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Abstract

Human genetic variation is the incarnation of diverse evolutionary history, which reflects both selectively advantageous and
selectively neutral change. In this study, we catalogue structural and functional features of proteins that restrain genetic
variation leading to single amino acid substitutions. Our variation dataset is divided into three categories: i) Mendelian
disease-related variants, ii) neutral polymorphisms and iii) cancer somatic mutations. We characterize structural
environments of the amino acid variants by the following properties: i) side-chain solvent accessibility, ii) main-chain
secondary structure, and iii) hydrogen bonds from a side chain to a main chain or other side chains. To address functional
restraints, amino acid substitutions in proteins are examined to see whether they are located at functionally important sites
involved in protein-protein interactions, protein-ligand interactions or catalytic activity of enzymes. We also measure the
likelihood of amino acid substitutions and the degree of residue conservation where variants occur. We show that various
types of variants are under different degrees of structural and functional restraints, which affect their occurrence in human
proteome.
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Introduction

The evolution of orthologous proteins occurs through the

establishment of amino acid substitutions in the population at rates

that depend on restraints arising from the need to maintain proper

three-dimensional structure and to retain functional interactions of

each amino acid within or between molecules [1–4]. For example,

amino acids in the cores of proteins are relatively conserved

compared with those in the solvent accessible regions [5,6] and

catalytic amino acids responsible for enzymatic reaction are also

well conserved throughout evolution. Hence, mutations tend to be

accepted in amino acid residues where evolutionary pressure is

relatively relaxed and where they can remain in the population

without selective disadvantage (or advantage). Recently, high-

throughput DNA sequencing technology has begun to have a

major impact on this field and is shedding light on genomic

sequence variations between human individuals [7–10]. Single

nucleotide polymorphisms (SNPs) in protein coding regions are of

special interest as they may be non-synonymous (nsSNPs),

resulting in changes in the types of amino acid in the protein

products. Indeed, recent analysis of human nsSNPs shows that the

majority are commonly found and appear to be functionally

neutral [11]. Thus, it is of interest to examine whether the

occurrence of coding variations in the human population is equally

affected by the factors that restrain the substitutions of amino acids

observed in divergent evolution of proteins.

Before the determination of the human genome sequence,

analysis of genetic mutations focused on establishing the

relationship between genotypes and their phenotypes, especially

susceptibility to certain disease types [12,13]. Detailed molecular

analyses of protein structure and function have shown that single

amino acid substitutions or mutations are often responsible for

certain disease types [14,15]. It has been claimed that ,60% of

such Mendelian disease mutations arise from amino acid

substitutions in their respective genes (see [16] for review). For

most monogenic diseases, a single DNA variant resulting in an

amino acid substitution is responsible for a certain disease type by

affecting protein stability and thus function [17]. Hence, much

effort has been expended to characterize the pattern of nsSNPs in

the context of sequences and structures of proteins in attempts

establish whether they are likely to be neutral or deleterious for the

functions of the organism [18–20].

One of the consensus agreements from molecular analyses of

coding variants is that, although most of them are selectively

neutral, their occurrence is restrained by various factors such as

solvent accessibility, type of secondary structure, and presence of

side-chain hydrogen bonding. Compared with benign and neutral

variants, disease-related variants are more likely to be located in

solvent inaccessible regions and tend to change the physicochem-

ical properties from those of the wild type amino acids [14,18]. In

addition, disease-related variants are more likely to be located at

conserved residues, which are believed to be functionally

important [21,22]. However, previous analyses have been based

on relatively small sub-sets of sequence variants, and have not fully

taken advantage of the rapid growing information on protein

structure and function. Hence, in the era of information deluge

from high-speed genome sequencing, high-resolution protein

structure determination, and enriched annotation on protein
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functions, it is desirable to have large-scale cataloguing of coding

variants in the light of structure and function of proteins. This will

help us understand not only the nature of deleterious mutations,

but also the evolutionary nature of the occurrence of single amino

acid variations.

In this report, we address structural and functional restraints

that shape the occurrence of single amino acid variations. We

divide our data into three categories: i) Mendelian disease-related

variants, ii) neutral polymorphisms and iii) cancer somatic

mutations. We further characterize structural environments of

amino acid variants by mapping sequence positions onto their

corresponding three-dimensional structures if available. We

observe, as reported previously [14,18], that nsSNPs occur less

frequently at the solvent inaccessible region of proteins, whereas

disease-related mutations occur much more frequently than the

average. We also find that cancer somatic mutations and disease-

related variants occur more frequently at amino acids making

hydrogen bonds from side chains than neutral polymorphisms. We

measure substitution scores and the degree of sequence conserva-

tion at the variant positions and compare their differences by

datasets.

Results and Discussion

Compilation of Amino Acid Variant Dataset
We compiled our variant dataset from the following sources: 1)

Swiss-Prot human variants [23], 2) Ensembl human variation

database [24], and 3) COSMIC (Catalogue Of Somatic Mutation

In Cancer) database [25] (see Materials and Methods for details).

The Swiss-Prot variants are further classified by Mendelian

disease-related variants (SVD) and polymorphic variants (SVP)

according to the original annotations from the source. For

Ensembl human variations (SAP), we used only verified SNPs in

order to ensure an accurate and reliable polymorphic dataset. The

COSMIC dataset (CSM) differs from the others in that it contains

somatic mutations observed in various cancer types. The sequence

positions of variants from the source data were transferred to

UniProt protein sequence level [26] and further mapped onto

their corresponding locations in terms of three-dimensional

structures if available in PDB [27]. Table 1 shows the number

of variants from the source data, variants mapped onto UniProt

protein level, and PDB level. SVD does not share variants with

SVP, but does share 232 and 104 variants with CSM and SAP

Table 1. Four types of sequence variants and their numbers.

Sources Types Abbreviations NO. of distinct variants

from the source mapped to UniProt mapped to PDB

UniProt disease SVD 16,776 16,776 4,942

polymorphism SVP 32,748 32,748 2,895

Ensembl verified SNPs SAP 29,541 28,702 2,024

COSMIC cancer mutations CSM 5,260 4,476 2,016

doi:10.1371/journal.pone.0009186.t001

Table 2. Occurrence (%) of variants by structural environments.

Structural environment Types of variants Background

Categories types SVD7 SVP8 CSM9 SAP10 SCOP11

solvent accessibility a1 42.25 18.45 26.45 19.48 31.21

hydrogen bonds from side chains to main-chain amides T2 10.69 5.79 8.44 5.69 8.55

to main-chain carbonyls T 19.50 13.01 13.27 13.36 13.63

to other side chains T 25.58 19.31 21.93 17.04 19.97

secondary structure H3 27.98 32.98 22.14 31.58 36.61

E4 23.25 20.23 20.26 20.13 21.09

P5 9.71 6.40 10.26 6.60 6.45

C6 39.06 40.39 47.34 41.69 35.85

1: inaccessible.
2: True (hydrogen bonded).
3: a-helix.
4: b-strand.
5: positive Q main-chain torsion angle.
6: coil.
7: see Dataset S1.
8: see Dataset S3.
9: see Dataset S7.
10: see Dataset S5.
11: see ‘Representative SCOP domains’ of Materials and Methods.
doi:10.1371/journal.pone.0009186.t002
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respectively, which are less than 1.4% of SVD (see Figure S1 for

details). CSM shares less than 0.9% either with SAP (15/4476) or

SVP (31/4476). However, SVP and SAP share ,51% (16863/

32748) and ,57% (16863/29541) with each other, which is not

surprising because both represent polymorphic variants. Consid-

ering the low percentage of overlaps amongst Mendelian disease

(SVD), cancer somatic (CSM) and neutral polymorphic variants

(SAP and SVP), we did not remove overlaps in our analysis, which

we now describe.

Local Structural Environments of Sequence Variants
We wish to characterize the local structural environments of

amino acid variants where three-dimensional structures of proteins

are known. The local structural environments of amino acids were

first defined as suggested by Overington and colleagues [28,29]: 1)

main-chain conformation and secondary structure, 2) solvent

accessibility and 3) hydrogen bonding between side chains and

main chains. In this framework, there could be 64 distinct

environments for a residue from the combination of structural

features: four from secondary structures (a-helix, b-strand, coil and

residue with positive Q main-chain torsion angle), two from solvent

accessibility (accessible and inaccessible), and eight (23) from

hydrogen bonds to main-chain carbonyl (CO) or amide (NH) or to

another side chain. Four types of variants were mapped onto PDB

structures and characterized by their local structural environments

(see Datasets S1, S3 and S5). In Table 2, we quantified the

proportions of variants that belong to each environmental

category and compared them among four variant classes. To give

background proportions of amino acids for each environmental

feature, we counted amino acids from representative domains (see

Materials and Methods) of SCOP families [30] and their

proportions are given in Table 2. We investigated whether the

ratio of variants for each environment category could result from

the structural restraints that shape the occurrence of variants in

proteins.

By solvent accessibility. We observed that Mendelian

disease-related variants (SVD) occur twice as often as

polymorphic variants (SVP and SAP) at solvent inaccessible

positions. For cancer mutations (CSM), the proportion of variants

in solvent inaccessible regions is more than that of SVP but less

than SVD. If a sequence variant occurs randomly in proteins, the

probability of being located in a solvent inaccessible region would

be close to 31.21%, which is the proportion of solvent inaccessible

amino acids from the representative SCOP domains. As shown in

Table 2, SVD occur 35% (42.25/31.21 -1) more than expected,

whereas polymorphic variants (SVP and SAP) occur 40% (1 -

18.45/31.21) less often than expected. We presume that the

differences in the frequency of occurrence by mutation types may

arise from evolutionary pressure, which restricts the occurrence of

variants in the core regions of proteins in order to minimize the

effects on the stabilities of proteins. This observation also agrees

with the finding that for most monogenic diseases a single DNA

variant, resulting in an amino acid substitution, is responsible for

the disease by affecting protein stability [17].

By hydrogen-bond capacity. For three categories of

hydrogen-bond types, SVD occur more frequently at amino

acids making hydrogen bonds (‘T’ in Table 2) than do the other

variants. CSM also occur more frequently than polymorphic

variants, but the difference is smaller than that of SVD. This

observation, together with the ratios of occurrence in the interior/

surface regions of proteins, clearly shows that amino acid variants

are under strong restraints, resulting in the observation that they

Figure 1. Box plots of substitution scores from four types of variants in the dataset. Each box plot is derived from the four variant datasets
(see Table 1) and data are plotted against the BLOSUM62 substitution table and ESST in A and B, respectively. The median value is represented as a
bold vertical line within a box, which represents the interquartile range (IQR) where lower quartile (cut-off at the lowest 25% of the data) and upper
quartile (cut-off at the highest 25% of the data) are the left and right edges of the box. Two vertical lines extended from the left and right hand sides
of a box represent the smallest (left whisker) and largest (right whisker) non-outlier observations, respectively. Any data observation that lies more
than 1.5*IQR lower than the lower quartile or 1.5*IQR higher than the upper quartile is considered an outlier which is shown as a circle.
doi:10.1371/journal.pone.0009186.g001
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occur less frequently in regions maintaining the architectures of

protein structures.

By element of secondary structure. As shown in Table 2,

compared with the ratios of residues from representative SCOP

domains and other polymorphic variants (SVP and SAP), SVD

and CSM occur less in residues in a-helices (H), but more often at

residues with positive Q main-chain torsion angles (P).

Interestingly, almost half of CSM (47.34%) occur in coil regions,

distinguishing them from other variant datasets (,41.69%). Our

results agree with those of Ferrer-Costa and colleagues [18] who

showed disease-related SNPs occur less in a-helices but more

frequently in b-strands than neutral nsSNPs, although differences

in the percentages may arise from the methods used for defining

secondary structure.

Amino Acids Substitution Scores
Amino acid substitution models such as PAM [31] and

BLOSUM [32] describe the degree of substitutions as log-odd

ratio values where the positive scores suggest commonly occurring

and preferred substitutions, whereas the negative scores imply very

rare substitutions which are disfavoured in nature. Those

substitution tables were widely used to assess and predict the

effects of nsSNPs [12,18]. An ESST (Environment Specific

Substitution Table, http://www-cryst.bioc.cam.ac.uk/esst) also

describes the degree of substitution of amino acids, but differs

from PAM or BLOSUM by taking into account structural

environments which restrict the possible and allowable substitu-

tions [28,29]. Hence, ESSTs provide more accurate and

discriminating measures of substitution probabilities in a particular

environment in a three-dimensional protein structure. Figures 1A

and 1B show box plots of substitution scores from four types of

variants in the dataset using BLOSUM62 and ESST, respectively.

From both models, the median substitution scores for SVD and

CSM are lower than those of SVP and SAP. We further

investigated substitution scores by the local structural environ-

ments of the variants where they occur in three-dimensional

structures of proteins.

By solvent accessibility. Figure 2 shows box plots of

substitution scores by solvent accessibility for the four types of

variant dataset. Except for SVP, the median values of substitution

scores in the core regions of proteins are always smaller than those

from the surface regions. The difference in substitution scores

between core and surface region is highly significant for both SVD

and CSM (P,1.0212) and significant for SVP (P,1.024), whereas

it is not significant for SAP (P,0.78). This suggests that, although

variants occur less frequently at solvent inaccessible regions, their

effect would be detrimental if they occurred at the solvent

inaccessible regions. In addition, the average proportions of

variants having negative values of substitution score are 63% and

55% for SVD and CSM respectively, whereas the average

proportions are less than 40% for SVP and SAP (see Table S1).

By hydrogen-bond capacity. Figure 3 shows box plots for

the distributions of substitution scores by existence or absence of

hydrogen bonds from a side chain to a main-chain amide

(Figure 3A), main-chain carbonyl (Figure 3B), and other side

chains (Figure 3C). Overall, most of the median substitution scores

for the residues making hydrogen bonds (NH/CO/SC) are

smaller or equal to those from non-hydrogen bonding residues

Figure 2. Box plots of substitution scores by solvent accessibility. Each of the four datasets is divided into solvent accessible (surface) and
inaccessible (core) datasets. The representation scheme of a box plot is the same as shown in Figure 1.
doi:10.1371/journal.pone.0009186.g002
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(nh/co/sc), which implies it would be more deleterious if variants

were to occur at amino acids making hydrogen bonds. Indeed, the

median values of SVD and CSM are negative for all three types of

hydrogen bonds, although the difference is significant (P,1.023)

only for amide (NH/nh) and carbonyl (CO/co) types of CSM

dataset.

By elements of secondary structure. In Figure 4, we plot

substitution scores by class of secondary structure at the position

where the variants occur. For SVD (Figure 4C) and CSM

(Figure 4D), the median values are less than zero, regardless of

secondary structures. Interestingly, for all variant types, those that

occur at positive Q main-chain torsion angles (P) are always

negative and they are significantly different (P,1.025) from the

distributions of substitution scores for helix (H), beta (E) and coil

(C). A positive Q torsion angle can be accommodated by a Gly,

which has no side chain, but for most other L-amino acids it leads

to disallowed interactions between side-chain and main-chain

atoms. However, for L-amino acids such as Asp or Asn,

interactions between the side-chain carbonyl group with the

carbonyl of the main-chain peptide bond can give rise to relative

stabilisation of a conformation with a positive Q angle [33]. Hence,

sequence variants occurring at the residues within a positive Q
torsion angle could be very deleterious and affect the native

structures. For a positive Q torsion angle, we found that 55,57%

of polymorphic variants (SVP and SAP) involve substitutions of

amino acids from Gly, Asp and Asn, compared to 65,68% of

SVD and CSM. This suggests that disease-causing mutations

affect the native structure more frequently than neutral

polymorphic variants (Table S2).

Amino Acid Property Substitution Matrix
Substitution scores could be a proxy for the effect of variants,

but do not provide any details of amino acid substitution types. To

investigate this, we classified 20 amino acids into six types on the

basis of physicochemical properties of amino acids (see Material

and Methods) and made 6 * 6 amino acid property substitution

matrices by counting the number of substitutions of amino acid by

their types. Figure 5 shows amino acid property substitution

matrices for the four types of variants in which the probability of

substitutions is represented as heat maps. Aliphatic amino acids

(Ala, Ile, Leu, Val and Met) from SVD (Figure 5C) and CSM

(Figure 5D) are relatively less conserved than those observed from

SAP (Figure 5A) and SVP (Figure 5B). In addition, amino acid

substitutions from negatives (Asp and Glu) to positives (Arg, His

and Lys) and aromatic (Phe, Trp, and Tyr) to polar non-charged

(Cys, Asn, Gln, Ser and Thr) types are more frequently observed

in SVD and CSM than those observed in SAP and SVP. In terms

of substitution patterns, SVP and SAP are most similar, followed

by SVD and CSM, whereas SVP and SVD are most different

(Table S3).

Figure 3. Box plots of substitution scores by hydrogen-bond types. A–C show box plots of substitution scores for the three hydrogen-bond
types from a side chain: hydrogen bonds to amides (NH/nh), to carbonyls (CO/co), and to other side chains (SC/sc). The existence and absence of
hydrogen bonds are shown in upper and lower case, respectively. The representation scheme of a box plot is the same as shown in Figure 1.
doi:10.1371/journal.pone.0009186.g003
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Degree of Sequence Conservation at the Variant
Locations

We investigated the relationship between the variant types and

the degree of sequence conservation at the locations where

variants occur. Figure 6 shows box plots for the degree of sequence

conservation measured by the Shannon’s entropy (see Materials

and Methods) from the four types of variants. In Figure 6A, it is

very clear that Mendelian disease-related variants (SVD) occur at

positions where amino acids are relatively conserved compared

with those from polymorphic datasets (SVP and SAP) and cancer

somatic mutations (CSM) with significant differences in the

distribution (P,1.0211). From Table 2, we observed that the

frequency of solvent inaccessible residues is much higher for SVD

than those from SVP, CSM and SAP. Hence, the lower sequence

entropy of SVD might arise from relatively larger fraction of

solvent inaccessible residues compared with the other variants, as

solvent inaccessible residues are more conserved than solvent

accessible residues. To address this issue, variants are classified

into either solvent accessible (Figure 6B) or inaccessible environ-

ments (Figure 6C) and their sequence entropies were measured

differently. We found that, regardless of their solvent accessibility,

SVD occur at relatively conserved regions compared with variants

from SVP, SAP and CSM (P,1.027 and P,0.0496 from

Figure 6B and 6C, respectively). Interestingly, as shown in

Figure 6B and 6C, the median entropy value of CSM is higher

than that of SVP and SAP, even though the distribution is not

significantly different from that of polymorphic variants (P-values

are ,0.8071, ,0.7032 and ,0.1240 from Figure 6A, 6B and 6C,

respectively). This observation contrasts with a current report that

cancer-related mutations are frequently found at evolutionarily

conserved amino acid residues whereas polymorphic variants

occur in relatively less conserved regions [34]. We suspect that the

conflict in this observation arises from differences in the nature of

the ‘cancer datasets’; we use the COSMIC database whereas the

report is based on curated lists of cancer mutations from selected

literatures.

Functional Restraints
It is well understood that amino acids responsible for specific

functions of proteins tend to be conserved throughout evolution

and are likely to be under strong restraints. Hence, mutations that

do not improve or change function in a way that confers any

selective advantage to the organism would likely be deleterious. To

test this, we investigated variants occur at amino acid residues

responsible for protein function. We used eight functional feature

types defined by UniProt annotations 2 ACT_SITE, BINDING,

CA_BIND, DISULFID, DNA_BIND, LIPID, METAL, and

NP_BIND (see Material and Methods for details) 2 and

protein-protein interaction information from PICCOLO database

(GR. Bickerton, unpublished). Table 3 shows frequencies of

functional residues having a sequence variant at the position.

Polymorphic variants (SVP and SAP) occur in less than 1% of

functional residues, whereas Mendelian disease-related variants

(SVD) occur from 1.47% for calcium-binding residues (CA_BIND)

up to 10.47% for residues interacting with a metal ion (METAL).

Cancer somatic mutations (CSM) occur less frequently than SVD

Figure 4. Box plots for the substitution scores by the class of secondary structure. A–D show box plots of substitution scores from four
variant dataset (see Table 1) which are further divided by the element of secondary structures; a-helix (H), b-strand (E), coil (C) and residue with
positive Q main-chain torsion angle (P). The representation scheme of a box plot is same as shown in Figure 1.
doi:10.1371/journal.pone.0009186.g004
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for all functional categories, but more frequently than polymorphic

variants except for two categories: BINDING (binding sites for

chemical groups) and CA_BIND (calcium-binding regions).

In order to illustrate these features, we examined a number of

specific cases. As an example, Figure 7 exemplifies amino acid

variants occurring at functional residues mentioned above from

the following four UniProt entries: O14832, P00533, P24941, and

O00204 for A–D, respectively. In Figure 7A, there are 17

sequence variants annotated by UniProt, one of which

(VAR_050528) is annotated as polymorphic (SVP) and the rest

are disease-related variants (SVD) responsible for Refsum disease

(RD) [35–37]. Amongst 16 disease-related variants, two occur at

metal-binding (METAL) and two at ligand-binding (BINDING)

residues, which are directly responsible for the disease by inducing

the loss of activity for the protein [35,37,38]. Figure 7B illustrates

the locations of cancer somatic mutations occurring at the kinase

domain of EGFR (Epidermal Growth Factor Receptor). There are

10 ATP-binding sites and one active site residue of which 8 ATP-

binding sites are reported amongst somatic mutations responsible

for lung cancer. Figures 7C and 7D show variants in a protein

Figure 5. Amino acid property substitution matrices represented by heat maps. 20 amino acids are classified into six types based on their
physicochemical properties (see Materials and Methods) and the substitution probabilities among the six types are represented as heat maps. A–D
are from the four variant datasets in Table 1. (ALI: aliphatic, ARO: aromatic, NON: polar non-charged, POS: positively charged, NEG: negatively
charged, and NEU: neutral).
doi:10.1371/journal.pone.0009186.g005

Restraints of Variations
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kinase 2 (CDK2) and an alcohol sulfotranferase (SULT2B1),

respectively. Two polymorphic variants (Y15S and V18L) occur

amongst 19 ATP-binding residues in Figure 7C and only one

polymorphic variant (V225I) out of 53 adenosine diphosphate

binding residues in Figure 7D. The full list of all individual variants

mentioned above is available as Datasets S2, S4 and S6.

Concluding Remarks
In this report, we show that the occurrence of amino acid

variants is affected by the structural and functional restraints.

Based on the frequency of their occurrence in particular

structural environments, disease-related variants occur more

often at solvent inaccessible regions, and at amino acid residues

making hydrogen bonds compared with polymorphic variants.

Overall, substitution scores of Mendelian disease and cancer

somatic mutations are lower than those of polymorphic variants,

suggesting deleterious and harmful effects when they occur.

However, we observe that there are polymorphic variants that

have very low substitution scores, especially variants changing the

physicochemical properties of amino acids. Indeed, the presence

of polymorphic variants (SVP and SAP) in our dataset does not

necessarily mean they are neutral with respect to the phenotypes.

There are likely to be variants related to a certain disease type,

which have not been identified yet. However, we did not attempt

to predict sequence variants causing deleterious effects on protein

structures and depriving functions, which eventually lead to a

specific disease, as they have been addressed extensively by others

[39–43]. Rather, we focused on the distributions and occurrences

of amino acid variants in terms of structural and functional

features of proteins.

Figure 6. Box plots for the degree of sequence conservation measured by Shannon’s entropy. Sequence entropies (see Material and
Methods) from the four variant datasets (Table 1) are shown as box plots in A. Sequence entropies are calculated separately according to solvent
accessibility of the variants defined by where they occur in three-dimensional structures: solvent accessible (B) and inaccessible (C). The
representation scheme of the box plots is the same as shown in Figure 1.
doi:10.1371/journal.pone.0009186.g006

Restraints of Variations
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Cancers arise from mutations in a subset of genes that confer

growth advantage to the tumour. However, our analysis, based on

substitution scores and amino acid property matrices, showed that

the severity of cancer somatic mutations lies between that of

Mendelian disease-related variants and polymorphic variants; less

deleterious than Mendelian disease causing variants but more severe

than polymorphic variants. Recently, Talavera et al. [34] investi-

gated the pattern of cancer-related mutations and compared them

with those from polymorphic variants. They showed that the

distribution of cancerous amino acid substitutions is very similar to

that of polymorphism, suggesting they are under similar selection

pressures by neutral evolution, although polymorphic variants tend

to occur at less conserved positions than cancer-related mutations. It

is known that not all somatic mutations confer growth advantage to

the cells. There are ‘driver’ somatic mutations which are the main

contributors to the development of the cancers, whereas most

somatic point mutations are likely to be ‘passengers’ that do not

contribute to oncogenesis [44]. However, it is not a trivial problem

discriminating between the two and our dataset almost certainly

contains both types, obscuring the effect of ‘driver’ mutations.

At the time of this study, reported SNPs comprise 0.46% (0.13%

for verified SNPs) of the total number of human DNA base pairs of

which 53% of SNPs occur at intergenic regions and 36% occur at

intronic region (Table S4). Only 1.26% of human SNPs occur in

protein coding regions in which more than half are non-synonymous

SNPs (0.64%) – those that have been considered in the study – and

the rest are synonymous SNPs (0.46%), frame shift (0.09%) and stop

gained mutations (0.02%). Throughout our analysis we did not take

the expression level into account; rather we assumed that proteins are

equally expressed no matter whether they contain sequence variants

or not. However, it is clear that proteins having deleterious mutations

are selectively controlled by the protein degradation system to protect

against misfolded or damaged proteins [45] and sometimes those

mutations are compensated in other species [46].

Materials and Methods

Variants Data Source
SVD and SVP are defined by annotations of UniProt human

sequence variations (http://www.uniprot.org/docs/humsavar.txt,

release: 57.5) where types of amino acids variants are classified

either disease, polymorphism or unclassified [23]. For SVD,

variants are further filtered out by removing non-Mendelian

diseases which have not been assigned any MIM number from the

OMIM (http://www.ncbi.nlm.nih.gov/omim/) database and any

disease names related with cancers from the following key tokens:

cancer, tumor, neoplasia, leukaemia, lymphoma, melanoma,

carcinoma, blastoma, and cytoma. CSM is taken from the

COSMIC (Catalogue of Somatic Mutation in Cancer, http://

www.sanger.ac.uk/genetics/CGP/cosmic/, version: 42) database

[25] from which mutations result in amino acid changes were

taken and SAP is from the Ensembl human variation database

(http://www.ensembl.org, database version: 54_36p) [24] which

compiles SNPs (Single Nucleotide Polymorphisms) mainly from

dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP/)

[47]. From Ensembl human variations, we have used only verified

SNPs; genotyped and validated by the international HapMap

project [48]. Amino acid variants of CSM and SAP were

transferred onto the positions of their corresponding UniProt

sequence using the sequence alignment program, BL2SEQ, of

NCBI blast package [49] if necessary.

Representative SCOP Domains
SCOP 1.71 was used to define representative domains by

applying the following conditions:

1) NMR structures and proteins having resolution worse than

2.5 Å were excluded.

2) Protein domains were clustered for each SCOP family by

running CD-HIT [50] with sequence identity of 80% or

more.

3) Within a SCOP family, the average sequence length is

maintained by removing any domains having sequence

below of (1-0.3)*mean-length and above of (1+0.3)*mean-

length.

4) Within a cluster, a protein structure having the best

resolution was selected as a representative.

Non-canonical SCOP classes (H, I, J, and K,) and membrane

and cell surface proteins (F) were not included in the process

described above.

Mapping the Location of Variants onto Three-
Dimensional Structure

To locate the position of a sequence variant in the three-

dimensional structure, variants mapped onto UniProt sequences were

further transferred onto three-dimensional structures using double-

map [51] which aligns a sequence of UniProt to its corresponding

PDB structure at residue level. In short, double-map makes two

alignments from the three sequences. The first alignment is between a

sequence in atomic coordinate record (SEQATM) and SEQRES

record of a PDB file. The second is between SEQRES and its

corresponding UniProt sequence (SP). Using SEQRES as a reference

SP can be aligned with SEQATM and the locations of UniProt

residues can be mapped onto three-dimensional structures.

Identifying Local Structural Environment of Amino Acids
We used JOY [52] to identify the local structural environments

of amino acids. JOY consists of three supporting programs 2

SSTRUC, PSA, and HBOND 2 to annotate 1) the elements of

secondary structure, 2) solvent accessibility, 3) hydrogen bonds

from side chains, respectively. SSTRUC calculates torsion angles

within a main chain to assign secondary structure. For the

Table 3. Proportion (%) of functional residues having at least
one sequence variant.

Functional
categories1 Types of variants

SVD2 SVP3 CSM4 SAP5

DNA_BIND 4.65 0.31 2.00 0.29

DISULFID 6.52 0.10 0.20 0.13

NP_BIND 3.91 0.25 1.39 0.32

METAL 10.47 0.21 1.16 0.18

BINDING 10.43 0.52 0.29 0.63

ACT_SITE 7.24 0.30 0.72 0.36

CA_BIND 1.47 0.54 0.22 0.51

PPI 3.53 0.83 2.15 0.51

1: see Materials and Methods for definitions.
2: see Dataset S2.
3: see Dataset S4.
4: see Dataset S8.
5: see Dataset S6.
doi:10.1371/journal.pone.0009186.t003
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threshold of solvent accessibility, we used a cut-off of 7.0% relative

total side-chain accessibility. HBOND identifies all possible

hydrogen bonds based on a distance criterion; 3.5 Å between

donor and acceptor except for interactions involving sulphur

atoms where 4.0 Å is used.

Amino Acid Substitution Scores
For variants at the UniProt protein sequence level, we looked up

BLOSUM62 [32] to get the substitution score for a corresponding

variant. However, substitution scores for the variants mapped onto

three-dimensional structures were from an Environment Specific

Substitution Table (ESST) [28,29] which corresponds to the local

structural environment for a variant. We used ALL-B type of

ESST, which has proved to be the best in the previous

benchmarking tests [51]. The detailed procedure of making

ESSTs is explained in our recent paper and the ESST web site

(http://www-cryst.bioc.cam.ac.uk/ESST). ESST can be generat-

ed in an automatic fashion by a recently developed computer

software Ulla [53].

Statistical Analysis
Wilcoxon rank sum test were used to calculate significant

difference in the distribution of substitution scores between two

groups. We used wilcox.test of stats package of R [54] with a two-

sided test option.

Classification of Amino Acid Types
20 amino acids are classified into 6 classes by their

physicochemical properties as follows:

1) Aliphatic (ALI): Ala, Ile, Leu, Val and Met

2) Aromatic (ARO): Phe, Trp, and Tyr

Figure 7. Examples of amino acid variations from the four datasets. UniProt feature annotations are transferred onto three-dimensional
structures of proteins by aligning UniProt sequences with their corresponding PDB sequences using double-map method [51] (see Materials and
Methods): O14832 with 2a1x in A, P00533 with 2itv in B, P24941 with 1gij in C, and O00204 with 1q1q in D. The regions not shown in the alignments
are indicated with blue arrows. Amino acid variants are shown within boxes of grey background in the alignments and as bold-frame in the structure
images. Metals and ligands are illustrated as spheres. Metal-binding (METAL), ligand-binding (BINDING), nucleotide phosphate-binding (NP_BIND),
and active sites (ACT_SITE) residues are coloured in magenta, orange, red and cyan, respectively, both in the alignments and structure images. All
structure images and alignments are drawn using PyMOL [56] and Jalview [57], respectively. (AKG: 2-Oxyglutaric acid, Fe: Iron ion, ANP:
Phosphoaminophosphonic acid-adenylate ester, 2PU: 1-(5-oxo-2,3,5,9b-tetrahydro-1h-pyrrolo[2,1- a]isoindol-9-yl)-3-(5-pyrrolidin-2-yl-1h - pyrazol-3-
yl)-urea, A3P: Adenosine-39-59-diphosphate, NHE: 2-[n-cyclohexylamino] ethane sulfonic acid).
doi:10.1371/journal.pone.0009186.g007
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3) Polar non-charged (NON): Cys, Asn, Gln, Ser and Thr

4) Positively charged (POS): Arg, His and Lys

5) Negatively charged (NEG): Asp and Glu

6) Neutral (NEU): Gly and Pro

Sequence Entropy
To measure the degree of sequence conservation, we calculated

sequence entropy for each alignment position within a protein

family having at least three sequences. We skipped measuring

entropy if gaps occur in more than 50% of sequences at the

alignment position. We used Shannon’s entropy equation [55]

which can be formulated as below:

Sequence entropy ~

{
P20

i

pilog2pi

log220

where pi is the frequency of amino acid i (of 20) at the alignment

position.

Definitions of Functional Residues
Variants taken from the four types of dataset were examined to

see whether they occur at protein residues responsible for specific

functions. We defined functional residues if they are annotated by

UniProt functional features (from ‘FT’ lines) or known to

maintain protein interactions detected by PICCOLO (GR.

Bickerton, unpublished) which is an in-house database of

protein-protein interactions between every pair of chains from

protein structures in PDB. We used eight types of UniProt

functional features:

1) ACT_SITE: amino acid(s) involved in the activity of an

enzyme

2) BINDING: binding site for any chemical group (e.g. co-

enzyme, prosthetic group, etc.)

3) CA_BIND: extent of a calcium-binding region

4) DISULFID: disulfide bonds

5) DNA_BIND: extent of a DNA-binding region

6) LIPID: covalent binding of a lipid moiety

7) METAL: binding site for a metal ion

8) NP_BIND: extent of a nucleotide phosphate-binding region
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