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Abstract 
Faithful replication of DNA and correct segregation of duplicated chromosomes into 

two daughter cells are essential to ensure genome integrity and cell survival. Genome 

integrity is constantly threatened by endogenous and exogenous sources of DNA 

damage. Consequently, eukaryotic cells have evolved the DNA damage response 

(DDR), a signalling network that monitors and repairs DNA lesions promptly and 

efficiently. The ATR-Chk1 pathway is an essential component of the DDR, which is 

activated by single-strand DNA (ssDNA) generated as a result of DNA replication 

stress in S phase. Chk1 is a threonine/serine kinase that transduces the DNA damage 

signal and promotes cell cycle arrest to allow time for DNA repair. The Chk1 

structure consists of conserved N-terminal kinase (Chk1KD) and C-terminal 

regulatory domains (Chk1RD). Available evidence has shown that the isolated 

Chk1KD is constitutively active, but how the enzymatic activity is regulated in the 

context of the full length (Chk1FL) kinase is unknown. 

 

In this thesis, the relative enzyme efficiency of purified, recombinant Chk1KD and 

Chk1FL was quantitatively studied using kinase assays. It was found that the enzyme 

efficiency of Chk1FL was up to two orders of magnitude lower than that of Chk1KD. 

Biophysical and biochemical characterisation of Chk1FL provided evidence of a 

compact shape and an intramolecular association of the Chk1RD with the Chk1KD. A 

putative Chk1RD-binding site on the Chk1KD surface was identified and disrupted by 

mutagenesis, resulting in partial increase of Chk1FL kinase activity, thus supporting 

an inhibitory role of the Chk1RD in controlling kinase activity. 

 

Activation of Chk1 requires its phosphorylation by the PI3K-like ATR kinase and its 

recruitment to the replisome via a direct interaction with the core replisome 



	

component, Claspin. The Chk1-binding domain of Claspin contains a tandem repeat 

of three phosphothreonine/serine motifs, which need to be phosphorylated for 

interaction. However, the structural basis of Chk1 binding remains presently unclear. 

The Chk1-Claspin interaction was analysed by alanine scanning of Claspin’s 

Chk1-binding motif and Chk1 binding to the mono-phosphorylated Chk1-binding 

domain of Claspin prepared using the amber codon suppression method. Furthermore, 

the affinity of Chk1KD and Chk1FL for a phosphorylated Claspin peptide spanning a 

single Chk1-binding motif or the three motifs was determined using fluorescence 

polarization and bio-layer interferometry. Chk1FL kinase activity was increased by 

the presence of a Claspin peptide corresponding to a single phosphorylated 

Chk1-binding motif. 

 

The results of my thesis provide new insights into the mechanism of Chk1 function. 

They support a model of Chk1 auto-inhibition mediated by the intramolecular 

interaction of its kinase and regulatory domains, and of Chk1 enhanced activity 

promoted by interaction with its replisome partner Claspin. 
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CHAPTER 1 INTRODUCTION 

1.1 Cell cycle regulation 

1.1.1 G1 phase 

Mitotic cell division is critical to life propagation in eukaryotes. It consists of two 

main events: faithful replication of DNA and correct segregation of the replicated 

chromosomes into two daughter cells. A cell cycle comprises the stages of DNA 

synthesis (S phase) and mitosis (M phase), separated by intervening gap phases (G1 

and G2). Cell cycle progression is tightly regulated by activation and deactivation of 

the cyclin-dependent family of protein kinases (CDKs). CDKs are highly conserved 

from yeast to humans and can be subdivided into cell-cycle-related subfamilies 

(represented by CDK1, CDK4 and CDK5 in humans) and transcriptional subfamilies 

(represented by CDK7, CDK8, CDK9, CDK11 and CDK20 in humans) (Malumbres, 

2014). Activation of CDKs requires binding to a cyclin to form a holoenzyme and 

phosphorylation on its activation loop by CDK-activating kinase (CAK). Different 

combinations of CDKs with cyclins lead to different functions in cell cycle regulation 

(Figure 1.1). The concentration of CDKs during a whole cell cycle is mostly constant 

while cyclins concentration oscillates in different stages. CDKs activity can be 

inhibited by degradation of cyclins through ubiquitination-regulated proteolysis, 

binding to CDKs inhibitors (CKIs) or inhibitory phosphorylation (Hochegger et al., 

2008). Inhibitory phosphorylation on two adjacent threonine and tyrosine residues on 

CDKs subunit are conducted by Wee1 and Myt1 and removal of this inhibitory 

phosphorylation is regulated by cell division cycle 25 (Cdc25), a dual specificity 

phosphatase (DSP) (Malumbres and Barbacid, 2005). When both activating and 

deactivating modifications appear on same CDKs molecule, the kinase remains in the 

inactive state (Malumbres and Barbacid, 2005). Cells can remain quiescent (G0) when 

there is not enough cell division stimulation and then re-enter into G1 under the 

regulation of cyclin C/Cdk3 complex (Ren and Rollins, 2004).  
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A restriction point (R point) in G1 in mammalian cells, which is called start in yeast, 

marks the commitment to a cell cycle. Progression to cell division after the R point is 

irreversible even when growth factors are removed. Growth factors stimulate 

expression of cyclin D which activate CDK4 by forming cyclin D/CDK4 complex. 

The complex inhibits transcriptional inhibitor retinoblastoma protein (Rb) via 

phosphorylation and frees E2F transcription factor, which in turn promotes expression 

of cyclins E and CDK2. Cdc25A removes inhibitory phosphorylation on CDK2 and 

promotes its activation at G1/S transition. In addition to Cdc25A, human Cdc25 has 

another two isoforms Cdc25B and Cdc25C, which mainly regulate G2/M transition in 

each cell cycle (Sur and Agrawal, 2016). 

 

Figure 1.1 Cyclin-Cdk complexes in each cell cycle phase (Malumbres and Barbacid, 

2005) 

Cell cycle progression is regulated by CDKs activity. The catalytic subunit of CDKs acquires 
cell-cycle-specific activity by forming a complex with different cyclins. 

 

Active cyclin E/Cdk2 complex leads to complete inactivation of Rb and E3 ubiquitin 



	 3	

ligase anaphase promoting complex/cyclosome (APC/C), thus promoting S phase 

entry (Cappell et al., 2016; Harbour et al., 1999). APC/C activity is regulated by two 

co-activators, Cdc20 and Cdh1, which function mainly in early M and late M to G1/S 

transition respectively (Peters, 2002). Apart from APC/C, Skp1–Cullin-1–F-box (SCF) 

is another ubiquitin-protein ligase which regulates cell cycle through cyclin 

ubiquitination. SCF regulates G1 cyclin ubiquitination and proteolysis by the 26S 

proteasome to avoid DNA re-replication in S phase (Vodermaier, 2004). However, the 

R point model is challenged by studies using single-cell analysis which reveals that 

among actively cycling cells, only a subset of cells which undergoes replication stress 

or obstacles in MAPK signalling in the previous cell cycle goes through R point. 

Other cycling cells contain a high level of CDK2 activity and hyperphosphorylated 

Rb and thus are committed to the next cell cycle (Moser et al., 2018). 

 

Another important event in G1 phase is replication origin licensing, which prepares 

DNA for replication in S phase. Origin recognition complex (ORC), a hexameric 

complex composed of Orc1-6, recognises DNA replication origin. Yeast has a 

consensus AT-rich autonomous replication sequences (ARS) while the origin initiation 

sequence is more diverse in metazoan. Current evidence indicates that metazoan 

replication origin forms a special secondary structure which is recognised by ORC 

(Parker et al., 2017). Co-operating with another two licensing factors, Cdc6 (Cdc18 in 

fission yeast) and Cdt1, ORC regulates sequential loading of two minichromosome 

maintenance complexes (MCM, a hexameric complex composed of Mcm2-7) onto 

replication origin to form a pre-replicative complex (pre-RC). The licencing factors 

are released in sequence: Cdc6 dissociates first, which is followed by Mcm2-7 ring 

closure and simultaneous release of Cdt1 and ORC (Ticau et al., 2017). Prevention of 

re-initiation of DNA replication in one cell cycle is essential to maintain genome 

integrity and the re-licensing is inhibited after G1 phase when the CDK activity 

begins to increase. In S. cerevisiae, Clb/Cdc28 prohibits re-initiation through 

phosphorylating and inhibiting ORC, triggering the ubiquitin-regulated destruction of 

Cdc6 and nuclear exclusion of MCM (Nguyen et al., 2001). In S. pombe, re-licensing 
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in S phase is inhibited by the down-regulation of licensing factors Cdt1 and Cdc18 as 

a consequence of increased Cdc2 activity (Gopalakrishnan et al., 2001). Metazoan 

re-licensing is prevented by Cyclin A/Cdk2-regulated Cdc6 destruction after G1 phase 

and prohibition of Cdt1 loading on chromatin by Cdk1 in mitosis (Ballabeni et al., 

2004; Coverley et al., 2000).  

 

1.1.2 S phase and G2/M transition 

DNA is replicated in S phase and faithful genome duplication is essential to cell 

survival and proliferation. Licensed origin remains unfired until S phase. Not all 

licenced origins are activated and many origins remain dormant during DNA 

replication. The flexibility of origin firing is believed to be essential to ensure the 

completion of DNA replication in each cell cycle and to protect genome stability. Two 

kinases, S-phase CDK and Dbf4-dependent kinase (DDK), regulate DNA replication 

at origin (Bell and Dutta, 2002). Like CDKs, the catalytic subunit of DDK, Cdc7, 

remains constant in the cell cycle while the regulatory subunit Dbf4 oscillates and 

accumulates at S and G2 phase (Ferreira et al., 2000). The rise of the Dbf4 level 

triggers DDK activity in S phase and promotes origin firing.  

 

In yeast, the Mcm2-7 complex is a target of DDK and phosphorylation on MCM 

subunits promotes its association with Cdc45 through chaperone Sld3 and Sld7. Sld2 

and Sld3 are substrates of CDK and phosphorylation on these effector proteins lead to 

interaction with BRCT domain on Dpb11, which in turn recruits GINS to the origin 

and forms an active replicative helicase complex Cdc45-MCM-GINS (CMG) (Labib, 

2010). The factors involved in metazoan helicase activation are largely conserved 

from the yeast factors, while some non-catalytic chaperones are different. RecQ4 is a 

Sld2 homolog candidate in metazoan and Sld3 is a homolog of a domain on human 

Treslin. Sld7 corresponds to MDM2 binding protein (MTBP) and Dpb11 is speculated 

to be a yeast ortholog of human TopBP1 (Garcia et al., 2005; Matsuno et al., 2006; 

Sanchez-Pulido et al., 2010). Mcm10 is a factor required for replication origin firing. 
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C-terminus of Mcm10 interacts with MCM in S phase and the interaction promotes 

helicase double hexamer splitting and activation (Quan et al., 2015). The double 

hexamer of MCM is necessary and sufficient for origin firing. After origin firing, the 

two helicases are separated and move in opposite direction to conduct a bidirectional 

DNA replication (Duzdevich et al., 2015).  

 

In each DNA replication cycle, helicase needs to unwind every base and overcome 

replication barriers formed by bound proteins and DNA structure. DNA polymerase is 

responsible for synthesis of nascent DNA strands with high fidelity and maintains the 

coupling status with helicase (Gambus et al., 2009; Kim et al., 1996). Eukaryotic 

DNA replication is mainly conducted by three DNA polymerases: polymerase α, ε and 

δ. Polymerase α contains a primase and a polymerase subunit and functions in 

priming Okazaki fragment. Polymerase ε and δ are supposed to conduct DNA 

replication on leading and lagging strands respectively. GINS complex directly binds 

to MCM, polymerase α and ε, thus plays a structural role in linking helicase and 

polymerases (Sengupta et al., 2013). A fork pausing complex (FPC) functions in 

maintaining replication fork integrity and prevents fork collapse through coupling 

helicase and polymerase. Human FPC consists of four components: Timeless (Tim1), 

Timeless-interacting protein (Tipin), And1 and Claspin. And1 and Tipin directly 

interact with lagging-strand polymerase α and the other two components, Tim1 and 

Claspin, interact with leading-strand polymerase ε (Errico and Costanzo, 2012). 

Proliferating cell nuclear antigen (PCNA) forms a homo-trimeric ring-shaped 

complex which encircles DNA and bridges polymerase ε and δ to enhance their 

progressivity (Kang et al., 2017).  

 

Termination of DNA replication occurs when two replication forks converge. CMG 

complexes disassemble from DNA after ligation of nicks at opposing forks and DNA 

dissolution (Dewar et al., 2015). Polyubiquitylation on Mcm7 by p97 triggers the 

unloading of replisome from DNA at termination (Moreno et al., 2014). 
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Progression of the cell cycle from G2 to M phase is driven by cyclin B/CDK1. Y15 on 

CDK1 is an inhibitory phosphorylation site and Wee1 and Cdc25C directly regulate 

Cdk1 activity by phosphorylating and dephosphorylating this site respectively. The 

activity of these two regulators are mediated by polo-like kinase 1 (Plk1) and 

checkpoint kinase 1 (Chk1). Plk1 is a key regulator of mitosis progression. The 

activity of Plk1 is suppressed by an intramolecular interaction between its kinase 

domain and a C-terminal Polo-box domain (PBD) which buries a nuclear localization 

signal (NLS) and keeps Plk1 in the cytoplasm. During G2 phase, Aurora A activates 

Plk1 through phosphorylation under the regulation of cyclin A/Cdk1. Activated Plk1 

undergoes a conformational change and exposes NLS which leads to its nuclear 

transportation (Pintard and Archambault, 2018). Active Plk1 promotes Cdc25C 

nuclear translocation through phosphorylating on its S198 (Toyoshima-Morimoto et 

al., 2002). In combination with Cdk1 and casein kinase 2 (CK2), Plk1 generates 

phosphodegrons on Wee1 and targets it for SCF-mediated proteolysis (Watanabe et al., 

2005). Chk1, however, functions in an opposing way to regulate cyclin B/Cdk1 

activation when the G2 checkpoint is activated by unrepaired DNA damage. Chk1 

phosphorylates Wee1 and promotes its interaction with 14-3-3 which results in Wee1 

activation and phosphorylation on Cdk1 Y15 (Lee et al., 2001). Chk1 phosphorylates 

Cdc25C on S216 and results in its nuclear export. Cdc25C undergoes cytoplasmic 

sequestration via interaction with 14-3-3 protein, preventing its ability to 

dephosphorylate and activate cyclin B/Cdk1 (Sanchez et al., 1997). Chk1 translocates 

to the cytoplasm in a Crm1-dependent manner after being phosphorylated at S286 and 

S301 by Cdk1 at G2/M transition which further increases Cdk1 activity and drives the 

transition (Enomoto et al., 2009). 

 

1.1.3 M phase 

Cells divide and sister chromatids separate into two newly formed daughter cells in M 

phase. It is sub-divided to four phases: prophase, metaphase, anaphase and telophase. 

APC/C plays a pivotal role in M phase progression by regulating the exit of 
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metaphase and mitosis. APC/C activity is depressed by Emi1, an inhibitor of APC/C 

co-activator Cdc20, during S and G2 phase. In early M phase, Emi1 undergoes 

phosphorylation by Cdk1 on its degron which leads to its destruction by 

SCF-mediated proteolysis (Margottin-Goguet et al., 2003). Cyclin B/Cdk1 also 

phosphorylates APC/C and enhances its interaction with a coactivator Cdc20. 

Activated APC/CCdc20 targets cyclin B, resulting in its proteasomal destruction and 

thus deactivation of Cdk1. Reduced Cdk1 activity leads to decreased APC/C 

phosphorylation and inactivation of APC/CCdc20. The completion of cyclin B 

destruction is mediated by APC/C with another coactivator Cdh1, which efficiently 

binds to dephosphorylated APC/C. APC/CCdh1 promotes M phase exit by the 

ubiquitination-regulated destruction of Plk1 and Aurora kinases, leading to complete 

elimination of mitotic cyclins (Manchado et al., 2010).  

 

1.1.4 Cell cycle checkpoints 

To ensure the accurate replication and segregation of genomic information to daughter 

cells, eukaryotes have evolved a surveillance mechanism termed "cell cycle 

checkpoint" (Abraham, 2001). Checkpoint controls the timing of cell cycle 

progression and ensures the completion of one cell cycle phase before entry to the 

next phase. Checkpoint is activated in response to DNA damage, replication stress and 

spindle damage. Activated checkpoint delays cell cycle progression which allows time 

for DNA repair (Callegari and Kelly, 2007). 

 

	  



	 8	

1.2 DNA damage response	

1.2.1 Overview of DNA damage response 

DNA damage response (DDR) is a complex and interconnected network of molecular 

signals that allow the cells to respond promptly and efficiently to the presence of 

DNA damage. Signal transduction is relayed across protein networks, from damage 

sensors that detect the lesion to transducers that transmit and amplify the signal and 

eventually to effectors that repair the damage. DDR functions in stabilization of 

replication fork, stimulation of cell cycle arrest to allow recovery time for DNA repair, 

inhibition of late origin firing and recovery of the cell cycle when replication stress is 

removed. In the DDR, the signal is mainly transduced by phosphorylation events from 

kinase cascade, but other post-translational modifications such as ubiquitination and 

sumoylation are also involved in the signal transduction. When the DNA damage is 

severe and irreparable, the DDR drives the cell to senescence or cell death, depending 

on cell context, type and extent of stimulus (Surova and Zhivotovsky, 2013). 

 

Three serine/threonine kinases belonging to the phosphatidylinositol-3-kinase-like 

kinase family (PIKKs) are the main upstream DNA damage sensors: 

ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and 

DNA-dependent protein kinase (DNA-PKs). ATM is activated mainly by double 

strand DNA breaks (DSBs), while ATR responds to a wide spectrum of DNA damage 

or replication stress, including DNA breaks, base adducts, crosslinks, dNTP depletion, 

polymerase inhibition and topoisomerase inhibition (Flynn and Zou, 2011). DNA-PKs 

responds to DSB and regulates non-homologous end joining (NHEJ). 

 

Activation of the two major sensor proteins ATM and ATR requires the association to 

its co-factor, Mre11-Rad50-Nbs1 (MRN) complex and ATRIP respectively. The 

sensor kinases then undergo activation through autophosphorylation. The DDR signal 

is spread to chromatin flanking DSB sites by phosphorylation of histone variant 
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H2AX which then becomes a platform for proteins involved in DNA repair and 

chromatin remodelling (Marechal and Zou, 2013). Central transducers in the two 

pathways, Chk2 and Chk1 are activated through phosphorylation and transduce DNA 

damage signal to effector proteins. Mass spectrometry has been intensively used in 

the identification of ATM/ATR substrates in response to DNA damage. Over 900 

regulated phosphorylation sites on more than 700 proteins containing the consensus 

ATM/ATR phosphorylation motif S/TQ were enriched after ionising radiation (IR) 

and 570 phosphorylation sites were identified in UV-damaged cells (Matsuoka et al., 

2007; Stokes et al., 2007). Genome ontology analysis on these substrate proteins 

reveals that DDR encompasses DNA replication, DNA repair, cell cycle and other 

signalling pathways interfering with DNA damage pathway (Matsuoka et al., 2007). 

DNA-PK catalytic subunit is recruited to DSB ends and forms a holoenzyme with a 

heterodimer of Ku70/80. DNA-PK promotes the alignment and ligation of the DNA 

ends in NHEJ (Graham et al., 2016). 

 

The DDR pathways are not completely independent and function in an overlapping 

but non-redundant way. ATR acts as a downstream target of ATM in response to DSB 

when RPA-ssDNA is generated from resection of DNA ends (Jazayeri et al., 2005). 

On the other hand, ATR-Chk1 pathway activated in response to HU and UV mediates 

ATM activation through phosphorylation on S1981, which further leads to ATM-Chk2 

pathway activation. These two DDR pathways function in an overlapping manner and 

contribute to G2/M arrest (Stiff et al., 2006). In response to UV-induced replication 

stress, all the three DDR pathways are involved in the DDR signalling. ATR-Chk1 

pathway is activated immediately while ATM and DNA-PK are activated with a delay 

to complete DDR signalling and the cooperation of these pathways maintain the 

genome stability (Yajima et al., 2009). Studies on DDR inhibition reveal that cells 

treated with Chk1 inhibitor are more vulnerable than cells treated with ATR inhibitor. 

It provides evidence on a backup DDR pathway hypothesis which circumvents ATR 

during Chk1 activation, indicating an interconnecting function between the pathways 

(Buisson et al., 2015).  
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1.2.2 Features of DDR sensor proteins 

The three DNA damage sensors kinases are large proteins and share similar domain 

organisations and features. A helical solenoid HEAT-repeat domain (Huntingtin, 

elongation factor 3 (EF3), protein phosphatase 2A (PP2A) and TOR1) at varying 

length locates at N-terminus which regulates protein-protein interaction. This domain 

is proposed to interact with a conserved C-terminal motif on NBS1, ATRIP and Ku80, 

which promotes stable DNA damage site recruitment of ATM, ATR and DNA-PK, 

respectively (Falck et al., 2005). A catalytic domain is located at C-terminus which is 

flanked by a FRAP-ATM-TRRAP (FAT) domain and a FAT C-terminal (FATC) motif 

(Blackford and Jackson, 2017). Structural determination on DNA-PKcs in complex 

with the C-terminal 194 amino acid of Ku80 was resolved at a resolution of 4.3 Å. 

The complex fold into three structural units including a head region formed by FAT 

and FATC domains, a circular cradle region formed by the carboxyl side of HEAT 

repeats and an N-terminal subunit of the N-terminus of HEAT. The active site on the 

bilobal kinase domain is buried and activation requires conformational change of the 

kinase (Sibanda et al., 2017). More detailed description on kinase catalytic domain is 

discussed in 1.3.1. Another common feature of the three sensor proteins is the 

capability of autophosphorylation while the function of this modification varies 

among the kinases. ATM autophosphorylate S1981 on FAT domain and whether this 

modification activates ATM remains controversial (Bakkenist and Kastan, 2003; 

Blackford and Jackson, 2017). ATR autophosphorylates T1989 on FAT domain which 

leads to ATR activation (Liu et al., 2011). DNA-PK autophosphorylates S2056 and 

T2609, which are not essential to kinase activation but are important to DNA repair 

(Jette and Lees-Miller, 2015). These kinases have a consensus substrate sequence of a 

serine or threonine followed by a glutamate (S/TQ). They are found to share some 

substrates and have overlapping functions in DDR (Bannister et al., 1993; Kim et al., 

1999). 
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Figure 1.2 Domain organization of ATM, ATR and DNA-PKcs (Blackford and 

Jackson, 2017) 
ATM, ATR and DNA-PKcs contains an N-terminal HEAT repeats and a C-terminal kinase 
domain flanked by a FAT and a FATC domain. Autophosphorylation sites are marked with 
residue number. 

1.2.3 Activation of the ATR-Chk1 pathway  

ATR is essential to cell survival and disruption of ATR in mice leads to early 

embryonic lethality (Brown and Baltimore, 2000). ATR is activated by an 

intermediate structure formed by ssDNA-RPA complex. This structure forms when 

the replicative polymerase stalls at the site of DNA lesion while helicase continues to 

unwind DNA. The uncoupling of polymerase and helicase generates ssDNA, which 

becomes coated with RPA to form a ssDNA-RPA complex that in turn recruits a 

heterodimer of ATR and its subunit, the ATR interacting protein (ATRIP) (Figure 1.3). 

The interaction of an acidic α-helix of ATRIP within an N-terminal basic cleft of RPA 

is required for the association of ATR-ATRIP complex to ssDNA-RPA (Ball et al., 

2007). Resection of DNA strand at DNA damage site or replication fork is promoted 

by DDK, which initiates checkpoint signalling (Sasi et al., 2017).  

 
(Caption on next page) 
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Figure 1.3 A brief schematic demonstration of ATR-Chk1 pathway activation 

ssDNA is covered by RPA and the structure formed by the two components is crucial to ATR 
recruitment and activation. ATR further activates its substrate Chk1, which leads to signal 
transduction cascade through phosphorylating a wide spectrum of effector proteins. The 
activation of Chk1 requires a mediator, Claspin, which interacts with Chk1 and contributes to 
its full activation. Other factors are omitted in this figure for clarity.  

 

The recruitment of ATR-ATRIP to RPA-bound ssDNA involves a precise sequence of 

molecular contacts. It is facilitated by Sirtuin 2 (SIRT2) deacetylation of K32 on 

ATRIP, which introduces a conformational change and strengthens the association of 

ATRIP with ssDNA-RPA (Zhang et al., 2016). The Rad17-RFC complex then binds to 

the junction of ssDNA-RPA and dsDNA and recruits the trimeric complex 

Rad9-Rad1-Hus1 (9-1-1) onto DNA damage site. S387 on the C-terminal tail of Rad9 

is phosphorylated, which is required to interact with DNA topoisomerase II binding 

protein 1 (TopBP1) (Delacroix et al., 2007). TopBP1 is thus positioned next to the 

ATR-ATRIP complex and interacts and activates ATR through its activation domain 

(Zhou et al., 2013). Apart from TopBP1, Ewing’s tumour-associated antigen 1 

(ETAA1) is also identified as an ATR activator. ETAA1 directly interacts with RPA 

through two RPA-binding motifs. Recruitment of 9-1-1-TopBP1 and ATR-ATRIP 

complex requires the same intermediate but the process is mostly independent. It is 

intriguing that cells require two receptors to activate ATR pathway. An explanation for 

this phenomenon is to avoid false activation of ATR by ssDNA-RPA structure 

generated from the normal replication process on the lagging strand. Another 

possibility is that sustained recruitment of ATR-ATRIP and 9-1-1 complex to DNA 

damage site increases their local concentration which leads to sustained interaction 

between ATR-ATRIP and TopBP1 and thus ATR activation (Cimprich and Cortez, 

2008).  

 

In conditions of moderate replication stress, such as slowed replication speed induced 

by common fragile sites, ATR is recruited to chromatin and activated, while other 

crucial DDR factors including ATM, Chk1 and p53 remain inactive. The partial 
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activation of DDR allows protection of replication forks without delaying cell cycle 

progression. It indicates that the activation of the ATR pathway is dependent on the 

level of replication stress (Koundrioukoff et al., 2013). 

 

Sensor protein ATR phosphorylates substrates on the site of DNA damage and the 

spread of DDR to the cell is mainly performed by its effector proteins. ATR activates 

Chk1 by sequentially phosphorylating Chk1 residues S317 and S345, an 

evolutionarily conserved activation step that is conserved from yeast to metazoan. 

Phosphorylation on S317 is a prerequisite of efficient phosphorylation on S345, which 

yields maximal checkpoint activation in response to DNA damage (Wang et al., 

2012b). Nuclear retention of Chk1 with phosphorylated S345 is maintained by 

interaction with 14-3-3 β and ζ isoforms, which masks the NES on Chk1, thus leading 

to its nuclear retention (Jiang et al., 2003). In unperturbed conditions, phosphorylation 

of S317 is not essential to cell viability while phosphorylation of S345 is required to 

cell survival and localisation at centrosomes during prophase (Wilsker et al., 2008). 

Activated Chk1 is released from chromatin and undergoes autophosphorylation on 

S296 to acquire full activation (Okita et al., 2012).  

 

Release of Chk1 from chromatin and spread in the nucleoplasm is supposed to be 

important to the transduction of DNA damage signal to effectors (Smits et al., 2006). 

Chromatin association of Chk1 is promoted by K63-linked ubiquitination on K132 

under the regulation of B-cell translocation gene 3 (BTG3). Depletion of BTG3 leads 

to impaired chromatin localization and activation of Chk1 after UV irradiation in 

U2OS cells (Cheng et al., 2013). Chromatin association is important to Chk1 

activation by ATR on S345 in response to replication stress, nevertheless the 

attachment of the ubiquitination chain inhibits Chk1 activity as K132 locates on the 

catalytic loop and functions in ATP binding. Deubiquitination at K132 on Chk1 by 

ubiquitin-specific protease 3 (USP3) leads to Chk1's chromatin dissociation and full 

activation (Cheng and Shieh, 2018). 
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The activation of Chk1 requires its interaction with an adaptor protein, Claspin. When 

Claspin is depleted, cells undergo reduced cell cycle arrest in response to DNA 

replication stress (Kumagai and Dunphy, 2000). Claspin undergoes phosphorylation 

on its Chk1 kinase binding domain (CKBD) which creates a Chk1-binding site. 

Several kinases, including Chk1, DDK and Casein kinase 1γ1 (CK1γ1) have been 

reported to be responsible for Claspin phosphorylation on CKBD, though the identity 

of the kinase remains to be confirmed and more observations are required to elucidate 

the exact mechanism of Claspin phosphorylation (Chini et al., 2006; Kim et al., 2007; 

Meng et al., 2011).  

 

Chromatin association of Claspin is regulated by another FPC component, And1. 

Phosphorylation on T826 by ATR after replication stress promotes And1 localization 

at ssDNA and interaction with Claspin. Claspin is thus enriched on ssDNA which 

plays a vital role in mediating Chk1 activation at DNA damage site (Hao et al., 2015). 

Chromatin association of Claspin is also enhanced by BRCA1, which forms a 

heterodimer with Bard1 to acquire E3 ligase activity. It is found to selectively trigger 

Chk1 activation in response to topoisomerase inhibition through ubiquitinating 

Claspin and sustains its binding to DNA (Sato et al., 2012).  

 

The Cdc25 phosphatase isoforms are important effectors in ATR-Chk1 checkpoint 

pathway. In addition to Cdc25C regulation discussed in section 1.1.2, Cdc25A 

undergoes regulation by checkpoint mechanism. Cdc25A forms a complex with 

14-3-3γ in response to DNA damage and it is speculated that the dimeric 14-3-3γ 

bridges Chk1 and Cdc25A by forming a ternary complex which promotes Cdc25A 

phosphorylation on S76 by Chk1 (Kasahara et al., 2010). 14-3-3 is a family of acidic 

dimeric proteins involved in a wide range of cellular processing including signal 

transduction, cell cycle control and apoptosis. Seven isoforms have been identified in 

mammals, of which the β and ζ isoforms bind to S345-phosphorylated Chk1, while 

14-3-3γ specifically interacts with S296-phosphorylated Chk1 (Kasahara et al., 2010). 

Chk1-mediated phosphorylation of Cdc25A at S76 promotes further phosphorylation 
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within Cdc25A phosphodegron site by undefined kinases and leads to proteasomal 

degradation of Cdc25A by the ubiquitin ligase SCFβTrCP (Jin et al., 2003). The activity 

of CDK2 is suppressed as a consequence of Cdc25A destruction, which leads to cell 

cycle arrest. In addition to the Cdc25A pathway, p53 regulates CDK2 suppression in 

an ATR/ATM and Chk1/Chk2 dependent manner. Active p53 triggers the expression 

of a CDK2 inhibitor, p21, which suppresses CDK2 activity and prevents entry into M 

phase (Moiseevaa and Bakkenist, 2018).  

1.2.4 Causes of DNA replication stress 

Replication stress is a major cause of DDR activation. It refers to conditions that 

impede DNA synthesis or replication fork progression, resulting in generation of 

aberrant fork structure and function, and leading to DNA breakage and unscheduled 

recombination events (Jossen and Bermejo, 2013). It is being considered a hallmark 

of cancer as it occurs in most cancer cells and it is a cause of other cellular behaviour 

that promote cancer, such as apoptosis escape and genome instability (Macheret and 

Halazonetis, 2015). Replication stress can be generated from a wide spectrum of 

causes including endogenous and exogenous insults (Figure 1.4).  

 

 

Figure 1.4 Causes of replication stress (Zeman and Cimprich, 2014) 

Replications stress are caused by a variety of reasons including DNA lesions, CFS, 
transcription-replication conflicts, etc. DDR is activated in response to replication stress to 
maintain genome integrity. 
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Reactive oxidative species (ROS) produced by cellular metabolic reactions are a 

primary endogenous source of DNA damage which causes oxidised bases, ssDNA 

breaks and dsDNA breaks (Bont and Larebeke, 2004). Exogenous genotoxic factors 

can be further classified as having a physical and chemical nature. Physical factors 

include ultraviolet light (UV), which induces pyrimidine dimers and photoproducts. 

Ionising radiation (IR) promotes base oxidization, ssDNA and dsDNA breaks. 

DNA-damaging agents are used in chemotherapy, such as alkylating agents and 

crosslinking agents, which generate a range of DNA lesions including alkylated bases 

and intra- or inter-strand crosslinks. Topoisomerase inhibitors induce ssDNA and 

dsDNA breaks and covalent protein-DNA intermediates, while chemicals generated 

from cigarette smoking cause DNA adducts and oxidative damage (Ciccia and 

Elledge, 2010).   

 

Replication stress can also be generated by misincorporated ribonucleotides, DNA 

secondary structure formed by trinucleotide repeats or GC-rich G-quadruplexes, 

collisions between the machineries of replication and transcription, shortage of 

replication factors, common fragile sites (CFS) and overexpressed oncogene (Zeman 

and Cimprich, 2014). These causes result in genome instability, and consequently 

DNA damage response (DDR) is activated to ensure faithful DNA replication in each 

cell cycle. 

 

1.2.5 Inhibition of late origin firing 

A consequence of checkpoint activation is inhibition of late origin firing, which 

prevents the formation of more stalled replication forks and ensures DNA integrity in 

response to replication stress. In bacteria, DNA replication initiates from a single 

origin on a circular chromosome. In contrast, eukaryotic cells have larger genomes 

which require that DNA replication is initiated from multiple origins. In eukaryotes, 

cells license many origins but only 10 % of these licensed origins are fired during 

DNA replication in unperturbed S phase (McIntosh and Blow, 2012). The unfired 
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origins remain dormant and only initiate when necessary. In human cells, over 5,000 

replicons are activated for DNA replication in S phase (Chagin et al., 2016). Origin 

usage varies depending on its firing efficiency, the proportion of cells firing a specific 

origin in a population, and timing, which refers to the time an origin fires in S phase. 

An important feature of DNA replication is that different origins are programmed to 

fire at different times in S phase, and are therefore categorised as “early-” and “late-” 

firing origins. Early origins are frequently located in transcriptionally active 

chromatin domain whereas late origins are associated with transcriptionally inactive 

heterochromatic regions of the genome (Fragkos et al., 2015). Furthermore, the 

pattern of origin firing varies among cell types (Aze and Maiorano, 2018).  

  

The S-phase checkpoint regulates DNA replication through origin firing control. 

Conversely, inhibition of the ATR/ATM pathway in unperturbed cells leads to 

unrestrained origin firing, which produces genome instability (Shechter et al., 2004). 

When checkpoint signalling is activated by replication fork arrest, local dormant 

origins in proximity to the stalled fork become activated while late origin firing is 

restrained globally (Yekezare et al., 2013). Thus, activated dormant origins in the 

vicinity of the arrested fork can complete the replication of the region where 

replication stalled, while inhibition of distal origins avoids generation of more stalled 

replication fork (Yekezare et al., 2013).  

 

In budding yeast, active Rad53 downregulates both DDK and CDK pathways to block 

origin firing in different mechanisms during checkpoint activation. Direct Rad53 

phosphorylation of Dbf4 prevents MCM activation by DDK whilst Rad53 targets a 

CDK substrate, Sld3, to prevent its interaction with Cdc45 and Dpb11 and to inhibit 

origin firing. This mechanism allows CDK to stay active which has a crucial function 

of preventing re-licensing of origins in budding yeast during S phase (Zegerman and 

Diffley, 2011). In metazoan, a global fork slowing and reversal under the regulation of 

ATR is initiated in response to replication stress. This global effect safeguards the 

chromosomal integrity by allowing time for repair or lesion bypass (Mutreja et al., 
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2018). DNA replication components are also involved in origin firing regulation. 

Promotion of DNA replication requires an interaction between TopBP1 and Treslin. 

This interaction is promoted by cyclin E/CDK2 phosphorylation on Treslin while cells 

with abolished phosphorylation are deficient in DNA replication (Kumagai et al., 

2011). CDK2 activity is suppressed in response to checkpoint activation which leads 

to disruption of origin firing. A Cdc25C/CDK2-independent origin inhibition pathway 

was revealed in response to replication stress generated by UVC and the reactive 

metabolite of benzo[a]pyrene (BPDE). Chk1 regulates DDK suppression through 

phosphorylating the Dbf4 subunit which inhibits replicon initiation. These results 

reveal the existence of several checkpoint mechanism in response to different stimuli 

(Heffernan et al., 2007). 

 

1.2.6 Protection of replication fork 

Another consequence of DDR regulation is replication fork protection. Replication 

fork stability can be protected through inhibition of late origin firing which maintains 

an RPA pool required to protect ssDNA generated from uncoupling of helicase and 

polymerase. RPA covers and prevents ssDNA from nucleolytic damage and hairpin 

structure formation. RPA regulates DNA repair activities and exhaustion of the 

cellular stocks of RPA leads to global replication catastrophe which can be prevented 

by checkpoint signalling through regulation of origin firing (Toledo et al., 2013). 

 

A major role of FPC is to protect replication fork integrity through linking helicase 

and polymerase during fork progression. Chromatin association of FPC components 

requires interaction with RPA. RPA consists of three subunits: RPA70, RPA32 and 

RPA14 which are conserved in eukaryotes. It contains four DNA binding domains and 

binds to DNA in different conformations depending on the length of nucleotides and 

domains involved (Bastin-Shanower and Brill, 2001). Conformational change of RPA 

leads to varied binding affinity to FPC components Timeless/Tipin, a heterodimeric 

complex which specifically binds to RPA in the 30nt-binding mode, whereas the 
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interaction is compromised when RPA is in the 8nt-binding mode. The variation in 

binding affinity suggests a model where Timeless/Tipin is loaded between helicase 

and polymerase by RPA in the 30nt-binding mode, whilst RPA dissociates from 

replisome by transforming to the 8nt-binding mode. Checkpoint activation in the 

presence of ssDNA promotes RPA association in the 30nt-binding mode, thus 

recruiting Timeless/Tipin to help mediate checkpoint signaling (Witosch et al., 2014).  

 

An important effector protein in fork protection is Werner syndrome protein (WRN), a 

member of RecQ helicase family which regulates replication fork stability and 

recovery in two steps. At an early stage of fork arrest, ATR phosphorylates WRN on 

multiple C-terminal residues and triggers WRN re-localization and interaction with 

RPA on stalled forks. The recruitment of WRN stabilises replication fork through 

preventing DSBs formation. However, when DSB is generated from the collapsed 

fork, WRN dissociates from nuclear foci in an ATM-dependent manner which allows 

DNA repair mediated by recombinase RAD51 (Ammazzalorso et al., 2010). BLM, 

another RecQ helicase, promotes fork restart under the regulation of ATR through 

phosphorylation at T99 and T122 (Davies et al., 2004). FANCD2 is an effector protein 

in FA pathway and associates with MCM under the control of ATR. The recruitment 

of FANCD2 at stalled replication fork restrains DNA synthesis and ssDNA 

accumulation which further avoids p21 induction and cell senescence (Lossain et al., 

2013). 

 

Replication fork regression is the process that fork moves backward and newly 

synthesised DNA strands anneal to form a Holliday junction. It is considered as a 

replication fork stabilization mechanism under the regulation of activated checkpoint 

kinase ATR. Consequences of replication regression include reducing ssDNA 

formation, allowing DNA lesion repair and promoting lesion bypass which is 

beneficial to fork stabilization and DNA damage repair (Cortez, 2015). SMARCAL1 

is a DNA translocase which catalyses fork reversal at stalled replication fork through 

the interaction with RPA. Moderate replication fork regression improves genome 
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stability while unregulated fork regression generates substrates of SLX-4-dependent 

endonucleases which generate DSBs and fork instability. ATR phosphorylates 

SMARCAL1 at S652 which inhibits its activity and regulates SMARCAL1 activity at 

a proper level which promotes fork stability (Couch et al., 2013).  

 

1.2.7 Recovery from checkpoint activation 

Cells need to recover from cell cycle arrest and resume cell cycle progression when 

DNA damage is eliminated. Checkpoint recovery involves checkpoint termination and 

cell cycle resumption. Failure in checkpoint recovery may result in replication fork 

instability which generates DNA breaks or abnormal DNA structures. S phase 

checkpoint recovery also needs to be coupled with cell cycle restart otherwise genome 

instability is generated when cell progresses to cell cycle with under-replicated DNA 

(Chaudhury and Koepp, 2016). Termination of checkpoint response is mediated 

through degradation of checkpoint-related proteins. Phosphorylation at S345 of Chk1, 

which is essential to its activation, also marks it for ubiquitin-directed proteasomal 

degradation at a later time. It is speculated that phosphorylation on S345 leads to 

exposure of a degron motif which stimulates ubiquitination by 

Cul1/Cul4A-containing E3 ligases (Zhang et al., 2005). In unperturbed conditions or 

upon DNA damage, Chk1 is protected by Ataxin-3 (ATX3), a deubiquitinase which 

antagonizes Cul1/Cul4A-containing E3 ligases. After prolonged replication stress, the 

interaction between activated Chk1 and ATX3 weakens, which leads to the 

proteasomal destruction of Chk1 and resumption of the cell cycle (Tu et al., 2017). 

Recovery from checkpoint activation induced by hydroxyurea is regulated by 

SCF-mediated Claspin destruction. A DSGxxS degron located at N-terminus of 

Claspin is phosphorylated by Plk1 which leads to Claspin ubiquitination by SCFβTrCP 

(Peschiaroli et al., 2006), in turn reducing Chk1 activation and thus inhibiting 

checkpoint signaling. Another mechanism of checkpoint termination involves γH2AX 

dephosphorylation by the p53-induced phosphatase 1 (Wip1), a serine/threonine 

phosphatase which recognises a consensus substrate sequence of pS/TQ. 
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Dephosphorylation of γH2AX eliminates its function in recruiting DNA repair factors 

after checkpoint signalling and thus contributes to cell cycle restart (Macurek et al., 

2010). Furthermore, cell cycle resumption is regulated by Plk1 which deactivates 

Wee1 and in turn reactivate CDKs which drives cell cycle progression (Vugt et al., 

2004). 

 

1.2.8 DDR and cancer therapy 

DDR safeguards genome stability in response to DNA damage and ensures genome 

information is passed to next generations with high fidelity. When cell accumulates 

large scale of severe damaged DNA, DDR induces cellular senescence and apoptosis. 

In the case of erroneous repair or replication bypass, mutations can be introduced to 

daughter cells which can lead to cancerous transformation if the mutation is located 

on oncogene or tumour suppressor genes. Effective DNA repair is thus important to 

prevent cancer. Meanwhile, the DDR pathway has been a target of cancer therapy 

because impaired DDR leads to accumulation of DNA lesions which reduces cancer 

growth and induces apoptosis of cancer cell (Torgovnick and Schumacher, 2015). 

Platinum compounds, such as cisplatin, carboplatin, and oxaliplatin, are widely used 

chemotherapeutic drugs which modify DNA structure through introducing inter- and 

intrastrand crosslinks. The platinating agents are effective to some cancer types while 

resistance can be developed via varying mechanisms including upregulated DDR 

components (Rabik and Dolan, 2007). Combined treatment with DDR inhibitor is 

used to cope with the resistance while the toxicity remained as a challenge. The 

development of synthetic lethality enhances the efficacy and specificity of cancer 

therapy. It is based on observations that the inactivation of two genes from different 

DDR pathways leads to cell death while mutation on either of the single gene does not 

influence cell viability. Cancer cells often carry impaired DDR components and 

treatment using synthetic lethality methodology leads to selective killing when those 

cancer cells rely on the remaining DDR pathways to survive (Minchom et al., 2018). 

One well developed synthetic lethality therapy is using poly(ADP-ribose)-polymerase 
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(PARP) inhibitors to treat BRCA1/2-deficient cancer cells. PARP1 and PARP2 are 

sensors of SSB and are an essential regulator of base excision repair (BER). 

Inactivation of PARP leads to impairment of SSB repair which finally turns into DSB. 

Repair of DSB usually depends on HR which is mediated by BRCA1/2. The cancer 

cells carrying these deficient genes are defective in DSB repair which in turn go to 

apoptosis (Turner et al., 2005). Olaparib is a PARP1 inhibitor and is considered a 

promising drug to treat BRCA-deficient ovarian and breast cancer (Gelmon et al., 

2011; Tutt et al., 2010). 

 

Oncogene activation induced replication stress is considered to be a major source of 

genome instability in cancer cells (Hills and Diffley, 2014). ATM gene mutations are 

common for cancer cells, leaving cells to rely on the ATR-Chk1 pathway in DDR 

(Choi et al., 2016). Deletion of ATR or Chk1 protects cells from being tumorigenic, 

indicating cancer cells rely on this efficient DDR pathway to survive from heavy 

replication stress. ATR-Chk1 signalling pathway suppresses origin firing, which 

reduces replication pressure under replication stress and thus prevents cancer cell 

death. Inhibitors targeting the ATR-Chk1 pathway, therefore, are sensible anti-cancer 

drug candidates. Given by the function of ATR/Chk1 in cancer cell survival, initial 

ATR/Chk1 inhibitors were designed as a sensitizer of chemotherapy or radiotherapy. 

In combination with DNA damage agents, ATR/Chk1 inhibitors enhance killing of 

cancer cells through inhibiting cell cycle checkpoint. ATR/Chk1 inhibitors are also 

developed as single agents which target on replication stress in tumour cells. VX-970 

is an ATR inhibitor which showed tumour control in monotherapy and in combination 

with carboplatin (O'Carrigan et al., 2016). It is also found to be effective to advanced 

solid tumour suppression in combination with cytotoxic regents including 

gemcitabine and cisplatin (Plummer et al., 2016; Shapiro et al., 2016). An oral ATR 

inhibitor, AZD6738, showed promising potential in suppressing non-small cell lung 

cancer as a monotherapy or in combination with gemcitabine and cisplatin (Vendetti 

et al., 2015). 
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Drug development on ATR inhibitor is challenged by several characteristics including 

large-size of the protein, S-G2 phase-specific activity and similar active site to other 

PIKK family proteins. The Chk1 inhibitor is better developed than ATR because ATR 

has broader biological functions than Chk1 which makes ATR inhibitors more 

aggressive to normal cells (Qiu et al., 2017). 

 

Many Chk1 inhibitors are invented and several of them have reached clinical phase 

I/II trials. UCN-01, XL844 and CBP501 are a set of inhibitors which have a broad 

range of the target and their clinical applications are restrained because of a lack of 

specificity. AZD7762 is an ATP-competitive inhibitor which made promising progress 

in killing HR-deficient cancer cells while the clinical trial has been terminated 

because of toxicity and side effects. PF-00477736 is also an ATP-competitive 

inhibitor which has high selectivity but the development was stopped for business 

reasons. Other inhibitors, such as LY2603618, MK-8776, and LY2606368, are 

selective Chk1 inhibitors and efficacy of which remain to be learnt. Development of 

Chk1 inhibitors for monotherapy or in combination with other therapies is still in 

progress and identification of biomarkers will be helpful to improve the progress (Qiu 

et al., 2017). 
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1.3 Enzymatic and structural characterization of Chk1  

1.3.1 Brief overview of protein kinase superfamily 

Protein kinases catalyse the phosphoryl transfer from γ-phosphate of an ATP molecule 

to the hydroxyl group on a serine, threonine or tyrosine residue. Phosphorylation 

results in a conformational change which is a cause of function changes leading to the 

substrate activation or deactivation (Swulius and Waxham, 2008). It is thus an 

important post-translational modification involved in cellular signalling. 518 putative 

kinase genes have been identified which accounts to 1.7% of the whole human 

genome (Manning et al., 2002). The protein kinase superfamily can be categorised 

into 9 groups which are further divided into 134 families (Manning et al., 2002). 
 
Activity of a kinase is regulated by various factors. Some kinases, such as PKA, 

CDK2 and MAPK, require phosphorylation on its activation loop to become active. 

The phosphorylation is usually performed on a conserved threonine, which positions 

the catalytic loop into an active position by interacting with other amino acids (Hunter, 

1995). Regulatory subunit/domain interaction is another common factor which 

regulates kinase activity. PKA remains inactive in complex with a regulatory subunit 

which interacts and inhibits the catalytic subunit. Dissociation of the regulatory 

subunit from the catalytic subunit is stimulated by binding to cAMP (Walsh et al., 

1968). The release of the regulatory subunit leads to the activation of PKA but not all 

regulatory subunit has a negative effect on kinase activity. For example, CDK2 

remains unphosphorylated and inactive when it is in a monomeric form. Upon binding 

to a cyclin subunit, T160 on its activation loop becomes accessible and 

phosphorylation on this residue leads to CDK2 activation (Solomon et al., 1993). 

Kinase phosphorylates a substrate based on the residues flanking the site of 

phosphorylation. Phosphate receptor residues are anchored differently to the catalytic 

cores depending on the interactions formed between the substrate and the kinase 

backbone (Taylor et al., 1995). Kinases thus can be categorised into 

serine/threonine-specific kinase and tyrosine-specific kinase. Some kinases, such as 
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Wee1, are dual-specificity kinase which is capable of phosphorylating both 

serine/threonine and tyrosine residues (Lindberg et al., 1992). Despite different 

regulation mechanism and protein size, all eukaryotic kinases share a conserved 

~250-300 amino acid catalytic core, consisting of a β-strand rich N-terminal lobe and 

an α-helix rich C-terminal lobe with a linker in between (Talor et al., 1992). 

cAMP-dependent protein kinase (PKA) is introduced as an example for structural and 

functional studies of kinase.  

 

1.3.2 PKA is a prototype of kinase studies 

The first kinase structure solved was the catalytic subunit of PKA in 1991 by 

Knighton et al. (Knighton et al., 1991). The catalytic subunit is a 350-amino-acid 

polypeptide, which can be expressed in E.coli in an active form (Talor et al., 1992). 

PKA has a simple activation mechanism and the above-mentioned features make it a 

prototype of the kinase family for studies (Talor et al., 1992). It provides a good 

example on substrate recognition and kinase catalysis procedure. PKA forms an 

inactive holoenzyme consisting of two catalytic subunits and two regulatory subunits. 

Upon cAMP binding to the regulatory subunit, the catalytic subunit dissociates from 

the complex and becomes active (Walsh et al., 1968). The structure of the catalytic 

subunit of PKA has been determined as an apoenzyme (PDB#1J3H), in binary 

complex with adenosine or a phosphopeptide (PDB#1BKX and 1JLU), in ternary 

complex with ATP and peptide inhibitor or with ADP and substrate peptide 

(PDB#1ATP and 1JBP), and in transition state complex with ADP, aluminium fluoride 

(AlF3) and substrate peptide (SP20) (PDB#1L3R). By comparing the structures from 

different states, PKA catalysis mechanism is interpreted. The apo catalytic subunit 

adopts an open conformation with an accessible ATP binding site and the overall 

molecule in solution is dynamic (Madhusudan et al., 2003). The most conserved motif 

in the N-terminal lobe is a glycine-rich motif (GxGxxG) on the first two β strands. 

This is a dynamic region and is responsible to stabilise nucleotide in the ATP-binding 

pocket (Taylor and Kornev, 2011). Two conserved amino acid residues, K72 and E91, 
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form an ion pair and function in combination with the glycine loop in stabilising the 

ATP molecule from the N-terminal lobe (Talor et al., 1992). A hydrophobic core is 

formed at the centre region between the two lobes which anchors the catalytic loop 

(residues 166-171) and magnesium-positioning loop (residues 184-187) through 

interactions with the hydrophobic side chains on these loops (Taylor et al., 2004). 

Invariant residues D166 and N171, as well as the highly conserved residues R165 and 

K168, locate in the catalytic loop where the major catalysis event is processed (Talor 

et al., 1992). The hydrophobic core not only provides an ATP and substrate binding 

site but also maintains residues R165 and D166 in a correct orientation to catalyse 

phosphoryl transfer (Madhusudan et al., 2003). Instead of the hydrophobic interaction, 

the activation loop (residues 184-208) is positioned in an active conformation through 

hydrogen-bonds and ionic interactions generated by a phosphorylated T197 (Smith et 

al., 1999). Upon ATP binding, residues on the N-terminal lobe are flexible and the 

glycine-rich loop (residues 48-57) moves towards the active site. The critical step in 

catalysis is having the glycine-rich loop firmly engaged to the active site while at this 

intermediate stage, the tip of the loop remains dynamic and the kinase is not in 

catalysis structure (Taylor et al., 2004). On the other side, residues on the C-terminal 

lobe are mostly preformed and these include the conserved residues D166 and K168 

which directly interact with the γ-phosphate during catalysis and Mg2+ coordinating 

residues N171 and D184 (Madhusudan et al., 2003). Conformational change on 

substrate binding residues (E127, R133, and F239) is introduced by ATP binding 

which prepares the residues to a substrate binding orientation (Madhusudan et al., 

2003). AlF3 mimics the structure of a γ-phosphate molecule and it was crystallized in 

complex with PKA catalytic subunit, ADP and SP20 to mimic a transition state of 

catalysis. At this stage, γ-phosphate is oriented for nucleophilic attack through 

hydrogen bonding with backbone amide of S53 (Madhusudan et al., 2002) (Figure 

1.5). The conserved residue in the catalytic loop, K168, forms hydrogen bonds with 

the P-site serine and γ-phosphate, indicating an important role in phosphoryl transfer. 

Another conserved residue is D166, which functions in orienting nucleophile and 

catalysing phosphoryl transfer to the recipient serine through hydrogen bonding 
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nucleated from its carboxylate group (Madhusudan et al., 2002). Water molecules are 

excluded from the active site in this closed kinase conformation, allowing maximal 

catalysis efficiency through bringing phosphate donor and acceptor in close proximity 

(Taylor et al., 2004).  

 
Figure 1.5 Structure of PKA in complex with ADP, AlF3 and SP20 highlighting the 

ATP positioning and catalysis related amino acid residues 

The structure of the transition state PKA in complex with ADP, AlF3 and SP20 is shown in 
grey ribbon. The glycine-rich loop, catalytic loop, magnesium-positioning loop and activation 
loop are shown in green, yellow, magenta and red. ADP, AlF3 and magnesium ions which 
mimic the ATP at the transition state are shown in cyan. The substrate SP20 is shown in 
orange. The key amino acid residues involved in ATP-positioning and structure stabilising are 
annotated. More detailed description is in the main text. Figure of the protein structure was 
generated in Chimera (Pettersen et al., 2004). 

  

1.3.3 Structural features and activation mechanism of Chk1 

Human Chk1 is a 476-amino acid serine/threonine kinase which belongs to the 

Ca2+/calmodulin–dependent kinase-like (CAMKL) family. Chk1 consists of a 

conserved N-terminal kinase domain, a linker with varying length and a C-terminal 

kinase associated 1 domain (KA1) (Figure 1.6). Crystallization structure of Chk1 

N-terminal kinase domain (Chk1KD) shows it adopts an open conformation and 

ChK1KD has higher kinase activity than full-length Chk1 (Chk1FL) (Chen et al., 
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2000). Chk1KD consists of a small N-terminal β-strand-rich lobe and a C-terminal 

α-helix-rich lobe. Unlike PKA, apo Chk1KD has the same conformation with its 

binary complex with ATP analog AMP-PNP and no intermediate conformation was 

observed upon nucleotide binding (Chen et al., 2000). Chk1 activation does not 

require a phosphorylation modification on its activation loop. The positioning of Chk1 

activation loop is oriented by secondary structure and side chain interactions with the 

core of the C-terminal lobe which keeps the activation loop at an active state in apo 

structure (Chen et al., 2000). This arrangement of the activation loop indicates the 

activation of Chk1 is likely regulated by inter- or intramolecular interactions. Chk1 

constructs with mutations on its C-terminal kinase association domain (KA) which 

induces conformational change on KA have higher kinase activity than wild-type (WT) 

and the increase on the activity does not require phosphorylation on S345. This 

suggests a model of Chk1 activity regulation that the C-terminal domain has an 

inhibitory role in its activity which is reversed by the introduction of mutations on KA. 

The phosphorylation on S317 and S345 by ATR is proposed to result in 

conformational change on Chk1 and removes the auto-inhibition effect. Structural 

analysis on Chk1 KA1 shows the C-terminal 100-amino-acid domain forms a similar 

fold as KA1 identified in other proteins including human MARK1 and MAPK. Chk1 

KA1 consists of four β-sheet flanked by two α-helices which form a hydrophobic core 

with an overall basic surface (Emptage et al., 2017). The interaction between 

Chk1KD and KA1 is supposed to be partially directed by charge-charge interactions 

and phosphorylation on linker residues may form a shield on Chk1KD domain thus 

disrupt the Chk1KD and KA1 interaction (Emptage et al., 2017). Two motifs in KA1 

domain are identified as conserved motifs (CM1 and CM2) which functions as a 

nuclear export sequence (NES) and nuclear localization sequence (NLS) respectively. 

Translocation of Chk1 is supposed to be important to checkpoint signalling at the 

level of the whole cell (Wang et al., 2012a). 
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Figure 1.6 Domain structure of human Chk1 

Structure of Chk1 kinase domain (pdb#1IA8) and Chk1 kinase association domain 
(pdb#5WI2) was solved by crystallographic technique. The N-terminal kinase domain adopts 
an open conformation and remains active when expressed alone. It is followed by a linker 
region containing two ATR phosphorylation sites (S317 and S345) and a C-terminal domain. 
A model extracted from these observations is that the auto-inhibitory effect of Chk1 is driven 
by charge-charge interaction between the two domains and the intramolecular interaction is 
disrupted when two serine residues are transformed to negatively charged phosphoserines. 
Figure of the protein structure was generated in Chimera (Pettersen et al., 2004).  

 

1.3.4 Chk1 functions outside checkpoint signalling 

In unperturbed conditions, Chk1 associates to chromatin and low level of 

phosphorylation on S345 is observed which indicates Chk1 keeps a basal activity in 

normal cycling cells (Jiang et al., 2003). Chk1 maintains genome stability in several 

ways and cells treated with Chk1 inhibitors undergo increased CDK2 activity, 

increased RPA recruitment on ssDNA, increased initiation of DNA replication and 

increased DNA breakage (Syljuåsen et al., 2005). Chk1 regulates origin firing through 

directly interacting and phosphorylating Treslin at a C-terminal domain, which 

disrupts loading of Cdc45 on replication origins and in turn suppress origin firings in 
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unperturbed cells. Cells with the disrupted interaction between Chk1 and Treslin 

undergo a higher level of origin firing (Guo et al., 2015). 

Chk1 is also a crucial mediator in cell cycle progression. Activation of centrosomal 

cyclin B/Cdk1 drives cell cycle into early M phase and its activity is regulated by 

Cdc25B. During S and G2 phase in the normal cell cycle, centrosome-associated 

Chk1 constantly phosphorylates Cdc25B on S230 and suppresses Cdc25B activity 

which is essential to avoid premature initiation of M phase (Schmitt et al., 2006). 

Chk1 undergoes phosphorylation on S280 in M phase which is conducted by PIM2 

kinase. This phosphorylation promotes Chk1 activity in mitosis which in turn 

phosphorylates and activates Plk1 thus promotes M phase progression (Adam et al., 

2018). Chk1 functions in cytokinesis and protect chromatin stability in the presence of 

abnormal chromatin bridges. Formation of actin patch maintains intercellular canal 

between daughter cells which allows time for incomplete chromatin separation to be 

resolved. Actin patches are regulated by a nonreceptor tyrosine kinase, Src, a substrate 

of Chk1. Chk1 activates Src through phosphorylating on S51 which in turn delays 

cytokinesis and prevents chromatin breakage (Dandoulaki et al., 2018). 
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1.4 Fork pausing complex and Claspin 

1.4.1 Claspin structure and its intermolecular interactions 

There are two splicing isoforms of human Claspin, Claspin1339 and Claspin1332 

respectively. The most distinctive difference between these two isoforms is that 

Claspin1339 has an evolutionarily conserved C-terminus which cannot be found in 

Claspin1332 isoform. The two isoforms coexist in human cells and both can facilitate 

checkpoint activation. However, the conserved C-terminus functions in interacting 

with other checkpoint proteins which are speculated to be essential to efficient Chk1 

activation in response to DNA damage. Claspin1332 isoform is found to have a less 

efficient binding ability to Rad9 and cells contain only Claspin1332 isoform undergo a 

delayed Chk1 activation (Liu et al., 2012). Cryo-EM revealed Claspin is a ring-shaped 

protein which has a higher binding affinity to branched DNA structures than to 

ssDNA or dsDNA structures (Sar et al., 2004). Human Claspin is predicted to have a 

pI of 4.5 while the negative charge is not homogenously distributed over the protein 

(Figure 1.7). There are two basic patches (BP1 and BP2) residing in an N-terminal 

replication fork interacting domain (RFID) and an acidic patch (AP) near C-terminus. 

The distribution of charged patches is speculated to function in interaction with DNA 

and different proteins (Smits et al., 2018). AP is likely to inhibit Claspin interaction 

with chromatin via intramolecular interaction with N-terminus and this interaction is 

disrupted by Cdc7 recruitment and phosphorylation at AP motif. Cdc7 promotes 

Claspin association on chromatin through phosphorylation and interruption of this 

event leads to compromised Chk1 activation though the exact sites of phosphorylation 

remain unclear (Kim et al., 2007). Cdc7 is a serine/threonine kinase which triggers 

MCM phosphorylation and origin firing. The interaction between Claspin and Cdc7 is 

also found important to Cdc7 function in origin firing, indicating Claspin has a 

function in replication initiation via regulating pre-RC (Yang et al., 2016). As 

described in 1.1.2, Claspin is a component of FPC and its directing binding sites to 

Tim1 and Pol ε are located in N- and C-terminus respectively (Serçin and Kemp, 
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2011). Chromatin association of Claspin also relies on interaction with helicase 

co-factor Cdc45 and the binding site is located at N-terminus of Claspin. Chromatin 

association of Claspin is independent of RPA, which recruits several replication 

proteins onto replication fork, indicating Claspin associates with chromatin before 

DNA synthesis and the process is independent of ATR and Rad17 (Lee et al., 2003). 

C-terminus of Claspin mainly interacts with DNA damage response related proteins 

including Chk1 and Rad17-RFC. A Chk1-binding domain (CKBD) was firstly 

identified in Xenopus Claspin, which contains two conserved motifs with a sequence 

of ExxxLCS/TGxFE. Phosphorylation on the serine or threonine residue inside the 

motifs is required to interact with XChk1 (Kumagai and Dunphy, 2003). The 

Chk1-binding motif is conserved in human Claspin, which has three conserved motifs. 

Phosphorylation on T916, S945, S982 on these motifs is essential to Chk1 activation 

by ATR. Point mutation studies on XChk1 reveal four amino acid residues at 

N-terminus are required to interact with XClaspin. Crystal structure of human Chk1 

KD shows the four corresponding residues (K54, R129, T153, R162) form a sulphate 

binding site thus it is postulated that these residues form a phosphate binding pocket 

which docks phosphorylated Claspin (Jeong et al., 2003) (Figure 1.7). These 

observations generate assumptions on Chk1-Claspin interaction. A model raised from 

these observations depicts that Claspin functions as a platform which binds one Chk1 

molecule on each phosphorylated motif and thus promotes Chk1 activation by ATR or 

intermolecular autophosphorylation. The rest of the conserved amino acid residues in 

the Claspin motif might interact with Chk1 side chains to enhance the binding. 

Whether there are other Claspin binding sites on Chk1 is unknown. 
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Figure 1.7 Schematic summary of Claspin domains and interactors and putative 

Claspin binding domain on human Chk1 

A: Claspin sequence contains an N-terminal replication fork interacting domain (RFID) with 
two basic patches (BP), a Chk1-binding domain (CKBD) and a C-terminal acidic patch (AP). 
These domains interact with proteins involved in Claspin destruction, DNA synthesis and 
checkpoint signalling. Two degrons at the N-terminus regulate the proteasomal degradation of 
Claspin through SCFβrCP-regulated or APC/CCdh1-regulated ubiquitination. A Cdc45 
interacting domain locates at the N-terminus of Claspin. The C-terminus of Claspin interacts 
with DNA damage response related proteins including Chk1 and Rad17/RFC. As a 
component of FPC, Claspin interacts with other replisome proteins and the binding sites to 
Tim1 and Polε locate on BP2 and the C-terminus respectively. Cdc7 promotes the chromatin 
association through phosphorylating on the AP region. B: Structure of Chk1KD (pdb#1IA8) 
with the highlight of the four amino acid residues (K54, R129, T153 and R162) which form a 
putative Claspin binding site where a sulphate ion locates. Figure of the protein structure was 
generated in Chimera (Pettersen et al., 2004). 
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1.4.2 Claspin function in FPC 

FPC links helicase and polymerase and ensures the integrity of replisome in both 

unperturbed conditions and DDR. Claspin as well as other two FPC components, 

Tim1 and Tipin are found to be essential to full activation of Chk1 in response to 

checkpoint activation (Errico and Costanzo, 2012). Like other components in FPC, 

Claspin is required to maintain a high rate of replication fork progression (Petermann 

et al., 2008). It regulates the density of fired origins and prevents progression of 

replication fork when DNA synthesis is stopped by fork stalling agents. Depletion of 

Claspin results in increased rate of fork stalling (Scorah and McGowan, 2009).  

 

Claspin function and regulation in unperturbed conditions have also been widely 

studied in yeast model. Mrc1 (Claspin homolog) forms a heterotrimeric complex and 

have direct interaction with Tof1 (Tim1 homolog) and Csm3 (Tipin homolog) in vitro. 

Efficient association of Mrc1 to replication fork is dependent on Tof1 and Csm3 and 

depletion of either of the components lead to compromised Mrc1 association (Bando 

et al., 2009). Apart from a function in late-firing origin regulation in the checkpoint 

pathway, Mrc1 also regulates early-firing origin in a checkpoint-independent manner. 

Hsk1, a fission yeast homolog of Cdc7, phosphorylates a Hsk1 bypass segment on 

Mrc1 and avoid premature early origin firing at normal replication fork in S phase 

(Matsumoto et al., 2017). Mrc1 functions in protecting genome stability generated by 

transcription-replication conflicts. Transcription and replication coexist in S phase and 

progression of two machineries at the same time may generate obstacles which 

interfere with faithful duplication of DNA. When the transcription dominantly occurs 

in S phase, Mrc1 is subject to phosphorylation by multiple kinases on its N-terminus 

which leads to delay of cell cycle thus safeguards genomic integrity (Duch et al., 

2018). 
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1.4.3 Regulation of Claspin stability 

Claspin level fluctuates in the cell cycle. It remains at a low level in G0 and G1 phase 

and accumulates from S phase which is followed by a rapid degradation in late M 

phase. Expression of Claspin is regulated by E2F1 under growth stimulation while its 

degradation is mediated by SCFβTrCP and APC/CCdh1 in M and G1 phase respectively 

(Bennett and Clarke, 2006; Gao et al., 2009; Iwanaga et al., 2006). Deubiquitinase 

(DUBs) functions oppositely to ubiquitinase to ensure appropriate checkpoint 

activation by regulating Claspin level. Deubiquitinating enzyme USP7 specifically 

conteracts degradation mediated by SCFβTrCP in M phase and USP28 is found to 

regulate Claspin deubiquitination in opposing function to APC/CCdh1 in G2 phase 

(Bassermann et al., 2008; Faustrup et al., 2009). USP20 stabilises Claspin in S phase 

by removing K-48 linked polyubiquitination on Claspin. USP20 is suppressed by 

HERC2 in unperturbed cells and undergoes phosphorylated by ATR during 

checkpoint activation. Phosphorylation on USP20 leads to its dissociation from 

HERC2 and stabilises USP20 which in turn promote checkpoint activation through 

stabilising Claspin (Zhu et al., 2014). The reversible ubiquitination on Claspin plays 

an essential role in checkpoint activation and genome stability. 
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1.5 Perspective and aims 

Chk1 is a critical messenger of checkpoint signalling stimulated by DNA damage. It is 

a 476-amino-acid serine/threonine kinase consisting of an N-terminal kinase domain, 

a C-terminal regulatory domain and a linker in between. Crystallographic studies have 

revealed the structures of the two domains separately, leaving the linker region with 

about 100-amino-acid-length unresolved. The intact full-length Chk1 structure 

remains unknown and the intramolecular interaction between the two Chk1 domains 

is unclear. Although the features of the catalytic domain are conserved among all 

protein kinases, the regulation of kinase activity varies. Understanding on the 

structural information from an atomic level will shed light on kinase activity 

regulation and activation mechanism. Biophysical and biomedical studies were 

applied on Chk1KD and Chk1FL to acquire the overall structural information of 

full-length Chk1 and the intramolecular binding interface between the two domains. 

The results shape an auto-inhibition model of Chk1FL activity regulation through a 

direct intramolecular interaction. The auto-inhibitory effect was studied by Chk1 

kinase assays which indicated the inhibition was generated by blocking of ATP 

binding site on Chk1KD. The result is helpful to interpret Chk1 activation mechanism 

in vivo where the upstream kinase ATR and other mediators are involved. The result is 

also helpful to the invention of selective kinase inhibitor in cancer therapy.  

 

Chk1 activation requires phosphorylation on S317 and S345 by ATR in checkpoint 

activation and the adaptor protein Claspin is essential to this process. Depletion of 

Claspin from Xenopus egg extracts abolishes Chk1 activation and leads to a strongly 

compromised cell cycle arrest in response to DNA replication blocks (Kumagai and 

Dunphy, 2000). Chk1-binding domain has been identified on Xenopus Claspin and 

human Claspin containing a tandem repeat of two or three Chk1-binding motifs 

respectively (Kumagai and Dunphy, 2003). Phosphorylation on a site-specific 

threonine or serine on those motifs is essential to Claspin's interaction with Chk1 but 

the structural basis of the interaction remains unclear. Direct interaction between 
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Claspin and Chk1 was visualised by co-immunoprecipitation assays where 

phosphoserine was incorporated into the target site using amber codon suppression 

technique. The binding kinetics and affinity was studied using bio-layer 

interferometry and fluorescence polarization assays, which showed the three motifs 

on Claspin contribute equally to Chk1 binding. The quantitative measurement 

provides direct evidence on the intermolecular interaction between Claspin and Chk1, 

which sheds light on the interpretation of the dynamic molecular interaction during 

Chk1 activation. Essential residues on the Claspin motif to Chk1 binding was 

analysed using alanine scanning which revealed that among the phosphoserine 

flanking residues, only the phenylalanine at the +3 position of the critical 

phosphoserine was crucial to Chk1 binding. The effect of Claspin binding on Chk1 

activity was analysed by kinase assay and the preliminary result showed an increased 

activity of Chk1 in the presence of a phosphorylated Claspin peptide with the 

sequence of one Chk1-binding motif. This in vitro study indicates the Claspin motif is 

enough to elevate Chk1 activity even in the absence of the Chk1 upstream kinase ATR. 

A Chk1 activation model interpreted from this result is that binding of Claspin leads 

to an activating conformational change of Chk1 and the active status of Chk1 might 

be further maintained by the phosphorylation on S317 and S345 in the linker region 

by ATR.  

 

Collectively, this work demonstrated the auto-inhibitory regulation of Chk1 activity 

and the intramolecular interaction between Chk1KD and Chk1RD in the aim of 

understand the molecular mechanism of Chk1 activity regulation. In perspective of 

understanding the role of the adaptor protein Claspin in Chk1 activation, the 

Claspin-Chk1 interaction was quantitatively characterised and the critical amino acids 

were defined, which provided evidence on the interpretation of the adaptor-mediated 

Chk1 activation mechanism.  
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CHAPTER 2 BIOPHYSICAL STUDIES ON CHK1 

2.1 Results 

2.1.1 Chk1 constructs and purification 

Chk1 sequence consists of a conserved N-terminal catalytic domain, a conserved 

C-terminal end and a less conserved linker region in between (Figure 2.1). Expression 

of active Chk1 full length (Chk1FL) and its kinase domain were well established in 

insect cells and mammalian cells (Chen et al., 2000; Okita et al., 2012) which, 

however, are more complex expression systems than bacteria system. The bacterial 

expression has an advantage of easy to culture, fast growth and high yield. Expression 

of Chk1 in E.coli was attempted at the beginning of this project, however, no 

expression was detected for a 6xHis-GST-Chk11-289 construct or a 

6xHis-GST-Chk1FL construct. It is speculated that a more physiologically related 

expression system is required for native Chk1 folding and post-translational 

modifications. Chk11-289 consisting of the catalytic domain (1-265) and a short linker 

was selected as the expression construct of the kinase domain (Chk1KD). Chk1KD 

and Chk1FL with a C-terminal TEV cleavage sequence (ENLYFQ) followed by an 

8xHis-tag was expressed in Sf9 cells. Target protein was purified using Ni-NTA 

agarose column and size exclusion chromatography (Figure 2.2).  
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Figure 2.1 Sequence alignment of Chk1  

The alignment of Chk1 from human to yeast is coloured by conservation (threshold 30%) 
with the ClustalWS colouring scheme and is formatted in Jalview (Larkin et al., 2007; 
Waterhouse et al., 2009). Phosphorylation sites by ATR and regions for expression (Chk1KD 
and Chk1FL) are marked by red and black arrows respectively. 



	 40	

 

 

Figure 2.2 Purification of Chk1KD and Chk1FL 

Cell lysate was applied on Ni-NTA agarose beads column as an initial purification step for 
Chk1KD (A) and Chk1FL (C). P: pellet, FT: flow through, W: wash, E: elution. Elution from 
Ni-NTA column was concentrated and applied on a size-exclusion chromatography using 
Superdex 75 16/60 column or Superdex 200 16/60 column for Chk1KD (B) and Chk1FL (D) 
respectively. 
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Chk1KD appeared as double bands on SDS-PAGE gel thus mass spectrometry 

analysis was performed to identify the species in Chk1KD. It showed that the purified 

protein sample consisted of the first methionine truncated Chk1KD constructs, with 

and without an acetylation modification (Figure 2.3).  

 

Figure 2.3 Mass spectrometry analysis of Chk1KD 

MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) mass spectrometry 
showed the purified Chk1KD sample consisted of two species. The observed mass of the 
species agreed with the molecular weight of a methionine truncated Chk1KD with and 
without an acetylation modification (expected molar mass: 35000.95 Da and 34958.91 Da). 
Analysis was performed by Dr. Len Packman at the Protein and Nucleic Acid Analysis 
Facility at the University of Cambridge. 

 

2.1.2 Post-translational modifications of recombinant Chk1 

Recombinant proteins expressed in eukaryotic expression system can undergo 

post-translational modifications. Phosphorylation is one of the most common 

modifications and it might play a role in enzyme activity regulation. To understand if 
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the Chk1 constructs expressed in Sf9 cells undergo phosphorylation and to what 

extent, the recombinant samples of Chk1KD and Chk1FL were analysed by MALDI 

fingerprinting mass spectrometry. Phosphorylation sites were identified on both of the 

constructs with different abundance (Figure 2.4). Two phosphorylation modifications 

were identified in the region preceding the Chk1 linker region on both Chk1KD and 

Chk1FL. The abundance of these phosphorylated species was at a low level for both 

constructs. A region containing a phosphorylation site with the highest 

phosphorylation abundance was identified on Chk1FL with an abundance of 15.47%. 

Multiple phosphorylation sites were identified from the C-terminal region of Chk1FL 

with an abundance below 10%. The mass spectrometry results indicated that both 

Chk1 constructs underwent phosphorylation when expressed in Sf9 cells, either due to 

endogenous kinases or Chk1 auto-phosphorylation or both. Phosphorylation 

introduces inhomogeneity of protein samples and may alter the kinase activity of 

Chk1. The characteristic of phosphorylation on Chk1 during expression was 

considered in crystallization and kinetic assays. 

 

(Caption on next page) 
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Figure 2.4 Post-translational phosphorylation mapping of Chk1KD and Chk1FL 

Multiple phosphorylation modifications with different abundance on both constructs were 
detected. Phosphorylation sites are marked with blue (Chk1KD) and red (Chk1FL) boxes, 
together with their abundance. Peptides marked with dash line indicate a phosphorylation 
modification was detected on the peptide but the exact site could not be determined. The 
MALDI fingerprinting mass spectrometry analysis was performed by Dr. Mike Deery at 
Cambridge Centre for Proteomics at University of Cambridge. 
 

2.1.3 Size-exclusion multi-angle laser scattering (SEC-MALS) 

SEC-MALS experiments were performed to establish the molecular mass and 

oligomerisation status of Chk1 constructs in solution (Figure 2.5). SEC-MALS 

combines measurements of refractive index (RI), UV absorbance and light-scattering 

(LS) to determine the molecular mass (MM) and oligomeric state. Medium 

concentration of salt (300 mM NaCl) was used because of the unstable nature of 

Chk1FL under low salt condition. Both Chk1FL and Chk1KD at a concentration of 

1.5 mg/ml were applied to Superdex 200 10/30 column for analysis. Both samples are 

monodispersed and the MM of Chk1FL and Chk1KD were measured at 56.88 kDa 

(0.2% error) and 35.65 kDa (0.1% error) respectively, which corresponded to their 

calculated molecular mass of 56.31 kDa and 34.89 kDa, respectively. The result of the 

SEC-MALS analysis shows that Chk1FL and Chk1KD are monomeric in solution.  
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Figure 2.5 SEC-MALS analysis of Chk1KD and Chk1FL 

Light scattering (LS), refractive index (dRI) and molecular mass (MM) of Chk1KD (A) and 
Chk1FL (B) are shown. LS and dRI overlap well in both experiments and the calculated MM 
was homogenous in selected peaks of both constructs. 
 

2.1.4 Small Angle X-ray Scattering (SAXS) 

To obtain structural information about Chk1 in solution, SAXS experiments were 

performed for Chk1KD and Chk1FL at the SWING beamline of the SOLEIL 

synchrotron (Gif-Sur-Yvette, France). Buffer subtracted data was analysed using 

ScÅtter software (Bioisis). Guinier analysis was used to estimate the radius of 

gyration (Rg). Low-q data in the range of q x Rg < 1.3 was used for Rg estimation 

which aims to produce a value within 10% of the true value. Guinier analysis of the 

linear range of low-q data yielded Rg values of 29.06 Å for Chk1KD and 29.54 Å for 

Chk1FL, indicating that the two Chk1 constructs have very similar hydrodynamic 

radii. Thus, the SAXS data showed that the overall dimension of Chk1FL was close to 

Chk1KD, suggesting that the Chk1FL adopts a compact structure in which the 
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Chk1RD binds tightly to Chk1KD. Further shape information can be extracted from 

inspection of the KRATKY plot, which provides information about the folding status 

of the particle: a bell-shaped curve indicates that the sample adopts a globular shape 

while a rise to a plateau indicates unfolding properties. Both KRATKY plots showed 

the bell-shape profile expected of a globular particle. Pair-distance distribution 

function (P(r)) describes paired-set of distances between all electrons within a 

macromolecule and it is useful to investigate a conformational change between two 

datasets. Fitting of P(r) generates a maximum dimension (Dmax) which describes the 

maximum distance between two points within the protein molecule. A well-fitted of 

P(r) curve is smooth and non-negative, approaching to zero at Dmax. Dmax of 

Chk1KD and Chk1FL was determined at 88 Å and 100 Å respectively, showing that 

the presence of about 200 amino acid at C-terminus did not increase Dmax 

substantially, thus further supporting the hypothesis that the Chk1RD interacted 

intramolecularly with the Chk1KD to give a compact overall shape.  
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Figure 2.6 Guinier analysis, KRATKY plot and P(r) distribution of Chk1KD and 

Chk1FL 

Initial low-q region was selected in Guinier analysis for Chk1KD (A) and Chk1FL (D). Points 
randomly distributed on the two sides of the linear regression line. KRATKY plots for 
Chk1KD (B) and Chk1FL (E) showed bell-shaped curve. Dmax was determined in P(r) 
distribution for Chk1KD (C) and Chk1FL (F). 

 

2.1.5 Attempts towards crystallization of Chk1FL 

The compact structure of Chk1FL provided a preliminary rationale to structural 

determination using crystallography. Initial crystallization condition screenings 

(Materials and Methods 2.3.9) were set up using native Chk1FL but no suitable 

crystallisation conditions could be determined. One approach to the problem, which 
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had been previously demonstrated to be successful for many kinase structures, was 

co-crystallizing with known high-affinity inhibitors in an attempt to stabilise Chk1FL 

in a single conformation and increase the chance of crystal formation. Several 

Chk1FL inhibitors including UCN-01, AZD7762 and CHIR-124 (Ni et al., 2006; Oza 

et al., 2012; Zhao et al., 2002) were used for co-crystallization with Chk1FL but no hit 

was produced. A further attempt towards producing a suitable Chk1FL sample for 

crystallization was made by generating a catalytic-dead D130A Chk1FL mutant, in an 

effort to eliminate or reduce heterogeneity due to Chk1 autophosphorylation during 

protein expression. SAXS analysis was applied on this construct and the result 

showed that Chk1FLD130A had the same dimension with wild-type Chk1FL, indicating 

the introduction of a single mutation did not lead to huge conformational change 

(Figure 2.7). No hit was identified in initial screening trays for this construct.  

 

As the presence of the C-terminal tag might be responsible for the failure to crystallise 

the protein, a new Chk1FL construct was prepared that had an N-terminal 8xHis tag 

followed by a TEV cleavage site, and the new construct was successfully expressed in 

Sf9. Following successful purification and tag removal after TEV treatment, SAXS 

analysis showed that the tag-cleaved construct adopted similar shape and dimension 

consistent with what observed previously for the C-terminally tagged Chk1FL (Figure 

2.7). Crystal screening of the new Chk1FL sample produced no hit. 
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Figure 2.7 Guinier analysis, KRATKY plot and P(r) distribution of Chk1FLD130A and 

Chk1FLnotag 

Initial low-q region was selected in Guinier analysis for Chk1FLD130A (A) and Chk1FLnotag (D). 
Points randomly distributed on the two sides of the linear regression line. KRATKY plots 
showed a bell-shaped curve of Chk1FLD130A (B) and Chk1FLnotag (E). Dmax was determined 
in P(r) distribution at 96 Å for Chk1FLD130A (C) and 92 Å for Chk1FLnotag (F). 

 

As recombinant Chk1FL was phosphorylated at multiple sites at varying abundance, 

possibly interfering with crystallisation, dephosphorylation was thus performed on 

Chk1FL using λ phosphatase. However, no hit was identified in the crystallisation 

screening of the dephosphorylated protein. Whether phosphorylation of the 

recombinant Chk1FL had an influence on crystallization remains debatable, because 

recombinant Chk1KD samples consistently produced high-quality crystals which 
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diffracted to high resolution, despite the presence of phosphorylation. 

 

As all approaches towards crystallizing human Chk1FL has been unsuccessful, it was 

reasoned that the flexible linker between Chk1KD and the C-terminal 100 residues 

(referred as KA domain in (Emptage et al., 2017)) may be responsible for difficulties 

in crystallisation. A well-known strategy for protein crystallisation is to switch the 

species of origin of the protein under investigation. We chose to attempt expression 

and purification of the Chk1 orthologue from the eukaryotic intracellular parasite 

Encephalitozoon Cuniculi Chk1 (EcChk1). At 414 amino acids, EcChk1 is 

considerably smaller than its human counterpart. Sequence alignment (Figure 2.1) 

shows that the N-terminal kinase domain and the C-terminal domain have good 

sequence similarity with the human kinase, whereas the linker region is less 

conserved with EcChk1 having a shorter linker. The EcChk1 open reading frame with 

either an N- or a C-terminal cleavable polyhistidine-tag was cloned into the pFBDM 

vector and expressed in Sf9 cells, and the protein was purified using Ni-NTA agarose 

column and size exclusion chromatography, as for the human protein. EcChk1 was 

eluted in the void peak during size-exclusion chromatography which indicated it was 

likely to be in a highly aggregated state. The yield of recombinant protein as judged 

from SDS-PAGE was much lower than that of hChk1, which indicated the Sf9 

expression of EcChk1 constructs was not a feasible approach. 

 

2.1.6 The kinase and regulatory domains of Chk1 co-elute in 

size-exclusion chromatography 

The result of the SAXS experiments showed that Chk1FL and Chk1KD behaved like 

particles with similar shape and conformation in solution, suggesting a stable 

intramolecular association between Chk1’s kinase and regulatory domains. To verify 

the interaction between the two domains, a TEV cleavage sequence (ENLYFQ) was 

introduced between Chk1KD and the linker region in Chk1FL (between G289 and 
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F290) to make a Chk1FLTEV construct. Baculovirus infection of Sf9 cells produced a 

titer of 2.8x108 pfu/ml and expression was performed at MOI = 1:1 for 3 days. 

Chk1FLTEV was obtained with lower yield and purity comparing to Chk1FLWT, and 

therefore an extra purification step using Heparin chromatography was added to 

acquire high purity (Figure 2.8).  

 

 

(Caption on next page) 
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Figure 2.8 Purification of Chk1FLTEV 

A: Chk1FLTEV was firstly purified by gravity flow Ni-NTA column and the fractions were 
analysed by SDS-PAGE. W: wash, E: elution. B: Size exclusion chromatography using 
Superdex 200 16/60 column was performed and elution fractions were analysed by 
SDS-PAGE. C: Heparin column was the final purification step and target protein was eluted 
with gradient salt wash. Fractions were analysed by SDS-PAGE and stained by coomassie 
blue. FT: flow through. 

 

TEV protease cleavage was performed overnight and the sample resulting from the 

cleavage reaction was analysed by gel-filtration chromatography on a Superdex 200 

10/30 column. Gel filtration was performed in the presence of 150 mM NaCl. The 

chromatography profile showed a single peak. SDS PAGE analysis of peak fractions 

contained both Chk1KD and Chk1RD in visually stoichiometric ratio, indicating the 

two domains migrated together during the course of gel filtration, despite their 

different size (Figure 2.9). A double band appeared on Chk1KD which was speculated 

as a consequence of in vivo acetylation and phosphorylation. A further attempt to 

separate the two domains was made by loading the peak fractions of the gel filtration 

chromatography onto a Hitrap Q ion-exchange column: the two domains were eluted 

together at a concentration of NaCl between 240 and 360 mM. These experiments 

show that the interaction between the two domains is maintained during different 

types of chromatographic fractionation and indicate that the intramolecular interaction 

between Chk1KD and Chk1RD appears to be tight. 
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Figure 2.9 Co-migration of Chk1KD and Chk1RD 

A: Chk1FLTEV and sample after TEV protease treatment were analysed on SDS-PAGE and 
stained with silver staining. B: Size exclusion chromatography analysis showed a single and 
symmetric peak in Chk1KD and Chk1RD co-migration experiment. Silver stained 
SDS-PAGE analysis of the fractions showed the two domains were co-eluted in visually 
stoichiometric ratio. C: TEV treated Chk1FLTEV sample was analysed on Hitrap Q column 
and the two domains were eluted in same fractions during gradient NaCl wash. Fractions were 
analysed by SDS-PAGE and stained by coomassie blue. FT: flow through.  
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2.2 Discussion 

The experiments reported in this chapter aimed to shed light on the molecular 

structure of human Chk1, to improve our biochemical understanding of Chk1 function 

and potentially open up new avenues of Chk1 inhibitor discovery. Biophysical studies 

including SEC-MALS, SEC-SAXS and crystallization trials were applied to Chk1 

constructs which revealed Chk1 characteristics at a molecular level. Both Chk1KD 

and Chk1FL were identified as monomeric molecules and Chk1FL adopted a very 

compact structure with a Dmax of 100 Å, which was 12 Å longer than that of 

Chk1KD. Chk1FL was thus considered as a suitable candidate for crystallization 

studies. Crystallization trials, however, did not produce any new perspective on 

Chk1FL structure determination. A reasonable explanation is the linker region 

generates a high extent of conformational heterogeneity, which cannot be eliminated 

by addition of ATP-binding site inhibitors or using a catalytic-dead version of Chk1. 

Stabilising the linker region is a future direction for Chk1FL crystallization. 

Alternatively, native structural determination could be achieved by other techniques 

such as cryo-EM. The linker region accounts for 20% of the full-length Chk1 

polypeptide length which restrains the possibility of acquiring interacting interface 

information by docking the two domains into the SAXS envelope.  

 

Taken together, the results of my experiments suggest that Chk1 adopts an 

auto-inhibition mechanism, where Chk1RD has an intramolecular interaction with 

Chk1KD which suppresses its activity. Further studies on this regulatory 

intramolecular interaction are going to be reported in chapter 3.  
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2.3 Materials and methods 

2.3.1 Generation and expression of Chk1 constructs 

IMAGE human Chk1 cDNA was used for the cloning of Chk11-289 (Chk1KD) and 

Chk1FL. Chk1KD sequence was amplified by Chk1KD-f and Chk1KD-r primers 

(Appendix A) to create an C-terminal TEV cleavage sequence (ENLYFQ) followed by 

an 8xHis-tag and NotI and HindIII restriction sites. Chk1FL sequence was amplified 

by Chk1FL-f and Chk1FL-r primers (Appendix A) to create the same tag and 

restriction sites for insertion in to pFBDM vector. The amplified sequence was 

verified on a 1% agarose gel and target band was cut and extracted using geneJET gel 

extraction kit (Thermo Scientific). Double digest using NotI and HindIII restriction 

enzymes was applied to the amplified Chk1KD and Chk1FL PCR product and 

pFBDM vector. The digested DNA was verified by 1% agarose gel and purified. 50 

ng vector and three-fold molar excess of digested insert was ligated using quick 

ligation kit (NEB labs). 2 µl ligated plasmid was transformed into 20 µl DH5α 

competent cells. After 30 min incubation on ice, cells were incubated in water bath at 

42°C for 45 s. 700 µl LB medium was added to the cells and recovery took place at 

37°C with shaking at 220 rpm for 1 h. Cells were plated on an agar plate containing 7 

µg/mL gentamicin and incubated at 37°C overnight. 4 ml culture of single colony was 

grown and plasmid was extracted using plasmid miniprep kit (Thermo Scientific) and 

sequence was verified using Department of Biochemistry DNA Sequencing Facility. 

100 ng plasmid was transformed to 50 µl DH10Bac competent cells (Geneva Biotech). 

Transformed cells were incubated on ice for 30 min followed by a heat-shock at 42°C 

for 45 s. Cells were incubated on ice for 10 min and 1 ml SOC medium (Thermo 

Scientific) was added to cells followed by a 6 h incubation at 37°C with shaking at 

220 rpm. After recovery, cells were plated on blue/white selection LB-agar plate 

containing 50 µg/mL kanamycin, 7 µg/mL gentamicin, 10 µg/mL tetracycline, 100 

µg/mL X-gal and 40 µg/mL IPTG. Colonies containing the recombinant bacmid were 

white on X-gal agar plate and can be distinguished from blue colonies which 
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contained unaltered bacmid. After 48 h incubation at 37 °C, single white colonies 

were picked and re-streaked on a new selection plate and incubated at 37°C for 24 h. 

Single white colonies from the re-streaked plate were inoculated in 2 ml LB medium 

containing 50 µg/mL kanamycin, 7 µg/mL gentamicin and 10 µg/mL tetracycline and 

cells were grown overnight at 37°C with shaking at a speed of 220 rpm. Cells were 

spun down at 17,000 g for 5 min and the pellet was resuspended in 250 µl 

resuspension buffer followed by addition of 250 µl lysis buffer and 350 µl 

neutralization buffer (Thermo Scientific). Samples were spun down at 17,000 g for 10 

min and 700 µl supernatant was mixed with 700 µl isopropanol was spun down at 

17,000 g for 10 min. Supernatant was removed and 1 ml 70% ethanol was added to 

wash the pellet which was followed by a 10 min-spin at 17,000 g. The wash step was 

repeated twice and after the final spin, 100 µl miliQ water was added to dissolve the 

bacmid pellet. Bacmid concentration was measured on Nano-drop Spectrophotometer 

(Thermo Fisher) and 50 ng extracted bacmid was used in insertion verification by 

PCR using the pUC/M13-f and pUC/M13-r primers (Appendix A). Bacmid containing 

the insertion of target size was selected for Sf9 transfection. 1 µg bacmid was 

transfected into Sf9 cells in the form of mixture with Cellfectin®II (Thermo Scientific) 

and incubated at 27 °C for 4 days to produce P1 virus stock. 1 ml P1 was used to 

infect 25 ml Sf9 cells with a density of 106 cells/ml to produce P2 virus stock. P2 was 

harvested after 4-5 days when cell count stopped increasing and viability dropped 

below 90%. P2 titer was measured using cell growth inhibition assay developed in the 

laboratory of Prof. Nick Gay (Department of biochemistry, University of Cambridge) 

with 6.47x108 pfu/ml and 6.92x108 pfu/ml for Chk1KD and Chk1FL respectively. 

Expression test was performed for P2 virus at three multiplicity of infection (MOI) 

(1:0.1, 1:1 and 1:10) for four days and a 1 ml cell culture sample was taken every 24 h 

after infection. Cell culture for expression test was spun down and the pellet was 

re-suspended in 100 µl 1x SDS-loading buffer (Novex). The expression was analysed 

by SDS-PAGE and the large-scale expression conditions were selected at MOI at 1:1 

for 3 and 4 days for Chk1KD and Chk1FL respectively. 
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2.3.2 Purification of Chk1 constructs 

Cells were harvested by centrifugation at 500 g for 10 mins (Beckman Coulter, JLA 

8.1000). Pellet from 1 L growth culture was re-suspended in 15 ml re-suspension 

buffer (50 mM Hepes pH 7.5, 500 mM NaCl, 1 mM TCEP and 1 EDTA-free protease 

inhibitor cocktails tablet). Cell pellet re-suspension was sonicated at 25% cycle and 

50% power for 3 mins. Lysate was centrifuged at 35000 g and 4 °C for 1 h. 

Supernatant was collected and loaded onto gravity flow Ni-NTA agarose column 

(Qiagen). The column was washed twice with 20 ml wash buffer (25 mM Hepes pH 

7.5, 500 mM NaCl, 20 mM imidazole, 0.05 % Triton-X100 and 1 mM TCEP). Step 

wash was performed on the column with wash buffer containing 40 mM and 300 mM 

imidazole. Elution from the 300 mM imidazole wash was loaded onto a Superdex75 

and Superdex200 16/60 gel filtration column (GE Healthcare) for Chk1KD and 

Chk1FL respectively. The column was pre-equilibrated and the experiment was 

performed in the gel filtration buffer (25 mM Hepes pH 7.5, 500 mM NaCl and 2 mM 

DTT). Elution samples were analysed on a 12% acrylamide SDS-PAGE gel and 

fractions containing target protein were collected and concentrated. The typical yield 

of Chk1KD-8xHis and Chk1FL-8xHis was in the range of 0.2 - 0.5 and 0.4 - 1 mg per 

litre expression respectively. 5-10% glycerol was added to protein sample and protein 

aliquots were flash frozen using liquid nitrogen and stored at -80 °C. 

 

2.3.3 Generation and purification of EcChk1 constructs 

EcChk1 gene sequence was synthesised using gBlocks Gene Fragments service (IDT). 

Primers EcChk1Ntag-f and EcChk1Ntag-r were used to generate an N-terminal 8xHis 

tag followed by a TEV cleavage sequence. Primers EcChk1Ctag-f and EcChk1Ctag-r 

were used to generate a C-terminal TEV cleavage site followed by an 8xHis tag. NotI 

and HindIII restriction sites were introduced on both of the constructs and the 

amplified PCR product was inserted to pFBDM vector. Bacmid generation, 

expression and purification was in the same way described in 2.3.1 and 2.3.2, 
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however, both EcChk1 construct eluted from void peak during gel filtration. 

2.3.4 Generation of 8xHis-Chk1FL, Chk1D130A and Chk1TEV constructs 

N-terminus-tagged Chk1FL construct with an N-terminal 8xHis tag followed by a 

TEV cleavage site was created using Chk1FL2-f and Chk1FL2-r primers (Appendix A) 

based on IMAGE Chk1 cDNA sequence. The amplified sequence was inserted into 

the pFBDM vector using NotI and HindIII restriction sites. D130A mutagenesis was 

generated on pFBDM-Chk1KD and pFBDM-Chk1FL templates by site-directed 

mutagenesis (QuickChange, Stratagene). Primers Chk1D130A-f and Chk1D130A-r 

were used to generate the mutation (Appendix A). To create a TEV cleavage site 

between Chk1KD and Chk1RD, Chk1 cDNA was firstly amplified with primers 

Chk1TEV1-f and Chk1TEV1-r to create an N-terminal 8xHis tag and a C-terminal Avi 

tag without TEV cleavage site. The amplified sequence was inserted to pFBDM 

vector using NotI and HindIII restriction sites. Primers Chk1TEV2-f and Chk1TEV2-r 

were used to introduce a TEV cleavage site between 289 and 290 using site-direct 

mutagenesis (QuickChange, Stratagene) on the recombinant plasmid to generate the 

sequence of Chk1FLTEV. 

 

2.3.5 Purification of Chk1D130A and Chk1TEV 

Purification steps of the N-terminal 8xHis-Chk1FL and Chk1D130A constructs were the 

same with the wild-type Chk1 constructs described in 2.3.2. The yield and purity of 

the new constructs were at the same level as the wild-type constructs. Initial 

purification steps of Chk1FLTEV construct remained the same as the procedure 

described in 2.3.2 and an extra purification step using 5 ml HiTrap Heparin HP 

affinity column (GE Healthcare) was added to improve purity. The Heparin column 

was equilibrated with 10% buffer B (buffer A: 25 mM Hepes pH 7.5 and 2 mM DTT, 

buffer B: 25 mM Hepes pH 7.5, 1 M NaCl and 2 mM DTT). NaCl concentration in 

Chk1TEV elution from previous gel filtration step was diluted to 100 mM using 

buffer A. Diluted sample was loaded onto the Heparin column and a gradient NaCl 
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was performed during the experiment.  

 

2.3.6 Purification and tag removal of 8xHis-Chk1FL 

Initial purification steps until Ni-NTA agarose column for the N-terminus tagged 

8xHis-Chk1FL construct remained the same with the procedure described in 2.3.2. 

Elution sample from Ni-NTA chromatography was buffer exchanged to 25 mM Hepes 

pH 7.5, 250 mM NaCl and 10 mM DTT to remove imidazole and lower salt 

concentration for TEV treatment. 60 µl TEV protease at 2 mg/ml was added to 

8xHis-Chk1FL and the reaction was incubated at 4°C overnight. The TEV treated 

sample was concentrated to 1 ml and was applied to Superdex 200 16/60 column for 

gel filtration in a buffer of 25 mM Hepes pH 7.5, 300 mM NaCl and 2 mM DTT. 

Elution fractions containing target protein was pooled and concentrated. 

 

2.3.7 SEC-MALS 

100 µl Chk1KD or Chk1FL at a concentration of 1.5 mg/ml was applied on 

Superdex200 increase 10/30 column pre-equilibrated in gel filtration buffer (25 mM 

Hepes pH 7.5, 300 mM NaCl and 0.1 mM TCEP). Light scattering and refractive 

index were measured by DAWN HELEOS II MALLS detector (Wyatt Technology) 

and Optilab T-rEX differential re-fractometer (Wyatt Technology) respectively. Data 

was analysed using ASTRA 6 program (Wyatt Technology).  

 

2.3.8 Dephosphorylation of Chk1FL 

4 µl λ phosphatase (Santa Cruz) was added to 36 µl Chk1FL at a concentration of 80 

µM. 10x reaction buffer, 10x MnCl2 and miliQ was added to make the final volume 

up to 250 µl. Reaction was incubated at 4°C overnight and the sample was purified by 

loading onto Superdex200 10/30 column (GE Healthcare) pre-equilibrated in buffer 

(25 mM Hepes pH 7.5, 300 mM KCl and 1 mM DTT). 
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2.3.9 SEC-SAXS 

SEC-SAXS data was collected at the SWING beam line of the Soleil Synchrotron. 50 

µl Chk1 samples (8.3 mg/ml Chk1KD, 3.7 mg/ml Chk1FL, 4.3 mg/ml Chk1FLD130A 

and 4.9 mg/ml tag-cleaved Chk1FL) were applied to a Superdex 200 Increase 3.2/200 

column (GE Healthcare) pre-equilibrated in gel filtration buffer (25 mM Hepes pH 

7.5, 300 mM NaCl and 0.1 mM TCEP). Buffer subtraction and initial data processing 

was performed with the FOXTROT software at the SWING beam line. Further data 

processing and analysis including Guinier analysis, Kratzky-plot generation and 

Dmax determination was performed with ScÅatter program (Bioisis). 

 

2.3.10 TEV treatment and co-elution of Chk1KD and Chk1RD 

60 µl TEV protease at 2 mg/ml was added to Chk1FLTEV in a buffer containing 25 

mM Hepes pH 7.5, 300 mM NaCl and 10 mM DTT. The reaction was incubated at 

4 °C overnight. Overnight sample was applied on a Superdex200 10/30 column 

pre-equilibrated in a buffer containing 25 mM Hepes pH 7.5, 150 mM NaCl and 2 

mM DTT. Fractions were analysed on a 12% acrylamide SDS-PAGE gel and stained 

by silver staining (Thermo Fisher). Cleaved Chk1FLTEV sample was also applied on 

Hitrap Q ion-exchange column (buffer A: 25 mM Hepes pH 7.5, 2 mM DTT, buffer B: 

25 mM Hepes pH 7.5, 1 M NaCl and 2 mM DTT). Chk1KD and Chk1RD were 

co-eluted during gradient NaCl wash. 
	

2.3.11 Crystallization trials of Chk1FL 

Native Chk1FL at a concentration of 140 µM was applied on protein crystallization 

condition screening plates JCSG+ (Molecular Dimensions), PACT (Molecular 

Dimensions), Morpheus (Molecular Dimensions) and PEGSI (Qiagen). 200 nl protein 

solution + 200 nl well solution was dispensed by Mosquito robot (TTP Labtech). 

Plates were stored at 19°C and imaged by Rock Imager (Formulatrix). Drop image 
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was scanned from 12 h until 30 days after dispensing and no crystal hit was produced 

in the condition tested. Co-crystallization trials for Chk1FL and Chk1 inhibitors were 

performed. 130-200 µM Chk1FL was mixed with CHIR-124 (Cambiosciences), 

UCN-01 (Millipore) or AZD7662 (Sigma) at different molar ratio of 1:1.05, 1:1.2 and 

1:2. The mixture was incubated at 4°C for 1 h and was applied on screening plages 

JCSG+, PACT, PEGSI, PEGSII (Qiagen), Protein Complex (Qiagen), AmSO4 suite 

(Qiagen), Wizard I&II (Emerald Biosystems), Wizard III&IV (Emerald Biosystems) 

and Morpheus. Drop dispensing and plate storage condition was the same with that of 

native Chk1FL. No crystal hit was produced. 140 µM native dephosphorylated 

Chk1FL or in complex with UCN-01 at a molar ratio of 1:2 was applied on screening 

plates PEGSI and PEGSII in the same protocol. No hit was produced. Chk1NOTAG at 

concentrations of 100 and 200 µM was applied on PEGSI, PEGSII, PACT and JCSG+ 

using the same protocol. No hit was produced. 140 µM native Chk1FLD130A or in 

complex with CHIR-124 at a molar ratio of 1:1.2 was applied on PACT, Morpheus, 

PEGSI, PEGSII, JCSG+, Wizard I&II, Wizard III&IV, AmSO4 suite and Classics 

(Qiagen) using the same protocol. No hit was produced. 
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CHAPTER 3 ENZYMATIC STUDIES OF CHK1 ACTIVITY 

3.1 Results 

3.1.1 S216 is a major phosphorylation site of Chk1 on 

14xHis-SUMO-Cdc25C200-256  

Kinase activity is an essential property of Chk1 and therefore enzymatic studies of 

different Chk1 constructs may provide a better understanding of its molecular 

mechanism and cellular function. Chk1 is a serine/threonine kinase with consensus 

recognition motif: φ-X-β-X-X-(S/T)* (* indicates phosphorylated residue, φ is a 

hydrophobic residue, β is a basic residue and X is any amino acid) (Hutchins et al., 

2000). Cdc25C is a well-recognised Chk1 substrate, which phosphorylates it at S216. 

A region of Cdc25C spanning residues 200 to 256 (Cdc25C200-256) with a dual 

N-terminal 14xHis and SUMO tag was expressed in E.coli, purified using Ni-NTA 

column and size exclusion chromatography, and used as a substrate of Chk1 kinase 

assays in initial experiments. To verify if S216 is the only phosphorylation site in 

14xHis-SUMO-Cdc25C200-256, a 14xHis-SUMO-Cdc25C200-256S216A mutant was 

expressed and purified and tested alongside 14xHis-SUMO-Cdc25C200-256WT in Chk1 

kinase assays using [γ-32P]ATP. The 32P incorporation on 

14xHis-SUMO-Cdc25C200-256WT showed higher intensity than the incorporation on 

14xHis-SUMO-Cdc25C200-256S216A by Chk1KD and Chk1FL, which indicated S216 

was the major phosphorylation site by Chk1 (Figure 3.1). Weak 32P incorporation 

signal was observed on 14xHis-SUMO-Cdc25C200-256S216A construct, indicating both 

Chk1 constructs had non-specific kinase activity towards either other T/S in Cdc25C 

sequence or the protein tag. A small amount of 32P incorporation was also observed on 

Chk1KD and Chk1FL, indicating auto-phosphorylation activity of Chk1. 
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Figure 3.1 32P incorporation on substrate 14xHis-SUMO-Cdc25C200-256 

A: The purity of 14xHis-SUMO-Cdc25C200-256WT and 14xHis-SUMO-Cdc25C200-256S216A 
was shown on SDS-PAGE gel stained with coomassie blue. Unexpected species migrating 
faster than the target bands were shown on the gel. B: 32P incorporation on substrate was 
stored in a phosphor screen and the signal was read on an Amersham Typhoon scanner. Signal 
intensity of each band was read and compared. 32P incorporation on 
14xHis-SUMO-Cdc25C200-256WT by both Chk1 kinase constructs was more than that on 
14xHis-SUMO-Cdc25C200-256S216A. 

 

3.1.2 NADH-coupled assays of Chk1 activity 

Chk1 kinase activity was first investigated using an NADH-coupled assay. Briefly, in 

the assay conversion of ATP to ADP by the kinase is coupled to the oxidation of 

NADH to NAD+ in the presence of pyruvate kinase and lactate dehydrogenase, 

leading to a reduction in absorbance at 340 nm over the time course of the reaction 

(Figure 3.2). 

 

As discussed in chapter 2, purified recombinant Chk1FL expressed in insect cells was 

phosphorylated at multiple sites. Whether these post-translational modifications affect 

Chk1FL activity was tested in the kinase assay. Dephosphorylation of Chk1FL was 

performed by λ phosphatase treatment and the dephosphorylated Chk1FL was assayed 

in parallel with untreated Chk1FL. ATP hydrolysis rate was calculated at 0.27 and 

0.68 µM/min per micromolar enzyme for dephosphorylated and wild type Chk1FL 

respectively (Figure 3.2). No significant difference between the two Chk1FL samples 
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was observed, indicating the degree of heterogeneous Chk1FL phosphorylation 

resulting from its expression in insect cells on did not influence its kinase activity.  

 

The ATR kinase activates Chk1 by phosphorylation at Chk1’s S317 and S345. It is 

speculated that phosphorylation on these two sites leads to a conformational change 

which results in Chk1 activation. Understanding the biochemical effect of ATR 

phosphorylation will shed light on Chk1’s activation mechanism. One way to mimic 

the effect of ATR phosphorylation is to introduce phospho-mimic mutations by 

replacing serine with glutamate. Two point mutations (S317E and S345E) were 

generated in Chk1FL to produce a Chk1FLS317E/S345E construct. Chk1FLS317E/S345E was 

purified using the same protocol as wild-type Chk1FL and had similar purification 

profiles and yield. ATP hydrolysis rate was calculated at 0.46 and 0.65 µM/min per 

micromolar enzyme for Chk1FLWT and Chk1S317E/S345E respectively (Figure 

3.2C). NADH-coupled assays of Chk1FLWT and Chk1FLS317E/S345E showed no 

apparent difference between the two reactions, indicating that the phospho-mimic 

mutations did not impact Chk1FL activity.  
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Figure 3.2 Chk1 activity studies using the NADH-coupled assay 

A: In the NADH-coupled assay, Chk1 activity was analysed by measuring changes in 
absorbance at 340nm over time. B: ATP-coupled assay of 1.5 µM dephosphorylated and 1.5 
µM untreated (wild type) Chk1FL was performed and absorbance at 340nm was measured at 
an interval of 1 min for 90 min. A control group with all the reaction ingredients except Chk1 
was plotted in red. C: ATP-coupled assay of 6 µM Chk1FLWT and 6 µM Chk1S317E/S345E was 
performed and the absorbance at 340nm was measured at an interval of 0.5 min for 30 min. A 
control group with all the reaction ingredients except Chk1 was plotted in red. 

 

The NADH-coupled assay had some disadvantages which made it not suitable for 

quantitative kinase assays. It measured ATP consumption instead of phosphorylated 

product formation, making it unsuitable for quantitative studies of kinase activity as 

not all ATP consumed in the reaction was used as a result of substrate phosphorylation. 
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For example, Chk1 auto-phosphorylation consumed ATP which cannot be 

distinguished from the ATP consumed for substrate phosphorylation. The experiment 

also requires long reaction time and a large amount of kinase to produce a good 

quality signal, which made it impractical to perform the large number of kinase assays 

required for quantitative analysis of kinase behaviour. In the following kinase assays, 

Chk1 activity was therefore studied using radioactive substrate [g-32P]ATP. 

 

3.1.3 Determination of ATP concentration for kinase assays 

There are several experimental variables that need to be considered in the analysis of 

kinase activity, including kinase concentration, substrate concentration, ATP 

concentration and reaction time. ATP concentration should be saturating so it is not 

rate-limiting in Chk1 kinase assay. The ATP concentration was determined using 
32P-ATP based kinase assay (Figure 3.3). The sample was analysed at different time 

points and the steady state range was selected for reaction rate determination. 

Reaction rates reached a plateau from 1 mM ATP concentration for both Chk1KD and 

Chk1FL, indicating that this concentration of ATP was not rate-limiting in the kinase 

reaction. 1mM ATP was therefore used in subsequent assays. 
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Figure 3.3 Normalised signal of radioactive 32P incorporation on substrate 

32P incorporation on 14xHis-SUMO-Cdc25C200-256 by Chk1KD (A) and Chk1FL (B) at 50 µM, 
1 mM, 2.5 mM and 5 mM ATP. Normalization of signal was performed by running a same 
sample on all SDS-PAGE gels and the signal of that sample was used as universal reference 
of all samples for direct comparison. Reactions reached steady-state from 2 min and 12 min in 
Chk1KD and Chk1FL groups respectively. Slope at 2-8 min of Chk1KD and 12-18 min of 
Chk1FL was measured as reaction rate. 

 

Initial Chk1 kinase assays were performed using 14xHis-SUMO-Cdc25C200-256 as a 

substrate and reaction samples were analysed on SDS-PAGE gels. The radioactivity 

signal was stored on a phosphor screen and then was translated to digital density 

signal in a Typhoon FLA 9500 phosphorimager (GE Healthcare). Kinase reactions 

with varying substrate concentration in a range of 25 and 150 µM were analysed for 

50 or 60 min for Chk1KD and Chk1FL respectively. The steady-state signal was 

plotted against substrate concentration for initial rate (Vi) calculation. However, the 

data could not be fit to the Michaelis-Menten model equation. The reason for this 

remain unclear, but a possible explanation is that kinase reaction did not meet the 
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single-substrate assumptions of the Michaelis-Menten model, as both Chk1KD and 

Chk1FL showed some degree of non-specific phosphorylation of the 

14xHis-SUMO-Cdc25C substrate. 

 

3.1.4 Chk1 kinase assays at different Cdc25C peptide concentration 

To overcome the difficulties encountered with the gel-based analysis, a different 

[g-32P]ATP kinase activity assay was adapted from the published protocol by Hastie et 

al (Hastie et al., 2006). In the new design, a substrate peptide was attached to 

phosphocellulose paper and the 32P signal incorporated on the substrate was read 

directly through Cerenkov counting. Comparing to the previous procedure, the new 

design reduced interference from non-specific phosphorylation of the substrate and 

increased the accuracy of signal counting by eliminating the multiple signal transfer 

procedures. A peptide with a region of Cdc25C204-225 was used as a substrate 

(AKVSRSGLYRSPSMPENLNRPR, the phosphorylation site is underlined). 50 nM 

Chk1KD and 500 nM Chk1FL were used in kinetic assays because radioactive signals 

had a good signal to noise ratio at these conditions. Cdc25C peptide titration at final 

concentration of 50, 75, 100, 200, 400, 700 and 1000 µM was performed in the 

presence of 1 mM ATP. To select the time point in the steady-state period, sampling at 

different time points of kinetic reactions with the lowest and the highest Cdc25C 

peptide concentration was performed (Figure 3.4). 
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Figure 3.4 Reaction progress curves of Chk1KD and Chk1FL at different Cdc25C 

concentration 

A: Product concentration was plotted against time for Chk1KD at Cdc25C concentration of 
50 and 1000 µM. B: Product concentration was plotted against time for Chk1FL at Cdc25C 
concentration of 25 and 1000 µM. Steady-state reaction velocity (Vi) = slope of the linear 
range on the progress curve. 

 

Chk1KD reactions immediately entered steady-state phase after reaction initiation and 

the time range of 0-5 min was selected for kinase activity analysis. Chk1FL reactions 

underwent a lag-phase after initiation which was reflected by a slow initial product 

formation rate in the first 10 min followed by a linear steady-state phase. 10-15 min 

range was selected for Chk1FL kinase activity analysis. Both datasets were fitted 

using the Michaelis-Menten equation of steady-state enzyme kinetics (Figure 3.5): 
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the substrate concentration reaches saturation. Km is the Michaelis-Menten constant, 

which represents the substrate concentration at which the reaction rate is half of Vmax.  

 

The kinase assay for Chk1KD showed a departure from the expected trend when 

Cdc25C peptide concentration exceeded about 200 µM, which was interpreted as due 

to a substrate inhibition effect. The substrate inhibition effect is led by binding of a 

second substrate molecule to the ES (enzyme and substrate) complex which forms an 

inactive SES complex:  

 

 
 

A dissociation constant of the inhibitory ternary complex Ki is used in 

Michaelis-Menten model to account for this inhibition effect: 

 

v = ()*+[,]

-).[,](0.
[1]
23
)
		 (Equation 3.2) 

 

Conversely, Chk1FL did not show substrate inhibition and the data was normalized 

and fitted into Michaelis-Menten model with two variables: Vmax and Km. Vmax for 

Chk1KD and Chk1FL was measured at 18.5 (standard deviation Δ=8.3) and 4.2 

(Δ=0.7) µM/min respectively; Km was measured at 151 (Δ=96) and 155 (Δ=53) µM. 

Ki for Chk1KD was measured at 185 (Δ=109) µM/min. Km of Chk1KD and Chk1FL 

to Cdc25C peptide was close, which indicated the binding efficiency of both kinases 

towards the substrate was at the same level.  

 

The catalytic rate constant (kcat) describes the number of substrate molecules turned 
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into products by the enzyme in one unit time: 

 
 

kcat can be extracted from Vmax and enzyme concentration ([E]): 

 

kcat=
()*+
[6]

 (Equation 3.3) 

 

Given the enzyme concentration of 0.05 µM for Chk1KD and 0.5 µM for Chk1FL, 

their corresponding catalytic rate kcat was calculated at 370 (Δ=166) and 8.4 (Δ=1.4) 

min-1, respectively.  

 

The enzyme efficiency describes substrate specificity which is defined as: 

 

 Enzyme Efficiency= 78*9
-)

 (Equation 3.4) 

 

Kinase efficiency was calculated at 4.1x104 (Δ=3.2x104) and 903 (Δ=343) M-1s-1 for 

Chk1KD and Chk1FL, respectively. The data indicated Cdc25C peptide turnover 

efficiency of Chk1KD was 45 times of that of Chk1FL. It was intriguing to note the 

large difference in kinase efficiency between the two Chk1 constructs which showed a 

similar binding affinity to the Cdc25C peptide. Thus, these results indicated that 

weaker binding to the peptide substrate was not the reason for the lower efficiency of 

Chk1FL. 

ES
kcat P+E
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Figure 3.5 Michaelis-Menten plot for Chk1KD and Chk1FL with different Cdc25C 

peptide concentration 

Reaction velocity (Vi) is plotted against Cdc25C peptide concentration for Chk1KD (A) and 
Chk1FL (B) kinase assays. Data is fitted to Michaelis-Menten model with or without an 
inhibition parameter Ki using pro Fit (QuantumSoft). 

 

3.1.5 Chk1 kinase assays at different ATP concentration 

The Chk1 kinase reaction has two substrates, the Cdc25 peptide and ATP. To study the 

effect of ATP concentration on the Chk1 enzymatic activity, a series of kinase assays 

were performed in the presence of increasing amounts of ATP and a constant 

concentration of Cdc25C peptide. 50 nM Chk1KD and 500 nM Chk1FL were used in 

the assays, which produced good signal to noise signal. A Cdc25C peptide 

concentration of 200 µM was selected, as the highest concentration which does not 

inhibit Chk1KD activity. The steady state of each kinase was verified by plotting 

product formation versus time (Figure 3.6). 

A

B



	 72	

 
Figure 3.6 Reaction progress curves of Chk1KD and Chk1FL at different ATP 

concentration 

Product concentration was plotted against time for Chk1KD (A) and Chk1FL (B) at ATP 
concentration of 50 µM and 10 mM. Steady-state reaction velocity (Vi) = slope of the linear 
range on the progress curve. 

 

Both kinases entered steady-state phase immediately after initiation and 0-4 min and 

0-10 min ranges were selected for analysis. Experiments were performed at eight ATP 

concentrations: 0.0625, 0.125, 0.25, 0.5, 1, 2, 4 and 8 mM. Both sets of data seemed 

to follow Michaelis-Menten model and were fitted with the Vmax and Km variables. 

Vmax was fitted at 3.7 (Δ=01) and 0.8 (Δ=0.2) µM/min for Chk1KD and Chk1FL 

respectively; Km was fitted at 122 (Δ=14) and 330 (Δ=190) µM. The relative measure 

of ATP binding affinity represented by Km shows that ATP binding was at a similar 

level to the two Chk1 constructs. The data could indicate a higher ATP binding 

affinity to Chk1KD than Chk1FL but the assumption is not conclusive because of the 

large error in the data. Catalytic rate kcat was calculated at 74 (Δ=2) and 1.6 (Δ=0.4) 
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min-1 for Chk1KD and Chk1FL. Enzyme efficiency was calculated at 1x104 

(Δ=0.1x104) and 81 (Δ=51) M-1s-1 respectively (Table 3.1). It showed that ATP 

turnover efficiency of Chk1KD was 123 times of that of Chk1FL, which is more 

significant than the difference of Cdc25C peptide turnover efficiency between the two 

constructs. Taken together, these data suggest that Chk1KD is more active than 

Chk1FL because it has a higher ATP turnover capacity which is a rate-limiting step in 

Chk1FL kinetic assays. Chk1RD is thus speculated to inhibit Chk1 activity mainly by 

interfering with ATP binding or catalysis on Chk1KD. 

 

Figure 3.7 Michaelis-Menten plot for Chk1KD and Chk1FL with different ATP 

peptide concentration 

Reaction velocity is plotted against ATP peptide concentration for Chk1KD (A) and Chk1FL 
(B) kinase assays. Data is fitted to Michaelis-Menten model using pro Fit (QuantumSoft). 
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Table 3.1 Michaelis-Menten parameters of Chk1 kinase assays 

 Cdc25C peptide 

Vmax 

(µM/min) 

Km    

(µM) 

Kcat 

(min-1) 

Kcat/Km  

(M-1s-1) 

Chk1KD 18.5±8.3 151±96 370±166 4.1x104±3.2x104 

Chk1FL 4.2±0.7 155±53 8.4±1.4 903±343 

 ATP 

Vmax 

(µM/min) 

Km      

(µM) 

Kcat 

(min-1) 

Kcat/Km  

(M-1s-1) 

Chk1KD 3.7±0.1 122±14 74±2 1.0x104±0.1x104 

Chk1FL 0.8±0.2 330±190 1.6±0.4 81±51 

 

3.1.6 Chk1 intramolecular interacting interface studies  

As shown in chapter 2, a tight binding between Chk1KD and Chk1RD was observed 

in a size-exclusion co-migration assay. To understand the role of the intramolecular 

interaction in Chk1 activity regulation, further experiments were performed to study 

the interaction. Hydrogen-deuterium exchange (HDX) analysis can provide useful 

information on the presence and extent of inter- and intramolecular interfaces between 

proteins and protein domains (Konermann et al., 2011). Comparative HDX 

experiments were therefore performed on Chk1KD and Chk1FL to investigate the 

presence of a putative interface between Chk1KD and Chk1RD. The experiments 

were performed by Drs. Sarah Maslen and Mark Skehel at the Proteomics facility of 

the MRC-LMB. 40 µM Chk1KD and Chk1FL were diluted in D2O and labile 

hydrogen atoms exchanged with deuterium. Incubation in D2O was performed for 0.3, 

3, 30 and 300 seconds and the hydrogen-deuterium exchange was quenched by 

acidification, followed by proteolytic digestion of the protein samples and MS 

analysis of the resulting peptides. Sequence coverage of Chk1KD reached 89.9% with 
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redundancy of 3.71 and 9 N-terminal amino acids and the C-terminal residues 

spanning the TEV cleavage site and the 8xHis-tag were not covered. Overall the 

coverage of the region of interest on Chk1KD was good (Figure 3.8). The HDX signal 

for the Chk1KD was subtracted from that of Chk1FL, to assess what region of 

Chk1FL was more protected or exposed comparing to Chk1KD (Figure 3.8). The 

HDX data showed that a region of D10-C57 was significantly more protected in 

Chk1FL than in Chk1KD, while the rest of the kinase domain sequence showed no 

difference in the HDX signal (Figure 3.8). Thus, the HDX experiment supported the 

notion of an intramolecular association between kinase and regulatory domains of 

Chk1, and indicated that an N-terminal region of Chk1 within its ATP-binding domain 

was the site of interaction with the with the regulatory domain. Calculation of surface 

charge using the APBS Electrostatics module in PyMOL (Baker et al., 2001) (Figure 

3.8) showed the presence of an acidic patch at the putative interface region on the 

surface of Chk1KD. In combination with the information gleaned from the structural 

analysis of the Chk1RD (Emptage et al., 2017), which revealed a substantial basic 

nature of its surface, it was reasonable to speculate that the intramolecular interaction 

was driven or partially driven by charge-charge interaction. 

 

 

 

 

 

 

 

 

 

 

 



	 76	

 

 

 

(Caption on next page) 

A

4.0

3.5

3.0

2.5

2.0

1.5
1.0

-4.0

-3.5

-3.0
-2.5

-2.0

-1.5
-1.0

0.5

-0.5
0

Chk1FL

Chk1KD

D
iff

er
en

ce
 (D

a)
M

or
e 

ex
po

se
d 

in
 C

hk
1F

L
M

or
e 

pr
ot

ec
te

d 
in

 C
hk

1F
L

10 57 289

B

C D

-5.000 5.000



	 77	

Figure 3.8 HDX analysis of Chk1 kinase domain in Chk1FL and Chk1KD 

A: Chk1KD was digested by pepsin and the peptide coverage was measured by 
mass-spectrometry. B: HDX plot of mass differences versus sequence between Chk1FL and 
Chk1KD, measured at 0.3s, 3s, 30s and 300s (orange, red, blue and black traces, respectively). 
Error is shown as grey shaded area and significance threshold is marked with red and blue 
dash lines. Region of D10-C57 is more protected in Chk1FL and other regions does not show 
significant mass difference in HDX. C: The putative Chk1RD interacting region is shown in 
green colour on a ribbon representation of the Chk1KD structure (1NVQ). Chk1KD has a 
bi-lobe structure consisting of a small N-terminal lobe mainly formed by β-strands and a 
C-terminal lobe mainly formed by α-helixes. The activation loop and the catalytic loop is 
coloured in red and orange, respectively. Chk1 inhibitor UCN-01 coloured in cyan binds to 
ATP-binding pocket. (Zhao et al., 2002). D: Electrostatics surface of Chk1KD was calculated 
by APBS Electrostatics in PyMOL in a range of -5 to 5 KT/e with negatively charged surface 
coloured in red and positively charged surface coloured in blue (Baker et al., 2001). 

 

Within the Chk1 KD-RD interaction region, the exposed V27-A34 sequence forms a 

b-turn followed by a β-strand (Figure 3.9). To explore if this region of the Chk1KD 

constitutes the interaction site with Chk1RD, a new construct was designed and tested 

on kinase activity assay. The 8 amino acids spanning V27 to A34 were replaced with 

the tetrapeptide TGGS, with the aim to alter the local surface properties whilst 

avoiding structural disruption of the Chk1KD. The rationale for the mutation was to 

interfere with the intramolecular association of the regulatory domain with the kinase 

domain, thus relieving the Chk1RD’s inhibition of kinase activity and leading to 

increased kinase activity of the full-length Chk1 mutant relative to wild-type. The 

planned mutagenesis was performed on Chk1KD too, as control that the mutation had 

not affected kinase activity. The new Chk1KD∆turn and Chk1FL∆turn constructs were 

successfully expressed in Sf9 cells and purified using the same protocol with their 

wild-type constructs. The effect of the mutagenesis targeting the V27-A34 region on 

enzymatic activity was determined by 32P-ATP based kinase assay. Unfortunately, 

both Chk1∆turn FL and KD constructs had lost kinase activity (Figure 3.9), indicating 

the mutation had disrupted the kinase structure, potentially by interfering with ATP 

binding.  
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Figure 3.9 Mutant Chk1∆turn and kinase assays 

A: The region of V27-A34 (shown in magenta sticks) was replaced by a sequence of TGGS to 
make Chk1∆turn mutants. Figure was generated by PyMOL. Kinetic assays were performed in 
parallel with Chk1WT constructs and both Chk1KD∆turn (B) and Chk1FL∆turn (C) showed 
abolished kinase activity.  
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Two other constructs were designed based on the HDX result and the implication 

from the KA structure (the 91-amino-acid-polypeptide at the C-terminal end) which 

showed a positively-charged surface (Emptage et al., 2017), and thus indicating that 

the interaction between Chk1KD and Chk1KA was regulated by electrostatic 

interaction. Four glutamate residues (E17, E22, E32 and E33) map to the putative 

Chk1KA interacting interface are exposed on the surface. Two other glutamate 

residues (E50 and E55) are present at the putative interacting interface: E50 points 

outward and could have a function in interaction with Chk1KA while E55 points 

inside towards the N-terminal domain. The HDX rate of these residues was not as 

strong as the above-mentioned residues so they were not selected for mutagenesis 

studies. Mutants of Chk1E17T/E22T and Chk1E32S/E33T (Figure 3.10) were introduced on 

Chk1KD and Chk1FL and all the new constructs were expressed in Sf9. These 

mutants were purified using the same purification protocol with their wild-type 

counterparts including gravity flow Ni-NTA chromatography, Heparin 

chromatography and size-exclusion chromatography (Figure 3.11). 

 
 

Figure 3.10 Chk1E17T/E22T and Chk1E32S/E33T constructs 

Acidic amino acid residues E17 and E22 (shown in magenta) were replaced by threonine to 
make Chk1E17T/E22T mutants. E32 and E33 (shown in magenta) were replaced by serine and 
threonine to make Chk1E32S/E33T mutants. Figure was generated by PyMOL. 

E17

E22

E32 E33
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(Caption on next page) 
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Figure 3.11 Purification of Chk1KDE17T/E22T and Chk1FLE17T/E22T 

A: Cell lysate of Chk1KDE17T/E22T applied on Ni-NTA agarose beads column and the elution 
was applied onto Hitrap Q ion-exchange column. Protein was eluted with gradient NaCl wash. 
B: Elution fractions of ion-exchange step was concentrated and applied to a Superdex 200 
16/60 column for size exclusion chromatography. C: Cell lysate of Chk1FLE17T/E22T was 
applied on Ni-NTA agarose beads column and was eluted in 300 mM imidazole. D: Elution 
was concentrated and applied to a Superdex 200 16/60 column for size exclusion 
chromatography. E: Fractions containing target protein was applied onto Hitrap Q 
ion-exchange column and protein was eluted with gradient NaCl wash. 
 
The influence of these mutations was evaluated by 32P-ATP based kinase assays. All 

three Chk1KD constructs (WT, E17T/E22T and E32S/E33T) showed a similar level 

of activity (Figure 3.12), indicating the mutations did not change kinase activity. 

Chk1FLE17T/E22T was observed to be more active than Chk1FL while Chk1FLE32S/E33T 

showed a similar level of activity with Chk1FLWT (Figure 3.12). 

 
Figure 3.12 Kinase assays of Chk1E17T/E22T, Chk1E32S/E33T and Chk1WT 

A: Kinase assays were performed in parallel with Chk1WT constructs and both Chk1KD 
mutants showed activity at a similar level of Chk1KDWT. B: Chk1FLE17T/E22T showed higher 
activity than Chk1FLWT and Chk1FLE32S/E33T. 
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It was intriguing to observe the increased kinetic activity of Chk1FLE17T/E22T in 

comparison to Chk1FLWT which was an indication of disrupted Chk1KD - Chk1RD 

interaction. To further investigate kinetic behaviour of the mutant, triplicate kinase 

assays with Cdc25C peptide titration were performed in parallel with Chk1FLWT. 

Both datasets were fitted using steady-state enzyme kinetics. Vmax was measured at 

4.8 (Δ=1.5) and 0.5 (Δ=0.3) µM/min for the Chk1FLE17T/E22T mutant and Chk1FLWT 

and Km was measured at 504 (Δ=200) and 236 (Δ=313) µM respectively. Chk1FLWT 

showed a low level of kinase activity which led to a low signal to noise ratio and thus 

a higher level of error range. 

 

Enzyme concentration was 0.5 µM for both constructs and kcat was calculated at 9.6 

(Δ=3.0) and 1.0 (Δ=0.6) min-1. Enzyme efficiency was calculated at 317 (Δ=160) and 

71 (Δ=103) M-1s-1 for the mutant and the wild-type Chk1FL respectively. These data 

show that the kinase efficiency of Chk1FLE17T/E22T is four times that of Chk1FLWT 

(Table 3.2). The observed increase in kinase efficiency did not result from 

conformational change of active site on Chk1KD because the introduction of the same 

mutations on Chk1KD did not show a significant difference in kinase activity 

compared to Chk1KDWT (Figure 3.13). It is thus suggested that the two amino acid 

residues E17 and E22 are involved in the interacting interface of Chk1KD and 

Chk1RD and that their mutations and consequent loss of local charge led to disruption 

of the inhibitory intramolecular interaction and consequent increase in Chk1FL kinase 

activity.  

 

 (Caption on next page) 
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Figure 3.13 Michaelis-Menten plot of Chk1FLE17T/E22T and Chk1FLWT 

Triplicate of kinetic assay between Chk1FLE17T/E22T and Chk1FLWT at varying Cdc25C 
peptdie was plotted and fitted in Michaelis-Menten equation. Fitting and plotting was 
performed by pro Fit (QuantumSoft). 

 

Table 3.2 Michaelis-Mentan parameters of Chk1FL kinase assays 

 Cdc25C peptide 

Vmax 

(µM/min) 

Km    

(µM) 

Kcat 

(min-1) 

Kcat/Km 

(M-1s-1) 

Chk1FLE17T/E22T 4.8±1.5 504±200 9.6±3.0 317±160 

Chk1FLWT 0.5±0.3 236±313 1.0±0.6 71±103 

 

3.1.7 Attempts towards understanding binding affinity between ATP and 

Chk1 

Kinase activity mechanism can be better understood in combination with binding 

affinity information on ATP and substrate. Several biophysical analyses were 

performed to measure the binding affinity. Isothermal titration calorimeters (iTC) 

measures heat change introduced by molecule interactions which gives an 

interpretation of binding parameters including dissociation equilibrium constant (Kd), 

stoichiometry and enthalpy of interaction. ATP titration was performed with Chk1KD 

to study the binding event. However, all attempts towards acquiring these binding 

parameters were unsuccessful because of the uninterpretable signal generated in iTC 

experiments with a different setup.  

 

An alternative technique, fluorescence polarization (FP), was used to study the 

interaction between fluorescein labelled ATP (n6-(6-Amino)hexyl-ATP-6-FAM) and 

Chk1KD. 78 to 0.09 µM Chk1KD titration was performed with 30 nM 

fluorescein-ATP while no significant anisotropy signal was observed. It was 
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speculated that the binding affinity between ATP and Chk1FL was beyond the range 

of Chk1KD titration. Higher Chk1KD concentration at a low salt concentration where 

the ATP interaction was studied cannot be achieved and thus FP was not an ideal 

technique to achieve the goal.  

 

Surface plasmon resonance (SPR) was used to measure the binding affinity between 

ATP and Chk1 constructs. However, response signal generated by ATP titration to 

Chk1 constructs was extremely weak which showed a poor signal to noise ratio. The 

binding kinetics thus cannot be determined and the only implication acquired from the 

experiment was that ATP binds to Chk1 constructs at a sub-micromolar range.  
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3.2 Discussion 

This chapter reported a quantitative analysis of Chk1KD and Chk1FL kinase activity 

in the presence of the Cdc25C peptide and ATP. Enzyme kinetic parameters were 

obtained from the fitting to the Michaelis-Menten model and difference was observed 

in the data between Chk1KD and Chk1FL kinase assays. Km does not represent but 

can reflect the binding affinity between the enzyme and the substrate. The data shows 

that Km to Cdc25C peptide of both Chk1KD and Chk1FL is at the same level, 

indicating the two Chk1 constructs have the same binding affinity to the substrate 

peptide. Because of a large error in Km on ATP binding to Chk1FL, no conclusive 

difference on ATP binding to the two Chk1 constructs is seen but an indication of a 

higher ATP binding affinity to Chk1KD than Chk1FL can be reflected from the data. 

Chk1KD is 45 times and 123 times as efficient as Chk1FL in terms of Cdc25C 

peptide and ATP turnover respectively, which supports an assumption that ATP 

turnover is the rate-limiting step in Chk1FL kinase reaction. In view of the inhibitory 

role of Chk1RD towards Chk1KD, it is speculated that Chk1RD blocks the ATP 

binding site on Chk1KD and thus suppresses its efficiency. 

 

To further understand the intramolecular interaction between Chk1KD and Chk1RD 

from an atomic level, HDX experiment was performed to reveal the interaction 

interface between the two domains. The N-terminal region spanning residues 

D10-C57 on Chk1KD was identified as a protected area by Chk1RD. A 

negatively-charged patch is identified on this region and the intramolecular interaction 

between the two domains is speculated as an electrostatic interaction. Four glutamate 

residues in this region expose on the surface of Chk1KD and point mutations to 

threonine or serine were made to replace these charged residues. The effect of the 

mutants was verified by kinase assays which showed that the mutant Chk1FLE17T/E22T 

was four times as efficient as Chk1FLWT. It thus agrees with the assumption that the 

Chk1 intramolecular interaction is driven by charge-charge interaction between the 

two domains. The two glutamate residues locate at the glycine-rich loop which is in 
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close proximity to ATP binding site. The increased activity of the mutant thus supports 

the assumption that the Chk1RD inhibits Chk1KD activity through interrupting the 

ATP binding site. 
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3.3 Materials and Methods 

3.3.1 Generation, expression and purification of 

14xHis-SUMO-Cdc25C200-256 

Human Cdc25C200-256 gene sequence was synthesised using gBlocks Gene Fragments 

service (IDT). The Cdc25C200-256 sequence was amplified using primers Cdc25C-f and 

Cdc25C-r (Appendix A) to create BamHI and HindIII restriction sites. The amplified 

sequence was inserted to pRSFDuet vector (Novagen) using the two restriction sites. 

pRSFD-Cdc25C200-256 was transformed to Rosetta 2 (DE3) competent cells for 

expression (procedure is described in 2.3.1). Cells were inoculated to 1 L 2xYT 

medium and was induced with 1 mM IPTG when OD reached 0.6-0.8. Expression 

was performed at 37 °C for 4 h. Cell harvest, sonication and centrifugation procedure 

was the same as described in 2.3.2. The soluble fraction was applied on gravity flow 

Ni-NTA agarose column and was washed twice with 25 mM Hepes-NaOH pH 7.5, 

300 mM NaCl and 50 mM imidazole followed by a 300 mM imidazole elution step. 

Ni-NTA elution fraction was concentrated to 1 ml and was applied to Superdex 75 

16/60 column for gel filtration in a buffer of 25 mM Hepes-NaOH pH 7.5, 300 mM 

NaCl, 10% glycerol and 2 mM DTT. The elution fraction with highest purity (90%) 

was concentrated to 243 µM and stored at -80 °C. 

 

3.3.2 Generation of 14xHis-SUMO-Cdc25C200-256-S216A 

S216A mutagenesis was introduced to pRSFD-Cdc25C200-256 template by site-directed 

mutagenesis (QuickChange, Stratagene) using primers Cdc25CS216A-f and 

Cdc25CS216A-r (Appendix A). Expression and purification procedure of 

14xHis-SUMO-Cdc25C200-256-S216A was the same as described in 3.3.1. 
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3.3.3 Chk1 substrate specificity kinase assays 

40 µl reaction containing 40 µM 14xHis-SUMO-Cdc25C200-256WT or 

14xHis-SUMO-Cdc25C200-256S216A, 50 µM ATP, 0.05 µM Chk1KD or 0.5 µM Chk1FL 

was performed in reaction buffer with final concentration of 50 mM Hepes-NaOH pH 

7.5, 150 mM NaCl, 1mM DTT, 10 mM MgCl2 and 1 mM beta-glycerolphosphate. 

Chk1 protein stock was buffer exchanged to Chk1 buffer (50 mM Hepes-NaOH pH 

7.5, 500 mM NaCl, 1mM DTT) using protein desalting spin columns (Thermo Fisher). 

14xHis-SUMO-Cdc25C200-256 were buffer exchanged to 1x reaction buffer. 5x 

Chk1KD or Chk1FL stock was prepared using the Chk1 buffer. Chk1 stock was added 

to reaction before the start of the reaction to make the reaction volume to 35 µl. 1 µl 

10mCi/ml [γ-32P]ATP (Perkin Elmer, Easytide) was added to 24 µl cold ATP stock to 

achieve ATP mixture concentrations of 400 µM. 5 µl ATP mixture was added to 

corresponding reactions to initiate the reaction. The reaction was mixed by shaking 

briefly was spun down. Reaction was incubated at 37 °C for 40 min. 5 µl reaction 

sample was added to 2 µl 4X protein loading buffer (containing reducing agent) and 1 

µl 0.5M EDTA. The sample was boiled at 80 °C for 10 min. The sample was spun 

down briefly and was applied on a 12% acrylamide gel for SDS-PAGE analysis. The 

gel was dried on gel dryer at 80°C for 2h. The dried gel was exposed to a 

phosphorscreen (GE Healthcare) for 30 min and the signal was scanned and analysed 

on Typhoon FLA 9500 (GE Healtcare). 

 

3.3.4 NADH-coupled assays of Chk1 activity 

200 µl reaction containing different concentrations of Chk1FL constructs (1.5 µM 

dephosphorylated Chk1FL or 1.5/6 µM untreated Chk1FL or 6 µM Chk1FL3T/SE), 160 

µM NADH, 2 mM phospho(enol)pyruvate, 50 µM ATP, 50 µM 

14xHis-SUMO-Cdc25C200-256, 1.8-2.8 units of lactate dehydrogenase and 1.2-2 units 

of pyruvate kinase were performed in reaction buffer (50 mM Hepes-KOH pH 7.5, 

150 mM KAc, 8 mM Mg(Ac)2 and 5 mM β-mercaptoethanol). Reaction was added to 



	 89	

a 96-well assay plate (Corning) and the absorbance at 340nm was read on Pherastar 

(BMG Labtech) for 30-60 min at an interval of 0.5 or 1 min. 

 

3.3.5 Generation of Chk1S317E/S345E, Chk1Δturn, Chk1E17T/E22T and 

Chk1E32T/E33S 

Chk1 constructs were generated from the pFBDM-Chk1KD and pFBDM-Chk1FL 

plasmid described in 2.3.1 by site-directed mutagenesis (QuickChange Stratagene). 

Chk1S317E/S345E was generated using primers Chk1S317E-f and Chk1S317E-r, 

Chk1S345E-f and Chk1S345E-r (Appendix A) based on the Chk1FL plasmid. 

Chk1Δturn was generated using primers Chk1Δturn-f and Chk1Δturn-r (Appendix A) 

based on both construct templates. Chk1E17T/E22T was generated using primers 

Chk1E17T-f, Chk1E17T-r, Chk1E22T-f and Chk1E22T-r (Appendix A) based on both 

construct templates. Chk1E32T/E33S was generated using primers Chk1E32T/E33S-f and 

Chk1E32T/E32S-r (Appendix A) based on both construct templates. 

 

3.3.6 Determination of ATP concentration in kinase assays  

50 µl reaction containing 100 µM 14xHis-SUMO-Cdc25C200-256, 50 µM, 1 mM, 5 

mM or 10 mM ATP, 0.05 µM Chk1KD or 0.5 µM Chk1FL was performed in reaction 

buffer with final concentration of 50 mM Hepes-NaOH pH 7.5, 150 mM NaCl, 1mM 

DTT, 20 mM MgCl2 and 1 mM beta-glycerolphosphate. Chk1 protein stock was 

buffer exchanged to Chk1 buffer (50 mM Hepes-NaOH pH 7.5, 500 mM NaCl, 1mM 

DTT) using protein desalting spin columns (Thermo Fisher). 

14xHis-SUMO-Cdc25C200-256 were buffer exchanged to 1x reaction buffer. 5x 

Chk1KD or Chk1FL stock was prepared using the Chk1 buffer. Chk1 stock was added 

to reaction before the start of the reaction to make the reaction volume to 40 µl. 1 µl 

10mCi/ml [γ-32P]ATP (Perkin Elmer, Easytide) was added to 14 µl cold ATP stock to 

achieve ATP mixture concentrations at 250 µM, 5 mM, 25 mM and 50 mM. 10 µl ATP 
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mixture to corresponding reactions to initiate the reaction and the reaction was mixed 

by shaking briefly. The reaction was briefly spun down and was incubated at 30 °C. 

Reaction sample was taken at 2, 4, 6, 8, 10 and 12 min time-point for Chk1KD and 3, 

6, 9, 12, 15 and 18 min for Chk1FL. The sample was analysed using the same 

protocol described in 3.3.3. 

 

3.3.7 Validation of linear 32P counts range on scintillation counter 

Validation of signal detection by scintillator (Beckman Coulter LS6500) was 

performed by applying serially diluted radiolabelled ATP on phosphocellulose paper 

and counting the signal of each paper sample. It was shown that a signal above 300 

counts per minute was in the linear range of signal detection of the scintillator and 

therefore the experiments were designed to reach the linear range by varying the 
32P-ATP concentration accordingly. 

 

3.3.8 Time range determination at highest and lowest Cdc25C peptide 

concentration 

50 µl reaction containing 25, 50 or 1000 µM Cdc25C peptide 

(AKVSRSGLYRSPSMPENLNRPR), 1 mM ATP and 0.05 µM Chk1KD or 0.5 µM 

Chk1FL was performed in reaction buffer at a final concentration of 50 mM 

Hepes-NaOH pH 7.5, 150 mM NaCl, 1 mM DTT, 20 mM MgCl2, 1 mM 

β-glycerolphosphate. Two batches of the Cdc25C peptide with the same sequence was 

synthesised by Genosphere Biotechnologies (UK) at 5mg at >95% purity. The 

concentration of the first batch of Cdc25C peptide was determined by Amino Acid 

Analysis service performed by Dr. Peter Sharratt at the Protein and Nucleic Acid 

Analysis Facility at the University of Cambridge. The concentration of the second 

batch of Cdc25 peptide was determined using NanoDrop™ One Microvolume UV-Vis 

Spectrophotometer (Thermo Scientific) at the wavelength of 205nm and the 
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concentration was calibrated based on the reading at 205nm of the first batch of the 

peptide. Chk1 protein stock was buffer exchanged to Chk1 buffer (50 mM 

Hepes-NaOH pH 7.5, 500 mM NaCl, 1mM DTT) using protein desalting spin 

columns (Thermo Fisher). Absorbance at 280 nm was measured on Cary 50 UV-Vis 

Spectrophotometer (Agilent Technologies) and concentration was determined with 

extinction coefficient at 280 nm. 2.5 µM Chk1FL or 0.25 µM Chk1KD (5x) protein 

stock was prepared using Chk1 buffer. 5 mM (5x) ATP mix was prepared from 100 

mM ATP (Thermo Fisher) and 10mCi/ml [γ-32P]ATP (Perkin Elmer). 10 µl ATP mix 

was added to each reaction. 0.25 µM Chk1KD 2.5 µM Chk1FL was added to each 

reaction to initiate the reaction. The reaction was mixed by shaking the tube briefly 

which was followed by a quickly spin. The reaction was incubated at 30 °C. A 

reference reaction containing the same components except Chk1KD or Chk1FL was 

performed in parallel with the experiment reaction. 5 µl reaction was spotted on a 

pre-labelled 1.2 cm x 1.2cm P81 phosphocellulose paper (Reaction Biology Corp.) 

and the paper was immediately immersed into chilled 75 mM phosphoric acid to stop 

the reaction. The peptide was positively charged and bound to phosphocellulose paper 

during the wash in 75 mM phosphoric acid, which washed off free ATP attached to the 

phosphocellulose paper. The paper was washed in 500 ml phosphoric acid for 10 min 

with stirring and the old phosphoric acid was replaced by fresh phosphoric acid. The 

wash step was repeated three times. The paper was briefly rinsed with acetone after 

the last wash and was left to air dry for 1 h. ATP signal calibration sample was 

prepared by spotting 5 µl 10x diluted ATP mix on the phosphocellulose paper and air 

dried. Dry phosphocellulose paper was sealed in scintillator tubes and the 32P 

emission counts was read on a scintillation counter (Beckman Coulter LS6500) using 

a "32P program". Radioactivity count for one unit of ATP was obtained using the ATP 

calibration sample which was used to interpret the amount of phosphate incorporated 

into the substrate (product formation). Product formation rate was acquired which was 

equal to enzyme catalysis rate. It was plotted against time and steady-state range was 

acquired. 
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3.3.9 Chk1 kinase assay at different concentration of Cdc25C peptide 

10 µl reaction for Chk1KD or 14 µl reaction for Chk1FL containing varying 

concentration (25, 50, 75, 100, 200, 400, 700 and 1000 µM) of Cdc25C peptide, 1 

mM ATP mix and 0.05 µM Chk1KD or 0.5 µM Chk1FL was performed in reaction 

buffer at a final concentration of 50 mM Hepes-NaOH pH 7.5, 150 mM NaCl, 1 mM 

DTT, 20 mM MgCl2, 1 mM β-glycerolphosphate. The remaining procedure was the 

same with the protocol described in 3.3.8. Sample was taken and stopped at 5 min for 

Chk1KD. Two time-points (10 min and 15 min) for Chk1FL were taken. The rate of 

product formation was plotted against Cdc25C peptide concentration. The data was 

fitted to Michaelis-Menten model with and without a substrate inhibition dissociate 

parameter using Pro Fit software (http://quansoft.com). The error of kcat was acquired 

from the error propagation analysis: 𝛥𝑘𝑐𝑎𝑡 = ?(@AB
[C]

. The error of enzyme efficiency 

was acquired from the error propagation analysis: 𝛥 7DAE
7@

= 7DAE
7@

(?7DAE
7DAE

)F + (?7@
7@

)F 

 

3.3.10 Time range determination at highest and lowest ATP concentration 

50 µl reaction containing 200 µM Cdc25C peptide, 50 µM or 10 mM ATP and 0.05 

µM Chk1KD or 0.5 µM Chk1FL was performed in reaction buffer. Assay procedure 

was described in 3.3.8. 

 

3.3.11 Chk1 kinase assay at different concentration of ATP 

10 µl reaction containing 200 µM Cdc25C peptide, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4 or 

8 mM ATP and 0.05 µM Chk1KD or 0.5 µM Chk1FL was performed in reaction 

buffer. Assay procedure was described in 3.3.9. Sample was taken and stopped at 5 

min for Chk1KD and 10 min for Chk1FL. The rate of product formation was plotted 

against ATP peptide concentration. The data was fitted to Michaelis-Menten model 

using Pro Fit software (http://quansoft.com). 
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4 THE INTERACTION OF CHK1 WITH CLASPIN  

4.1 Results 

4.1.1 Expression and purification of Claspin constructs 

As described in Introduction, human Claspin's Chk1-binding domain (CKBD) 

contains three conserved tandem motifs (Figure 4.1).  

 

Figure 4.1 Claspin CKBD sequence alignment 

Sequence alignment of Claspin Chk1-binding domain among different species. The alignment 
is coloured by conservation (threshold 30%) with the ClustalWS colouring scheme and 
formatted in Jalview (Larkin et al., 2007; Waterhouse et al., 2009). Regions of constructs 
(K850-E992 and R884-E992) is marked with black arrows. Three tandem Chk1-binding 
repeats are marked with red dashed rectangles. The phosphorylation sites on the motifs are 
marked with red arrows. The SQ sequence is marked with blue line. 
 

Two Claspin constructs containing all three conserved Chk1-binding motifs 

(Claspin850-992 and Claspin884-992) were selected for expression test. Claspin850-992 and 
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Claspin884-992 with an N-terminal 6xHis and MBP tag were expressed in E. coli in 1 L 

growth medium. 6xHis-MBP-Claspin850-992 produced a higher yield compared to 

Claspin884-992 and this construct was chosen for large-scale expression (Figure 4.2). 
 

	

Figure 4.2 Expression of 6xHis-MBP-Claspin constructs 

Ni-NTA purification of 6xHis-MBP-Claspin850-992 (A) and 6xHis-MBP-Claspin884-992 (B) was 
performed to the 1 L expression. 6xHis-MBP-Claspin850-992 showed high yield than 
6xHis-MBP-Claspin884-992 in elution fraction. P: pellet, S: supernatant, FT: flow through, 
W1-W3: wash 1-3, E: elution. 
 
8 L expression of 6xHis-MBP-Claspin850-992 was purified by Ni-NTA chromatography, 

Hitrap Q ion-exchange chromatography and Superdex 200 16/60 size-exclusion 

chromatography (Figure 4.3). Full-length protein was separated from most of the 

impurities and fractions containing target protein was pooled and concentrated. 
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Figure 4.3 Purification of 6xHis-MBP-Claspin850-992 

A: 6xHis-MBP-Claspin850-992 was firstly purified by gravity flow Ni-NTA column and the 
fractions were analysed by SDS-PAGE. B: Elution from Ni-NTA column was loaded onto 
Hitrap Q ion-exchange column and protein was eluted with gradient NaCl wash. C: Elution 
fractions of ion-exchange step were split into two size exclusion chromatography using 
Superdex200 16/60 column.  
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4.1.2 Phosphoserine incorporation in Claspin CKBD using amber codon 

suppression 

As described in the Introduction, phosphorylation of Claspin CKBD is essential to 

Chk1 binding. Quantitative, site-specific phosphorylation of a recombinant protein is 

a difficult task to accomplish during heterologous protein expression in a host system. 

Prof. Jason Chin’s lab (MRC-LMB, Cambridge) recently developed an engineered 

bacterial system which can achieve site-specific phosphoserine incorporation 

exploiting the amber codon suppression approach. The system adopts an orthogonal 

aminoacyl-tRNA synthetase (SepRS)/tRNACUA pair to incorporate phosphoserine on 

a target protein site in a SerB (an E.coli phosphatase) knockout E.coli strain 

(Rogerson et al., 2016). The engineered SepRS associates with a phosphoserine tRNA 

and incorporates phosphoserine upon recognition of an Amber codon (Figure 4.4).  

 

Two 6xHis-GST-Claspin constructs spanning the region of 850-992 and 884-992 with 

single point mutation of T916pS or S945pS were used for expression test in the amber 

codon suppression strain (Figure 4.3). The system can only incorporate phosphoserine 

into the target site so a phosphoserine is incorporated into site 916 on Claspin even 

though the residue in the original sequence is a threonine instead of a serine. 



	 97	

 

Figure 4.4 Expression test of 6xHis-GST-Claspin constructs expressed in amber 

codon suppression system 

A: A brief schematic description of the Amber codon suppression method used for 
phosphoserine incorporation. B: 6xHis-GST-Claspin850-992 and 6xHis-GST-Claspin884-992 with 
phosphoserine incorporated on site 916 or 945 were expressed in the amber codon 
suppression system. Gravity flow Ni-NTA column was used as an initial purification step for 
1 L expression and the elution from the Ni-NTA agarose beads was analysed by SDS-PAGE.  

 

Both the 6xHis-GST-Claspin884-992 constructs showed higher yield than the 

6xHis-GST-Claspin850-992 constructs so the 884-992 region was selected for expression 

in the Amber codon suppression system. Because of the dimerization nature of GST 

tag, the 6xHis-GST-Claspin884-992 construct showed co-purification of significant 

levels of truncated protein, likely due to the presence of the amber codon, alongside 

the full-length protein, which could not be successfully removed. Other tags were 
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used for recombinant protein expression. Constructs with N-terminal dual 6xHis-MBP 

tag and a single amber codon for phosphoserine incorporation at positions 

corresponding to T916, S945 or S982 were expressed. The N-terminally tagged 

constructs were still difficult to be separated from truncated constructs so the 

N-terminal 6xHis tag was moved to the C-terminus as an 8xHis tag to facilitate the 

purification of full-length Claspin constructs. The three mono-phosphorylated Claspin 

constructs were expressed at the same level and were purified by Ni-NTA affinity 

chromatography, Hitrap Q ion-exchange chromatography and Superdex 75 16/60 

size-exclusion chromatography. Full-length protein was separated from most of the 

impurities and fractions containing target protein was pooled and concentrated (Figure 

4.5). MBP-pS982Claspin884-992-8xHis was concentrated to 0.4 mg from a 4 

L-expression and MBP-Claspin884-992WT-8xHis was concentrated to 16.8 mg from a 2 

L-expression. The yield of wild-type protein was about one to two orders of 

magnitude higher than that of phosphoserine incorporated protein. 
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 (Caption on next page) 
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Figure 4.5 Purification of 4 L MBP-pS982Claspin884-992-8xHis and 2 L 

MBP-Claspin884-992WT-8xHis 

Cell lysate was applied on Ni-NTA agarose beads column as an initial purification step for 
MBP-pS982Claspin884-992-8xHis (A) and MBP-Claspin884-992WT-8xHis (B). Elution from 
Ni-NTA column was applied on Hitrap Q column and target protein was eluted along gradient 
NaCl wash for MBP-pS982Claspin884-992-8xHis (C) and MBP-Claspin884-992WT-8xHis (D). A 
size-exclusion chromatography using Superdex 75 16/60 column was used as a final 
purification step for MBP-pS982Claspin884-992-8xHis (E) and MBP-Claspin884-992WT-8xHis (F). 

 

Purified Claspin samples were further treated with TEV protease to remove the 

N-terminal MBP tag. Cleaved Claspin884-992-8xHis peptide was purified using a Hitrap 

Q ion-exchange chromatography (Figure 4.6).  

 
Figure 4.6 Purification of pS982Claspin884-992-8xHis peptide 

The MBP tag was removed from MBP-pS982Claspin884-992-8xHis after a TEV treatment. The 
cleaved pS982Claspin884-992-8xHis was purified by ion-exchange chromatography using 
Hitrap Q column. 

 

The phosphoserine incorporation to the three cleaved peptide samples was analysed 

by MALDI-TOF mass spectrometry (Figure 4.7).  
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Figure 4.7 Mass spectrometry of the Claspin884-992-8xHis peptides  

MALDI-TOF mass spectrometry of cleaved pS916Claspin884-992-8xHis (A), 
pS945Claspin884-992-8xHis (B) and pS982Claspin884-992-8xHis (C) showed all the three 
samples formed by a mixture of phosphorylated and unphosphorylated species. The mass 
spectrometry analysis was performed by Dr. Len Packman at the Protein and Nucleic Acid 
Analysis Facility at the University of Cambridge. 
 

Mass spectrometry showed the samples were mixtures of phosphorylated and 

non-phosphorylated species. Addition of phosphatase inhibitor β-glycerolphosphate 

and NaF during purification did not eliminate the presence of non-phosphorylated 

species, indicating that dephosphorylation occurred during expression. 

 

Incorporation of phosphoserine into two or three sites on MBP-Claspin884-992-8xHis 

constructs was attempted at 1 L-expression. Expression of double phosphoserine 

incorporated Claspin constructs was detected but at very low yield (Figure 4.8). 

Expression of triple phosphoserine incorporated Claspin construct from 1 

L-expression was not detected. A further purification step using ion-exchange 

chromatography for the pS916+pS945Claspin884-992-8xHis construct was performed 

but no target protein can be detected in Hitrap Q flow through or elution fractions. 

The incorporation of double- and triple-phosphoserine was low efficient and adequate 

yield at high purity was not achieved. 
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Figure 4.8 Expression of double- and triple- phosphoserine incorporated 

MBP-Claspin884-992-8xHis constructs 

A: Cell lysate of the four double- or triple- phosphoserine incorporated Claspin constructs 
from 1L-expression was applied on gravity flow Ni-NTA column. Multiple bands appeared at 
target molecular weight. B: Western blot using anti-polyhistidine antibody was performed to 
verify target bands. MBP-pS982Claspin884-992-8xHis was used as a positive control. Only 
MBP-pS916pS982Claspin884-992-8xHis and MBP-pS945pS982Claspin884-992-8xHis were 
detected in the corresponding elution fractions. C: Ni-NTA chromatography was performed 
for MBP-pS916pS945Claspin884-992-8xHis and MBP-pS916pS945pS982Claspin884-992-8xHis 
from a different 1L-expression. D: Western blot using anti-polyhistidine antibody was 
performed to verify target bands. MBP-pS982Claspin884-992-8xHis was used as a positive 
control.  Target protein expression was only detected in the 
MBP-pS916pS945Claspin884-992-8xHis elution fraction. 
MBP-pS916pS945pS982Claspin884-992-8xHis was not detected in any of the expression test. 
Red arrow: expression confirmed by western blot. Black dash-line arrow: expected band but 
no target protein expression was detected. 
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4.1.3 Interaction studies between Claspin and Chk1  

Pull-down assays were performed to study the interaction between Chk1 constructs 

and each of the three mono-phosphoserine Claspin constructs. The 

MBP-Claspin884-992-8xHis constructs were used in Chk1KD pull-down assays. 

Chk1FL migrates at a close region to the MBP-Claspin884-992-8xHis constructs which 

makes it difficult to interpret the pull-down results. A new Claspin884-992-8xHis 

constructs with a dual N-terminal Strep-SUMO tag was prepared. The three 

mono-phosphorylated Claspin constructs were expressed at the same level and were 

purified by Ni-NTA affinity chromatography and Superdex 75 16/60 size-exclusion 

chromatography. Full-length protein was separated from most of the impurities and 

fractions containing target protein was pooled and concentrated. The yield of 

Strep-SUMO-pS945Claspin884-992-8xHis and Strep-SUMO-Claspin884-992WT-8xHis 

from a 3 L-expression was 2.5 mg and 14.5 mg respectively (Figure 4.9).  
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Figure 4.9 Purification of Strep-SUMO-pS945Claspin884-992-8xHis and 

Strep-SUMO-Claspin884-992WT-8xHis 

Cell lysate was applied on Ni-NTA agarose beads column as an initial purification step for 
Strep-SUMO-pS945Claspin884-992-8xHis (A) and Strep-SUMO-Claspin884-992WT-8xHis (C). 
Elution from Ni-NTA column was concentrated and applied on a size-exclusion 
chromatography using Superdex 75 16/60 column for a final purification step for 
Strep-SUMO-pS945Claspin884-992-8xHis (B) and Strep-SUMO-Claspin884-992WT-8xHis (D). 

 

Mono-phosphorylated and unphosphorylated Claspin constructs were immobilised on 
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amylose beads or StrepTactin beads and Chk1KD or Chk1FL was applied onto the 

Claspin constructs. Different tags of Claspin constructs were used in the two 

pull-down assays to separate Claspin and Chk1 on SDS-PAGE gels (Figure 4.10). All 

three phosphoserine Claspin constructs successfully pulled down both Chk1KD and 

Chk1FL with similar binding affinities, whereas unphosphorylated Claspin showed no 

appreciable binding to Chk1KD and very weak binding towards Chk1FL. No 

significant difference in binding strength towards Chk1 was observed among the three 

phosphorylated Claspin constructs. 

	
Figure 4.10 Pull-down assays of mono-phosphoserine incorporated Claspin constructs 

with Chk1KD and Chk1FL 

A: Pull-down assays for MBP-Claspin884-992-8xHis constructs with Chk1KD. B: Pull-down 
assays for Strep-SUMO-Claspin884-992-8xHis constructs with Chk1FL. Samples were analysed 
by SDS-PAGE and the gels were stained with coomassie blue. I: beads sample with 
immobilised bait input, B: beads sample after pull-down. 

 

One way to test the effect of amino acid phosphorylation is by phospho-mimicry, by 

mutating threonine/serine to either glutamate or aspartate. Compared to aspartate, 

glutamate is more similar to phosphoserine in chemical structure and therefore a triple 
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Claspin3T/SE (T916E/S945E/S982E) mutant construct replacing all serine 

phosphorylation site with glutamate was prepared. The phospho-mimic mutagenesis 

was introduced on 6xHis-MBP-Claspin884-992 construct (the 2nd construct described in 

section 4.1.1). The Claspin3T/SE protein was purified in the same way as a 

unphosphorylated Claspin construct (MBP-Claspin884-992-8xHis) described in 4.1.2. In 

the pull-down experiment, phospho-mimic Claspin (Claspin3T/SE), unphosphorylated 

Claspin (MBP-Claspin884-992-8xHis) and mono-phosphorylated pS945Claspin 

(MBP-Claspin884-992-8xHis construct with phosphoserine incorporation on 945) were 

immobilised on amylose beads and the same amount of Chk1KD was incubated with 

each Claspin constructs (Figure 4.11). Both unphosphorylated Claspin and 

Claspin3T/SE showed weak binding to Chk1KD which was in contrast to strong 

binding observed between pS945Claspin and Chk1KD. The mutant with glutamate 

did not work as an effective mimic replacement of phosphoserine, which indicates 

that the interaction with Chk1 is not purely based on charge and requires specific 

stereochemical contacts mediated by the phosphoserine side chain.  

 

Figure 4.11 Pull-down assays of phospho-mimic Claspin with Chk1KD 

Phospho-mimic (T916E/S945E/S982E), unphosphorylated (negative control) and pS945 
(positive control) Claspin used for pull-down assays with Chk1KD. Samples of beads were 
analysed by SDS-PAGE and the gels were stained with coomassie blue. I: beads sample with 
immobilised bait input, B: beads sample after pull-down.   
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4.1.4 Quantitative analysis of Chk1-Claspin binding using 

biolayer-interferometry  

To acquire more accurate binding affinity information on the interaction of the 

mono-serine phosphorylated Claspin constructs with Chk1, biolayer-interferometry 

was employed using a ForteBio Octet instrument. To be able to attach it to the 

streptavidin biosensor, a new MBP-Claspin884-992-8xHis construct was expressed with 

an Avi-tag sequence (GLNDIFEAQKIEWHE, biotinylation site is underlined) fused 

to its C-terminus (Figure 4.12).  
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Figure 4.12 Purification of MBP-pS916Claspin884-992-8xHis-Avi and 

MBP-Claspin884-992WT-8xHis-Avi 

A: Cell lysate was applied on Ni-NTA agarose beads column as an initial purification step for 
MBP-pS916Claspin884-992-8xHis-Avi. B: Elution from Ni-NTA column was applied on an 
ion-exchange chromatography using Hitrap Q column. FT: flow through. C: Fractions 
containing target protein were concentrated and applied on a size-exclusion chromatography 
using Superdex 200 16/60 column for a final purification step. D: Elution from Ni-NTA 
column of MBP-Claspin884-992WT-8xHis-Avi was applied on an ion-exchange chromatography 
using Hitrap Q column. E: Fractions containing target protein were concentrated and applied 
on a size-exclusion chromatography using Superdex 200 16/60 column for a final purification 
step. 

 

In vitro biotinylation on MBP-pS916Claspin884-992-8xHis-Avi was performed by 

recombinant MBP-BirA (from Dr. Joe Maman, Department of Biochemistry, 

University of Cambridge) and the samples were analysed and compared with the 

untreated protein. Biotinylation was visualised by western blot using Streptavidin-AP 

conjugate antibody. The extent of biotinylation on the untreated sample was at the 

similar level to the BirA treated samples at different time points and different ratios, 

which showed that the Avi-tag biotinylation took place during expression in E.coli 

(Figure 4.13).  

 
Figure 4.13 In vitro biotinylation verification of MBP-pS916Claspin884-992-8xHis-Avi 

Native MBP-pS916Claspin884-992-8xHis-Avi without treatment (first sample lane) and 
MBP-BirA treated proteins at molar ratio of 2:1, 1:1, 0.5:1 and 0.1:1 for 2 h and 24 h were 
analysed by western blot using Streptavidin-AP conjugate antibody. The biotinylation level of 
MBP-pS916Claspin884-992-8xHis-Avi was the same in all conditions. 

 

The biotinylated mono-phosphorylated Claspin constructs were immobilised onto the 

streptavidin biosensor as the ligand and their interaction with Chk1 was tested. A 

Chk1 titration in the range of 20 and 500 nM was performed for each Claspin 
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construct. Individual association and dissociation curves were fitted to a 1:1 binding 

model (Figure 4.14) and Kd was calculated from averaged kon and koff determined 

from fitting signal curves with high fitting scores (Table 4.1). The data showed all the 

Kd between the mono-phosphorylated Claspin constructs and Chk1 constructs were at 

sub-micromolar level, with no significant differences in Kd from different 

combinations of binding partners. All three mono-phosphorylated Claspin constructs 

had a similar binding affinity to Chk1, in agreement with the result of the pull-down 

experiments. Furthermore, Chk1FL and Chk1KD bound the monophosphorylated 

Claspin CKBD with similar affinities, indicating that their interaction site resides 

within Chk1’s kinase domain. No binding between unphosphorylated 

MBP-Claspin884-992WT-8xHis-Avi and Chk1KD or Chk1FL was observed (Figure 

4.14), which indicated the phosphorylation on Claspin CKBD was essential to 

Claspin-Chk1 interaction.   



	 112	

 

Figure 4.14 Binding curves of Claspin884-992-8xHis-Avi and Chk1 

Association and dissociation steps of binding curves of pS916Claspin884-992-8xHis-Avi to 
Chk1KD (A) and Chk1FL (B), pS945Claspin884-992-8xHis-Avi to Chk1KD (C) and Chk1FL 
(D) and pS982Claspin884-992-8xHis-Avi to Chk1KD (E) and Chk1FL (F) were fitted to a 1:1 
fitting model. Association and dissociation steps of binding curves of 
MBP-Claspin884-992WT-8xHis-Avi to Chk1KD (G) and Chk1FL (H) showed no binding 
between analyte and ligand. 
 
 
 
 
 
 
 
 
 
 

C D
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Table 4.1 Binding parameters of the Claspin884-992-8xHis-Avi - Chk1 interaction 

Claspin884-992-

8xHis-Avi 

Chk1KD 

kon (M-1s-1) koff (s-1) Kd (M) 

pS916 2.46x105±1.24x105 3.83x10-2±0.69x10-2 1.55x10-7±0.83x10-7 

pS945 6.02x105±0.84x105 5.96x10-2±0.40x10-2 9.89x10-8±1.53x10-8 

pS982 1.77x105±0.26x105 1.99x10-2±0.17x10-2 1.13x10-7±0.19x10-7 

Claspin884-992-

8xHis-Avi 

Chk1FL 

kon (M-1s-1) koff (s-1) Kd (M) 

pS916 8.17x105±1.00x105 7.38x10-2±0.94x10-2 9.04x10-8±1.60x10-8 

pS945 2.63x105±0.95x105 7.48x10-2±1.60x10-2 2.85x10-7±1.20x10-7 

pS982 2.26x105±0.34x105 6.76x10-2±0.08x10-2 2.99x10-7±0.45x10-7 

 

Whether the Claspin construct with phosphorylation on two Chk1-binding motifs had 

different binding kinetics from the mono-phosphorylated constructs was tested using 

bio-layer interferometry. 5 L-expression of phosphoserine incorporation at 916 and 

945 on MBP-Claspin884-992-8xHis-Avi was performed and purification techniques 

including Ni-NTA chromatography and size-exclusion chromatography were applied 

(Figure 4.15).  
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Figure 4.15 Purification of MBP-pS916pS945Claspin884-992-8xHis-Avi 

Cell lysate was applied on gravity flow Ni-NTA column and protein was eluted in 300 
mM imidazole. Concentrated elution was applied on Superdex 200 16/60 gel filtration 
column. Several contamination bands were observed in the target protein fractions. 
 

Mass spectrometry analysis showed the solution sample was a mixture of 

double-phosphorylated, mono-phosphorylated and unphosphorylated 

MBP-Claspin884-992-8xHis-Avi constructs in a biotinylated form. The full-length 

MBP-pS916pS945Claspin884-992-8xHis-Avi construct was attached to the Streptavidin 

biosensor and its binding kinetics to Chk1KD was measured on ForteBio Octet 

instrument. The averaged kon and koff was measured at 6.12x105 M-1s-1 and 6.85x10-2 

s-1 respectively. The Kd was determined at 1.12x10-7 M. No obvious difference on 

binding affinity to Chk1KD was observed on the double-phosphorylated 

MBP-Claspin884-992-8xHis-Avi construct comparing to the mono-phosphorylated 

constructs. Because the phosphorylation status of the Claspin construct was not 

homogeneous in this experiment, a quantitative conclusion cannot be achieved. 
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Figure 4.16 Mass spectrometry and bio-layer interferometry of double-phosphorylated 

Claspin 

A: A 2+ charge peak was zoomed in from a MALDI-TOF mass spectrometry analysis. A 
mixture of double-phosphorylated, mono-phosphorylated and unphosphorylated 
MBP-Claspin884-992-8xHis-Avi constructs was detected. The peak indicated all the species was 
biotinylated. Mass spectrometry analysis was performed by Dr Len Packman from at the 
Protein and Nucleic Acid Analysis Facility at the University of Cambridge. B: Association 
and dissociation steps of binding analysis of MBP-pS916pS945Claspin884-992-8xHis-Avi and 
Chk1KD on ForteBio Octet instrument. Data was fitted into a 1:1 binding model.  
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4.1.5 Scanning of kinase responsible to Claspin phosphorylation on 

CKBD 

Although mono-phosphoserine incorporation was successful, the production of double 

and triple phosphoserine incorporated Claspin using the amber codon suppression 

approach was not efficient. It would be very useful to be able to produce Claspin that 

is phosphorylated on all three Chk1 binding motifs, to aid in the elucidation of the 

structural basis for their specific interaction. Casein kinase 1γ1 (CK1γ1) and 

Cdc7/Dbf4 (DDK) were reported to mediate Chk1 activation through Claspin 

phosphorylation (Chini et al., 2006; Kim et al., 2007; Meng et al., 2011).  

Kinase assays were therefore performed to check if they were able to phosphorylate 

Chk1KD. Recombinant CK1γ1 kinase domain (CK1γ143-352) with an N-terminal GST 

tag was expressed in E.coli and purified by Ni-NTA column, ion exchange 

chromatography and size exclusion chromatography. The Cdc7∆1-36/Dbf4 complex 

was supplied by Aji Jatikusumo in our laboratory. Kinase activity of CK1γ1 and DDK 

was checked using 32P-ATP based kinase assay, using Claspin3T/SE as a negative 

control for specificity of phosphorylation. 32P incorporation signals indicated that 

CK1γ1 and DDK did phosphorylate Claspin, but in a non-specific way, as well as 

undergoing autophosphorylation (Figure 4.17). Whether phosphorylation by these 

kinases, as well as Chk1 itself, contributes to Claspin interaction with Chk1 was also 

tested by pull-down (Figure 4.17). CK1γ1, Chk1 and DDK treated Claspin only 

showed weak background binding to Chk1KD as untreated unphosphorylated Claspin, 

indicating none of these kinases functioned as a direct upstream kinase of Claspin 

CKBD phosphorylation in vitro. Considering the in vivo studies which showed 

evidence on Claspin phosphorylation by these kinases, it was speculated that 

phosphorylation on Claspin CKBD still could be performed by one of the kinases but 

possibly the completion of the process required co-operation of other adaptors. 
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Figure 4.17 Effects of CK1γ143-352 and Cdc7∆1-36/Dbf4 phosphorylation on the 

Claspin-Chk1 interaction. 

A: 32P incorporation signal was detected on kinases (CK1γ1 and DDK), ClaspinWT and 
Claspin3T/SE. B-D: Pull-down assays of Chk1KD by CK1γ1-, Chk1- and DDK-treated Claspin 
immobilised on amylose beads. The pull downs were analysed by SDS-PAGE. 
Unphosphorylated and pS945 Claspin were assayed as negative and positive control 
respectively. I: Immobilised input, B: Beads sample after pull-down assays. 
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4.1.6 Alanine scanning of the Claspin Chk1-binding motif  

It was shown in the previous section that phosphorylation on T916, S945 and S982 

was essential to the interaction of Claspin with Chk1. Sequence conservation in the 

three Chk1-binding motifs extends beyond the phosphorylated serine and spans 

approximately 16 amino acids. However, the relative contribution to the interaction 

with Chk1 of the conserved residues flanking the phosphoserine is unknown. To 

check if the other conserved amino acid residues have pivotal functions on the Chk1 

binding, alanine scanning of the Chk1-binding motif was performed. The second 

motif has high sequence consensus with the first one so it was chosen for the 

experiment (Figure 4.18). Fifteen MBP-pS945Claspin884-992-8xHis-Avi constructs 

with an alanine substitution to one residue in the region of N936-Q951 were 

expressed and purified with phosphoserine incorporated on residue 945. The new 

constructs were expressed with an N-terminal MBP tag so that they could be 

immobilised on amylose beads for pull-down assays of Chk1KD (Figure 4.18). The 

alanine-scanning experiment showed that only alanine mutation of F948 abolished 

binding to Chk1KD, whereas the other fourteen constructs showed the same level of 

binding as wild-type pS945 Claspin. 
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Figure 4.18 Alanine scanning of the Claspin CKBD motif 

A: Sequence alignment of three Claspin Chk1-binding motifs. The alignment is coloured by 
conservation (threshold 30%) with the ClustalWS colouring scheme (Larkin et al., 2007). The 
phosphorylation site is marked with the red arrow. The sequence used for alanine scanning is 
marked with a red rectangle. B: Pull-down assays for the 15 alanine mutant constructs, 
analysed by SDS-PAGE. I: immobilised input, B: beads sample after pull-down assays. 

 

The disruptive effect of the F948A mutation on the interaction between Claspin and 

Chk1KD was confirmed by Biolayer interferometry (Figure 4.19). To test if the 

F948A mutation had altered the structure of the Claspin CKBD, circular dichroism 
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(CD) experiments were performed to compare the putative secondary structure of the 

wild-type and F948A Claspin constructs. CD measures the difference between the 

absorption of right and left circularly polarised light at a wavelength range of 190 and 

260 nm. a-helices, β-strand and the random coil have different CD spectra, thus 

providing insight into the secondary structure content of a protein sample. Wild-type 

(pS945Claspin884-992-8xHis-Avi) and F948A (pS945Claspin884-992F948A-8xHis-Avi) 

Claspin polypeptide samples at a concentration of 0.5 mg/ml was analysed on circular 

dichroism spectroscopy in triplicate. Data was smoothed and buffer-subtracted. CD 

spectra showed a strong negative signal near 200 nm and weak negative signal above 

210 nm for both samples, indicating neither wild-type Claspin nor F948A constructs 

had significant degrees of secondary structure (Figure 4.19). 

 

Figure 4.19 Biophysical studies on pS945Claspin884-992F948A-8xHis-Avi 

A: Binding curves of ClaspinF948A and Chk1KD acquired from Bio-layer Interferometry. 
Association (0-60 min) and dissociation step (60-240 min) of ClaspinF948A (ligand) and 
Chk1KD (analyte) kinetics study was shown. The association signal showed no binding 
between the ligand and the analyte. B: CD spectrometry was applied on ClaspinF948A and 
ClaspinWT. Machine units were plotted versus wavelength. No secondary structure was 
observed for either constructs. 
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4.1.7 Binding affinity determination between Claspin motif and Chk1  

A Fluorescein-labelled phosphoserine Claspin936-951 peptide of sequence: 

NMEELLNLCSGKFTSQ (phosphorylated serine is underlined) was used in 

fluorescence polarization assays, to determine the binding affinity towards Chk1. 

Anisotropy data for Chk1KD and Chk1FL binding experiments were fitted to 1:1 

binding model, yielding a Kd of 0.18 (Δ=0.01) and 0.16 (Δ=0.003) µM respectively 

(Figure 4.20), in agreement with the result of the previous measurements. As a control, 

dephosphorylation of the Claspin peptide was performed by incubation with λ 

phosphatase and confirmed by mass spectrometry (Figure 4.20). Anisotropy signal 

indicates that dephosphorylation of Claspin peptide abolished binding with both Chk1 

constructs thus confirming that phosphorylation of S945 of the Claspin peptide is 

essential to binding.  
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Figure 4.20 Chk1 titration to Claspin peptide using fluorescence polarisation assays  

A: MALDI-TOF mass spectrometry showed a major peak at 2172.87 m/z which corresponded 
to a fluorescein attached Claspin peptide without phosphorylation, indicating the 
dephosphorylation treatment was successful. Mass spectrometry analysis was performed by 
Dr Len Packman from at the Protein and Nucleic Acid Analysis Facility at the University of 
Cambridge. Chk1KD (B) and Chk1FL (C) titration to fluorescein-labelled Claspin peptide 
was performed and anisotropy signal was collected by Pherastar. Both phosphorylated and 
dephosphorylated Claspin peptide was used at concentration of 10 nM in each assay.  
 

4.1.8 Effect of Claspin binding on Chk1 activity 

To check the effect of the interaction with Claspin on Chk1 kinase activity, a 

Claspin936-951 peptide phosphorylated at S945 (NMEELLNLCSGKFTSQ) was titrated 

in Chk1KD and Chk1FL kinase assays. Endpoint sampling was performed at a range 

of 0-5 and 10-15 min for Chk1KD and Chk1FL respectively. Reactions were 

performed with either no pClaspin peptide or with pClaspin peptide at a concentration 

of 12, 60, 120, 240, 600 and 1200 µM (Figure 4.21).  

 

Figure 4.21 Effect of phosphorylated Claspin peptide on Chk1 activity 

Initial-rate measurements of Cdc25C peptide phosphorylation by Chk1KD (blue) and Chk1FL 
(red) were plotted against Claspin peptide concentration. Addition of the phosphorylated 
Claspin peptide at different concentrations resulted in higher substrate phosphorylation than 
the reaction without the presence of the Claspin peptide. 
 

Addition of pClaspin peptide at all tested concentration in reaction increased the 

activity of both Chk1KD and Chk1FL constructs. Intriguingly, kinase activity in the 
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Chk1KD reaction decreased when the concentration of Claspin peptide exceeded 240 

µM, suggesting an inhibitory effect on Chk1KD activity. Conversely, the activity of 

Chk1FL increased during Claspin peptide titration.  
 

4.1.9 Attempts towards co-crystallization of Chk1KD and 

phospho-Claspin peptide 

Co-crystallization of Chk1KD and the phosphorylated Claspin peptide 

(NMEELLNLCSGKFTSQ) was attempted to acquire structural information on 

Chk1-Claspin interaction. Crystals were grown (Materials and methods 4.3.19) and 

analysed by X-ray diffraction. Although the resolution remained at the same level as 

for the native unliganded Chk1KD crystals, no Claspin peptide was detected in the 

electron density map. A second approach to crystallising a Chk1KD-Claspin CKBD 

complex was therefore adopted. Native wild-type Chk1KD crystals were grown using 

published conditions (Chen et al., 2000). The phosphorylated Claspin peptide was 

soaked into the Chk1KD crystals and the soaked crystals were analysed by X-ray 

diffraction. The resolution remained at the same level as for the native Chk1KD 

crystals but no Claspin peptide was detected in the electron density map. It is possible 

that the strong interactions between Chk1KD molecules driving growth of the crystal 

lattice might disrupt the binding of Chk1KD to the Claspin peptide. I therefore 

attempted to disrupt Chk1KD crystal growth by mutating amino acid P268, which is 

involved in a crystal contact in the lattice of Chk1KD crystal. The mutant of 

Chk1KDP268S was expressed in Sf9 and the construct was purified using the same 

purification protocol as Chk1KDWT. The mutant retained normal binding affinity to 

Claspin which was verified by FP (Kd of 121 µM), but unfortunately failed to 

co-crystallise with the Claspin peptide. 
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4.2 Discussion 

This chapter describes the characterisation of the interaction of Chk1 with the Claspin 

CKBD. How Claspin recruits Chk1 to the replisome and how Claspin binding affects 

Chk1 function at the fork is unclear. The amber codon suppression approach was used 

to produce three Claspin CKBD proteins, each mono-phosphorylated at one of the 

three Chk1-binding motifs, and measured their interaction with Chk1KD and Chk1FL 

using qualitative and quantitative methods. 

 

The mono-phosphorylated versions of the Claspin CKBD bind Chk1 with similar 

sub-micromolar affinities, in the range of 90 to 289 nM. Thus, no large differences in 

the strength of the measured Claspin-Chk1 interaction exist among the three repeats, 

even if the third repeat is considerably less well conserved than the first two. 

Furthermore, no large difference in affinity towards Claspin was measured between 

Chk1KD and Chk1FL, indicating that the postulated intramolecular interaction 

between the kinase and regulatory domains does not interfere or negatively impact the 

association with Claspin. 

 

ATR phosphorylation at S317 and S345 is a well-characterised step in Chk1 activation.  

However, whether Chk1 phosphorylation by ATR affects Claspin binding is not clear. 

Furthermore, an ATR consensus SQ sequence is conserved within all the three motifs 

in the CKBD of Claspin (Figure 4.1). In my in vitro experiments, none of the kinases 

reported in the literature to be responsible for Claspin phosphorylation were able to 

phosphorylate the Claspin CKBD. It is possible to speculate that the phosphorylation 

of the Claspin CKBD leading to Chk1 recruitment might result from a series of 

phosphorylation events, whereby ATR phosphorylates Claspin on its SQ sequence 

thus generating an interaction platform for another kinase to conduct the 

phosphorylation that is required to Chk1 binding.  

 

A peculiar feature of the Claspin-Chk1 interaction is the presence of a tandem repeat 
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of three contiguous Chk1-binding motifs in Claspin. Although no evidence is 

available concerning their function, my work has shown that they can all bind Chk1; 

it is possible that variable degrees of occupancy of the Claspin CKBD might reflect 

different levels of Chk1 signalling during the replication stress response. It is further 

possible that adjacent Clapsin-bound Chk1 molecules could undergo homotypic 

regulatory interactions. These hypotheses could be verified by a direct structural 

determination on the complex or by measuring binding kinetics between 

phosphorylated Claspin with Chk1. Unfortunately, it was not possible to study the 

interaction of Chk1 with di- or tri-phosphorylated Claspin CKBD, due to the 

limitation of the amber suppressor codon method which led to severely reduced 

expression yields and inhomogeneity of the di- and tri-phosphorylated proteins. 

 

Alanine scanning mutagenesis of Claspin’s Chk1-binding motif showed that only one 

Claspin amino acid in addition to the phosphoserine residue, phenylalanine at position 

+3, is critical for binding Chk1. This is a surprising observation, given that the 

sequence conservation of the Chk1-binding motif extends beyond the phosphoserine 

and encompasses several other flanking amino acids (Figure 4.1). One possible 

explanation is that the motif may recruit other protein co-factors, which might be 

required for Chk1 activation, Claspin phosphorylation or some other unknown 

function. 

 

Chk1 activity is improved in the presence of phosphorylated Claspin936-951 peptide. 

One assumption on the Chk1 activation mechanism based on this result is that the 

Claspin peptide bind to Chk1 which leads to a conformational change making Chk1 

more active. In this assumption, the Claspin peptide is supposed to remain the 

interaction with Chk1 to maintain the active form of Chk1. Another assumption is that 

the Claspin peptide elevated the level of Chk1 autophosphorylation which could lead 

to a conformational change contributing to higher kinase activity. More repeats and 

experiments are required to fully explain the effect of Claspin on Chk1 kinetic 

activity. 
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4.3 Materials and Methods 

4.3.1 Generation and expression of Claspin constructs in Rosetta 2 (DE3) 

IMAGE Claspin cDNA was used for the cloning of Claspin850-992 and Claspin884-992. 

Claspin850-992 sequence was amplified by Claspin850-f and Claspin850-r primers 

(Appendix A) to create EcoRI and XhoI restriction sites. Claspin884-992 sequence was 

amplified by Claspin884-f and Claspin850-r primers (Appendix A) to create the same 

restriction sites for insertion in to pMAT11 vector. The amplified sequence was 

verified on a 1% agarose gel and target band was cut and extracted using geneJET gel 

extraction kit (Thermo Scientific). Double digest using EcoRI and XhoI restriction 

enzymes was applied to the two Claspin PCR product and pMAT11 vector. The DNA 

product verification, gel extraction, ligation and transformation steps were the same as 

described in 2.3.1. Cells were plated on an agar plate containing 100 µg/mL ampicillin 

and incubated at 37°C overnight. 4 ml culture of single colony was grown and 

plasmid was extracted using plasmid miniprep kit (Thermo Scientific) and sequence 

was verified using Department of Biochemistry DNA Sequencing Facility. 100 ng 

plasmid was transformed to 20 µl Rosetta 2 (DE3) E.coli (Novagen). Transformed 

cells were incubated on ice for 30 min followed by a heat-shock at 42°C for 45 s. 

Cells were incubated on ice for 10 min and 700 µl LB medium was added to cells 

followed by an 1 h incubation at 37°C with shaking at 220 rpm. After recovery, cells 

were plated on a LB-agar plate containing 100 µg/mL ampicillin and 35 µg/mL 

chloramphenicol. Single colony was picked after 24 h incubation at 37 °C and was 

inoculated to 100 ml LB medium containing 100 µg/mL ampicillin and 35 µg/mL 

chloramphenicol for overnight culture at 37°C with shaking at a speed of 220 rpm. 10 

ml overnight culture was inoculated to 1 L 2xYT culture containing 100 µg/mL 

ampicillin and 35 µg/mL chloramphenicol. Cells were incubated at 37°C with shaking 

at a speed of 220 rpm until OD reached 0.6 to 0.8 and were induced with 1 mM IPTG. 

Incubation temperature was lowered to 20 °C and cells were grown overnight.	

 



	 127	

4.3.2 Purification of Claspin constructs expressed in Rosetta 2 (DE3) 

Cells were harvested by centrifugation at 4000 g for 10 mins (Beckman Coulter, JLA 

8.1000). Pellet from 1 L growth culture was re-suspended in 15 ml re-suspension 

buffer (50 mM Hepes pH 7.5, 300 mM NaCl, 1 mM TCEP and 1 EDTA-free protease 

inhibitor cocktails tablet). Cell pellet re-suspension was sonicated at 25% cycle and 

50% power for 3 mins. Lysate was centrifuged at 35000 g and 4 °C for 1 h. 

Supernatant was collected and loaded onto gravity flow Ni-NTA agarose column. The 

column was washed twice with 20 ml wash buffer (25 mM Hepes pH 7.5, 300 mM 

NaCl, 20 mM imidazole, 0.05 % Triton-X100 and 1 mM TCEP). Step wash was 

performed on the column with wash buffer containing 40 mM and 300 mM imidazole. 

Elution from the 300 mM imidazole wash was loaded onto a Superdex200 and 16/60 

gel filtration column (GE Healthcare). The column was pre-equilibrated and the 

experiment was performed in the gel filtration buffer (25 mM Hepes pH 7.5, 300 mM 

NaCl and 2 mM DTT). Elution samples were analysed on a 12% acrylamide 

SDS-PAGE gel and fractions containing target protein were collected and 

concentrated. 5-10% glycerol was added to protein sample and protein aliquots were 

flash frozen using liquid nitrogen and stored at -80 °C. 
	

4.3.3 Generation of Claspin3T/SE construct 

T916E, S945E and S982E mutagenesis was generated on pMAT11-Claspin884-992 

template by site-directed mutagenesis (QuickChange, Stratagene). Primers 

ClaspinT916E-f and ClaspinT916E-r, ClaspinS945E-f and ClaspinS945E-r, 

ClaspinS982E-f and ClaspinS982E-r were used to generate the mutation (Appendix 

A).  

	

4.3.4 Generation of pMBAT4 vector 

A sequence of MBP tag and TEV cleavage sequence was inserted into pBAT4 vector 
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(Peränen et al., 1996) using NcoI and EcoRI restriction sites. The MBP and the 

following TEV cleavage sequence from pMAT11 vector was amplified using primers 

MBP-f and MBP-r (Appendix A). The amplified MBP-TEV PCR product and pBAT4 

vector were treated with NcoI and EcoRI restriction enzymes and were ligated to 

produce pMBAT4 vector containing an upstream sequence of MBP tag and TEV 

cleavage site. Several restriction sites remained succeeding the inserted sequence and 

can be used for insertions. 

 

4.3.5 Generation of MBP-Claspin884-992-8xHis constructs  

Claspin884-992 construct with a C-terminal 8xHis tag was created using Claspin884S-f 

and Claspin992X-r primers (Appendix A) based on IMAGE Claspin cDNA sequence. 

The amplified sequence was inserted into the pMBAT4 vector using SalI and XhoI 

restriction sites.  

 

4.3.6 Generation and expression of MBP-Claspin884-992-8xHis amber 

codon suppression constructs 

T916Amber codon and S945Amber codon mutagenesis were introduced to 

pMBAT4-Claspin884-992-8xHis template using primers ClaspinT916Am-f and 

ClaspinT916Am-r, ClaspinS945Am-f and ClaspinS945Am-r (Appendix A) by 

site-directed mutagenesis (QuickChange, Stratagene). S982Amber codon mutagenesis 

was created by a two-step PCR. The first half of the insertion was amplified using 

primers Claspin884S-f and ClaspinS982Am-r. The second half of the insertion was 

amplified using primers ClaspinS982Am-f and Claspin992X-r (Appendix A). An 

overlapping region spanning S982Amber codon was created between the two PCR 

product which was annealed and amplified using primers Claspin884S-f and 

Claspin992X-r. The final PCR product was inserted into pMBAT4 vector using 

restriction enzymes SalI and XhoI. 100 ng recombinant plasmid was transformed to 
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50 µl BL21 (DE3)ΔSerB and the transformation procedure was the same as described 

in 4.3.1. Cells grown in 1 L 2xYT medium were induced with 1 mM IPTG and 2 mM 

O-Phospho-L-serine (Sigma Aldrich) and cells were incubated at 37 °C for 4 h. 

 

4.3.7 Generation of MBP-Claspin884-992-8xHis-Avi constructs 

The MBP-Claspin884-992-8xHis sequence was amplified using Claspin884S-f and 

ClaspinAvi-r (Appendix A) from pMBAT4-MBP-Claspin884-992-8xHis template. An 

C-terminal Avi tag sequence was created and the amplified PCR product was inserted 

to pMBAT4 vector using restriction enzymes SalI and HindIII. 

 

4.3.8 Generation of MBP-pS945Claspin884-992-8xHis-Avi alanine scanning 

constructs 

N936A, M937A, E938A, E939A, L940A, L941A, N942A, L943A, C944A, G946A, 

K947A, F948A, T949A, S950A and Q951A mutagenesis was introduced on template 

MBP-pS945Claspin884-992-8xHis-Avi. Primers used are listed below: 

N936A: ClaspinN936A-f/ClaspinN936A-r C944A: ClaspinC944A-f/ClaspinC944A-r 

M937A: ClaspinM937A-f/ClaspinM937A-r G946A: ClaspinG946A-f/ClaspinG946A-r 

E938A: ClaspinE938A-f/ClaspinE938A-r K947A: ClaspinK947A-f/ClaspinK947A-r 

E939A: ClaspinE939A-f/ClaspinE939A-r F948A: ClaspinF948A-f/ClaspinF948A-r 

L940A: ClaspinL940A-f/ClaspinL940A-r T949A: ClaspinT949A-f/ClaspinT949A-r 

L941A: ClaspinL941A-f/ClaspinL941A-r S950A: ClaspinS950A-f/ClaspinS950A-r 

N942A: ClaspinN942A-f/ClaspinN942A-r Q951A: ClaspinQ951A-f/ClaspinQ951A-r 

L943A: ClaspinL943A-f/ClaspinL943A-r  

 

4.3.9 Generation of Strep-SUMO-Claspin884-992-8xHis constructs 

A SUMO tag sequence followed by a TEV cleavage sequence was amplified using 
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primers SUMO-f and SUMO-r (Appendix A) from pRSFDuet vector (Novagen). The 

amplified sequence was inserted to pMBAT4 vector using restriction enzyme NcoI. 

The SUMO-Claspin884-992 sequence was amplified using primers Strep-f and 

Claspin992X-r (Appendix A). An N-terminal Strep tag was created upstream of the 

amplified insertion and the PCR product was inserted into pMBAT4 using restriction 

enzymes EcoRI and XhoI.   

 

4.3.10 Purification of Claspin constructs expressed in amber codon 

suppression system 

Cells were harvested by centrifugation at 4000 g for 10 mins (Beckman Coulter, JLA 

8.1000). Pellet from 1 L growth culture was re-suspended in 15 ml re-suspension 

buffer (50 mM Hepes pH 7.5, 300 mM NaCl, 1 mM TCEP, 10 mM NaF, 1 mM 

β-glycerolphosphate and 1 EDTA-free protease inhibitor cocktails tablet). Cell pellet 

re-suspension was sonicated at 25% cycle and 50% power for 3 mins. Lysate was 

centrifuged at 35000 g and 4 °C for 1 h. Supernatant was collected and loaded onto 

gravity flow Ni-NTA agarose column. The column was washed twice with 20 ml 

wash buffer (25 mM Hepes pH 7.5, 300 mM NaCl, 10mM NaF, 20 mM imidazole, 

0.05 % Triton-X100 and 1 mM TCEP). Step wash was performed on the column with 

wash buffer containing 40 mM and 300 mM imidazole. Elution from the 300 mM 

imidazole wash was loaded onto a Superdex75 16/60 gel filtration column (GE 

Healthcare). The column was pre-equilibrated and the experiment was performed in 

the gel filtration buffer (25 mM Hepes pH 7.5, 300 mM NaCl, 10 mM NaF and 2 mM 

DTT). Elution samples were analysed on a 12% acrylamide SDS-PAGE gel and 

fractions containing target protein were collected and concentrated. 5-10% glycerol 

was added to protein sample and protein aliquots were flash frozen using liquid 

nitrogen and stored at -80 °C. 
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4.3.11 Pull-down assays between Claspin and Chk1 constructs 

0.6 mg MBP-Claspin884-992-8xHis constructs and 0.6 mg 

Strep-SUMO-Claspin884-992-8xHis constructs were immobilised on 70 µl amylose 

resin or 80 µl StrepTactin resin respectively. Claspin constructs were incubated with 

the resin in a rolling motion at 4 °C for 30 min. Samples in Eppendorf tubes were 

spun down at 14kg at 4 °C for 2 mins. Supernatant was removed and resin was 

washed three times with 1 ml wash buffer (25 mM Hepes pH 7.5, 150 mM NaCl, 5 % 

glycerol, 0.1 % Igpal and 5 mM DTT). Resin was re-suspended with the volume of 

wash buffer and 20 µl of the mixture was taken as an "input" sample. 0.3 mg Chk1KD 

or 0.5 mg Chk1FL in 500 µl wash buffer was applied to corresponding Claspin 

constructs and the samples were incubated in a rolling motion at 4 °C for 1 h. 

Supernatant was removed and resin was washed three times with 1 ml wash buffer. 

Resin was re-suspended with the volume of wash buffer and 20 µl of the mixture was 

taken as an "beads" sample. Pull-down assays between other MBP tagged Claspin 

constructs (6xHis-MBP-Claspin884-992, MBP-pS945Claspin884-992-8xHis alanine 

scanning and 6xHis-MBP-Claspin884-992-3T/SE) and Chk1KD in Chapter 4 were 

performed in the same procedure described in this section. 

 

4.3.12 Generation, expression and purification of CK1γ143-352 

IMAGE Casein kinase 1γ1 cDNA was used for the cloning of CK1γ143-352. 

CK1γ143-352 sequence was amplified by CK45-f and CK352-r primers (Appendix A) to 

create EcoRI and HindIII restriction sites. The PCR product was inserted to pGAT11 

vector (Peränen et al., 1996) using the two restriction sites. The ligation, 

transformation to Rosetta cells and expression procedure was the same as described in 

4.3.1. Cell harvest, sonication and centrifugation procedure was the same as described 

in 4.3.2. Soluble fraction was applied onto gravity flow Ni-NTA agarose (Qiagen) 

column. The column was washed three times with 20 ml wash buffer (20 mM Tris pH 

7.5, 150 mM NaCl and 20 mM imidazole). Sample was elution in 300 mM imidazole. 
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The elution was diluted to achieve 100 mM NaCl and was applied onto a Hitrap Q 

ion-exchange column (GE Healthcare). Protein was eluted along NaCl gradient wash 

(buffer A: 20 mM Tris pH 7.5, buffer B: 20 mM Tris pH 7.5 and 1 M NaCl). Fractions 

containing GST-CK45-352 was concentrated and loaded onto a Superdex200 and 16/60 

gel filtration column (GE Healthcare). The column was pre-equilibrated and the 

experiment was performed in the gel filtration buffer (20 mM Tris pH 7.5 and 150 

mM NaCl). Elution samples were analysed on a 12% acrylamide SDS-PAGE gel and 

fractions containing target protein were collected and concentrated. 5-10% glycerol 

was added to protein sample and protein aliquots were flash frozen using liquid 

nitrogen and stored at -80 °C. 

 

4.3.13 Kinase activity and substrate specificity test of CK1γ143-352 and 

Cdc7∆1-36/Dbf4 

40 µl kinase assay reaction was set up with a final concentration of 21 µM 

CK1γ143-352 or 5.3 µM Cdc7∆1-36/Dbf4, 34.8 or 52.3 µM 

6xHis-MBP-Claspin/6xHis-MBP3T/SE-Claspin and 100 µM ATP. Reaction was 

incubated at 30 °C for 1 h. 5 µl reaction was added to 5 µl loading dye mix (4x 

loading dye, 0.5M EDTA and reducing agent was mixed at a volume ratio of 1:1:1) 

and the sample was boiled at 80 °C for 5 min. Sample was analysed by SDS-PAGE 

and exposed to storage phosphor screen (GE Healthcare). Incorporation signal was 

scanned on Typhoon FLA 9500 (GE Healthcare). 

 

4.3.14 Western blotting 

The bands from SDS-PAGE gel were transferred onto a nitrocellulose membrane 

(Thermo Scientific). The membrane was blocked with 4% milk PBST for 2 h at room 

temperature. The membrane was then incubated in Streptavidin-AP conjugate (1 in 

2000 dilution, Sigma Aldrich) for 2 h at room temperature. Membrane was washed 
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with 15 ml of 2% milk PBST for 5 minutes for 3 times. The membrane was soaked in 

BCIP solution (Sigma Aldrich) until the bands were shown on the membrane. 

 

4.3.15 Bio-layer interferometry studies on Claspin and Chk1 constructs 

using ForteBio Octet 

Ligand scouting was performed to determine the ligand concentration used in binding 

studies. Claspin884-992-8xHis-Avi construct was used as a ligand which was attached to 

Dip and Read™ Streptavidin (SA) Biosensors (ForteBio). Two columns of 

8-biosensors were used in each experiment with one column for reference biosensors 

and the other one for experiment biosensors. Experiment procedure was programmed 

using Octet Data Acquisition software (ForteBio). An initial wash step was performed 

for 60 s in the wells only containing binding buffer (25 mM Hepes pH 7.5, 150 mM 

NaCl, 0.1 mg/ml BSA, 0.005 % Tween-20 and 0.1 mM TCEP). The second step was a 

120s-loading step where the biosensors dipped into wells with Claspin peptide at a 

concentration of 5-300 nM. It was followed by a 60s-wash step in binding buffer and 

a 60s-baseline step in fresh binding buffer. The ligand biosensors were dipped into 

analyte (1 µM Chk1KD) wells for a 120s-association which was followed by a 

60s-dissociation step performed in the baseline well. Instead of loading ligand in the 

ligand wells, the reference biosensors were dipped in the second wash wells during 

the loading step so no Claspin peptide was attached to the reference biosensors. 20-30 

nM ligand concentration contributed to a signal of 0.2-0.4 nm and was selected for 

ligand immobilization condition in binding assays. The procedure of the binding 

kinetics study was the same with the ligand scouting procedure except the ligand 

concentration in all loading wells was at a fixed 20-30 nM and the analyte (Chk1KD 

or Chk1FL) was at a concentration of 3-500 nM. Binding kinetics data was analysed 

using Octet Data Analysis software (ForteBio). Data processing includes 

double-reference subtraction, aligning Y axis to baseline, aligning to dissociation in 

inter-step correction and Savitzky-Golay filtering. Association and dissociation steps 
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were selected for analysis and data was fitted in to a 1:1 model using local and partial 

fitting. Averaged kon and koff were extracted from the 3 or 4 selected fitted binding 

curves and the errors of these parameters were generated from the standard deviation. 

The dissociation constant Kd was generated from koff/kon and the error was produced 

by the error propagation analysis: 𝛥𝐾𝑑 = 𝐾𝑑 (?7JK
7JK

)F + (?7JLL
7JLL

)F 

 

4.3.16 Circular dichroism analysis for pS945Claspin884-992-8xHis-Avi 

constructs 

pS945Claspin884-992-8xHis-Avi and pS945Claspin884-992-F948A-8xHis-Avi was buffer 

exchanged into experiment buffer (10 mM phosphate pH 7.5 and 150 mM NaF) using 

PD10 columns (GE Healthcare). The CD spectrum from 190 nm to 260 nm at 0.5 nm 

increment (Aviv 400 spectrometer) for 0.5 mg/ml Claspin constructs was measured in 

a 1 mm path-length cuvette at 25°C. Buffer subtraction and curve smoothing were 

applied during data analysis. 

 

4.3.17 Fluorescence polarization assay for Claspin peptide and Chk1 

constructs 

Series dillutions (100 nM to 5 nM) of fluorescence-labelled Claspin peptide (5&6Flu- 

NMEELLNLCSGKFTSQ, Cambridge Peptides, phosphorylated serine was 

underlined) were made in reaction buffer (25 mM Hepes pH 7.5, 150 mM NaCl, 

0.005 % Tween-20 and 5 mM DTT) and added to a 96-well assay plate (Corning) to 

measure the lowest concentration of the Claspin peptide which produced liable 

anisotropy measurement from fluorescence background. 10 nM was selected as 

experimental concentration for fluorescence polarization assay. 30 nM free 

fluorescein was used as a reference for 35 mP. Series dillutions of receptor proteins (2 

nM to 5 µM for Chk1KD and 20 nM to 3 µM for Chk1FL) were made and mixed 

with 10 nM Claspin peptide. Anisotropy of each well was measured on PHERAStar 
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(BMG Labtech). Each experiment was performed in triplicate and data was plotted 

and fitted in Pro Fit software (http://quansoft.com) using the binding model based on 

the equation: 

𝑟 = 𝑟N +
(O)*+POQ)RS

-T.RS
  

r: anisotropy; r0: anisotropy of free Claspin peptide; rmax: maximal anisotropy reached 

in the system; Kd: dissociate constant; C: Chk1KD or Chk1FL concetration in 

micromolar; n: number of binding sites (set to 1 in this experiment). 

 

4.3.18 Kinase assays of Chk1 constructs in the presence of pClaspin 

peptide 

50 µl reaction containing 120 µM Cdc25C peptide, 1 mM ATP, 12, 60, 120, 240, 600 

or 1200µM phosphorylated Claspin peptide (NMEELLNLCSGKFTSQ, 

phosphorylated serine is underlined) and 0.05 µM Chk1KD or 0.5 µM Chk1FL was 

performed in reaction buffer. Assay procedure was described in 3.3.8.  

 

4.3.19 Crystallization trials of Chk1 and Claspin peptide 

A sitting drop crystal tray for Chk1KD was set up with precipitant and buffer scales 

designed according to a published condition (Chen et al., 2000). Crystals were 

produced in two conditions (7% or 11% PEG8000, 0.1 M Ammonium sulphate, 0.1 M 

Sodium cacodylate and 2% glycerol). 0.2 µl fluorescein labelled phosphorylated 

Claspin peptide at a concentration of 0.7 to 4.8 mM were soaked into Chk1KD 

crystals. Chk1KD crystals did not crack after 24 h. The crystals were briefly soaked in 

reservoir buffer containing 25 % glycerol and were mounted into cryo-loops 

(Hampton Research). X-ray diffraction data was collected for one crystal and the 

resolution reached 1.8 Å (Diamond light source, I03). An electron density map was 

obtained by molecular replacement in Phenix software using Chk1KD (PDB 

accession code 1IA8) as a search model. The Claspin peptide was not observed in the 
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density map. 

 

Co-crystallization trials for 200-240 µM Chk1KD and un-labelled phosphorylated 

Claspin peptide were performed at a molar ratio of 1:1.5 and 1:3 on screening plates: 

JCSG+, PACT, Morpheus, Classics, PEGSI, PEGSII, Protein Complex (Qiagen), 

Wizard I&II. Clusters of needle-shaped crystals were produced in reservoir condition 

of 0.1 M PCPT pH 8 or pH 9 and 25 % w/v PEG 1500. Optimization was performed 

and plate-shaped crystals were produced in conditions of 0.1 M PCPT pH 7.5-9, 

25-30 % PEG 1500 and 0.2 M LiNO3. Crystals were briefly soaked in buffer 

containing corresponding reservoir buffer and 30 % glycerol and were mounted in 

cryo-loops. X-ray diffraction data was collected and the resolution reached 1.8 Å 

(Diamond light source, I04). An electron density map was obtained by molecular 

replacement in Phenix software using Chk1KD (PDB accession code 1IA8) as a 

search model. The Claspin peptide was not observed in the density map. 

 

180 µM Chk1KDP268S in complex with phosphorylated Claspin peptide at molar ratios 

of 1:1.5 and 1:3 was applied on screening plates PEGSI, PEGSII, PACT and 

Morpheus using the protocol described in 2.3.9. No hit was produced in the conditions 

tested. 
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CHAPTER 5 DISCUSSION AND FUTURE DIRECTIONS 
The work in this thesis showed that Chk1KD was about two orders of magnitude 

more efficient in ATP turnover than Chk1FL and therefore ATP turnover is speculated 

to be the rate-limiting step in Chk1 kinase assay. A tight binding between Chk1KD 

and Chk1RD was observed though no structural information on this intramolecular 

interaction was available. Critical residues responsible to Chk1RD binding were 

firstly identified in this thesis based on HDX and kinase assay studies. The two 

glutamate residues on the N-terminal glycine-rich loop on Chk1KD are proposed to 

bind to Chk1RD through electrostatic interaction. A glycine-rich loop (GxGxxG) is a 

conserved feature on a kinase catalytic domain and it is responsible to ATP 

positioning (Figure 5.1). Combining to the evidence collected in this thesis, a 

preliminary auto-inhibitory model can be depicted: Chk1RD interacts with the 

glycine-loop on Chk1KD through electrostatic interaction and inhibits kinase activity 

through interrupting ATP binding. Additional structural information will shed light on 

completion of this Chk1 activity regulation model. Structural analysis on Chk1FL can 

be achieved through study in complex with other binding partners which have a role 

in stabilising the flexible linker on Chk1FL. 

 

(Caption on next page) 



	 138	

Figure 5.1 Chk1KD structure in complex with UCN-01 (PDB#1NVQ) highlighting 

the positioning of the glycine-rich loop and the ATP-binding pocket 

The glycine-rich loop (in red) is on the N-terminal lobe which stabilises ATP binding. 
ATP-binding pocket is occupied by UCN-01, a Chk1 inhibitor, which is shown in cyan. The 
putative Chk1RD-interacting glutamate residues (E17 and E22) locates in the glycine-rich 
loop and present on the surface of Chk1KD. The catalytic loop (R129-N135) and the 
activation loop (D148-T170) are shown in yellow and green respectively. The figure was 
generated in Chimera (Pettersen et al., 2004). 

 

The aim of in vitro studies is always to understand an in vivo mechanism. Upon 

checkpoint activation, in vivo Chk1 activation is performed by ATR, although the 

molecular mechanism is still elusive. Kinetic studies on ATR phosphorylated Chk1 

will shed light on interpretation of in vivo Chk1 activation mechanism by comparing 

it with Chk1KD and Chk1FL, the two extreme forms of Chk1 in terms of activity. 

Kinetic parameters including ATP and substrate binding affinity will help understand 

the Chk1 catalysis mechanism. Moreover, a dynamic catalysis mechanism can be 

depicted which will shed light on selective drug development. 

 

The work in this thesis revealed critical residues on Chk1-binding in a sequence of 

T/S*xxF (* indicates a phosphorylation site, x indicates any residue). Claspin contains 

three of these tandem motifs and each of them contributes to the same level of binding 

to Chk1. The number of the conserved motifs varies among species which generates a 

question on why human Claspin adopts three motifs. When all the motifs are 

phosphorylated, structural information on Claspin in complex with Chk1 can be 

analysed by cryo-EM and the result should provide information on whether Claspin 

forms a platform to recruit one Chk1 molecule on each of the tandem Chk1-binding 

motif. Whether binding to Claspin leads to conformational change and to what extent 

can be learnt from a high-resolution structure. Given that no kinase was found to be 

responsible to Claspin phosphorylation on its Chk1-binding motifs in vitro, it is 

speculated that the Claspin phosphorylation process stimulated by checkpoint 

activation is a consequence of a series of post-translational events in vivo. This should 
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be taken into consideration when investigating the upstream kinase of Claspin's 

Chk1-binding motifs.  

 

This thesis also provides insight into Claspin's function on Chk1 activation. An 

increase of Chk1 activity was observed in the presence of a phosphorylated Claspin 

peptide spanning the region of one Chk1-binding motif, although the Chk1 upstream 

kinase ATR was in absence. It provides evidence for a Chk1 activation model that 

binding to Claspin leads to an activating conformational change on Chk1 which 

provides structural basis for ATR phosphorylation. The active status of Chk1 is further 

stabilised after phosphorylation at 317 and 345. Further analyses include Chk1 kinetic 

studies in the presence of Claspin peptide and structural determination of the 

Chk1-Claspin peptide complex should be performed to explain the increased Chk1 

activity and to reveal the potential conformational change. The result will shed light 

on a dynamic Chk1 activation model from an atomic-level.   

 

Cancer cell generates excessive amount of replication stress during proliferation and it 

relies on DDR, especially ATR/Chk1 pathway, to survive. Chk1 is thus rendered as an 

important target of cancer therapy. A number of Chk1 inhibitors have been developed 

and some of them have entered early stage of clinical trials. This conventional strategy, 

however, generates excessive toxicity which is detrimental to cancer cells as well 

normal cells. A novel therapy targeting a constitutively active Chk1 may avoid this 

side effect. Chk1 activator can be generated based on the Chk1 activation model and 

it will block cancer cell proliferation by constitutively inhibiting cell cycle 

progression. This novel therapy does not require toxic reagents like chemotherapy and 

its' application will be a milder choice for cancer therapy comparing to Chk1 

inhibitors.  
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APPENDIX A 
Primer Sequence 
Chk1KD-f agtctagcggccgcatggcagtgccctttgtggaagac 
pUC/M13-f cccagtcacgacgttgtaaaacg 
EcChk1Ntag-f agctgagcggccgcgccaccatgcatcaccatcaccatcaccatcacgaaaacctctacttccaag

gcatgccgaaatacgaattgcaag 
EcChk1Ctag-f agctgagcggccgcgccaccatgccgaaatacgaattgcaag 
Chk1FL2-f  agctgagcggccgcgccaccatgcatcaccatcaccatcaccatcacgaaaacctctacttccaag

gcatggcagtgccctttgt 
Chk1D130A-f  ggaataactcacagggccattaaaccagaaaatcttc 
Chk1TEV1-f  gtcgacgcggccgcatgcatcaccatcaccatcaccatcacatggcagtgccctttgtgg 
Chk1TEV2-f  cagagtctcccagtggagagaatctctactttcaattttctaagcacattc 
Cdc25C-f  tatagtccatggaaagatcaggaagccaaagtg 
Cdc25CS216A-f      ggcctgtaccgctctccagcgatgccagaaaatctcaacc 
Chk1S317E-f  tgtgaagtactccagtgaacagccagaaccccgcacaggt 
Chk1S345E-f  tggtacaagggatcagctttgaacagcccacatgtcctgat 
Chk1Δturn-f  ggagaagttcaacttgctacaggcggatccgtcgcagtgaagattgtagatatg 
Chk1E17T-f gggacttggtgcaaaccctgggaacaggtgcctatggagaagttc 
Chk1E22T-f caggtgcctatggaacagttcaacttgctg 
Chk1E32T/E33S-f  gtgaatagagtaacttcaacagcagtcgcagtgaag 
Claspin850-f  catgtagaattcaagacacttttcctaggagcagg 
Claspin884-f  gtcagagaattcaggaatcagtaccaagctttgaag 
ClaspinT916E-f  gagctgttggatttgtgtgagggaaagttcacatctcag 
ClaspinT945E-f  ggaacttctgaacctttgtgaaggaaaattcacttctcag 
ClaspinT982E-f  cacttgctctttgcgaaggctcttttcccacagac 
MBP-f  acgtgaccatggataaaatcgaagaaggtaaac 
Claspin884S-f  aactaggtcgacaggaatcagtaccaggctttgaag 
ClaspinT916Am-f  atgagctgttggatttgtgttagggaaagttcacatctca 
ClaspinT945Am-f aggaacttctgaacctttgttagggaaaattcacttctca 
ClaspinT982Am-f cacttgctctttgctagggctcttttcccacagac 
ClaspinN936A-f gaagagtgacaagaaagaggcgatggaggaacttctgaac 
ClaspinM937A-f gtgacaagaaagagaacgcggaggaacttctgaac 
ClaspinE938A-f caagaaagagaacatggcggaacttctgaacctttg 
ClaspinE939A-f gaaagagaacatggaggcgcttctgaacctttgttag 
ClaspinL940A-f gagaacatggaggaagcgctgaacctttgttagg 
ClaspinL941A-f gaacatggaggaacttgcgaacctttgttaggg 
ClaspinN942A-f gaacatggaggaacttctggcgctttgttagggaaaattc 
ClaspinL943A-f ggaggaacttctgaacgcgtgttagggaaaattcac 
ClaspinC944A-f ggaacttctgaaccttgcgtagggaaaattcacttc 
ClaspinG946A-f ctgaacctttgttaggcgaaattcacttctcagg 
ClaspinK947A-f ctgaacctttgttagggagcgttcacttctcaggatgc 
ClaspinF948A-f cctttgttagggaaaagcgacttctcaggatgcctc 



	 152	

ClaspinT949A-f ctttgttagggaaaattcgcgtctcaggatgcctccac 
ClaspinS950A-f gttagggaaaattcactgcgcaggatgcctccactc 
ClaspinQ951A-f gaaaattcacttctgcggatgcctccactc 
Strep-f atgctcgaattctctgcttggagccaccctcagtttgagaagatggatagtgctagcgaagtc 
CK45-f  tcgactgaattcatgagggttggcaagaagatagg 
Chk1KD-r gctagtaagcttttagtgatggtgatggtgatggtgatggccagagccttggaagtagaggttttctcc

actgggagactctgacac 
Chk1FL-r gctagtaagcttttagtgatggtgatggtgatggtgatggccagagccttggaagtagaggttttctgt

ggcaggaagccaaacc 
pUC/M13-r agcggataacaatttcacacagg 
EcChk1Ntag-r tcgtacaagctttcatatttcgttgtagagaatag 
EcChk1Ctag-r gctagtaagcttttagtgatggtgatggtgatggtgatggccagagccttggaagtagaggttttctatt

tcgttgtagagaatag 
Chk1FL2-r tcgtacaagctttcatgtggcaggaagccaaa 
Chk1D130A-r gaagattttctggtttaatggccctgtgagttattcc 
Chk1TEV1-r gtcataaagctttcactcatgccactcgatcttttgtgcctcaaatatgtcattgagtccactcgtgtttgt

ggcaggaagccaaacc 
Chk1TEV2-r gaatgtgcttagaaaattgaaagtagagattctctccactgggagactctg 
Cdc25C-r ttacagaagcttttacagacctttccggag 
Cdc25CS216A-r ggttgagattttctggcatcgctggagagcggtacaggcc 
Chk1S317E-r acctgtgcggggttctggctgttcactggagtacttcaca 
Chk1S345E-r atcaggacatgtgggctgttcaaagctgatcccttgtacca 
Chk1Δturn-r catatctacaatcttcactgcgacggatccgcctgtagcaagttgaacttctcc 
Chk1E17T-r gaacttctccataggcacctgttcccagggtttgcaccaagtccc 
Chk1E22T-r cagcaagttgaactgttccataggcacctg 
Chk1E32T/E32S-r cttcactgcgactgctgttgaagttactctattcac 
Claspin850-r gatcgactcgagttattcctcttccttgtctgtggg 
ClaspinAvi-r tcgactaagcttttattcatgccattcaattttctgcgcttcgaaaatgtcattcagtccactagtgttgtga

tggtgatggtgatggtgatggcc 
ClaspinT916E-r ctgagatgtgaactttccctcacacaaatccaacagctc 
ClaspinT945E-r ctgagaagtgaattttccttcacaaaggttcagaagttcc 
ClaspinT982E-r gtctgtgggaaaagagccttcgcaaagagcaagtg 
MBP-r gcagctgaattcggaaccctggaagtacag 
Claspin992X-r atgctaaagcttttagtgatggtgatggtgatggtgatggccagattcctcttccttgtctg 
ClaspinT916Am-r tgagatgtgaactttccctaacacaaatccaacagctcat 
ClaspinT945Am-r aggaacttctgaacctttgttagggaaaattcacttctca 
ClaspinT982Am-r gtctgtgggaaaagagccctagcaaagagcaagtg 
ClaspinN936A-r gttcagaagttcctccatcgcctctttcttgtcactcttc 
ClaspinM937A-r gttcagaagttcctccgcgttctctttcttgtcac 
ClaspinE938A-r caaaggttcagaagttccgccatgttctctttcttg 
ClaspinE939A-r ctaacaaaggttcagaagcgcctccatgttctctttc 
ClaspinL940A-r cctaacaaaggttcagcgcttcctccatgttctc 
ClaspinL941A-r ccctaacaaaggttcgcaagttcctccatgttc 
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ClaspinN942A-r gaattttccctaacaaagcgccagaagttcctccatgttc 
ClaspinL943A-r gtgaattttccctaacacgcgttcagaagttcctcc 
ClaspinC944A-r gaagtgaattttccctacgcaaggttcagaagttcc 
ClaspinG946A-r cctgagaagtgaatttcgcctaacaaaggttcag 
ClaspinK947A-r gcatcctgagaagtgaacgctccctaacaaaggttcag 
ClaspinF948A-r gaggcatcctgagaagtcgcttttccctaacaaagg 
ClaspinT949A-r gtggaggcatcctgagacgcgaattttccctaacaaag 
ClaspinS950A-r gagtggaggcatcctgcgcagtgaattttccctaac 
ClaspinQ951A-r gagtggaggcatccgcagaagtgaattttc 
CK352-r tgtcagaagctttcattctcgagttattgcag 

 


