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Abstract 

Structurally complex polyketide natural products, isolated from a variety of marine and 

terrestrial sources, continue to provide a valuable source of rewarding targets for the synthetic 

chemist to tackle. In this account, we provide an overview of the total synthesis of several 15 

structurally fascinating polyketides with promising anticancer activity completed in our group 

based on our versatile asymmetric aldol methodology – spirastrellolide A methyl ester, 

leiodermatolide, rhizopodin and chivosazole F – and highlight the unanticipated challenges 

and discoveries encountered. 

 20 

Introduction 

Through aeons of evolution, nature has gifted us with a seemingly limitless source of 

important secondary metabolites. Such compounds are often astoundingly intricate in terms of 

their molecular architecture, with stereochemically elaborate scaffolds that dwarf structures 
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conceived by mankind. Unsurprisingly, such extraordinary structures demand effective 25 

methodologies and strategies, along with hard work and perseverance, to ensure a successful 

outcome from a suitably focused synthetic campaign. Furthermore, the vanishingly low 

isolation yields of such natural products can preclude their full stereochemical assignment, 

rendering total synthesis a valuable tool for structural elucidation.1–5 

Amongst the vast chemical space carved out by nature are the polyketides, typified by 30 

their dazzling array of functionality and stereochemistry, providing a testing intellectual 

challenge for the synthetic chemist. Enticed by these intriguing structures, which generally have 

impressive biological activities,6 our group has had a longstanding interest in the development 

of novel synthetic methods and strategies that are both robust and, where required, flexible. In 

this context, the efficiency of our suite of versatile boron-mediated aldol reactions has proved 35 

invaluable for the controlled installation of the highly oxygenated frameworks of these 

captivating natural products.7–9  

In this account, we provide an overview of recent research endeavors that have culminated 

in the total synthesis of several challenging polyketide natural products with promising 

anticancer activity in our group: spirastrellolide A methyl ester (1), leiodermatolide (2), 40 

rhizopodin (3), and chivosazole F (4) (Figure 1). In particular, we highlight the unexpected 

obstacles encountered and subsequent discoveries that resulted in the successful total syntheses 

of these highly challenging targets. 
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Figure 1. Structures of spirastrellolide A methyl ester (1), leiodermatolide (2), rhizopodin (3) and 

chivosazole F (4) 

 

Spirastrellolide A methyl ester  

The spirastrellolides constitute an extraordinary family of spiroacetal macrolides first 50 

isolated by Andersen and co-workers in 2003 from extracts of the Caribbean sponge 

Spirastrella coccinea.10 The most abundant congener, spirastrellolide A (1) (isolated as the 

corresponding methyl ester) exhibits striking structural complexity, containing 20 

stereocentres, a 38-membered macrolactone and a nine-carbon side chain featuring a (Z,E)-

1,4-diene.11–15 The macrocycle itself contains a tetrahydropyran (A ring), a bicyclic 6,6-55 

spiroacetal (BC rings) and a tricyclic 5,6,6-spiroacetal (DEF rings) featuring a chlorine atom 
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at C28. Additionally, spirastrellolide A was found to exhibit potent antimitotic properties via 

selective protein phosphatase 2A inhibition (IC50 = 1 nM).10,12 Beyond the obvious potential 

as a novel anticancer lead, such phosphatase inhibitors have also shown therapeutic promise 

in tackling obesity, autoimmune conditions and neurodegenerative disorders.16 The 60 

combination of the synthetic challenge posed by their architectural complexity and promising 

biological activity has rendered the spirastrellolides the focus of intense research efforts from 

numerous groups.15 Despite this, only five completed syntheses have been reported to date,17–

20 two of which are from our group.21–24 

Our efforts towards spirastrellolide A methyl ester began soon after disclosure of the 65 

originally proposed structure and our synthetic approach evolved concurrently with structural 

determination studies on this moving target.25 A flexible endgame was a strict requirement as 

a consequence of the ambiguity surrounding the C46 hydroxyl stereocentre. Specifically, our 

initial strategy in face of these imposed requirements involved a modular approach to 

macrocycle formation, resulting in the successful assembly of the complete ABCDEF ring 70 

system, followed by late-stage side chain attachment to facilitate preparation of both possible 

C46 diastereomers.26 

With advanced intermediate 5 (Scheme 1) in hand after a sustained campaign of 

dedicated efforts,22,26 synthesis completion appeared tantalisingly close. Unfortunately, 

selective removal of the C40 silyl protecting group to enable side chain incorporation proved 75 

to be a major obstacle. In the end, a global deprotection, followed by protecting group 

adjustment, was required. Oxidation to the corresponding aldehyde 6 then proceeded smoothly 

and set the scene for homologation. At this point, a variety of organometallic addition 

reactions were trialled unsuccessfully. We surmised that these failures were likely to be a 

reflection of the steric constraints imposed on the C40 aldehyde by the proximal cage-like 80 

macrocycle. After exhaustive experimentation, it was found that a simple Wittig olefination 
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reaction could be used to access a terminal alkene, thereby allowing side chain incorporation 

via olefin cross-metathesis.27,28 After considerable experimentation, the cross-metathesis with 

dicarbonate 7 required relatively forcing conditions (refluxing in benzene), due to the steric 

constraints imposed by the macrocycle. The resulting allylic carbonate 8 then allowed a π-85 

allyl Stille cross-coupling with stannane 9 to afford the bis-acetonide protected natural 

product, which underwent a global deprotection to afford the first total synthesis of 

spirastrellolide A methyl ester (1).22 Notably, the 46-epi diastereomer of 1 showed distinctly 

different NMR spectra due to the influence of the proximate macrocycle. 

 90 

 

Scheme 1. Endgame sequence for the first-generation synthesis of spirastrellolide A methyl ester (1) 
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need for a divergent side-chain installation strategy was now deemed unnecessary with the 

stereochemistry of the natural product now unambiguously assigned. Additionally, we sought 

to capitalise on the availability of key fragments from our first-generation approach, giving 

rise to the revised retrosynthetic analysis in Scheme 2. Notably, we looked to establish the 

C1-C47 carbon backbone in 10 (from allylic carbonate 11 and stannane 12) in its entirety prior 100 

to macrolactonisation, thereby simplifying incorporation of the (E,Z)-skipped diene side 

chain. Building on earlier work, the BC spiroacetal moiety would be installed through PMB 

deprotection/in situ spiroacetalisation of a Z-enone arising from coupling of the C1-C16 

alkyne fragment 13 and C17-C40 aldehyde 14.26 Disconnection across C24-C25 via an sp3-

sp2 Suzuki coupling29 then reveals two intermediates utilised previously, C17-C24 vinyl 105 

iodide 15 and C25-C40 bis-spiroacetal 16.30  
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Scheme 2. Revised retrosynthesis of spirastrellolide A methyl ester (1) 
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removed the appended g-lactone in a bid to avoid competitive furan formation. Additionally, 115 

we noted that the bis-spiroacetal could arise from a tetraol linear precursor. In particular, we 

recognised that the sense of asymmetric induction via the Sharpless asymmetric 

dihydroxylation required to install the C37/C38 and C26/C27 hydroxyls was the same. This 

led to an adventurous double dihydroxylation/spiroacetalisation cascade as in 20 to 21, which, 

if successful, would provide an elegant and efficient synthesis of the DEF bis-spiroacetal ring 120 

system (Scheme 3B). 

 

 

Scheme 3. A) First-generation approach towards the C26-C40 DEF bis-spiroacetal 17. B) Revised strategy towards 

the C26-C40 DEF bis-spiroacetal 21 125 
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asymmetric dihydroxylation.34 This initially afforded bis-hemiacetal 25, which to our delight 

spirocyclised under mild acidic conditions to afford the DEF-bis-spiroacetal 21. Fortuitously, 

we discovered that other spirocyclic isomers of 21 could be resubmitted under acidic 

conditions to afford the required DEF bis-spiroacetal cleanly. This was only made possible by 

the increased stability of the DEF bis-spirocycle circumventing furan formation, giving us the 135 

opportunity to employ thermodynamic equilibration rather than kinetic control. A final bis-

silylation delivered the protected fragment 26 efficiently. Most importantly, this route 

facilitated a dependable multigram scale synthesis of the crucial C26-C40 bis-spiroacetal 

moiety. 
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 140 

Scheme 4. Revised synthesis of the C26-C40 DEF bis-spiroacetal 26 
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C40 alkene 16. Hydroboration of 16 followed by an in situ sp3-sp2 Suzuki cross-coupling with 

vinyl iodide 15 forged the C24-C25 bond and furnished diene 27 cleanly.29,36 The final two 

stereocentres of the C17-C40 fragment were set up via a diastereoselective substrate-

controlled double hydroboration sequence; installing the C17 and C23 hydroxyl groups and 150 

affording the required 23,24-anti stereochemistry in 28. Protecting group manipulations then 

yielded an advanced triol, which was subjected to a selective triple oxidation of the two 

primary alcohols with concomitant lactonisation to afford the required C17-C40 aldehyde 14. 

 

 155 

Scheme 5. Synthesis of the C17-C40 aldehyde 14 
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be capricious owing to competing addition to the γ-lactone moiety. Instead, a Nozaki-Hiyama-160 

Kishi coupling37,38 between iodoalkyne 29 and aldehyde 14, to our delight, chemoselectively 

and reliably forged the C16-C17 bond (Scheme 6). The BC spiroacetal formation commenced 

with a Lindlar reduction of the alkyne 30 and oxidation to the Z-enone. Subsequent bis-PMB 

deprotection under controlled conditions set the scene for a concomitant acetalisation to 

cleanly forge the BC-spiroacetal ring system, now affording 31 with all the requisite ABCDEF 165 

rings in a stereodefined manner. With the carbon and oxygen skeleton for the macrocycle now 

in hand, our attention turned towards side chain installation and the final macrolactonisation. 

A selective primary TBS ether deprotection, partial reduction of the γ-lactone and vinylation 

afforded allylic alcohol 32, which was then treated with triphosgene to both temporarily mask 

the diol as well as providing the requisite leaving group for the π-allyl Stille cross-coupling. 170 

Pleasingly, the planned cross-coupling between allylic carbonate 11 and vinyl stannane 12 

proceeded efficiently, and was a major improvement over our previous cross-metathesis route 

in the presence of the full macrocycle. With only the macrolactonisation and global 

deprotection left, the finish line was now in sight. Once again, this transformation proved to 

be significantly more challenging than initially anticipated! 175 
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Scheme 6. Synthesis of the full C1-C47 carbon and oxygen skeleton of spirastrellolide A methyl ester 10 
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(Scheme 7A). This unexpected difficulty was in stark contrast to the highly efficient 

macrolactonisation (>95%) observed in our first-generation route (Scheme 7B), which we 

attributed to a degree of favourable conformational pre-organisation in the seco-acid 34. 185 

Comparison of the seco-acid 10 with that used previously highlighted only one seemingly minor 

structural difference – the (very distal) C23 TES ether. Therefore, we hypothesised that 

unfavourable conformational effects, presumably imposed by the additional silyl protecting 

group, were operating to bias the free acid away from ring closing with the C37 alcohol. As 

such, we treated seco-acid 10 with PPTS in methanol to effect controlled mono- and bis-TES 190 

ether cleavage. Our hypothesis was proven to be correct; submitting either of the mono- or bis-

desilylated products (35 and 36) to standard Yamaguchi macrolactonisation conditions now 

afforded macrocycles 37 and 38 in excellent yield (Scheme 7C). A final global deprotection 

completed our second-generation synthesis of spirastrellolide A methyl ester (1) in 23 linear 

steps and 6% overall yield from C26-C40 bis-spiroacetal 26. When compared with the first-195 

generation synthesis (25 steps and 1% overall yield), it is pleasing to note the improvement in 

efficiency, both in terms of step count and yield. Moreover, we discovered that we were 

incredibly lucky in our first-generation synthesis – where the troublesome C23-TES ether was 

unintentionally cleaved in the BC-spiroacetalisation step, which greatly assisted the crucial 

downstream macrolactonisation reaction. An important lesson was learned here, that protecting 200 

groups can have subtle and unpredictable conformational effects in such complex substrates! 
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Scheme 7. A) Truncated seco-acid 33 failed to macrocyclise when subjected to established 

macrolactonisation conditions B) Macrocyclisation conditions in our first-generation synthesis C) Endgame 

and total synthesis of spirastrellolide A methyl ester (1) 205 
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Leiodermatolide 210 

In 2008, leiodermatolide (2) was isolated from the lithistid sponge Leiodermatium sp. 

collected off the coast of Florida by the Wright group.41 Spectroscopic analysis illuminated 

the planar structure of 2 and revealed a 16-membered macrolactone containing a Z,Z-diene 

and a pendant carbamate group, as well as an E,E-diene on the side chain terminating in a d-

lactone. The assigned structure highlighted the presence of nine stereocentres; six of which lie 215 

in the macrocycle and three in the terminal d-lactone.42 Biological evaluation showed that 

leiodermatolide exhibited potent anticancer activity, in particular against a range of drug-

resistant cancer cell lines. While leiodermatolide-treated cells exhibited physiological 

responses often typified by tubulin-binding compounds, in vitro studies failed to show 

evidence for any direct tubulin interaction. As such, it was suggested that leiodermatolide 220 

acted via an indirect mechanism orthogonal to other known tubulin-targeting anticancer drugs, 

indicative of a promising anticancer drug candidate. 

Our involvement with leiodermatolide was borne from its initially inconclusive 

stereochemical assignment. In collaboration with the Wright group, extensive NMR 

spectroscopic analysis, molecular modelling and computational DP4 NMR predictions43 225 

allowed us to refine the structure to a single diastereomer for the C1-C16 macrocycle and the 

C21-C25 d-lactone with >99% probability. Unfortunately, the distal nature of the C21-C25 d-

lactone relative to the macrocycle precluded a conclusive determination of the stereochemistry 

between these two stereoclusters, leading to four candidate stereoisomers for the natural 

product. To definitively pin down the stereochemistry of 2, we embarked on a synthetic 230 

campaign geared towards confirming the 3D structure of the macrocycle followed by the full 

natural product. A synthesis-enabled stereochemical elucidation was a notion shared with 

other research groups,44,45 which, to date, has resulted in one other group successfully 

synthesising leiodermatolide.46,47 
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As the absolute configuration was unknown, we arbitrarily targeted ent-2 and its 235 

diastereomer for initial studies. Our initial approach towards 2 hinged upon a late-stage sp2-

sp2 Suzuki coupling across C17-C18 to allow the flexible appendage of both enantiomers of 

the C18-C25 d-lactone to the macrocycle, as shown in Scheme 8A. The C18-C25 d-lactone 

39 could be readily synthesised from either enantiomer of 40. We anticipated that the C1-C17 

macrocycle 41 could be constructed from a linchpin bis-halide fragment 42, leveraging the 240 

more reactive vinyl iodide to selectively engage in a Stille cross-coupling with C1-C11 vinyl 

stannane 43. 

In executing this approach (Scheme 8B), we discovered that the bis-TBS protection of 

the C7 and C9 hydroxyl groups required relatively forcing conditions to effect the second 

silylation at C7.48 This observation indicated the possibility of realising a site-selective C9 245 

carbamate installation in the endgame. Our resulting synthesis of the C1-C17 macrocycle 41 

confirmed our relative stereochemical assignment through spectroscopic correlations.48 

However, the specific rotation recorded for the macrocycle was opposite in sign to (–)-

leiodermatolide; tentatively suggesting that we may have embarked in the wrong enantiomeric 

series. Additionally, there were two key issues we needed to address in the evolution of our 250 

synthetic strategy. Firstly, while the semi-reduction of vinyl dibromide 44 to (Z)-vinyl 

bromide 45 proceeded smoothly, subsequent attempts at converting it into the vinyl stannane 

proved problematic. This involved cleavage of the C7 and C9-TBS ethers to afford diol 46, 

followed by stannylation under Wulff-Stille conditions49 to form stannane 43, albeit in a 

modest yield (Scheme 6B). Furthermore, despite preliminary results suggesting otherwise, 255 

our vision of a late-stage site-selective carbamate installation proved unrewarding; treatment 

of the macrocycle 47 with trichloroacetyl isocyanate50 resulted in a 3 : 2 mixture of 

regioisomeric products 41 and 48 that favoured the undesired C7 carbamate 48. Moreover, 

attempts at realising the key Suzuki coupling to afford the full leiodermatolide carbon skeleton 
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proved fruitless; vinyl bromide 41 was found to be unreactive under a variety of palladium-260 

catalysed conditions.51  

 

Scheme 8. A) Initial approach towards leiodermatolide (ent-2). B) Summary of our first-generation 

synthesis towards the C1-C17 macrocycle 41 

This intelligence gathering exercise prompted us to revise our synthetic strategy towards 265 

2, as highlighted in Scheme 9, and we instead looked towards forming the fully elaborated 

macrocycle via a late-stage macrolactonisation. As the C11-C12 bond was reliably installed 

via a Stille coupling, we sought to disconnect the molecule into the C1-C11 vinyl stannane 

ent-43 and the C12-C25 d-lactone 49. The C12-C25 fragment itself can then be constructed 

from vinyl iodide 50 and d-lactone ent-39, employing a Suzuki coupling to forge the C17-C18 270 

bond. Despite disappointing initial results, we remained optimistic about effecting a 

regioselective carbamate formation, thereby minimising protecting group manipulations. 
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Scheme 9. Revised retrosynthesis for leiodermatolide (2) 

 275 

Our revised synthesis of the C1-C11 stannane ent-43 commenced from the Weinreb 
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selectivity of the 1,3-anti reduction via the Evans-Saksena protocol, completing the required 

stereotetrad in the C1-C11 fragment. Next, lithiation followed by trapping with tributyltin 290 

chloride proceeded smoothly to give the C1-C11 stannane 58. Gratifyingly, this route was a 

significant improvement over our initial approach (20% yield over 14 steps, versus 6% yield 

over 14 steps).48,59 

 

 295 

Scheme 10. Synthesis of the C1-C11 vinyl stannane 58 

The C12-C17 vinyl iodide was constructed again using our lactate aldol methodology, 

furnishing 50 in four steps (via aldol adduct 59) from ethyl ketone (S)-40 (Scheme 11).33,54,55 
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silyl ketene acetal 62.8,60 This, followed by an acid-mediated lactonisation, delivered the d-

lactone 63, where the matched stereoinduction from 1,2-Felkin and 1,3-Evans polar models 

are mutually reinforcing.61 Subsequent silylation afforded the protected lactone 64, where a 

two-step sequence revealed the required vinyl boronate ent-39 in anticipation for the key 305 

cross-coupling.  

 

Scheme 11. Synthesis of the C12-C17 vinyl iodide 50 and C18-C25 d-lactone ent-39 
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achieved with excellent geometrical control via the Heck reaction to deliver 65 (Scheme 12),62 

saving two steps in converting the alkene 64 to the vinyl boronate ent-39 (vide supra). A two-

step procedure revealed the required C12-C25 vinyl iodide 49, which underwent a facile Stille 

coupling63,64 with stannane 58 to establish 66, corresponding to the full carbon skeleton of 315 

leiodermatolide. Finally, a series of redox and protecting group manipulations revealed the 

seco-acid 67, which was efficiently macrocyclised under our preferred Yamaguchi 

conditions39 to generate the 16-membered macrolactone. 

With a global deprotection revealing the des-carbamoyl derivative of leiodermatolide 

68, all that was required was the pivotal regioselective C9 carbamoylation. We surmised that 320 

the steric hindrance around C7 should heighten the reactivity of the C9 alcohol, a rationale 

supported by molecular modelling studies. As previously alluded to, treating the truncated 

macrolactone 47 with trichloroacetyl isocyanate50 favoured the formation of the undesired C7 

carbamate 48, with extensive experimentation failing to overturn this result. Interestingly 

enough, we observed that esterification or silylation proceeded with high selectivity at the C9 325 

position. This hinted that it was indeed the more reactive position, with the carbamoylating 

agent behaving anomalously. Leveraging this finding, a sequence involving bis-silylation, 

selective C9 desilylation, followed by treatment with trichloroacetyl chloride and C7 

desilylation successfully led to (–)-leiodermatolide (2) in 23 steps and 3.2% overall yield.59 

Careful comparison with the authentic sample provided by the Wright group confirmed that 330 

they were identical in all respects. Serendipitously, this 3D structure corresponds exactly to 

the one out of four stereoisomers arbitrarily rendered in our isolation paper.42 At this point, 

we could embark on a programme of SAR studies and further biological evaluation of this 

promising anticancer lead structure.65 
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 335 

Scheme 12. Fragment union and completion of (–)-leiodermatolide (2) 
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Rhizopodin  

Rhizopodin (3) is an architecturally complex macrocyclic polyketide first isolated in 340 

1993 by Höfle and Reichenbach from the myxobacterium Myxococcus stipitatus.66 By binding 

with and inhibiting actin polymerisation, rhizopodin mediates potent antiproliferative activity 

as well as strong cytostatic effects against a range of cancer cell lines.67 This selective 

interaction with actin also enabled its structural elucidation, with X-ray crystallographic 

studies of the bound rhizopodin-actin complex revealing an intriguing C2-symmetric 345 

macrodiolide.68 From a structural perspective, 14 of the 18 stereocentres are embedded in the 

38-membered macrolide core, together with two oxazole rings and two diene motifs, with the 

remaining four stereocentres located on the two side chains.69 The ornate architecture and 

promising anticancer profile of rhizopodin has rendered intensive research towards its total 

synthesis. Although several groups have reported the synthesis of various substructures,70–74 350 

there has only been two completed total syntheses of the target structure itself.75–77 

Our proposed synthesis (Scheme 13) of rhizopodin (3) centred on structural 

simplification into the truncated monomer 69 and known side chain fragment 70.78 This 

disconnection provided a degree of flexibility, with macrocycle formation possible via direct 

or sequential esterification, followed by bidirectional aldol coupling with ketone 70 to 355 

incorporate the requisite side chain(s). Oxazole formation was envisaged via amide bond 

formation between C14-C22 acid 71 and C8-C13 amino alcohol 72 followed by dehydration, 

while diene installation was proposed using a Stille coupling of vinyl iodide 73 and a suitable 

C8 stannane.  

As is often the case with complex polyketide synthesis, the strategic incorporation of 360 

orthogonal protecting groups was of crucial importance. Initially, we envisaged incorporating 

PMB ethers to chemoselectively unmask the required alcohols for the macrolactonisation and 

side chain attachment. However, we found that an oxidative PMB ether cleavage using DDQ 
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resulted in the concomitant oxidation of the C5 allylic methyl ether, with alternative Lewis 

acidic cleavage degrading our advanced intermediates.77 As such, we opted for a carefully 365 

selected combination of silyl protecting groups. Notably, attempts at deprotecting the C16-

OTBS ethers in the endgame resulted solely in eliminated product. Frustratingly also, attempts 

at deprotecting a primary C22-OTIPS ether to allow side-chain installation, in the presence of 

a secondary C16-OTES ether, resulted in simultaneous cleavage of both silyl groups. These 

difficulties ultimately forced us to opt for a riskier gamut of silyl protecting groups in acid 71 370 

and aldehyde 73 (vide infra). 

  
Scheme 13. Retrosynthetic analysis of rhizopodin (3). Disconnection (1) refers to an 

esterification/macrolactonisation, disconnection (2) refers to an aldol/dehydration/reduction sequence 

Synthesis of the C14-C22 carboxylic acid 71 commenced with a Brown allylation onto 375 

Roche ester-derived aldehyde 74 (Scheme 14A).79 The remaining stereocentres in this 

fragment were generated first via a Mukaiyama aldol reaction between aldehyde 75 and silyl 

ketene acetal 76, setting up the C18 stereocentre, and a subsequent diastereoselective 

reduction80 of the cyclic ketone after methanolysis of dioxinone 77. From β-hydroxylactone 
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78, subsequent protections and oxidation afforded the C14-C22 acid 71. The amino-alcohol 380 

coupling partner 72 required for the oxazole formation was formed from propargyl alcohol 79 

(Scheme 14B). A Sharpless asymmetric epoxidation (yielding epoxide 80)81,82 followed by 

amidation and regioselective epoxide opening gave oxazoline 81. A final sequence of 

methylation and hydrolysis then delivered the amino alcohol 72. 

The final C1-C7 fragment 73 required for the macrocycle was obtained by an 385 

enantioselective Mukaiyama aldol reaction between aldehyde 82 and Chan’s diene (83) 

(Scheme 14C).83,84 Subsequent methanolysis of dioxinone 84 followed by a Narasaka 

reduction85 generated the free diol. Protecting group manipulations and a final methylation of 

the free C5-OH then afforded the required Stille coupling partner 73. 

 390 
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Scheme 14. A) Synthesis of the C14-C22 carboxylic acid 71. B) Synthesis of the C8-C13 amino alcohol 

72.  C) Synthesis of the C1-C7 vinyl iodide 73 
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Fragment assembly commenced with an amide bond formation between carboxylic acid 

71 and amino alcohol 72 (Scheme 15). Employing modified Robinson-Gabriel conditions 395 

developed by Wipf,86 oxazole 85 was formed cleanly. Subsequent stannylation afforded vinyl 

stannane 86, which was coupled with vinyl iodide 73 via a Stille cross-coupling63 to give the 

truncated monomer in anticipation for the key macrocyclisation step. At this stage, we 

discovered that a series of oxidation state adjustments and protecting group manipulations 

were critical for the success of the macrocycle formation. While conditions required for 400 

methyl ester hydrolysis concomitantly unmasked the required C18-OH, Yamaguchi 

macrolactonisation conditions39 disappointingly afforded a mixture of oligomers, primarily 

corresponding to the monomeric truncate. As such, we were forced to adopt a stepwise 

approach to access both coupling partners for the macrolactonisation. A controlled reduction 

to the aldehyde 87 therefore was performed, meaning that this key intermediate could be 405 

subjected to either a controlled C18-OTMS desilylation (88) or a Pinnick oxidation to afford 

seco-acid 89.  
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Scheme 15. Synthesis of the truncated C1-C22 monomers 
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conjugate reduction and global deprotection concluded our synthesis of rhizopodin (3) in 29 

steps in 0.2% overall yield.77 The eventual success of this project required judicious fine-

tuning of the protecting group strategy and redox steps, emphasising the need for perseverance 

based on a flexible synthesis plan. 

 425 

Scheme 16. Fragment union and completion of the total synthesis of rhizopodin (3) 
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Chivosazole F 

Following their discovery of rhizopodin, Höfle and Reichenbach reported the isolation 430 

of chivosazoles A-F from the myxobacterium Sorangium cellulosum in 1995.88,89 The 

chivosazoles are a structurally unprecedented class of polyene macrolides, with each member 

of the family differing in terms of the substitution at C11 and C20. Notably, the chivosazole 

family displayed potent inhibitory activity against filamentous fungi, yeast and a panel of 

human cancer cell lines. This bioactivity stems from its selective inhibition of actin 435 

polymerisation. Intriguingly, the lack of structural homology to other known actin-binders 

suggests that the chivosazoles may have a distinct mode of action.90,91 What ignited our 

interest in the chivosazoles as a synthetic target was their astounding array of structural 

features (Scheme 17). Specifically, all congeners as typified by chivosazole F (4) possess a 

31-membered macrolactone, containing 10 stereocentres and an oxazole moiety. However, 440 

the most impressive feature is the set of conjugated polyenes with alternating geometry in the 

macrocycle: a (Z,E,Z,E)-C2-C9 tetraene, a (Z,E)-C12-C15 diene and an (E,E,Z)-C23-C28 

triene regions.92 These polyene regions demanded careful handling of sensitive late-stage 

intermediates and mild reaction conditions, necessary to suppress both potential olefin 

isomerisation and degradation pathways. Perhaps as a reflection of the challenges imposed by 445 

this demanding target, only two total syntheses of chivosazole F (4), including our approach 

described below, have been reported to date.93,94 

Our synthetic approach needed to address the delicate nature of the chivosazole 

structure; in particular, the isomerisation-prone (2Z,4E,6Z,8E)-tetraene. Therefore, we sought 

to minimise the number of endgame transformations. To this end, we envisaged a highly 450 

convergent approach towards accessing the full carbon skeleton by employing site-selective 

cross-couplings. This broadly disconnects the full carbon skeleton to reveal the C14-C35 

northern hemisphere and the C1-C13 southern hemisphere of the natural product. 
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The success of this strategy crucially relied on the judicious choice of coupling handles 

and cross-coupling conditions. Building on initial intelligence gathering studies, we 455 

discovered that the Stille cross-coupling provided the most efficient means of fragment union. 

We also anticipated that a late-stage macrolactonisation might generate the macrocycle. This 

analysis revealed four constituent fragments – the C1-C5 fragment 93, the C6-C13 fragment 

94, the C14-C26 fragment 95 and the C27-C35 fragment 96. 

 460 

Scheme 17. Initial synthetic strategy towards chivosazole F (4) and the four proposed fragments 
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and known aldehyde 104,99,100 a boron-mediated aldol reaction101 readily installed the C31 470 

and C32 stereocentres in b-hydroxyketone 105, with an Evans-Tishchenko reduction again 

employed to set the final C30 stereocentre (Scheme 18B). A six-step sequence revealed 

aldehyde 106, which was subjected to a Stork-Zhao olefination, deprotection and stannylation 

to afford the required stannane 96.49 

 475 

Scheme 18. A) Synthesis of the C14-C26 bis-halide linchpin 102. B) Synthesis of the C27-C35 vinyl 

stannane 96 
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ketene aminal 107 (derived from imide 108) with aldehyde 109 forged the two stereocentres 480 

in the C7-C13 fragment 110 (Scheme 19).103 Subsequent Stork-Zhao olefination of aldehyde 

111 installed the terminal (6Z)-vinyl iodide in 112, which then engaged in a site-selective 

Stille cross-coupling with stannane 93 to afford the C1-C13 southern hemisphere 113 in 

preparation for exploring the planned fragment coupling sequence. 

 485 

 

Scheme 19. Synthesis of the C1-C13 southern hemisphere fragment 113 

 

With the two hemispheres in hand, we looked towards effecting the site-selective Stille 

coupling between the stannane 114 derived from 113 and bis-halide 102. Unfortunately, not 490 

only did this fail to effect the required coupling, it also highlighted the propensity for the 

tetraenoate 114 to isomerise under Pd(0) conditions (Scheme 20A). Similarly, model studies 
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conditions (Scheme 20B). To avoid handling the isomerisation-prone (2Z) olefin, we next 495 

investigated the possibility of achieving a late-stage macro-olefination with a pendant 

phosphonate ester at C30 in 118. The revised synthesis of the southern hemisphere thus 

involved a Stille coupling with vinyl iodide 94 and stannane 120 (Scheme 20C). 
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 500 

Scheme 20. A) Initial attempts at fragment union under Stille conditions failed to deliver the product and 

resulted in isomerisation of the tetraenoate. B) Esterification of alcohol 115 to the C1-C5 acid 116 resulted in 

concomitant isomerisation of the C2 olefin C) Our revised synthetic approach to chivosazole F (4) 

Using optimised Stille cross-coupling conditions, and rationalising chemoselective 

coupling on steric and electronic grounds, we were able to append C3-C5 stannane 119 onto 505 
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of tBu3P104 was required to prevent isomerisation of the (6Z)-alkene. These conditions also 

allowed for the successful site-selective formation of the C13-C14 bond between bis-halide 

102 and vinyl stannane 120, as well elaborating the resulting vinyl bromide 121 with the C27-

C35 fragment 118 (derived from vinyl iodide 122), with complete control of alkene geometry 510 

throughout the process. This success led us to ponder whether we could turn this into a one-

pot process. Remarkably, with sequential addition of each fragment (i. 119, ii. 94, iii. 102 and 

iv. 118), we were able to assemble the full carbon skeleton of the chivosazoles in 123 in one 

pot in 56% yield (82% per coupling step). At this advanced stage, the (4E,6Z,8E)-triene was 

found to be highly prone to isomerisation on attempting to adjust the oxidation state at C3 515 

ahead of the planned Horner-Wadsworth-Emmons (HWE) type macro-olefination. 

Furthermore, model studies on the planned Ando-olefination105 gave poor control over the 

desired 2Z geometry. This series of disappointing and incredibly frustrating setbacks forced 

us to return to the drawing board… 
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 520 

Scheme 21. Employing the site-selective Stille coupling strategy to form the chivosazole backbone 

 

The challenges imposed by the delicate triene necessitated us to reconfigure our 

choreography of fragment coupling to an end-stage macro-Stille cyclisation (Scheme 22). 

Furthermore, to access the (2Z) geometry, an alternative olefination strategy was required. 525 
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 530 

Scheme 22. Final strategy adopted towards the total synthesis of chivosazole F (4) 

 

The revised C27-C35 phosphonate 126 was made from diol 127,94 an intermediate used 
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careful initial analysis and planning, which fortunately, allowed for a highly convergent 

approach and a succinct endgame sequence. While we recognised the potential lability of such 

advanced polyene fragments, we could not have anticipated the frustration it brought. In this 

case, it truly stressed the importance of a flexible, modular strategy and the ability to adapt 

the strategy as required.  550 

 

 

Scheme 23. Revised fragment coupling and completion of the total synthesis of chivosazole F (4) 
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Conclusions 

Our recent synthetic endeavours towards these highly challenging classes of complex 555 

polyketides not only showcases the versatility of our group’s aldol methodology, but also 

highlights the trials and tribulations we overcame in a sustained campaign to achieve these 

enticing targets. In our total synthesis of spirastrellolide A methyl ester, we discovered that the 

subtle, unexpected structural effects imposed by distal protecting groups proved to be highly 

consequential in the critical macrolactonisation. Similarly, for rhizopodin, a carefully 560 

choreographed sequence of protecting group incorporation and selective deprotection, was 

pivotal to achieving the target. Our campaign towards leiodermatolide underlines the need to 

reassess fragment coupling strategies when required. This is a common theme and important 

lesson – and was certainly a defining obstacle in our campaign towards chivosazole F. In the 

end, a carefully orchestrated sequence of fragment coupling steps proved to be vital for success. 565 

 In this account, the highlighted setbacks and accompanying explanations of strategy 

evolution serve to illuminate the unanticipated difficulties that can make or break a total 

synthesis. Overall, we are provided with a humbling reminder that despite continual advances 

in the field of chemical synthesis, there is still much to be learned from tackling a structurally 

complex natural product.  570 
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