easy to distribute across several compute nodes.

As with standard SMC (and other advanced computational inference methods) D&C-

SMC allows for a large degree of flexibility, and the method should be viewed as a toolbox

rather than as a single algorithm. Indeed, we have discussed several possible extensions of
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the basic method, and their utility is problem-specific. Furthermore, the interplay between

these extensions needs to be taken into account. In particular, based on the numerical

results in Section 5.1 we argue that (lightweight) mixture sampling can be useful when used

in conjunction with MCMC-based tempering, especially when simulating from the MCMC

kernel is computationally costly. In such scenarios, the warm-starting of the tempering

process enabled by mixture sampling can compensate for the increased computational cost

of mixture sampling.

We have assumed in this work that the topology of the tree of auxiliary distributions

is known and fixed. In practice, several different decompositions are possible. We have

presented one systematic way of obtaining a tree decomposition for self-similar graphical

models. However, a natural question to ask is how to choose an optimal decomposition.

We are exploring several approaches to address this question, including strategies that mix

several decompositions. How the components of these mixtures should interact is a question

we leave for future work.

Supplementary material

Appendices: The appendices contain proofs of Propositions 1 and 2 as well as additional

details and results on the numerical examples. (supplementary-material.pdf)

Code: The code used to generate the results in Sections 5.1 and 5.2 is publicly available on

GitHub, at https://github.com/freli005/divide-and-conquer-smc and https:

//github.com/alexandrebouchard/divide-and-conquer-smc, respectively.
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