
Shape optimization for thermoacoustic
instability

with an adjoint Helmholtz solver

Stefano Falco

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Jesus College August 2021





To my family





Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. I further
state that no substantial part of my thesis has already been submitted, or, is being concurrently
submitted for any such degree, diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and specified
in the text. This thesis contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Stefano Falco
August 2021





Acknowledgements

These three and a half years in Cambridge have been the most challenging so far. I have had to
learn a lot more about myself, and about thermoacoustics of course. A PhD is a long journey. It
requires hard work, a bit of luck and great people.

I cannot begin to express my thanks to my supervisor, Prof Matthew Juniper, who has given
me this opportunity. He has always been present and supportive despite my ‘slow but steady
progress’. He has been an invaluable guide every time I got stuck during my research.

I would also like to extend my deepest gratitude to my Master’s thesis supervisor, Prof
Flavio Giannetti, without whom I would never have thought of applying to Cambridge.

I also wish to thank Dr Laurent Gicquel for hosting me at CERFACS during my secondment.
Many thanks to my ISO-40 friends-and-colleagues: Alex, Ekrem, Filip, Francesco, Hans,

Jack, José, Matthew, Max, Petr, Ubaid and Ushnish - our windowless office is a bit less
depressing with you! - and to my Hopkinson Lab friends: Alberto, Antoine, Dante, Hassan,
Pau, Roberto and Santi.

To my ‘Marie Curie’ friends at CERFACS: Abhijeet, Ermanno, Varun and Walter, who have
contributed to make my stay in Toulouse so enjoyable.

To my Italian friends at Jesus: Andrea, for all the enlightening conversations, and Francesco.
They have been absolutely essential during the COVID-19 pandemic.

And to my best housemates in Park St: Bee, Jed and Shona, one of the best people I know.
I gratefully acknowledge the European Union’s Framework Programme for Research and

Innovation Horizon 2020 under the Marie Skłodowska Curie grant agreement ANNULIGhT
No 765998 for funding this project.





Abstract

Thermoacoustic instabilities, which occur due to the feedback between confined flames and
acoustics, constitute a major threat to the safe operation of gas turbines and rocket engines.
These oscillations can become large enough to cause noise, vibrations or, in the worst cases,
extinction of the flame or structural damage. The fact that thermoacoustic systems are sensitive
to small changes to their design and operating parameters means that instabilities can appear in
the late stages of the design process, requiring costly re-design. In this thesis we address the
problem of finding accurately and at reduced computational cost the design changes that most
stabilize a thermoacoustic system in the linear regime.

We derive a Helmholtz equation with an unsteady heat release source and acoustic impedance
boundary conditions. We apply the finite element method with P2 elements to discretize the
weak formulation of the Helmholtz equation. We obtain a nonlinear eigenvalue problem for
the complex angular frequency, ω, that we solve with the open-source computing platform
FEniCS and the library for eigenvalue problems SLEPc. We then derive the formulae for the
shape derivatives of the eigenvalues of the Helmholtz equation in Hadamard form for different
boundary conditions and in the cases of simple and semi-simple degenerate eigenvalues. These
formulae allow us to efficiently calculate the effect of arbitrary boundary perturbations on the
frequency and growth rate of the thermoacoustic oscillations, by combining the direct and
adjoint eigensolutions.

We apply this model and analysis to an electrically heated Rijke tube and a turbulent swirl
combustor in 2D. Both systems exhibit an unstable longitudinal mode. We parametrize the
shapes using B-splines, calculate the shape derivatives and apply the most stabilizing changes
until we make the systems stable.

We then study the case of a 30kW laboratory-scale symmetric annular combustor (MICCA)
with an unstable azimuthal mode (two-fold degenerate). We perform a shape sensitivity analysis
considering both symmetry-breaking and symmetry-preserving boundary perturbations. The
second type of changes do not cause the eigenvalues to split and are the most effective at
reducing the instability. We then apply shape changes to the plenum and the combustion
chamber to reduce the eigenvalue growth rates.
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We show how adjoint-based sensitivity analysis can be combined with a Helmholtz solver
to calculate the influence of the shape of the combustor on the stability of the thermoacoustic
modes. By modifying the shape accordingly, we are able to suppress the instability or at least
reduce the growth rate of the oscillations. This computational method shows how to significantly
alter thermoacoustic oscillations by making small geometry changes. The framework in this
thesis can handle arbitrarily complex three-dimensional geometries, which could be useful for
the design of industrial combustion systems.



Table of contents

List of figures xv

List of tables xix

Nomenclature xxi

1 Introduction 1
1.1 Low-order modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Wave-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Modal expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Helmholtz solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Linearized Euler and Navier-Stokes solvers . . . . . . . . . . . . . . . . . . 4
1.4 Large eddy simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Adjoint-based sensitivity analysis in fluid mechanics . . . . . . . . . . . . . 5
1.6 Adjoint-based sensitivity analysis in thermoacoustics . . . . . . . . . . . . . 7
1.7 Shape sensitivity and optimization for eigenvalue stability . . . . . . . . . . . 8
1.8 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Thermoacoustic Helmholtz equation 11
2.1 Helmholtz equation for reacting flows . . . . . . . . . . . . . . . . . . . . . 11
2.2 Flame response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 n − τ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 State-space representation . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Acoustic energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Adjoint equations, finite element method and eigensolvers 21
3.1 Weak formulation and continuous adjoint . . . . . . . . . . . . . . . . . . . 21



xii Table of contents

3.1.1 Left-hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Right-hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Full equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Left-hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Right-hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Full equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Discrete adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Eigensolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Fixed-point iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Code description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Shape derivatives 35
4.1 Shape derivative and Hadamard theorem . . . . . . . . . . . . . . . . . . . . 35
4.2 Tangential calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Shape derivatives under a state constraint . . . . . . . . . . . . . . . . . . . 36

4.3.1 Shape derivative of the Robin boundary condition . . . . . . . . . . . 37
4.3.2 Eigenvalue shape derivative . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 The 2-fold degenerate case . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Shape derivatives of the Helmholtz equation in a unit square . . . . . . . . . 42
4.4.1 Uniform boundary perturbations . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Boundary perturbations proportional to the shape gradients . . . . . . 43

5 Rijke tube and turbulent swirl combustor 49
5.1 Rijke tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Shape sensitivity analysis and shape changes . . . . . . . . . . . . . 51
5.1.3 Results interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Turbulent swirl combustor . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Shape sensitivity analysis and shape changes . . . . . . . . . . . . . 56
5.2.3 Results interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 MICCA annular combustor 61
6.1 The MICCA combustor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Table of contents xiii

6.2 Preliminary shape sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 63
6.3 Results - Shape sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Results - Shape changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Conclusions and future work 73

References 77

Appendix A First-order eigenvalue sensitivity 87

Appendix B B-spline curves 89
B.1 Definition and Properties of B-spline Basis Functions . . . . . . . . . . . . . 89
B.2 Definition and Properties of B-spline Curves . . . . . . . . . . . . . . . . . . 90
B.3 Displacement fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91





List of figures

4.1 First three eigenfunctions of the Helmholtz equation in a unit square domain
with homogeneous Dirichlet boundary conditions. The associated eigenvalues
are k1,1 = π

√
2, k1,2 = π

√
5 and k2,1 = π

√
5. . . . . . . . . . . . . . . . . . . 44

4.2 Shape gradients of the first two eigenvalues of the Helmholtz equation at the
bottom boundary. For ease of visualizion, we plot the shape gradients with the
opposite sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Nondimensional mean density, ρ̄, distribution of the heat release rate, v, and
weight function (reference region), w, in the two-dimensional model of the
electrically heated Rijke tube. . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Real (top) and imaginary (bottom) part of the eigenvalue shape derivatives for
each control point at the bottom boundary of the Rijke tube. The real part gives
the influence on the frequency and the imaginary part gives the influence on
the growth rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Initial ( ) and final ( ) boundary of the Rijke tube after 10 iterations. The
circles represent the control points of the final boundary. The control points at
the inlet and outlet boundary are fixed. . . . . . . . . . . . . . . . . . . . . 52

5.4 Modulus of the pressure eigenfunction, p̂, associated with the first thermoacous-
tic mode of the electrically heated Rijke tube, for the initial ( ) and the final
domain ( ), after 10 iterations. The associated nondimensional eigenvalues
are ωΩ = 3.539521 + i0.001984 and ωΩt = 3.688497 − i0.009876, respectively. 53

5.5 Turbulent swirl combustor . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Nondimensional mean density, ρ̄, distribution of the heat release rate, v, and

weight function (reference region), w, in the two-dimensional model of the
turbulent swirl combustor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xvi List of figures

5.7 Real (top) and imaginary (bottom) part of the eigenvalue shape derivatives for
each control point at the deformable boundary of the turbulent swirl combustor.
The real part gives the influence on the frequency and the imaginary part gives
the influence on the growth rate. . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 (Top) Initial ( ) and final ( ) boundary of the turbulent swirl combustor after
5 iterations. The circles represent the control points of the final boundary.
(Bottom) Modulus of the pressure eigenfunction, p̂, associated with the first
thermoacoustic mode of the turbulent swirl combustor, for the initial ( ) and the
final domain ( ), after 5 iterations. The associated nondimensional eigenvalues
are ωΩ = 1.3157 + 0.0241i and ωΩt = 1.3644 − 0.0978i, respectively. . . . . 58

6.1 Slice section view of one sector of the MICCA combustor. The dash-dotted
line is the axis of symmetry. The subscripts stand for: plenum (p), burner (b),
perforated plate (pp), flame (f ), combustion chamber (cc). . . . . . . . . . . . 63

6.2 Gain and phase of the flame transfer function (|u′/ū| = 0.1) as a function of the
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Chapter 1

Introduction

Thermoacoustic instabilities are a major threat to the safe operation of gas turbines and rocket
engines. During the combustion process, chemical energy is converted into thermal energy.
The fluctuations in the heat release rate excite acoustic waves that in turn interact with the flame
(Culick, 2006; Lieuwen and Yang, 2005; Poinsot, 2017). Thermoacoustic instabilities may
occur if the pressure and the heat release rate oscillations are sufficiently in phase. A necessary
condition for a thermoacoustic system to be unstable is that the acoustic energy produced by the
interaction between pressure and heat release rate fluctuations is greater than its dissipation
(Rayleigh, 1878). These oscillations can become large enough to cause noise, vibrations or, in
the worst cases, extinction of the flame or structural damage (Lieuwen and Yang, 2005).

In order to achieve high power-to-weight ratios and efficiency, rocket and jet engines,
have low acoustic damping and high energy density, which makes large-amplitude sustained
oscillations more likely to occur. In the case of stationary gas turbines for power generation,
stricter environmental regulations have led to a shift from diffusion to lean premixed flames, in
order to reduce the emissions of NOx, thanks to a lower flame temperature. By operating lean,
premixed and very near the blowout point, therefore on the stability margin, small disturbances
in these engines may trigger large responses.

Thermoacoustic systems are sensitive to small changes to their design and operating
parameters (Juniper and Sujith, 2018). They can appear in the late stages of the design process
(Mongia et al., 2003), requiring costly re-design. Therefore, tools to find accurately and at
reduced computational cost the design changes that most stabilize a thermoacoustic system in
the linear regime would be desirable. In the preliminary design of aero engines, one of the first
objectives is that the system is linearly stable to small perturbations in the operating range. A
necessary condition for linear stability is that the growth rate of the eigenvalues is negative.

Sensitivity analysis gives the influence of small parameter changes on the eigenvalues. Given
an eigenvalue and one parameter, we can perturb the parameter, re-calculate the eigenvalue and
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then find the sensitivity with a finite difference (brute force). For N parameters, we solve the
eigenvalue problem N + 1 times. Adjoints reduce the number of calculations to 2 (direct and
adjoint), regardless of the number of parameters (Jameson, 2003; Luchini and Bottaro, 2014).
This is convenient when the number of parameters is larger than the number of the quantities of
interest, which in this case is the number of eigenvalues.

In this thesis it is shown how adjoint-based sensitivity analysis can be combined with a
Helmholtz solver to calculate the influence of the shape of the combustor on the stability of
the thermoacoustic modes. By modifying the shape accordingly, we are able to suppress the
instability or at least reduce the growth rate of the oscillations. The framework in this thesis can
handle arbitrarily complex three-dimensional geometries, which could be useful for the design
of industrial combustion systems.

1.1 Low-order modelling

Experiments and simulations can reveal whether a given combustor is unstable, but they do not
tell why it is unstable or how the instability can be controlled. In order to understand why the
instabilities appear and how they can be controlled, we need other approaches such as low-order
models.

When using low-order modelling, thermoacoustic systems are usually modelled as networks
of elements or subsystems of varying geometric and physical complexity. The subsystems, and
in particular their input-output relationships, can be characterized analytically, experimentally
or numerically. There are two possible classifications for thermoacoustic low-order models:
time domain vs complex frequency domain and transfer or scattering matrices vs modal
decomposition. In the time domain, a state-space approach is used (Bothien et al., 2007;
Emmert et al., 2016; Schuermans et al., 2003). In the simulation of limit cycles, only time-
domain methods are able to retrieve the nonlinear coupling between modes and their dynamics.
However, complex impedances are difficult to prescribe in the time domain. The analysis in
this thesis is in the frequency domain and is therefore restricted to the linear behaviour of the
systems being investigated.

1.1.1 Wave-based approach

A popular method of modelling thermoacoustic systems consists in deriving the Riemann
invariants of the linearized Euler equations (LEE), assuming that the flame is compact, i.e. the
characteristic length of the flame is short compared to the characteristic acoustic wavelength
of the thermoacoustic system. In this way it is possible to include mean-flow effects such
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as entropy and vorticity waves. Dowling and Stow (2003); Stow and Dowling (2001) and
Evesque and Polifke (2002) performed a linear stability analysis of the thermoacoustic network
of an annular combustor using a wave-based approach. In both cases, the annular combustor
consisted of burners connecting an annular plenum and an annular chamber. The burners were
modelled as 1D axial elements and the dependence on the radial coordinate in the plenum
and in the combustion chamber was neglected (thin annulus). Bauerheim et al. (2014) studied
analytically the symmetry-breaking of an idealized annular combustor using a wave-based
approach. The model was quasi-one-dimensional, in the sense that the travelling waves were
axial in the burners and azimuthal in the combustion chamber. In subsequent studies, they added
an azimuthal mean flow in the combustion chamber (Bauerheim et al., 2015) and investigated the
case of symmetry-breaking due to uncertain parameters using uncertainty quantification (UQ)
(Bauerheim et al., 2016). Another example is the open-source research software OSCILOS,
developed at Imperial College London, which was used to study limit cycles of non-pressurised
and pressurised longitudinal combustors using flame describing functions (FDF) obtained
from large eddy simulations (LES) (Han et al., 2015; Xia et al., 2019). There is a limit to the
complexity of geometries and mode shapes that can be modelled using a wave-based approach,
making it unsuitable for our purposes.

1.1.2 Modal expansion

Another method of modelling thermoacoustic systems consists in expanding the solutions of
the Helmholtz equation on a modal basis. In the Galerkin method, the basis functions are
the acoustic modes, which are solutions of the homogeneous Helmholtz equation with either
homogeneous Dirichlet or Neumann boundary conditions. One of the advantages of this basis
is that it is orthogonal. The Galerkin decomposition was applied in thermoacoustics for the
first time by Zinn and Lores (1971) and by Culick (1988, 2006); Culick and Yang (1995) to
study combustion instabilities in liquid rocket engines. It was applied then by Balasubramanian
and Sujith (2008) and by Juniper (2011) to study thermoacoustic instabilities in a Rijke tube.
Compared to the network approach, this method is more prone to numerical errors. In particular,
errors arise when attempting to capture velocity discontinuities across a heat source (Gibbs
phenomenon). Other modal expansions were used by Noiray et al. (2011) and Ghirardo et al.
(2016) to study azimuthal instabilities. The basis functions can also be obtained solving the
acoustics with a finite element method (FEM) (Bellucci et al., 2005; Schuermans et al., 2003).
In this way it is possible to model non-plane waves in complex three-dimensional geometries.
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1.2 Helmholtz solvers

Helmholtz solvers (Camporeale et al., 2011; Nicoud et al., 2007) have the advantage of being
able to handle complex three-dimensional geometries. The base flow is set to zero (zero Mach
number) and the unsteady heat release is modelled as a distributed acoustic source function of
the acoustic variables. Compared to network models, this approach is more versatile but the
size of the problem is larger.

Helmholtz solvers can also be expanded/extended to include a wider range of physical
mechanisms. They were combined with flame describing functions to assess combustion
instability and study limit cycles in a premixed swirl combustor (Silva et al., 2013) and to
perform a weakly nonlinear stability analysis of spinning and standing azimuthal modes in
an annular combustor (Laera et al., 2017). Gullaud and Nicoud (2012) studied the effect
of perforated plates on the acoustics of annular combustors using a model for the acoustic
behaviour of the perforated plates. Giusti et al. (2013) simulated a full annular combustor,
with and without flames, analysing the influence of multi-perforated liners modelled assigning
an equivalent impedance to the corresponding surfaces. Motheau et al. (2014a) simulated a
mixed acoustic-entropy combustion instability in a combustor terminated by a nozzle, using a
‘delayed entropy coupled boundary condition’ (DECBC) (Motheau et al., 2014b), implemented
in a Helmholtz solver. Ni et al. (2018) developed a methodology to include flow–acoustic
interactions in a Helmholtz solver, quantifying their impact on the thermoacoustic modes of a
real industrial combustor. Mensah et al. (2016) used Bloch functions to efficiently compute the
thermoacoustic modes of annular combustion chambers.

The choice of a Helmholtz solver is a trade-off between the ability to model complex
three-dimensional geometries and the computational cost. Network models are computationally
cheaper. However, in the case of the wave-based approach, they are unable to model complex
three-dimensional geometries. Shape optimization has already been implemented in thermoa-
coustic networks based on Riemann invariants (Aguilar and Juniper, 2018, 2020), but this
approach is limited to simple geometries. Modal decomposition is able in some cases to model
non-plane waves in complex three-dimensional geometries, but the dependence of the solution
on the shape is involved.

1.3 Linearized Euler and Navier-Stokes solvers

In more recent years, researchers in the thermoacoustics community have also started using
linearized Euler (LEE) and Navier-Stokes (LNSE) equations for the linear stability analysis



1.4 Large eddy simulation 5

of thermoacoustic oscillations. The steady mean flow and, in most cases, the flame transfer
function are obtained from high-fidelity simulations.

Schulze et al. (2017) performed the linear stability analysis of high-frequency thermoacoustic
oscillations using LEE. Avdonin et al. (2019) studied the dynamics and stability of a laminar
premixed flame with LNS. In this case, the flame transfer function was obtained from a one-step
reaction mechanism. This type of solver might be a good choice for shape sensitivity analysis
and optimization since it does not require prior knowledge of the flame transfer function. Finally,
Meindl et al. (2020) studied a premixed, swirl-stabilized combustor. They used a state-space
approach with LNS to solve the regions with interaction between acoustics and mean flow or
unsteady heat release, and reduced-order models of acoustic wave propagation and damping to
solve the regions without.

1.4 Large eddy simulation

Large eddy simulation (LES) simulates the unsteady reacting flow in the combustor with high
accuracy, albeit at significant cost (Gicquel et al., 2012; Poinsot, 2017). LES can be used for
thermoacoustic combustion instabilities in two ways: brute force LES (Staffelbach et al., 2009;
Wolf et al., 2012) and forced open-loop LES (Giauque et al., 2005; Martin et al., 2006). The
first method consists in setting a large computational domain, accounting for all the geometrical
elements of the engine, matching all the boundary conditions and running the LES to compute
the self-excited oscillations. The second computes the flame transfer or describing function
(FTF/FDF) of a given flame subjected to acoustic forcing for use in a low-order model or
acoustic solver.

1.5 Adjoint-based sensitivity analysis in fluid mechanics

This section is intended as a short review of adjoint methods in hydrodynamic stability. These
seminal studies laid the foundations for the application of adjoint methods in thermoacoustics,
reviewed in Section 1.6. Hill (1992) studied how to restabilize vortex shedding in the flow past a
circular cylinder by adding a second smaller cylinder in the wake of the first. He used the adjoint
eigenfunction of the unstable mode to create a map of the sensitivity. The theoretical results
of Hill were in good agreement with the experimental and numerical results in (Strykowski
and Sreenivasan, 1990), even though they omitted the influence on the steady base flow, which
was later introduced by Marquet et al. (2008). In a following study, Hill (1995) used the
adjoint eigenfunctions to calculate the receptivity of the Tollmien-Schlichting waves in Blasius
boundary layers to time-harmonic forcing by sources of momentum, mass and vorticity and to
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boundary motions as well as acoustic waves. In a similar fashion, Luchini and Bottaro (1998)
calculated the receptivity of the Görtler vortices and Pralits et al. (2000) calculated the sensitivity
of two- and three-dimensional disturbances in a compressible boundary layer to changes in
wall and momentum forcing. Giannetti and Luchini (2006), calculated the receptivity of an
incompressible boundary layer (generation of Tollmien-Schlichting waves) at the leading-edge
of a flat plate. Notably, the study by Hill (1992) was revisited by Giannetti and Luchini (2007),
who introduced the notion of structural sensitivity in global analysis to determine the wavemaker
region, which is the region of local absolute instability1 (Huerre and Monkewitz, 1990), where
the flow is more sensitive to momentum forcing and mass injection. The structural sensitivity
gives the spatial perturbation of the governing equations able to produce the greatest eigenvalue
drift.

Bottaro et al. (2003) performed a sensitivity analysis of the eigenvalues of the Orr-
Sommerfeld operator, describing the stability of exponentially growing disturbances, to
non-infinitesimal base flow perturbations in a plane Couette flow. They also calculated the
optimal (most destabilizing) base flow perturbation. The analysis was generalized by Marquet
et al. (2008), who used a global approach to calculate the sensitivity to base-flow perturbations
and for the passive control of globally unstable flows to steady forcing in the form of small
control devices. Their results were in qualitative agreement with the experimental results of
Strykowski and Sreenivasan (1990).

Tammisola et al. (2014) were the first to calculate the second-order global eigenvalue drift
due to spanwise wavy blowing-suction perturbations, combining the adjoint eigenfunction with
the first-order global eigenfunction correction. Giannetti et al. (2010) calculated the structural
sensitivity of the secondary instability in the wake of a circular cylinder using Floquet theory.
The articles by Sipp et al. (2010), Luchini and Bottaro (2014), and Camarri (2015) review
adjoint methods for flow control of non-reacting fluids in depth.

In the low Mach number limit (the density is temperature-dependent and the pressure is
temperature-independent) Qadri (2014); Qadri et al. (2018, 2013) studied structural sensitivity
and passive control of the spiral vortex breakdown in swirling flows and of low-density jets,
combining the direct and adjoint global modes. In compressible flows, structural and base-flow
sensitivity were calculated for an axisymmetric blunt-based afterbody modelling an ideal rocket
shape and a sphere (Meliga et al., 2010a) and open-loop control of afterbody flows (Meliga
et al., 2010b). For low-Mach number reacting flows, in particular lifted jet diffusion flames,
Qadri et al. (2015) combined direct and adjoint global modes to identify the wavemaker region
and designed passive strategies to control the oscillations.

1a velocity profile is said to be locally absolutely unstable if localized disturbances spread upstream and
downstream and contaminate the entire parallel flow
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1.6 Adjoint-based sensitivity analysis in thermoacoustics

In this section we review adjoint methods, in particular adjoint-based sensitivity analysis,
in thermoacoustics, with emphasis on Helmholtz solvers and shape sensitivity analysis and
optimization. Magri and Juniper (2013) applied adjoint-based sensitivity analysis to the
eigenvalues of a simple thermoacoustic system: a Rijke tube with a hot wire modelled as
a time delay system. They calculated both the structural sensitivity and the sensitivity to
model parameters such as time delay and position of the hot wire. The structural sensitivity
allowed them to find the most stabilizing linear feedback mechanisms: a second hot wire and
an adiabatic mesh, which applies a force to the acoustic momentum equation in the opposite
direction to the instantaneous velocity. Experiments were conducted in order to validate the
theoretical and numerical results (Jamieson et al., 2017; Rigas et al., 2016). The results were in
good agreement in the case of an adiabatic mesh, while, in the case of a second hot wire, only
the growth and decay rates matched. The frequencies did not match due to deficiencies in the
physical model. Magri and Juniper (2014) performed a similar analysis for a compact diffusion
flame in a duct. They also calculated the receptivity to species injection.

Orchini and Juniper (2016) used the adjoint eigenvector to calculate the sensitivity with
respect to the convection speed parameter of a thermoacoustic network with a laminar conical
premixed flame. The sensitivity analysis of a low-order thermoacoustic network using a wave-
based approach was performed in Aguilar et al. (2017), first considering a zero Mach number
mean flow and then removing this hypothesis and adding a moving flame and a choked outlet.
The same authors applied adjoint-based sensitivity analysis and gradient-based optimization
to network models of a longitudinal (Aguilar and Juniper, 2020) and an annular combustor
(Aguilar and Juniper, 2018), managing to stabilize all the modes by making small changes to
the geometry.

Adjoint methods were also used for speeding up uncertainty quantification in thermoacoustic
systems. First- and second-order perturbations in nonlinear degenerate eigenvalue problems
(Magri et al., 2016a) were used in the network model of an annular combustor (Magri et al.,
2016b).

The first adjoint thermoacoustic Helmholtz solvers were used for uncertainty quantification
in a longitudinal combustor with second-order single-parameter perturbation theory in (Silva
et al., 2017) and with second-order multi-parameter perturbation theory in (Mensah et al.,
2018a), and for the optimal placement and tuning of acoustic dampers in an annular combustor
(Mensah and Moeck, 2017), using first-order multi-parameter perturbation theory.

Mensah et al. (2019a) studied the effects of symmetry-breaking on the thermoacoustic
modes of a rotationally symmetric annular combustor using high-order degenerate perturbation
theory. Using the same high-order perturbation theory, Orchini et al. (2020a) identified the
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exceptional points (Mensah et al., 2018b; Orchini et al., 2020b) in the thermoacoustic spectrum
of a longitudinal and an annular combustor. The exceptional points correspond to defective
eigenvalues.

Mensah et al. (2019b) performed a preliminary shape sensitivity analysis of a Rijke tube
using a parameter-free approach and a three-dimensional Helmholtz solver. They computed
the eigenvalue shape derivatives for prescribed nodal displacements at the inlet and outlet
boundaries. Falco and Juniper (2021a) performed shape optimization of a Rijke tube and a
turbulent swirl combustor using a parametric approach and a two-dimensional Helmholtz solver.
By applying small geometry modifications, they managed to stabilize both systems. Unlike the
method applied by Mensah et al. (2019b), the method of Falco and Juniper (2021a) provides
gradient information, i.e. the most sensitive regions. Unlike shape derivatives, the gradient is
independent of the particular direction of the perturbation.

The theory, numerical methods and technical challenges of developing adjoint thermoacoustic
Helmholtz solvers were detailed in (Juniper, 2018) for the one-dimensional case. An in-depth
review of the use of adjoints in thermoacoustics can be found in (Magri, 2019).

1.7 Shape sensitivity and optimization for eigenvalue stabil-
ity

In this section we briefly review shape optimization and shape sensitivity of eigenvalues in
hydrodynamic stability problems. The goal, as in thermoacoustics, is to evaluate the influence
of the shape on the frequency and growth rate of the unstable modes. This constitutes a
starting point, as well as a reference, for this thesis. Heuveline and Strauß (2009) applied shape
optimization for hydrodynamic stability to the eigenvalues of the linearized Navier-Stokes
equations. They studied the flow around a bluff body in a channel. They minimized the drag
force, constraining the volume and ensuring that the eigenvalues were stable. The resulting
bodies were long and flat. The shape was parametrized using Bézier curves, and the shape
derivatives were calculated with finite difference.

Nakazawa and Azegami (2016) were the first to apply adjoint-based shape optimization for
stability. They studied a two-dimensional Poisuille flow in a channel with a sudden expansion.
The critical Reynolds number was increased from 40 to 45. They applied a smoothing (traction)
method to the shape gradients. With a similar approach, Kiriyama et al. (2018) stabilized the
global mode of the flow in the wake of a cylinder. More recently, Boujo et al. (2019) used
adjoints to calculate the second-order sensitivity of the eigenvalues to wall deformations in a
laminar flow around a cylinder. They found the optimal wall deformations to stabilize the flow.
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Brewster and Juniper (2020) developed a method to calculate the shape gradients of the
frequency and the growth rate of unstable eigenvalues obtained from global stability analysis.
They applied the method to the problem of the flow around a cylinder at Re = 50. They showed
that the deformations affect the hydrodynamic oscillations mainly through their effect on the
steady base flow and that subtle deformations at the rear of the cylinder have a large effect
on the growth rate. Martinez-Cava et al. (2020) developed a method to calculate the shape
gradients of the least stable global mode of the steady compressible Navier-Stokes and the
Reynolds-averaged Navier-Stokes (RANS) equations using a discrete approach. They studied
two cases: a laminar flow around a cylinder and a turbulent flow to control the buffet onset on a
NACA0012 airfoil, and suppressed the instabilities.

In microfluidics, Kungurtsev and Juniper (2019) optimized the design of an inkjet printhead
applying adjoint-based shape optimization. They increased the decay rate of the oscillating flow
by 50% while keeping the viscous dissipation of the steady flow constant. They used B-splines
to parametrize the shape.

1.8 Summary of the thesis

Shape sensitivity analysis for eigenvalue stability has only recently been applied in thermoacous-
tics using a wave-based approach (Aguilar and Juniper, 2018, 2020). Unlike thermoacoustic
networks, Helmholtz solvers have the advantage of being able to handle complex three-
dimensional geometries. Adjoint-based sensitivity analysis for perturbations applied to the
operator is easy to implement when using the finite element method and it has been widely
explored in recent years (Mensah, 2019). Shape sensitivity analysis for eigenvalue stability has
the same advantages. The difference is that the perturbations are applied to the domain and
the boundary conditions. This problem has been studied in hydrodynamic stability but not in
thermoacoustics.

In this thesis, we develop the theory to efficiently calculate the first-order shape sensitivity
and the shape derivatives of the eigenvalues of the thermoacoustic Helmholtz equation. In
Chapter 2 we derive the Helmholtz equation with unsteady heat release, the flame response
to acoustics, the boundary conditions and the Rayleigh criterion. In Chapter 3 we derive the
weak formulation of the Helmholtz equation, apply the finite element method to discretize the
weak form and derive the adjoint equation in its continuous and discrete form. We dedicate
the last part of the chapter to the eigensolvers used to solve the nonlinear eigenvalue problem
arising from the finite element discretization. In Chapter 4 we introduce the basic concepts
and definitions of the shape derivatives and derive the formulae for the shape derivatives
of the eigenvalues of the Helmholtz equation for different boundary conditions and in the
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cases of simple and semi-simple degenerate eigenvalues. In Chapter 5 we apply the theory
developed in the previous chapters to two thermoacoustic systems: an electrically heated Rijke
tube and a turbulent swirl combustor. We parametrize the shape using B-splines, calculate
the shape derivatives and apply the most stabilizing changes until we eventually stabilize the
systems. In Chapter 6 we study the case of a symmetric annular combustor with an unstable
azimuthal mode (two-fold degenerate). We first perform a shape sensitivity analysis considering
symmetry-breaking boundary perturbations. Then we perform the same analysis considering
symmetry-preserving boundary perturbations. The second type of changes do not cause the
eigenvalues to unfold and are the most effective at reducing the instability. We then apply
shape changes to the plenum and the combustion chamber to reduce the eigenvalue growth
rates. In Chapter 7, we draw some conclusions and suggest possible directions for future work.
Appendix A contains a summary of the first-order perturbation theory used to speed up the
eigensolver and Appendix B contains some of the relevant definitions on B-splines curves.



Chapter 2

Thermoacoustic Helmholtz equation

2.1 Helmholtz equation for reacting flows

We start by considering a compressible, reacting, inviscid flow. The fluid is a homogeneous
gas mixture, modelled as an ideal gas. The assumption is valid in the case of methane- or
propane-air mixtures, where the reaction is isomolar, but not in the case of hydrogen flames.
We write the mass, momentum and energy equations in convective form

Dρ
Dt
+ ρ∇ · u = 0 (2.1a)

ρ
Du

Dt
+ ∇p = 0 (2.1b)

ρ
De
Dt
+ p∇ · u = Ûq (2.1c)

And the equation of state
p = ρrT (2.2)

ρ is the density, u is the velocity, p is the pressure and T is the temperature. e is the internal
energy per unit mass and Ûq is the heat release rate per unit volume. D(·)/Dt = ∂(·)/∂t + u · ∇(·),
is the material derivative. In addition, r = cp − cv , is the specific gas constant and γ = cp/cv , is
the heat capacity ratio, where cp and cv are the specific heats at constant pressure and volume,
respectively. For an ideal gas, the specific heats can depend on the temperature, but their
difference is constant.

We take the total derivative1 of Eq. (2.2)

dp
p
=

dρ
ρ
+

dT
T

(2.3)

1or differential, not to be confused with the material derivative
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We recall the definition of specific enthalpy

h = e +
p
ρ

(2.4)

And write it in differential form

dh = de +
1
ρ

dp −
p
ρ2 dρ (2.5)

By definition of specific heat at constant pressure

dh = cp dT (2.6)

Combining Eqs. (2.3), (2.5) and (2.6), we obtain

de =
1
γ − 1

(
1
ρ

dp −
p
ρ2 dρ

)
(2.7)

We substitute Eq. (2.7) into Eq. (2.1c), taking the material derivatives instead of the differentials,
and subtract Eq. (2.1a). We obtain the energy equation for the pressure

Dp
Dt
+ γp∇ · u = (γ − 1) Ûq (2.8)

We write the fundamental thermodynamic relation for the specific internal energy

de = T ds +
p
ρ2 dρ (2.9)

where s is the specific entropy. We substitute Eq. (2.9) into Eq. (2.1c) and subtract Eq. (2.1a).
We obtain a conservation law for the entropy

Ds
Dt
=

r
p
Ûq (2.10)

We want to study the evolution of small perturbations superimposed on top of a zero Mach
number base flow. The flow variables are decomposed as (·)(x, t) = ¯(·)(x) + ϵ(·)′(x, t), with
ϵ ≪ 1. The bar, ¯(·), denotes a steady mean quantity and the prime, (·)′, an unsteady perturbation
quantity. For the velocity, ū = 0, and u = u′, with

√
u′ · u′/c̄ of order ϵ . c̄ =

√
γ p̄/ρ̄, is the

mean speed of sound. According to the order-of-magnitude analysis in (Nicoud et al., 2007),
the zero Mach number assumption is valid if M ≪ L f /La, where M is the Mach number, L f is
the flame thickness and La is the acoustic wavelength. We linearize the momentum, energy and
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entropy equations, Eqs. (2.1b), (2.8) and (2.10). At order ϵ0 (zeroth order), we obtain ∇p̄ = 0,
and Û̄q = 0. The mean pressure is constant and the steady effect of the flame is contained in the
mean density field, ρ̄. At order ϵ1 (first order), the equations are

∂u′

∂t
+

1
ρ̄
∇p′ = 0 (2.11a)

∂p′

∂t
+ γ p̄∇ · u′ = (γ − 1) Ûq′ (2.11b)

∂s′

∂t
+ u′ · ∇s̄ =

r
p̄
Ûq′ (2.11c)

If we take ∂(2.11b)/∂t − γ p̄∇ · (2.11a), we obtain an inhomogeneous wave equation for
the pressure perturbation

∂2p′

∂t2 − ∇ ·
(
c̄2∇p′

)
= (γ − 1)

∂ Ûq′

∂t
(2.12)

It is worth mentioning that we can model distributed acoustic losses due to damping by adding
a term proportional to ∂p′/∂t to the left-hand side of Eq. (2.12). We use the method of
separation of variables, assuming that the fluctuations are harmonic in time

(·)′(x, t) = Re
{

ˆ(·)(x)e−iωt
}

(2.13)

where ω is the complex angular frequency. The real part of ω is the angular frequency and the
imaginary part is the growth rate. The momentum equation in the complex frequency domain
then reads

− iωû +
1
ρ̄
∇p̂ = 0 (2.14)

From Eq. (2.12) we obtain an inhomogeneous Helmholtz equation

∇ ·
(
c̄2∇p̂

)
+ ω2 p̂ = iω(γ − 1)q̂ (2.15)

The complex angular frequency, ω, is the eigenvalue and the pressure perturbation, p̂, is the
eigenfunction of Eq. (2.15). An eigenvalue is linearly unstable if the growth rate is positive.

2.2 Flame response

The focus of this section is the unsteady heat release rate perturbation term, Ûq′, in the time
domain, Eq. (2.12), and q̂, in the complex frequency domain, Eq. (2.15). We model the flame
as a linear time-invariant (LTI) system, with an associated transfer function. The flame transfer
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function (FTF) models the input-output relationship between velocity fluctuations and heat
release rate fluctuations. The input can also be fluctuations of pressure or equivalence ratio. In
premixed flames, the heat release rate depends on the flame surface, which is mainly controlled
by the fresh gas flow rate (Nicoud et al., 2007). For this reason, we will only consider FTFs that
have velocity fluctuations as input. Examples of FTF are widely available in the literature. They
are derived theoretically for laminar premixed flames (Cuquel et al., 2013; Schuller et al., 2003),
laminar non-premixed flames (Magina et al., 2013; Magina and Lieuwen, 2016) and turbulent
premixed swirling flames (Candel et al., 2014; Palies et al., 2011b). They can also be obtained
from experiments and simulations, in particular LES (Merk et al., 2019) and DNS (Mejia et al.,
2018). Nonlinear effects such as saturation, which is responsible for the establishment of limit
cycles, can be modelled with the so-called flame describing function (FDF) (Dowling, 1997;
Noiray et al., 2008), which depends on the amplitude of the perturbation as well as on the
frequency.

During the experiments, we measure the frequency response (gain and phase) of the flame
to velocity perturbations. The flame is subjected to harmonic excitations, with the forcing
signal neither growing nor decaying. In this way, we obtain the flame response at real-valued
frequencies (the frequency response). If the amplitude of the forcing signal is small, then the
response is linear. On the other hand, if the amplitude is big, the response is nonlinear. We
want to extrapolate the frequency response data, measured at real-valued frequencies, into the
complex plane. This will give the flame transfer function.

For the linear response of the flame to velocity perturbations, we adopt a formulation that is
similar to the adaptation proposed in (Juniper, 2018). The local heat release rate perturbation,
q̂, is proportional to the weighted integral of the the component of the velocity perturbation, û,
along the unit vector nr (reference direction), in the reference region.

q̂ =
ÛQt

Ub
v(x)F(ω)

∫
w(ξ)û(ξ) · nr dV (2.16)

where
∫
v dV =

∫
w dV = 1. ÛQt is the total thermal power of the flame and Ub is the bulk flow

velocity in the injector. v is the heat release rate distribution, F(ω) is the flame transfer function
and w is a weight function, which is non-zero in the reference region. If for example the weight
function, w, is the Dirac delta function, δD, we obtain

q̂ =
ÛQt

Ub
v(x)F(ω)

∫
δD(ξ − xr)û(ξ) · nr dV =

ÛQt

Ub
v(x)F(ω)û(xr) · nr (2.17)
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û(xr) · nr is the component of the velocity perturbation along the unit vector nr , evaluated at
the reference point xr . The global heat release rate perturbation is given by

Q̂ =
∫

q̂ dV =
ÛQt

Ub
F(ω)û(xr) · nr (2.18)

We combine Eq. (2.16) with the linearized momentum equation written in the complex
frequency domain, Eq. (2.14), to obtain the flame response as a function of the pressure
gradient, and substitute into Eq. (2.15).

∇ ·
(
c̄2∇p̂

)
+ ω2 p̂ =

ÛQt

Ub
(γ − 1)v(x)F(ω)

∫
w(ξ)

1
ρ̄(ξ)

∇p̂(ξ) · nr dV (2.19)

We combine Eq. (2.17) with Eq. (2.14) and substitute into Eq. (2.15).

∇ ·
(
c̄2∇p̂

)
+ ω2 p̂ =

ÛQt

Ub

γ − 1
ρ̄(xr)

v(x)F(ω)∇p̂(xr) · nr (2.20)

Both Eqs. (2.19) and (2.20) will be used in the remainder of this thesis. In Section 2.2.1
and 2.2.2, we will use the following notational conventions: either u′ = u′(xr, t) · nr or
u′ =

∫
w(ξ)u′(ξ, t) · nr dV , and either û = û(xr) · nr or û =

∫
w(ξ)û(ξ) · nr dV .

2.2.1 n − τ model

In the n − τ model, originally proposed by Crocco and Cheng (1956), the heat release rate
fluctuation at time t is proportional to the axial component of the velocity fluctuation at a point
in the injector at time t − τ. In the time domain, the global heat release rate perturbation2 reads

ÛQ′ = nu′(t − τ) (2.21)

n = ÛQt/UbN is the dimensional interaction index, where N is the nondimensional interaction
index, and τ is the time delay. In the complex frequency domain, the local heat release rate
perturbation is

q̂ =
ÛQt

Ub
v(x)Neiωτû (2.22)

Both N and τ can depend on the position, x, for example when obtained from large eddy
simulation. Here the spatial dependence of N is included in v.

If we compare Eq. (2.22) with Eq. (2.16) or Eq. (2.17), we see that N is the gain and ωτ
is the phase of the flame transfer function. The fact that the gain is constant with respect to

2 ÛQ′ =
∫
Ûq′ dV
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the frequency is only a rough approximation. In fact, flames are sensitive to low-frequency
perturbations and attenuate high-frequency perturbations, thereby acting as low-pass filters
(Schuller et al., 2003). At low frequencies, the slope of the phase can be assumed to be constant
(Magri, 2019).

2.2.2 State-space representation

In this subsection we describe how to obtain an analytic flame transfer function from an
experimental frequency response. The frequency response is given at real-valued frequencies,
while the transfer function is defined in the complex plane. We want to approximate the
experimental data on the real axis and extrapolate them into the complex plane. One big
advantage of the transfer function being analytic is that we can calculate its exact derivatives
with respect to the complex angular frequency ω. This is important when applying perturbation
theory.

Following (Mensah et al., 2019a), we approximate the frequency response of the flame with
a continuous time-invariant linear state-space model

d
dt

x = Ax + bu′

Ûq′ = cTx + du′
(2.23)

where x is the state vector, u′ is the input and Ûq′ is the output. The first equation is the state
equation and the second is the output equation. We Laplace transform3 Eq. (2.23) and substitute
the state vector from the state equation into the output equation. The output equation now reads

q̂ =
[
cT (
−iωI − A

)−1b + d
]︸                         ︷︷                         ︸

F(ω)

û (2.24)

In Eq. (2.24), q̂ and û are to be intended as scaled by ÛQt and Ub, respectively. The parameters
of the state-space model are identified by applying the Vector Fitting algorithm (Gustavsen,
2006; Gustavsen and Semlyen, 1999). This is a well-known technique that has already been
used in thermoacoustics in a number of studies, the first being (Bothien et al., 2007), for the
characterization of acoustic subsystems in time domain modelling.

3s = −iω
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2.3 Boundary conditions

In acoustics, the impedance is a measure of how much flow fluctuations are impeded when
pressure fluctuations act on a surface. The specific acoustic impedance is defined as the
nondimensional ratio of the acoustic pressure to the normal component of the acoustic velocity
(Rienstra and Hirschberg, 2004).

Z =
p̂

ρ̄c̄û · n (2.25)

where n denotes the outward unit normal. In general, Z depends on the position and on the
frequency. If we combine Eq. (2.25) with the linearized momentum equation in the complex
frequency domain, Eq. (2.14), we obtain the Robin boundary condition

∇p̂ · n − iω
c̄Z

p̂ = 0 (2.26)

We can assume that the impedance is constant at low frequencies (Levine and Schwinger,
1948). For plane acoustic waves, the impedance can be expressed as a function of the reflection
coefficient, R, which is defined as the ratio of the amplitude of the reflected wave to the
amplitude of the incident wave.

Z =
1 + R
1 − R

(2.27)

We can derive other boundary conditions as special cases of Eq. (2.26).

(a) At pressure nodes, the pressure is imposed and therefore its fluctuations are zero. Z = 0
and, for plane waves, R = −1. We obtain the Dirichlet boundary condition4, p̂ = 0.

(b) At velocity nodes, such as rigid walls, the velocity is imposed and therefore its fluctuations
are zero. Z →∞ and R = 1. We obtain the Neumann boundary condition5, ∇p̂ · n = 0.

(c) There can also be non-reflecting or anechoic boundaries, where Z = 1 and R = 0.

2.4 Acoustic energy balance

The modal analysis indicates whether or not a thermoacoustic system is linearly stable. The
acoustic energy balance provides information about the stabilizing (or destabilizing) mechanism.
In this section we derive the stability criterion, based on the acoustic energy, for a system
governed by the inhomogeneous Helmholtz equation, Eq. (2.15). We consider the flame
response model of Section 2.2, and acoustic impedance boundary conditions, and discuss the

4Also called zero pressure, sound soft boundary condition
5Also called zero normal velocity, pressure antinode, sound hard boundary condition
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role of different terms on the stability of the system. In the energy norm, we will not consider
the contribution given by the entropy fluctuations (Nicoud and Poinsot, 2005). If we take
ρ̄u′ · (2.1b) + (1/γ p̄)(2.1c), we obtain

∂e′

∂t
+ ∇ · (p′u′) = γ − 1

γ p̄
p′ Ûq′ (2.28)

where e′ = ρ̄u′2/2 + (1/γ p̄)p′2/2 is the acoustic energy density and p′u′ is the acoustic energy
flux (Poinsot and Veynante, 2012). If we average over the volume and over one period of
oscillation, we obtain the stability criterion

γ − 1
γ p̄

∫
Ω

∫ T

0
p′ Ûq′ dt dV <

∫
∂Ω

∫ T

0
p′u′ · n dt dS (2.29)

Assuming that p′, u′ · n and Ûq′ are harmonic in time, we can write them in the form

(·)′(x, t) =
��� ˆ(·)(x)

��� cos
(
2π f t − ∠ ˆ(·)(x)

)
eλt (2.30)

which is equivalent to Eq. (2.13). f and λ are the frequency and the growth rate of the
eigenvalue, ω = 2π f + iλ, respectively, and ∠ ˆ(·) is the phase angle. Before substituting the
expressions for p′, u′ · n and Ûq′ into (2.29), we write the trigonometric identity

cos(2π f t − ∠p̂) cos(2π f t − ∠q̂) =
1
2
[
cos(4π f t − ∠p̂ − ∠q̂) + cos(∠q̂ − ∠p̂)

]
(2.31)

Equation (2.29) becomes

γ − 1
γ p̄

∫
Ω

| p̂| |q̂ | cos(∠q̂ − ∠p̂) dV <
∫
∂Ω
| p̂| | û · n | cos(∠û · n − ∠p̂) dS (2.32)

In fact, the integral containing cos(4π f t − ∠p̂ − ∠q̂)e2λt is zero, regardless of the values assumed
by the two phase angles (and analogously the integral containing cos(4π f t − ∠p̂ − ∠û · n)e2λt).
If the pressure and heat release rate oscillations are sufficiently in phase, then the acoustic energy
grows, unless (or until) balanced by the loss due to acoustic radiation from the boundaries or
damping, which is not modelled here. We substitute q̂ from Eq. (2.17) and û · n from Eq.
(2.25) into Eq. (2.32), and obtain

(γ − 1)
ÛQt

Ub
|F(ω)|

∫
Ω

v(x)| p̂| | û(xr) · nr | cos(∠q̂ − ∠p̂) dV < ∫
∂Ω

c̄
|Z |

��p̂2�� cos(∠Z) dS (2.33)
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where ∠q̂ = ∠F(ω) + ∠û(xr) · nr . The left-hand side depends on the phase angle difference
between the heat release rate perturbation and the pressure perturbation, ∠q̂ − ∠p̂. It also
depends on the modulus of the flame transfer function, F(ω), of the pressure, p̂, in the flame
volume and of the component of the velocity along the reference direction at the reference point,
û(xr) · nr . The right-hand side depends on the modulus of the pressure at the boundary and on
the impedance, Z . The sign of the left-hand side depends exclusively on the phase between p̂
and q̂. The right-hand side, which equals zero for Dirichlet and Neumann boundary conditions,
represents the work done by the oscillating fluid on the surroundings.

2.5 Nondimensionalization

The first application in this thesis is the electrically heated Rijke tube modelled in Juniper
(2018). This was also one of the test cases for the verification of the finite element solver. In
Juniper (2018), the equations are written in nondimensional form. We explain here how the
momentum equation, Eq. (2.14), the inhomogeneous Helmholtz equation, Eq. (2.20) and the
Robin boundary conditions, Eq. (2.26) are nondimensionalized.

The reference length, L, is the characteristic acoustic wavelength of the thermoacoustic
system, e.g. the acoustic wavelength in a Rijke tube. The reference time is L/ca, where
ca =

√
γpa/ρa is the speed of sound in the ambient fluid. ρa is the ambient density and pa is

the ambient pressure. We denote the nondimensional quantities by a tilde ˜(·). The independent
and dependent variables are nondimensionalized as follows

x = x̃L, t = t̃
L
ca
, ρ = ρ̃

ρa

γ
, u = ũca, p = p̃pa (2.34)

The reference density appears naturally when scaling the momentum equation, Eq. (2.14), with
the velocity and pressure scales. The nondimensionalization is the same for the mean quantities
and for the perturbation quantities (c̄ = ˜̄cca). When we nondimensionalize Eq. (2.20), the
complex angular frequency is scaled as ω = ω̃ca/L. The remaining dimensional quantities are
scaled as ÛQt = Û̃Qt paL2ca, Ub = Ũbca and v = ṽ/L3 (w = w̃/L3). When using the n − τ model,
the dimensional interaction index is scaled as n = ñpaL2, and the time delay as τ = τ̃L/ca.
With this choice of the reference quantities, Eqs. (2.14), (2.20) and (2.26) remain the same,
with the only difference that all the variables are now nondimensional.





Chapter 3

Adjoint equations, finite element method
and eigensolvers

In this chapter we derive the continuous adjoint of the thermoacoustic Helmholtz equation. We
apply the Bubnov-Galerkin finite element method to the weak formulation of the thermoacoustic
Helmholtz equation. And finally we derive the discrete adjoint. When applying the Bubnov-
Galerkin finite element method, there is no difference between the discretization of the
continuous adjoint and the discrete adjoint. The continuous adjoint will be used to derive the
shape derivatives. The discrete adjoint is used in the code and will be used to improve the
convergence of the eigensolver. Similar derivations can be found in (Mensah, 2019) and, for
the 1D case, in (Juniper, 2018). The final part of the chapter is about the nonlinear eigenvalue
problem and the algorithms used to solve it.

3.1 Weak formulation and continuous adjoint

In this section we write the weak formulation of the thermoacoustic Helmholtz equation and
derive the continuous adjoint. Details about the theory and the application of adjoint equations
in stability analysis in fluid dynamics can be found in (Luchini and Bottaro, 2014) and in
thermoacoustics in (Juniper and Sujith, 2018; Magri, 2019). We start with the direct equation
in strong form. The direct equation is the Helmholtz equation with unsteady heat release, in the
domain Ω, and the boundary conditions are Dirichlet, Neumann and Robin, applied on separate
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subsets of the boundary, ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩR.

∇ ·
(
c̄2∇p̂

)
+ ω2 p̂ =

ÛQt

Ub
(γ − 1)v(x)F(ω)

∫
Ω

w(ξ)
1
ρ̄
∇p̂ · nr dV , in Ω (3.1a)

p̂ = 0, on ∂ΩD (3.1b)
∂ p̂
∂n
= 0, on ∂ΩN (3.1c)

∂ p̂
∂n
−

iω
c̄Z

p̂ = 0, on ∂ΩR (3.1d)

Equation (3.1a) is in strong form. We want to write it in weak form and find the adjoint
equation. First we need, however, to define what is a weak formulation and what is an adjoint
operator. We begin by defining the space of complex-valued square-integrable functions,
L2(Ω) =

{
v : Ω→ C |

∫
Ω
|v |2 dV < ∞

}
. We specify the inner product

⟨u|v⟩L2(Ω) =

∫
Ω

u∗v dV , u, v ∈ L2(Ω) (3.2)

And the norm
∥v∥L2(Ω) =

√
⟨v |v⟩L2(Ω), v ∈ L2(Ω) (3.3)

⟨·|·⟩ is a sesquilinear form. From now on we will drop the subscript (·)L2(Ω). We write Eq.
(3.1a) as

L(ω)p̂ = 0 (3.4)

L is a linear differential operator. ω and p̂ are the eigenvalues and the eigenfunctions of L,
respectively. The operator is nonlinear with respect to ω and linear with respect to p̂. We
multiply Eq. (3.4) by the complex conjugate of a test function, p̂†, and integrate over the domain
Ω to obtain the weak formulation (after integration by parts)〈

p̂†
��L p̂

〉
= 0 (3.5)

p̂ is labelled a trial function. A solution of Eq. (3.4), the strong formulation, is also a solution
of Eq. (3.5), the weak formulation. The opposite is not necessarily true. The adjoint of the
direct operator L is defined such that〈

p̂†
��L p̂

〉
=

〈
L† p̂†

��p̂〉 + b. t. (3.6)

L† is the adjoint operator. p̂ is the direct eigenfunction and p̂† is the adjoint eigenfunction.
The boundary terms on the right-hand side, b. t . arise from integration by parts. We will use
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the same symbols for the trial function and the adjoint eigenfunction and for the test function
and the direct eigenfunction. We derive the weak formulation and the adjoint of Eq. (3.1a)
separately for the left-hand side and the right-hand side.

3.1.1 Left-hand side

The left-hand side in strong form is

∇ ·
(
c̄2∇p̂

)
+ ω2 p̂ = 0 (3.7)

We multiply by the complex conjugate of the test function p̂†, and integrate over Ω.∫
Ω

p̂†
∗∇ ·

(
c̄2∇p̂

)
dV + ω2

∫
Ω

p̂†
∗

p̂ dV = 0 (3.8)

We integrate by parts the first term of Eq. (3.8)

−

∫
Ω

c̄2∇p̂†
∗ · ∇p̂ dV +

∫
∂Ω

p̂†
∗

c̄2 ∂ p̂
∂n

dS + ω2
∫
Ω

p̂†
∗

p̂ dV = 0 (3.9)

The trial function p̂ does not have to be twice-differentiable. We define the function spaces1
H1(Ω) = {v : Ω→ C | ∥∇v∥ < ∞, ∥v∥ < ∞} and H1

0 (Ω) =
{
v ∈ H1(Ω) | v |∂ΩD = 0

}
. Al-

though it is not a strict requirement, the trial function p̂ and the test function p̂† will belong
to the same function space, H1

0 . Therefore, after applying the boundary conditions, the weak
formulation of Eq. (3.7) is

−

∫
Ω

c̄2∇p̂†
∗ · ∇p̂ dV + ω

∫
∂ΩR

ic̄
Z

p̂†
∗

p̂ dS + ω2
∫
Ω

p̂†
∗

p̂ dV = 0 (3.10)

In order to find the adjoint, we integrate by parts the first term of Eq. (3.9) a second time∫
Ω

∇ ·
(
c̄2∇p̂†

∗ )
p̂ dV +

∫
∂Ω

p̂†
∗

c̄2 ∂ p̂
∂n

dS −
∫
∂Ω

∂ p̂†
∗

∂n
c̄2 p̂ dS + ω2

∫
Ω

p̂†
∗

p̂ dV = 0 (3.11)

We can eliminate the boundary terms from Eq. (3.11), i.e. second and third integral, by
choosing the following boundary conditions for the adjoint: p̂† = 0 on ∂ΩD, ∂ p̂†

/
∂n = 0 on

∂ΩN and ∂ p̂†
/
∂n + iω∗/(c̄Z∗)p̂† = 0 on ∂ΩR. The strong formulation of the adjoint equation

is
∇ ·

(
c̄2∇p̂†

)
+ ω∗

2
p̂† = 0 (3.12)

1Hilbert spaces
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In this case, the adjoint operator is self-adjoint if the impedance, Z , is purely imaginary. An
operator is self-adjoint if the direct and the adjoint operator are the same.

3.1.2 Right-hand side

The right-hand side in strong form is

(γ − 1)
ÛQt

Ub
v(x)F(ω)

∫
Ω

w(ξ)
1
ρ̄
∇p̂ · nr dV(ξ) (3.13)

For now we will drop the constant factor (γ−1) ÛQt/Ub, to keep the notation simple. We multiply
Eq. (3.13) by the complex conjugate of the test function p̂†, and integrate over Ω.∫

Ω

p̂†
∗

v(x)F(ω)
(∫
Ω

w(ξ)
1
ρ̄
∇p̂ · nr dV(ξ)

)
dV(x) (3.14)

Then we move the integral in the variable ξ outside the integral in the variable x and obtain the
weak form

F(ω)
∫
Ω

v(x)p̂†
∗

dV(x)
∫
Ω

w(ξ)
1
ρ̄
∇p̂ · nr dV(ξ) (3.15)

In order to find the adjoint equation, we need to express the second integral in Eq. (3.15) as
a functional of p̂ instead of ∇p̂. We integrate by parts remembering that, by construction,
w |∂Ω = 0. ∫

Ω

w(ξ)
1
ρ̄
∇p̂ · nr dV = −

∫
Ω

∇
(
w(ξ)

1
ρ̄

)
· nr p̂ dV +

∫
∂Ω

w(ξ)
1
ρ̄

p̂ dS︸             ︷︷             ︸
=0

(3.16)

We substitute Eq. (3.16) into Eq. (3.15) and obtain the weak form

− F(ω)
∫
Ω

v(x)p̂†
∗

dV(x)
∫
Ω

∇
(
w(ξ)

1
ρ̄

)
· nr p̂ dV(ξ) (3.17)

This time we move the integral in x inside the integral in ξ and then swap the symbols x and ξ

−

∫
Ω

∇
(
w(x)

1
ρ̄

)
· nr F(ω)

(∫
Ω

v(ξ)p̂†
∗

dV(ξ)
)
p̂ dV(x) (3.18)

Assuming that the flame transfer function, F, is analytic, the strong formulation of the adjoint
equation is

− ∇
(
w(x)

1
ρ̄

)
· nr F(ω∗)

∫
Ω

v(ξ)p̂† dV(ξ) (3.19)
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3.1.3 Full equation

Using the bra-ket notation, we can write the identity between the two sesquilinear forms〈
p̂†

����∇ ·
(
c̄2∇p̂

)
+ ω2 p̂ − (γ − 1)

ÛQt

Ub
v(x)F(ω)

∫
Ω

w(ξ)
1
ρ̄
∇p̂ · nr dV(ξ)

〉
=

−

〈
∇ ·

(
c̄2∇p̂†

)
+ ω∗

2
p̂† − (γ − 1)

ÛQt

Ub
∇

(
w(x)

1
ρ̄

)
· nr F(ω∗)

∫
Ω

v(ξ)p̂† dV(ξ)
����p̂〉 (3.20)

In the direct problem, the source term is proportional to the gradient of the direct eigenfunction
evaluated in the reference region, and acts in the heat release region. In the adjoint problem, the
source term is proportional to the adjoint eigenfunction evaluated in the heat release region
and acts in the reference region. The role of the two regions (or subdomains) is reversed. The
spectrum of the adjoint operator is the complex conjugate of the spectrum of the direct operator.

3.2 Finite element method

In this section we apply the Bubnov-Galerkin finite element method to the weak formulation of
the direct equation, Eq. (3.1a). A good introduction to the theory and the application of the
finite element method can be found in Larson and Bengzon (2013). We discretize the left-hand
side and the right-hand side separately.

3.2.1 Left-hand side

We write the left-hand side again in weak form, Eq. (3.9)

−

∫
Ω

c̄2∇p̂†
∗ · ∇p̂ dV +

∫
∂Ω

p̂†
∗

c̄2 ∂ p̂
∂n

dS + ω2
∫
Ω

p̂†
∗

p̂ dV = 0

We consider a triangulation2 K of Ω. Vh is the space of piecewise continuous polynomials on
K and Vh,0 ⊂ Vh is the subspace Vh,0 = {v ∈ Vh : v |∂ΩD = 0}. We do not specify the order of
the polynomials. ϕ j is a basis of Vh,0, with j = 1, . . . ,N , where N is the number of degrees
of freedom. We replace the trial function p̂ and the test function p̂† with p̂h, p̂†h ∈ Vh,0. In
the Bubnov-Galerkin finite element method, the trial and the test function belong to the same

2also called mesh
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function space. We write p̂h and p̂†h as linear combinations of the bases of Vh,0.

p̂h(x) =
N∑

j=1
p̂ jϕ j(x) (3.21a)

p̂†h(x) =
N∑

k=1
p̂†kϕk(x) (3.21b)

We substitute Eqs. (3.21) into Eq. (3.9) and obtain

p̂†
∗

k

(
−

∫
Ω

c̄2∇ϕk · ∇ϕ j dV +
∫
∂Ω
ϕk c̄2 ∂ϕ j

∂n
dS + ω2

∫
Ω

ϕkϕ j dV
)
p̂ j = 0 (3.22)

We have used the Einstein summation convention. In Eq. (3.22), the second integral is zero on
the Dirichlet boundary: ϕk = 0 ∀k : xk ∈ ∂ΩD, and on the Neumann boundary: p̂ j ∂ϕ j

/
∂n =

0 ∀ j : x j ∈ ∂ΩN . On the Robin boundary: p̂ j ∂ϕ j
/
∂n = iω/(c̄Z)p̂ jϕ j ∀ j : x j ∈ ∂ΩR. The

discretization reads

p̂†
∗

k

(
−

∫
Ω

c̄2∇ϕk · ∇ϕ j dV + ω
∫
∂ΩR

ic̄
Z
ϕkϕ j dS + ω2

∫
Ω

ϕkϕ j dV
)
p̂ j = 0 (3.23)

We define the matrices
Ak j = −

∫
Ω

c̄2∇ϕk · ∇ϕ j dV (3.24a)

Bk j =

∫
∂ΩR

ic̄
Z
ϕkϕ j dS (3.24b)

Ck j =

∫
Ω

ϕkϕ j dV (3.24c)

Ak j and Ck j are real symmetric matrices (the Dirichlet boundary conditions are enforced
symmetrically). If Z is not purely imaginary, Bk j is complex and non-Hermitian3.

3.2.2 Right-hand side

For the right-hand side we follow exactly the same steps. We write the right-hand side again in
weak form, Eq. (3.15).

F(ω)
∫
Ω

v(x)p̂†
∗

dV
∫
Ω

w(x)
1
ρ̄
∇p̂ · nr dV

3A Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate
transpose.
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We replace the trial function p̂ and the test function p̂† with p̂h, p̂†h ∈ Vh,0, and write them as
linear combinations of the bases of Vh,0.

p̂†
∗

k F(ω)
∫
Ω

v(x)ϕk dV
∫
Ω

w(x)
1
ρ̄
∇ϕ j · nr dV p̂ j (3.25)

The discretization then reads

Dk j =
ÛQt

Ub
(γ − 1)F(ω)

∫
Ω

v(x)ϕk dV︸           ︷︷           ︸
ak

∫
Ω

w(x)
1
ρ̄
∇ϕ j · nr dV︸                      ︷︷                      ︸
bj

(3.26)

The matrix Dk j is given by the outer product between two vectors, ak and b j . Dk j is neither
symmetric nor Hermitian. Both v(x) and w(x) must have compact support on Ω in order for
Dk j to be sparse. If w(x) = δD(x − xr), then Eq. (3.25) becomes

p̂†
∗

k F(ω)
∫
Ω

v(x)ϕk dV
1
ρ̄(xr)

∇ϕ j(xr) · nr p̂ j (3.27)

And Eq.(3.26) becomes

Dk j =
ÛQt

Ub
(γ − 1)F(ω)

∫
Ω

v(x)ϕk dV︸           ︷︷           ︸
ak

1
ρ̄(xr)

∇ϕ j(xr) · nr︸                  ︷︷                  ︸
bj

(3.28)

3.2.3 Full equation

The full discretization of Eq. (3.1) in compact form reads

p̂†
∗

k

(
Ak j + ωBk j + ω

2Ck j − Dk j(ω)
)

︸                                     ︷︷                                     ︸
Lk j (ω)

p̂ j = 0 (3.29)

It is a nonlinear eigenvalue problem for ω. Lk j(ω)p̂ j has to be equal to zero regardless of p̂†
∗

k .
p̂ j is the right eigenvector and p̂†

∗

k is the left eigenvector.

3.3 Discrete adjoint

We can either derive the adjoint equation and then discretize it or we can discretize and then
derive the adjoint. In the first case, we find the continuous adjoint. In the second, we find the
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discrete adjoint. When using the Bubnov-Galerkin finite element method, there is no difference
between the discrete adjoint and the discretization of the continuous adjoint, i.e. the matrices
are identical. In this section, we derive the discrete adjoint of Eq. (3.1).

Given two vectors u,v ∈ Cn, we define the inner product ⟨v|u⟩ = vHu, where the superscript
H denotes the conjugate transpose of a vector or a matrix. If L ∈ Cn×n is the discrete direct
operator and L† ∈ Cn×n is the discrete adjoint operator〈

p†
��Lp

〉
=

〈
L†p†

��p〉
(3.30)

where p is the direct eigenvector and p† is the adjoint eigenvector.

(p†)HL(ω)p = ((L(ω))Hp†)Hp = ((L†(ω∗))p†)Hp (3.31)

Therefore, the adjoint of a matrix is its conjugate transpose and the adjoint eigenvector, p†,
is the left eigenvector of L. The spectrum of the discrete adjoint operator L† is the complex
conjugate of the spectrum of L. The direct eigenproblem in matrix notation reads

L(ω)p =
(
A + ωB + ω2C − D(ω)

)
p = 0 (3.32)

And the adjoint eigenproblem

L†(ω∗)p† =
(
A + ω∗BH + ω∗

2
C − (D(ω))H

)
p† = 0 (3.33)

The conjugate transpose of Eq. (3.29) is

p̂∗j
(
A j k + ω

∗B∗j k + ω
∗2Cj k − D∗j k(ω)

)
︸                                        ︷︷                                        ︸

L∗
jk
(ω)

p̂†k = 0 (3.34)

The discretization matrices of the adjoint eigenproblem are

A j k = Ak j (3.35a)

B∗j k = −

∫
∂ΩR

ic̄
Z∗
ϕ jϕk dS (3.35b)

Cj k = Ck j (3.35c)

D∗j k =
ÛQt

Ub
(γ − 1)F∗(ω)

1
ρ̄(xr)

∇ϕ j(xr) · nr︸                  ︷︷                  ︸
bj

∫
Ω

v(x)ϕk dV︸           ︷︷           ︸
ak

(3.36)
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3.4 Eigensolver

In this section, we give the basic definitions of nonlinear eigenvalue problems for finite-
dimensional linear operators. Useful references are (Güttel and Tisseur, 2017; Mehrmann and
Voss, 2004).

Given a matrix-valued function L : C→ Cn×n, the nonlinear eigenvalue problem consists in
finding the eigenvalues ω ∈ C and the non-zero eigenvectors p ∈ Cn such that

L(ω)p = 0 (3.37)

In other words, if we consider a family of linear operators L(z), which is a family of mappings
from a scalar to a matrix, the eigenvalues are the scalars, ω, such that the matrix L(z) is
non-invertible. The eigenvectors associated with the eigenvalue ω are the non-zero vectors in
the nullspace of L(ω), also called eigenspace and denoted by null(L(ω)). L depends nonlinearly
on z and is linear with respect to p. (ω,p) is an eigenpair of L and the set of all eigenvalues is
the specturm of L.

The eigenvalues, ω, of L are the solutions of the scalar equation f (z) = det(L(z)) = 0.
The algebraic multiplicity of an eigenvalue, ω, is defined as the multiplicity of the root of
det(L(z))

��
z=ω, i.e., the smallest integer j ≥ 1 such that ∂ j /∂z j det(L(z))

��
z=ω , 0. Unlike in

linear eigenvalue problems, in nonlinear eigenvalue problems the algebraic multiplicity can
be greater than the dimension of the problem, n. The geometric multiplicity of an eigenvalue,
ω, is defined as the dimension of the nullspace of L(ω), denoted by dim(null(L(ω))). The
eigenvectors belonging to distinct eigenvalues are not necessarily linearly independent. An
eigenvalue, ω, is called semi-simple if its algebraic multiplicity is equal to its geometric
multiplicity. It is called simple if its algebraic multiplicity is one and degenerate if its algebraic
multiplicity is greater than one. Problems with symmetries such as rotationally symmetric
annular combustors have degenerate eigenvalues. An eigenvalue is called defective if its
algebraic multiplicity is greater than its geometric multiplicity.

3.4.1 Fixed-point iteration

At each iteration we solve a generalized eigenvalue problem for f 2.

L( f ;ω)p =
(
A + ω[k]B + f 2(ω[k])C − D(ω[k])

)
p = 0 (3.38)

f is the eigenvalue and ω[k] is a parameter. At the zeroth iteration, ω[k] = 0. Therefore, there is
no unsteady heat release, and we apply Neumann boundary conditions instead of Robin boundary
conditions on ∂ΩR. In the simplest version of the fixed-point iteration, ω[k+1] = f (ω[k]), and
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the iteration might not converge to a fixed point. According to Banach’s fixed-point theorem, a
necessary condition for the mapping, f , to converge to a fixed point, ω, is that | f ′(ω)| < 1. ω
is then an attracting fixed point. In this case, there is no guarantee that | f ′(ω)| < 1. In order to
improve the convergence, we can use a relaxation method.

ω[k+1] = g(ω[k];α) ≡ α f (ω[k]) + (1 − α)ω[k] (3.39)

g is a mapping and α is a relaxation factor. A sequence ω[k] converges to a fixed point ω at a
rate of convergence m if there exists G > 0 such that

|ω[k+1] − ω| ≤ G |ω[k] − ω |
m (3.40)

Furthermore, the rate of convergence is equal to the smallest positive integer, m, satisfying
∂m/∂zm g(z = ω) , 0. If g′(ω) = 0, the rate of convergence is superlinear.

g′(ω[k];α) = α f ′(ω[k]) + 1 − α = 0 (3.41)

From Eq. (3.41) we obtain that
α =

1
1 − f ′(ω[k])

(3.42)

We can approximate f ′(ω[k]) with a backward difference4, or we can use perturbation theory
(see Appendix A). The exact derivative of f with respect to ω is

f ′(ω) = −
p†H
∂L( f ;ω)/∂ω p

p†H
∂L( f ;ω)/∂ f p

(3.43)

Combining Eq. (3.43) with Eq. (3.38), we obtain

f ′(ω) = −
p†H (

B − D′(ω)
)
p

p†H2 f Cp
(3.44)

See Algorithm 1. The fixed-point iteration can be implemented in more than one way. Instead
of a linear eigenvalue problem, we can choose to solve at each iteration a quadratic eigenvalue
problem for f .

L( f ;ω)p =
(
A + f (ω[k])B + f 2(ω[k])C − D(ω[k])

)
p = 0 (3.45)

4
f (ω[k]) − f (ω[k−1])

ω[k] − ω[k−1]
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The derivative of f with respect to ω will be

f ′(ω) =
p†HD′(ω)p

p†H (
B + 2 f C

)
p

(3.46)

If we use Eq. (3.44) or (3.46), at each iteration we need the left eigenvector. We can either
solve the adjoint eigenproblem or, if available, we can extract the left eigenvector from the
eigensolver. SLEPc EPS class for linear eigenvalue problems includes this option, although it
is not accurate when the eigenvalue is degenerate. For a two-fold degenerate eigenvalue, one
of the two left eigenvectors is not computed with sufficient accuracy. SLEPc PEP class for
polynomial eigenvalue problems does not include this option.

Algorithm 1: Fixed-point iteration
function Eigensolver(A, B, C, D, tol, maxiter):

k ← −1
ω[k] ← 0
Solve L( f ;ω[k])p = 0 to find f 2 and p
ω[k+1] = f
∆ω← 2 × tol
while |∆ω| > tol and k < maxiter do

k ← k + 1
Solve L( f ;ω[k])p = 0 to find f 2 and p
Solve (L( f ;ω[k]))Hp† = 0 to find f ∗2 and p†

f ′← −
p†H
∂/∂ω L( f ;ω[k])p

p†H
∂/∂ f L( f ;ω[k])p

α←
1

1 − f ′
ω[k+1] ← α f + (1 − α)ω[k]

∆ω← ω[k+1] − ω[k]

end
return ω[k+1], p, p†

end

3.4.2 Newton’s method

Perturbation theory enables us to calculate the exact derivative of the eigenvalues of a linear
operator with respect to any parameter, provided that the dependence of the operator on the
parameter is analytic. This is explained in Appendix A. In his thesis, Mensah (2019) developed a
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Newton’s method for nonlinear eigenvalue problems exploiting the knowledge of the eigenvalue
derivative. The rate of convergence of this method is quadratic.

At each iteration we solve an auxiliary generalized eigenvalue problem for λ.

L(ω)p = λCp (3.47)

We want to find ω such that λ = 0. As with the fixed-point iteration, here ω takes the role of a
parameter. If we linearize λ = 0 with respect to ω, we obtain

λ(ω + ∆ω) ≃ λ(ω) + λ′(ω)∆ω = 0 (3.48)

Therefore, at each iteration step we update ω as

ω[k+1] = g(ω[k]) ≡ ω[k] −
λ(ω[k])

λ′(ω[k])
(3.49)

g is a mapping. g′ is guaranteed to be 0 at a fixed point. Using perturbation theory, the first
derivative of λ with respect to ω is

λ′(ω) =
p†HL′(ω)p

p†HCp
(3.50)

The matrices are defined as follows

L(ω) = A + ωB + ω2C − D(ω) (3.51)

(L(ω))H = A + ω∗BH + ω∗2C − (D(ω))H (3.52)

L′(ω) = B + 2ωC − D′(ω) (3.53)

See Algorithm 2. For a degenerate eigenvalue with multiplicity m, λ can be expressed as

λ(ω) = (ω − a)mh(ω) (3.54)

where a is the fixed point and h is a function. In this case, the derivative of the mapping at the
fixed point takes the value

g′(a) =
m − 1

m
(3.55)
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which obviously is not zero, and the convergence of the method is not quadratic. This can be
fixed using the mapping

ω[k+1] = g(ω[k]) ≡ ω[k] − m
λ(ω[k])

λ′(ω[k])
(3.56)

which gives
g′(a) = 0 (3.57)

Newton’s method is only the first of a class of methods called Householder’s methods. The
second order method, called Halley’s method, has cubic convergence. It requires the knowledge
of the second-order derivative of λ and the eigenvector corrections. We will not consider these
as we will not go beyond first-order perturbations.

Algorithm 2: Newton’s method
function Eigensolver(A, B, C, D, ω[0], tol, maxiter):

k ← −1
∆ω← 2 × tol
while |∆ω| > tol and k < maxiter do

k ← k + 1
Solve L(ω[k])p = λCp to find λ and p
Solve (L(ω[k]))Hp† = λ∗Cp† to find λ∗ and p†

λ′←
p†HL′(ω[k])p

p†HCp
ω[k+1] ← ω[k] −

λ

λ′

∆ω← ω[k+1] − ω[k]

end
return ω[k+1], p, p†

end

3.5 Code description

The code is written using the open-source computing platform FEniCS (Alnæs et al., 2015;
Logg et al., 2012). At each iteration of either Algorithm 1 or Algorithm 2, the eigenvalue
problem is solved using the SLEPc library (Hernandez et al., 2005). Generalized eigenvalue
problems are solved with the Krylov-Schur method, which is a variation of the Arnoldi method
(Arnoldi, 1951) with a very effective restarting technique. Polynomial eigenvalue problems
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are solved building an Arnoldi factorization of the linearization without explicitly creating the
matrices. In both cases, a shift-and-invert transformation is used to enhance the convergence
of the eigenvalues in the neighbourhood of a given value. The mesh is generated using Gmsh
(Geuzaine and Remacle, 2009) by way of a Delaunay triangulation.



Chapter 4

Shape derivatives

We wish to calculate how small modifications to the geometry of a combustor affect the stability
of the thermoacoustic modes. This translates into the problem of finding the derivative of an
eigenvalue with respect to arbitrary perturbations to the shape of the domain.

4.1 Shape derivative and Hadamard theorem

Following Schmidt (2010); Schmidt and Schulz (2010), we define a one-parameter family of
bijective (invertible) linear mappings

Tt : Ω ⊂ Rd × R+ → Rd, x, t 7→ Tt(x) (4.1)

where t is the non-negative parameter of the transformation. Tt transforms the domain Ω into
the deformed domain Ωt .

Ωt = Tt(Ω) = {Tt(x0) | x0 ∈ Ω} (4.2)

We use the linear transformation called perturbation of identity

Tt(x) = x + tV (x) (4.3)

where V is a continuous vector field representing the direction of the perturbation. Let J be a
shape functional, i.e. a mapping from a function space on Ω into the field of real or complex
numbers, therefore dependent on the domain shape. The shape derivative of J at Ω in the
direction of the perturbation V is defined as the functional derivative

dJ(Ω)[V ] = lim
t→0+

J(Ωt) − J(Ω)

t
(4.4)
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A shape functional J is said to be shape differentiable at Ω if the derivative, Eq. (4.4), exists
for all the directions V and if the mapping V 7→ dJ(Ω)[V ] is linear and continuous. Under
mild smoothness assumptions, the shape derivative dJ depends only on the normal component
of the vector field V at the boundary of the domain.

dJ(Ω)[V ] = dJ(Γ)[Cn] =

∫
Γ

C G dS (4.5)

where Γ is the domain boundary, C = V · n, and G is the shape gradient. This result is known
as Hadamard theorem (or formula) (Delfour and Zolésio, 2011; Sokolowski and Zolesio, 1992).
In Eq. (4.5), the shape derivative is said to be written in Hadamard form.

4.2 Tangential calculus

In this short section we give some definitions from differential geometry that will be used
throughout the derivations. Let f be a scalar field and v a vector field. The tangential gradient
of f is

∇Γ f = ∇ f −
∂ f
∂n

n =
∂ f
∂xi
−
∂ f
∂x j

n jni (4.6)

The tangential gradient is the orthogonal projection of the gradient onto the tangent space. The
tangential divergence of v is

divΓv = divv − (Dvn) · n = ∇ · v − ((n · ∇)v) · n = ∂vi

∂xi
− n j
∂vi

∂x j
ni (4.7)

Dv is the Jacobian of v and Dvn is the matrix product between Dv and n. In addition to
the definitions of tangential gradient and divergence, we give the Tangential Stokes formula
(Delfour and Zolésio, 2011)∫

Γ

f divΓv + ∇Γ f · v dS =
∫
Γ

κ f v · n dS (4.8)

where κ = divΓn is the curvature.

4.3 Shape derivatives under a state constraint

We want to derive a formula for the shape derivative in Hadamard form, or equivalently for the
shape gradient, ofω, whereω is an eigenvalue of the thermoacoustic Helmholtz equation, (2.20).
We consider Robin boundary conditions, which contain Dirichlet and Neumann boundary
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conditions as special cases. The boundary Γ is split into a non-deformable and a deformable
part. The first is denoted by Γ0 and the second by Γ1. The problem reads

L(ω)p̂ = 0 in Ω (4.9a)

∂ p̂
∂n
−

iω
c̄Z

p̂ = 0 on Γ = Γ0 ∪ Γ1 (4.9b)

where L is the linear operator, acting linearly on the eigenfunction p̂, of the thermoacoustic
Helmholtz equation (2.20). We apply the perturbation Tt . Instead of solving the problem on the
perturbed domain Ωt , we map the perturbed problem onto the unperturbed domain Ω.

Let p̂t solve (4.9) in the perturbed domain Ωt = Tt(Ω) and let xt = Tt(x) be a point on the
perturbed boundary. The material shape derivative is

dp̂[V ](x) =
d
dt

����
t=0

p̂t(xt) (4.10)

The local shape derivative is

p̂′[V ](x) =
d
dt

����
t=0

p̂t(x) (4.11)

The relation between the first, which is a total derivative, and the second, which is a partial
derivative, is given by the chain rule

dp̂[V ] = p̂′[V ] + V · ∇p̂ (4.12)

The material derivative of any boundary condition is identically zero. In the case of a non-
deformable boundary, V = 0, and the material derivative is the local derivative. In the case of a
deformable boundary, V , 0.

4.3.1 Shape derivative of the Robin boundary condition

We use the chain rule, Eq. (4.12), to express the material shape derivative of the Robin boundary
condition on the deformable boundary, Γ1, Eq. (4.9b), in terms of the local shape derivative
of the eigenfunction, p̂. The mean speed of sound, c̄, depends on x and the specific acoustic
impedance, Z , is assumed to be constant on Γ1.

∇p̂′ · n + ∇p̂ · n′ + V · ∇(∇p̂ · n) − iω′

c̄Z
p̂ −

iω
c̄Z

p̂′ +
iω

c̄2Z
V · ∇c̄p̂ −

iω
c̄Z

V · ∇p̂ = 0 (4.13)

Equation (4.13) contains the local shape derivative and the gradient of the unit normal vector,
n. The unit normal vector is not defined in the interior of the domain, but only on the boundary.
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In order for n′ and ∇n to exist, we extend n into a tubular neighbourhood of Γ and denote this
extension by N. We choose as N the normalized gradient of the signed distance function, b, i.e.
N = ∇b/∥∇b∥ (Schmidt and Schulz, 2010). By definition of signed distance function, N = n

on the boundary. If V = Cn, the local shape derivative of the unit normal vector then is

n′i = N
′
i = dNi − Vj

∂Ni

∂x j
= dNi − CNj

∂Ni

∂x j
= dNi = dni (4.14)

In fact, if we assume that b is twice continuously differentiable, then Nj ∂Ni
/
∂x j = 0, as

shown by Eq. (4.15).

0 =
1
2
∂

∂xi
(1) =

1
2
∂

∂xi

(
NjNj

)
= Nj

∂Nj

∂xi
=

1
∥b∥2

∂b
∂x j

∂

∂xi

∂b
∂x j
=

1
∥b∥2

∂b
∂x j

∂

∂x j

∂b
∂xi
= Nj

∂Ni

∂x j
(4.15)

dNi = dni because the material shape derivative is defined for a point, xt , on the perturbed
boundary. If, as is the case, V is orthogonal to Γ, then (Sonntag et al., 2016)

dn = −∇Γ(V · n) = −∇ΓC (4.16)

and the second term of Eq. (4.13) can be written as

∇p̂ · n′ = −∇p̂ · ∇ΓC (4.17)

Using index notation

V · ∇(∇p̂ · n) = CN · ∇(∇p̂ · N) =

CNi
∂

∂xi

(
∂ p̂
∂x j
Nj

)
= CNi

∂2 p̂
∂xi∂x j

Nj + CNj
∂ p̂
∂xi

∂Ni

∂x j︸          ︷︷          ︸
= 0, Eq. (4.15)

(4.18)

and the third term of Eq. (4.13) reduces to

V · ∇(∇p̂ · n) = C
∂2 p̂
∂n2 (4.19)

Combining Eq. (4.13) with Eqs. (4.17) and (4.19), and observing that V · ∇(·) = C ∂(·)/∂n ,
the material shape derivative of the Robin boundary condition is

∂ p̂′

∂n
−

iω
c̄Z

p̂′ = ∇p̂ · ∇ΓC − C
∂2 p̂
∂n2 +

iω′

c̄Z
p̂ − C

iω
c̄2Z
∂c̄
∂n

p̂ + C
iω
c̄Z
∂ p̂
∂n

(4.20)



4.3 Shape derivatives under a state constraint 39

The material shape derivatives of the Dirichlet and Neumann boundary conditions are special
cases of Eq. (4.20). For Dirichlet boundary conditions, Z = 0 and p̂ = 0, therefore

p̂′ = −C
∂ p̂
∂n

(4.21)

For Neumann boundary conditions, Z →∞ and ∂ p̂/∂n = 0, therefore

∂ p̂′

∂n
= ∇Γ p̂ · ∇ΓC − C

∂2 p̂
∂n2 (4.22)

4.3.2 Eigenvalue shape derivative

In this section we derive the formula for the shape derivative of the eigenvalues of Eq. (4.9) in
Hadamard form. We first consider the case of Robin boundary conditions and then those of
Dirichlet and Neumann boundary conditions. We start by taking the material shape derivative
of Eq. (4.9). The material shape derivative is equal to the local shape derivative in the domain,
Ω, and on the non-deformable boundary, Γ0.

L′(ω)ω′p̂ + L(ω)p̂′ = 0 in Ω (4.23a)

∂ p̂′

∂n
−

iω
c̄Z

p̂′ =
iω′

c̄Z
p̂ on Γ0 (4.23b)

∂ p̂′

∂n
−

iω
c̄Z

p̂′ = ∇p̂ · ∇ΓC − C
∂2 p̂
∂n2 +

iω′

c̄Z
p̂ − C

iω
c̄2Z
∂c̄
∂n

p̂ + C
iω
c̄Z
∂ p̂
∂n

on Γ1 (4.23c)

We multiply (4.23a) by the complex conjugate of the adjoint eigenfunction, p̂†
∗ , and integrate

over the domain, Ω. Applying the definition of the adjoint operator, Eq. (3.6)

〈
p̂†

��L′(ω)p̂〉ω′ + 〈
L†(ω∗)p̂†

��p̂′〉 + ∫
Γ

p̂†
∗

c̄2 ∂ p̂′

∂n
dS −

∫
Γ

∂ p̂†
∗

∂n
c̄2 p̂′ dS = 0 (4.24)

The boundary integral terms arise from integrating twice by parts the operator ∇ · c̄2∇(·). We
substitute Eqs. (4.23b) and (4.23c) into Eq. (4.24). We can eliminate the terms containing the
eigenfunction sensitivity, p̂′, by defining the adjoint problem

L†(ω∗)p̂† = 0 in Ω (4.25a)

∂ p̂†

∂n
+

iω∗

c̄Z∗
p̂† = 0 on Γ (4.25b)
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Equation (4.24) becomes(〈
p̂†

��L′(ω)p̂〉 + ∫
Γ

p̂†
∗ ic̄

Z
p̂ dS

)
ω′+∫

Γ1

p̂†
∗

c̄2
(
∇p̂ · ∇ΓC − C

∂2 p̂
∂n2 − C

iω
c̄2Z
∂c̄
∂n

p̂ +
iω
c̄Z

C
∂ p̂
∂n

)
dS = 0 (4.26)

We can impose a normalization condition on the adjoint eigenfunction. For simple eigenvalues〈
p̂†

��L′(ω)p̂〉 + ∫
Γ

p̂†
∗ ic̄

Z
p̂ dS = 1 (4.27)

We discuss semi-simple degenerate eigenvalues in the next section. We use the direct and the
adjoint boundary conditions, Eqs. (4.9b) and (4.25b), to eliminate the eigenvalue, ω, from the
last two terms of Eq. (4.26).

ω′ =

∫
Γ1

(
−p̂†

∗

c̄2∇p̂ · ∇ΓC + Cp̂†
∗

c̄2 ∂
2 p̂
∂n2 + Cp̂†

∗

c̄
∂c̄
∂n
∂ p̂
∂n
− C
∂ p̂†

∗

∂n
c̄2 ∂ p̂
∂n

)
dS (4.28)

The eigenvalue sensitivity, or shape derivative, is now written as a functional of p̂ and p̂†. The
first term under the integral sign is, however, not yet in Hadamard form. We apply the tangential
Stokes formula, Eq. (4.8), with f = C and v = p̂†

∗

c̄2∇p̂. We obtain the shape derivative in
Hadamard form.

ω′ =

∫
Γ1

C
(
−κ p̂†

∗

c̄2 ∂ p̂
∂n
+divΓ

(
p̂†
∗

c̄2∇p̂
)
+ p̂†

∗

c̄2 ∂
2 p̂
∂n2 + p̂†

∗

c̄
∂c̄
∂n
∂ p̂
∂n
−
∂ p̂†

∗

∂n
c̄2 ∂ p̂
∂n

)
dS (4.29)

Equation (4.29) can be rearranged and possibly simplified. By definition of tangential divergence,

divΓ
(
p̂†
∗

c̄2∇p̂
)
= ∇ ·

(
p̂†
∗

c̄2∇p̂
)
−

(
(n · ∇)

(
p̂†
∗

c̄2∇p̂
))

· n (4.30)

Using index notation, the second term is(
(n · ∇)

(
p̂†
∗

c̄2∇p̂
))

· n = n j
∂

∂x j

(
p̂†
∗

c̄2 ∂ p̂
∂xi

)
ni

= n j
∂ p̂†

∗

∂x j
c̄2 ∂ p̂
∂xi

ni + 2n j p̂†
∗

c̄
∂c̄
∂x j

∂ p̂
∂xi

ni + n j p̂†
∗

c̄2 ∂
2 p̂

∂x j∂xi
ni

=
∂ p̂†

∗

∂n
c̄2 ∂ p̂
∂n
+ 2p̂†

∗

c̄
∂c̄
∂n
∂ p̂
∂n
+ p̂†

∗

c̄2 ∂
2 p̂
∂n2

(4.31)
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And

divΓ
(
p̂†
∗

c̄2∇p̂
)
= ∇ ·

(
p̂†
∗

c̄2∇p̂
)
−
∂ p̂†

∗

∂n
c̄2 ∂ p̂
∂n
− 2p̂†

∗

c̄
∂c̄
∂n
∂ p̂
∂n
− p̂†

∗

c̄2 ∂
2 p̂
∂n2 (4.32)

If we substitute Eq. (4.32) into Eq. (4.29), then we obtain the final formula for the shape
derivative of the eigenvalues of Eq. (4.9).

ω′ =

∫
Γ1

C
(
−p̂†

∗

(
κc̄2 + c̄

∂c̄
∂n

)
∂ p̂
∂n
+ ∇ ·

(
p̂†
∗

c̄2∇p̂
)
− 2
∂ p̂†

∗

∂n
c̄2 ∂ p̂
∂n

)
dS (4.33)

The shape derivative for the Dirichlet and the Neumann boundary conditions are special cases of
Equation (4.33). When applying Dirichlet boundary conditions, p̂ = 0, p̂† = 0, ∇p̂ = ∂ p̂/∂n n

and ∇p̂† = ∂ p̂†/∂n n. In fact, p̂ is constant along the boundary and the tangential gradient
(derivative in the tangential direction) is zero. We obtain

ω′ = −

∫
Γ1

C
(
∂ p̂†

∗

∂n
c̄2 ∂ p̂
∂n

)
dS (4.34)

When applying Neumann boundary conditions, ∂ p̂/∂n = 0 and ∂ p̂†
/
∂n = 0, and we obtain

ω′ =

∫
Γ1

C
(
∇ ·

(
p̂†
∗

c̄2∇p̂
) )

dS (4.35)

If q̂ = 0, we obtain from Eq. (2.15)

ω′ =

∫
Γ1

C
(
c̄2∇p̂†

∗ · ∇p̂ − ω2 p̂†
∗

p̂
)

dS (4.36)

4.3.3 The 2-fold degenerate case

To illustrate the semi-simple degenerate case, we write the formula for the eigenvalue shape
derivative in Hadamard form∫

Γ1

C G
(
p̂†, p̂

)
dS − ω′

(〈
p̂†

��L′(ω)p̂〉 + ∫
Γ

p̂†
∗ ic̄

Z
p̂ dS

)
= 0 (4.37)

For repeated eigenvalues, which are two-fold degenerate in this case, the eigenfunction p̂ is
given by the linear combination (Grinfeld, 2010)

p̂ = α1 p̂1 + α2 p̂2 =
2∑

j=1
α j p̂ j (4.38)
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where p̂1 and p̂2 are the independent eigenfunctions associated with the repeated eigenvalue ω
and α1 and α2 are complex numbers. The same applies to the adjoint eigenfunction p̂†. We
substitute these linear combinations into (4.37)

α∗i

(∫
Γ1

C G
(
p̂†i , p̂ j

)
dS − ω′

(〈
p̂†i

���L′(ω)p̂ j

〉
+

∫
Γ

p̂†
∗

i
ic̄
Z

p̂ j dS
))
α j = 0 (4.39)

The shape gradient now has four components. We can normalize the bases of the two eigenspaces
(direct and adjoint) such that they become biorthonormal〈

p̂†i

���L′(ω)p̂ j

〉
+

∫
Γ

p̂†
∗

i
ic̄
Z

p̂ j dS = δi j (4.40)

We are left with a 2 × 2 eigenvalue problem for the shape derivative ω′(∫
Γ1

C G
(
p̂†i , p̂ j

)
dS − ω′δi j

)
α j = 0 (4.41)

4.4 Shape derivatives of the Helmholtz equation in a unit
square

In this section we apply the Hadamard formula/theorem to calculate analytically the shape
derivatives of the eigenvalues of the Helmholtz equation in a unit square domain with
homogeneous Dirichlet boundary conditions for normal boundary perturbations proportional to
the shape gradients. The equation and the boundary conditions read

∇2 p̂ + k2 p̂ = 0 in Ω (4.42)

p̂ = 0 on ∂Ω (4.43)

The eigenvalues and their associated eigenfunctions are

km,n = π
√

m2 + n2 (4.44)

p̂m,n(x, y) = sin(mπx) sin(nπy) (4.45)

where m and n are the two wavenumbers. The spectrum, i.e. the set of all the eigenfrequencies,
contains both simple and semi-simple degenerate eigenvalues. We focus on the simple eigenmode
with wavenumbers (1, 1), and the semi-simple degenerate eigenmode with wavenumbers (1, 2)
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and (2, 1). The eigenfunctions are orthogonal and (are) normalized such that〈
p̂m,n

��p̂m,n
〉
=

1
4

(4.46)

4.4.1 Uniform boundary perturbations

If we shrink the unit square domain in the y-direction, the width will be 1 − ε, with ε ≪ 1, and
the eigenvalue

km,n(ε) = π

√
m2 +

( n
1 − ε

)2
(4.47)

The first-order eigenvalue sensitivity (shape derivative) is straightforwardly given by the
first-order coefficient of the McLaurin series

k′m,n(0) = π
n2

√
m2 + n2

(4.48)

For the first mode, which is simple, the shape derivatives is

k′1,1(0) =
π
√

2
≈ 2.2 (4.49)

For the second eigenmode, which is semi-simple degenerate, the eigenvalues split and the shape
derivatives are

k′1,2(0) =
4π
√

5
≈ 5.6 (4.50)

k′2,1(0) =
π
√

5
≈ 1.4 (4.51)

These simple results are useful for example when debugging.

4.4.2 Boundary perturbations proportional to the shape gradients

In this subsection we first calculate the shape gradients for both eigenmodes and then the shape
derivatives for normal boundary perturbations proportional to the shape gradients. We start by
writing eigenvalues and eigenfunctions.

k1,1 = π
√

2, p̂1,1 = sin(πx) sin(πy) (4.52)

k1,2 = π
√

5, p̂1,2 = sin(πx) sin(2πy) (4.53)

k2,1 = π
√

5, p̂2,1 = sin(2πx) sin(πy) (4.54)
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Fig. 4.1 First three eigenfunctions of the Helmholtz equation in a unit square domain with
homogeneous Dirichlet boundary conditions. The associated eigenvalues are k1,1 = π

√
2,

k1,2 = π
√

5 and k2,1 = π
√

5.

The eigenfunctions are shown in Fig. 4.1. The shape gradient reads

G =
2
k
∂ p̂†

∂n
∂ p̂
∂n

(4.55)

The problem is self-adjoint, therefore p̂† ≡ p̂. We study two cases: case (a) consists in
perturbations to the bottom boundary and case (b) in perturbations to the left boundary. The
normal derivatives of the eigenfunctions at the two boundaries (bottom and left), remembering
that the unit normal vector points outwards, are

a)
∂ p̂
∂n
= −
∂ p̂
∂y

����
y=0
= −nπ sin(mπx) (4.56)

b)
∂ p̂
∂n
= −
∂ p̂
∂x

����
x=0
= −mπ sin(nπy) (4.57)

The shape gradient of the first mode is
a)

G = π
√

2 sin2(πx) (4.58)

b)
G = π

√
2 sin2(πy) (4.59)

The shape gradients of the second mode are
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Fig. 4.2 Shape gradients of the first two eigenvalues of the Helmholtz equation at the bottom
boundary. For ease of visualizion, we plot the shape gradients with the opposite sign.

a) (
G11 G12

G21 G22

)
=

2π
√

5

(
4 sin2(πx) 2 sin(πx) sin(2πx)

2 sin(2πx) sin(πx) sin2(2πx)

)
(4.60)

b) (
G11 G12

G21 G22

)
=

2π
√

5

(
sin2(2πy) 2 sin(2πy) sin(πy)

2 sin(πy) sin(2πy) 4 sin2(πy)

)
(4.61)

The shape gradients of the first and second mode for case (a) are shown in Fig. 4.2. Now
we want to calculate the shape derivatives for boundary displacements proportional to the
shape gradients. We normalize the displacements such that

∫
|C | dS = 1. The normalized

displacement for the first eigenmode is

C ∝ G = 2 sin2(πx) (4.62)

And the shape derivative is

k′1,1 =
3π
√

2
4
≈ 3.3 (4.63)

This value is larger than the shape derivative for a boundary perturbation that transforms the
square into a rectangle. The shape derivatives of the second eigenmode are the eigenvalues of a
2 × 2 matrix. The normalized displacements and the shape derivatives are
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Table 4.1 Shape derivatives for perturbations to the bottom boundary

C ∝ k′1,2 k′2,1
const 5.6 1.4

G11 = 2 sin2(πx) 8.4 1.4
G12 = G21 =

3π
4 sin(πx) sin(2πx) 3.3 −3.3

G22 = 2 sin2(2πx) 5.6 2.1

Table 4.2 Shape derivatives for perturbations to the left boundary

C ∝ k′1,2 k′2,1
const 1.4 5.6

G11 = 2 sin2(2πy) 2.1 5.6
G12 = G21 =

3π
4 sin(πy) sin(2πy) −3.3 3.3

G22 = 2 sin2(πy) 1.4 8.4

C ∝ G11 = 2 sin2(πx) (4.64)

2π
√

5

(
3 0
0 1

2

)
−→ k′1,2 =

6π
√

5
≈ 8.4, k′2,1 =

π
√

5
≈ 1.4 (4.65)

C ∝ G12 =
3π
4

sin(πx) sin(2πx) (4.66)

2π
√

5

(
0 3π

8
3π
8 0

)
−→ k′1,2 = k′2,1 = ±

3π2

4
√

5
≈ ±3.3 (4.67)

C ∝ G22 = 2 sin2(2πx) (4.68)

2π
√

5

(
2 0
0 3

4

)
−→ k′1,2 =

4π
√

5
≈ 5.6, k′2,1 =

3π
2
√

5
≈ 2.1 (4.69)

The shape derivatives are summarized in Table 4.1 and Table 4.2. Perturbations proportional
to G11 cause the maximum drift of the eigenvalue k1,2, associated with the first eigenvector.
Perturbations proportional to G22 cause the maximum drift of the eigenvalue k2,1, associated
with the second eigenvector. The shape derivatives associated with perturbations proportional
to G12 and G21 are, apart from the sign, the same for k1,2 and k2,1. If we consider perturbations
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applied to the left boundary, rather than the bottom boundary, perturbations proportional to G22

have on k2,1 the same effect that perturbations proportional to G11 have on k1,2, and so forth.
In the case of a circumferential geometry, there would not be this difference because there is

only one boundary. In addition to this, a boundary perturbation as simple as a radius increase
(decrease) would not break the symmetry. This will be explained in detail in Chapter 6.





Chapter 5

Rijke tube and turbulent swirl combustor

This chapter is based on the results published in (Falco and Juniper, 2021a). We consider
two-dimensional planar models of an electrically heated Rijke tube and a turbulent swirl
combustor. They are both longitudinally unstable. In both cases, we parametrize the combustor
walls using B-splines and apply shape changes proportional to the eigenvalue shape derivatives
to reduce the eigenvalue growth rate and eventually make the mode stable.

5.1 Rijke tube

The first case is a model of an electrically heated Rijke tube (Rijke, 1859) taken from (Juniper,
2018). The model is based on the experiments conducted by Rigas et al. (2016) to measure
the sensitivity of the frequencies and growth rates to passive feedback control in the form of a
drag device, previously computed by Magri and Juniper (2013) using adjoint-based sensitivity
analysis applied to a Galerkin model of the thermo-acoustic waves. In the experiments, the
Mach number was less than 0.003. Therefore the assumption of zero Mach number base flow is
valid.

5.1.1 Model description

We impose Neumann boundary conditions at the radial walls and Robin boundary conditions
at the inlet and outlet boundaries. Table 5.1 contains all the parameters of the model before
and after nondimensionalization. x f denotes the position of the hot wire and a f is the standard
deviation of the heat release rate distribution, which is homogeneous in the radial direction.
d f is the diameter of the duct at the heat source. xr denotes the reference point and ar is the
standard deviation of the weight function (reference region). The standard deviation is the same
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Table 5.1 Rijke tube: dimensional and nondimensional parameters

Dimensional Nondimensional
l 1.0 [m] l̃ 1.0
d 0.047 [m] d̃ 0.047

r 287 [J kg−1 K−1]
γ 1.4

pa 1.0 × 105 [Pa]
ρa 1.22 [kg m−3]
ρ̄u 1.22 [kg m−3] ˜̄ρu 1.4
ρ̄d 0.85 [kg m−3] ˜̄ρd 0.975

Ru −0.975 + 0.05i
Rd −0.975 + 0.05i

ÛQt 200 [W] Û̃Qt 5.9 × 10−6

Ub 0.1 [m s−1] Ũb 2.95 × 10−4

N 0.014
τ 1.5 × 10−3 [s] τ̃ 0.508

x f 0.25 [m] x̃ f 0.25
a f 0.025 [m] ã f 0.025
xr 0.2 [m] x̃r 0.2
ar 0.0047 [m] ãr 0.0047

L ≡ l 1.0 [m]

in the longitudinal and in the radial direction. ρ̄u and ρ̄d denote the mean density in the cold
upstream region and in the hot downstream region, respectively.

The mean density, which is homogeneous in the radial direction, is

ρ̄(x, y) = ρ̄d +
ρ̄d − ρ̄u

2

[
1 + tanh

(
x − x f

a f

)]
(5.1)

The distribution of the heat release rate across the hot wire is

v(x, y) =
1

d f a f
√

2π
exp

(
−
(x − x f )

2

2a2
f

)
(5.2)

The weight function (reference region) is

w(x, y) =
1

a2
r 2π

exp
(
−
(x − xr)

2 + y2

2a2
r

)
(5.3)
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Fig. 5.1 Nondimensional mean density, ρ̄, distribution of the heat release rate, v, and weight
function (reference region), w, in the two-dimensional model of the electrically heated Rijke
tube.

w is a Gaussian function. It vanishes at infinity but it does not have compact support. However,
its standard deviation, ar , is small and we restrict w so that it is zero at the boundary.

Figure 5.1 shows the nondimensional mean density, ρ̄, the distribution of the heat release
rate, v, and the weight function, w, for the two-dimensional model of the Rijke tube. In two
dimensions, the nondimensional interaction index, N , is divided by π/4d f .

5.1.2 Shape sensitivity analysis and shape changes

We define two sets of control points, one for the top boundary and one for the bottom boundary.
Then we parametrize the two boundaries using 3rd order uniform non-rational B-splines (see
Appendix B). The inlet and the outlet boundary are fixed.

We compute the first direct and adjoint eigenmode of the thermoacoustic system, which
is unstable. The associated nondimensional eigenvalue is ω = 3.539521 + i0.001984. The
results match those of the one-dimensional model in (Juniper, 2018) and have been checked
against the finite volume Helmholtz solver AVSP (Nicoud et al., 2007). Then, using Eq. (4.35),
we calculate the shape derivatives for each control point. Fig. 5.2 shows the real and the
imaginary part of the shape derivatives for each control point as vectors. As expected, they
are all orthogonal to the boundary. In fact, a tangential displacement would only result in a
reparametrization of the boundary, without changing its shape or affecting the eigenvalue. The
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Fig. 5.2 Real (top) and imaginary (bottom) part of the eigenvalue shape derivatives for each
control point at the bottom boundary of the Rijke tube. The real part gives the influence on the
frequency and the imaginary part gives the influence on the growth rate.

real part of the shape derivatives gives the direction of greatest positive change of the angular
frequency of the mode. The imaginary part gives the direction of greatest positive change of the
growth rate of the mode. Therefore, at each iteration we move the control points in the opposite
direction of the imaginary part of the shape derivatives. The shape derivatives are scaled in
such a way that the largest displacement is equal to one twenty-fifth of the radius of the tube, i.e.
9.4×10−4 in nondimensional units. This reduces the growth rate and eventually makes the mode
stable. In this analysis we do not take into account the effect of the geometry modifications on
the mean quantities, such as the bulk flow velocity, Ub. The eigenvalue becomes stable after 3
iterations. However, we continue to iterate in order to accentuate the boundary deformations so
that the differences between the two shapes and between the two eigenvectors are more visible.

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.05
0.00

0.05

y

Fig. 5.3 Initial ( ) and final ( ) boundary of the Rijke tube after 10 iterations. The circles
represent the control points of the final boundary. The control points at the inlet and outlet
boundary are fixed.
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Fig. 5.4 Modulus of the pressure eigenfunction, p̂, associated with the first thermoacoustic
mode of the electrically heated Rijke tube, for the initial ( ) and the final domain ( ), after 10
iterations. The associated nondimensional eigenvalues are ωΩ = 3.539521 + i0.001984 and
ωΩt = 3.688497 − i0.009876, respectively.

Table 5.2 Rijke tube: stability criterion

Initial domain Final domain��p̂(x f )
�� 5.22 4.80

| û(xr) · nr | 3.83 3.37
∠q̂ − ∠p̂ 11.8◦ 16.3◦��p̂2(xin)

�� 0.0387 0.0358��p̂2(xout)
�� 0.0334 0.0443

Fig. 5.3 shows the non-deformed and the deformed boundary after 10 iterations. Fig. 5.4
shows the modulus of the pressure eigenvector, along the longitudinal axis, before and after the
iteration.

5.1.3 Results interpretation

We use Eq. (2.33) to interpret the results. All the quantities to which we refer in this subsection
are listed in Table 5.2. In the n − τ model, the gain of the flame transfer function is constant
and equal to the interaction index, N . Both the modulus of the pressure at the position of the
heat source, x f , and the modulus of the longitudinal component of the velocity at the reference
point, xr , are smaller in the final domain than in the initial domain. The phase angle difference
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between the heat release rate and the pressure at the position of the heat source, x f , increases
from ∼ 12◦ to ∼ 16◦. Finally, the quantity

��p̂2
�� increases at the outlet boundary and slightly

decreases at the inlet boundary. Overall, in the final domain, the heat release rate oscillations
are smaller in absolute value and less in phase with the pressure oscillations than in the initial
domain, and the acoustic losses due to acoustic radiation from the boundaries are larger.

l1

l2

l3

l4

�d1

�d2

�d3

Fig. 5.5 Turbulent swirl combustor

5.2 Turbulent swirl combustor

The second case is a model of a laboratory-scale turbulent swirl combustor at Laboratoire EM2C
(CentraleSupélec) in Paris, France. This combustor has been extensively studied in the context
of combustion instabilities. In particular, experimental, theoretical and numerical nonlinear
stability analysis of limit cycles (Palies et al., 2010; Silva et al., 2013), dynamics of turbulent
premixed swirling flames (Palies et al., 2011a) and uncertainty quantification (Avdonin et al.,
2018; Mensah et al., 2018a; Silva et al., 2017). The combustor, sketched in Fig. 5.5, consists of
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Table 5.3 Turbulent swirl combustor: dimensional and nondimensional parameters

Dimensional Nondimensional
l1 0.096 [m] l̃1 0.24
l2 0.0675 [m] l̃2 0.16875
l3 0.078 [m] l̃3 0.195
l4 0.4 [m] l̃4 1.0
d1 0.065 [m] d̃1 0.1625
d3 0.022 [m] d̃3 0.055
d4 0.07 [m] d̃4 0.175

r 287 [J kg−1 K−1]
γ 1.4

pa 1.01325 × 105 [Pa]
Ta 300 [K]
T̄u 300 [K]
T̄d 1600 [K]
ρ̄u 1.18 [kg m−3] ˜̄ρu 1.4
ρ̄d 0.221 [kg m−3] ˜̄ρd 0.263

Rd −0.6

ÛQt 3.03 × 103 [W] Û̃Qt 5.38 × 10−4

Ub 4.16 [m s−1] Ũb 1.2 × 10−2

N 1.5
τ 4.73 × 10−3 [s] τ̃ 4.11

x f 0.2515 [m] x̃ f 0.62875
a f 0.002 [m] ã f 0.005
xr 0.2259 [m] x̃r 0.56475
ar 0.0022 [m] ãr 0.0055

L ≡ l4 0.4 [m]

a cylindrical plenum, a convergent duct, a swirler, and a cylindrical combustion chamber. A
mixture of methane and air at an equivalence ratio of 0.8 is injected upstream of the plenum.
The total power of the flame at the operating point considered in this study is 3.03 kW.

5.2.1 Model description

The parameters of the model, taken from (Avdonin et al., 2018), are given in Table 5.3. This
system exhibits an unstable longitudinal mode. The eigenvalue we found with our 2D planar
code is 182 + 3.33i s−1. We computed the same case in 2D with AVSP and found a complex
angular frequency of 182 + 3.28i s−1. We impose Neumann boundary conditions at the walls
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Fig. 5.6 Nondimensional mean density, ρ̄, distribution of the heat release rate, v, and weight
function (reference region), w, in the two-dimensional model of the turbulent swirl combustor.

and Robin boundary conditions at the outlet boundary. Figure 5.6 shows the nondimensional
mean density, ρ̄, the distribution of the heat release rate, v, and the weight function, w, for the
two-dimensional model of the turbulent swirl combustor. Their analytical expression are given
in Eqs. (5.1), (5.2) and (5.3), respectively.

5.2.2 Shape sensitivity analysis and shape changes

We parametrize the entire geometry except for the outlet boundary, including more control
points where there are sharp corners. We compute the direct and the adjoint eigenmode and
apply Eq. (4.35) to find the shape derivatives. Figure 5.7 shows the eigenvalue shape derivatives
for each control point. The eigenvalue is more sensitive in the plenum and much more sensitive
in the burner than in the combustion chamber. Because the mode is a plenum mode, the
amplitude of the pressure fluctuations in the plenum and in the burner is much larger than in the
combustion chamber, and therefore geometry modifications have more influence. The shape
derivatives indicate that reducing the size of the plenum and increasing the cross sectional
area of the burner in the reference region reduces the growth rate. Manufacturers are usually
reluctant to alter the geometry of the burner and the combustion chamber because they are
determined by other considerations, but they could be willing to modify the geometry of the
plenum.
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Fig. 5.7 Real (top) and imaginary (bottom) part of the eigenvalue shape derivatives for each
control point at the deformable boundary of the turbulent swirl combustor. The real part gives
the influence on the frequency and the imaginary part gives the influence on the growth rate.

For this reason, we fix the geometry of both the burner and the combustion chamber and
allow the geometry of the plenum to vary. The shape derivatives are scaled in such a way that
the largest displacement is equal to one twenty-fifth of the radius of the plenum, i.e. 3.25× 10−3

in nondimensional units. The eigenvalue becomes stable after 5 iterations. The final eigenvalue
is 188 - 1.35i s−1. Fig. 5.8 (top) shows the initial and the final shape of the turbulent swirl
combustor. In the final shape, the control points of the plenum are moved inwards. Fig. 5.8
(bottom) shows the direct and adjoint eigenfunctions for the initial and final domain.

Table 5.4 Turbulent swirl combustor: stability criterion

Initial domain Final domain��p̂(x f )
�� 1.536 1.714

| û(xr) · nr | 3.874 3.638
∠q̂ − ∠p̂ 43.0◦ 49.4◦��p̂2(xout)

�� 2.275 2.836

5.2.3 Results interpretation

All the quantities to which we refer in this subsection are listed in Table 5.4. While the modulus
of the pressure at the position of the flame, x f , is bigger in the final domain than in the initial
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Fig. 5.8 (Top) Initial ( ) and final ( ) boundary of the turbulent swirl combustor after 5 iterations.
The circles represent the control points of the final boundary. (Bottom) Modulus of the pressure
eigenfunction, p̂, associated with the first thermoacoustic mode of the turbulent swirl combustor,
for the initial ( ) and the final domain ( ), after 5 iterations. The associated nondimensional
eigenvalues are ωΩ = 1.3157 + 0.0241i and ωΩt = 1.3644 − 0.0978i, respectively.

domain, the modulus of the longitudinal component of the velocity at the reference point, xr ,
is smaller. The phase angle difference between the heat release rate and the pressure at the
position of the flame, x f , increases from ∼ 43◦ to ∼ 49◦. Finally, the quantity

��p̂2
�� increases at

the outlet boundary. Overall, in the final domain, the heat release rate oscillations are less in
phase with the pressure oscillations than in the initial domain, and the acoustic losses due to
acoustic radiation from the boundaries are larger.

5.3 Conclusion

In this chapter we have studied two thermoacoustic systems found in the literature: an electrically
heated Rijke tube and a turbulent swirl combustor, using two-dimensional planar models. They
are both longitudinally unstable. We have parametrized the shapes using B-splines. Then we
have expressed the eigenvalue shape derivative in Hadamard form, i.e. for arbitrary shape
changes, by combining the direct and the adjoint eigenvector. We have used the Hadamard
formula to calculate the derivatives of the eigenvalue with respect to the B-spline parameters.
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We have stabilized both systems by making small changes to the geometry in the most influential
regions, exploiting the fact that thermoacoustic systems are sensitive to small modifications.

We have assumed that the flame transfer function is unaffected by geometry changes. This
is reasonable only for changes to the plenum. If geometry changes were to be considered in
practice, then a more realistic model of the flame response would need to be included. This
would be a flame transfer function with different gain and phase for different geometries.





Chapter 6

MICCA annular combustor

Annular combustors, such as gas turbine combustors, feature azimuthal modes. These modes
have two travelling directions: clockwise and anticlockwise. Unlike axial combustors, the
acoustic modes interact with N flames. Since the length and the circumference of annular
chambers are of the same order, the frequency of longitudinal and azimuthal modes can be
similar. Azimuthal modes can be standing or spinning, depending on whether the clockwise
and anticlockwise modes have similar or different amplitudes. Standing modes have nodes and
antinodes, with the result that different burners are subjected to different flucutation amplitudes
(or levels). At a pressure antinode, the flame receives axial perturbations, while at a pressure
node, the perturbation is transverse. Spinning modes, on the other hand, do not have nodes and
antinodes. The fluctuation amplitude is the same for all burners. A standing mode can turn into
a spinning mode and vice versa, as demonstrated experimentally by Krebs et al. (2002) in real
gas turbines. This phenomenon is called mode switching. It was studied by Staffelbach et al.
(2009); Wolf et al. (2012) using large eddy simulation: at the same operating point, azimuthal
modes randomly switched between standing and spinning; and experimentally by Worth and
Dawson (2013a,b) in a laboratory-scale annular combustor at Cambridge University. A third
type of mode, called slanted mode, which is the combination of a standing azimuthal mode and
longitudinal mode with the same frequency, was observed experimentally by Bourgouin et al.
(2015a).

In this chapter, based on the results in (Falco and Juniper, 2021b), we study the case of a
laboratory-scale annular combustor (MICCA), which features an unstable azimuthal standing
mode. We perform a shape sensitivity analysis for both symmetry-breaking and symmetry-
preserving boundary perturbations. The first are proportional to the elements of the shape
gradient matrix. The second consist in changes to lengths and radii. We fix the geometry of the
burner and apply symmetry-preserving changes to the plenum and the combustion chamber. By
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doing so, we manage to reduce the thermoacoustic growth rate by increasing the phase angle
difference between the pressure and heat release rate fluctuations.

6.1 The MICCA combustor

The MICCA combustor is a laboratory-scale annular combustor at Laboratoire EM2C (Cen-
traleSupélec) in Paris, France. Stable thermoacoustic limit cycles of standing and spinning
azimuthal modes are observed at some operating conditions (Bourgouin et al., 2015a,b; Durox
et al., 2013). The MICCA combustor consists of an annular plenum, 16 injectors and an annular
combustion chamber. Each injector consists of a cylinder and a perforated plate.

Following (Laera et al., 2017), we replace in the discrete model the perforated plate with a
cylindrical volume. Fig. 6.1 shows a slice section view of one sector of the numerical model
of the MICCA combustor. We consider the same operating conditions as operating point B
in Laera et al. (2017). A standing mode with a stable limit cycle at a frequency of 489 Hz is
observed in the experiments. The equivalence ratio of the mixture of propane and air is ϕ =
1.11. The total power of the flame for each burner is ÛQt = 2.08 kW, and the bulk flow velocity is
Ub = 0.66 m/s. The mean temperature in the plenum and in the injectors is T̄ = 300 K. The
temperature profile in the combustion chamber is parabolic, monotonically decreasing between
the values T̄ = 1520 K at the chamber back plane and T̄ = 1200 K at the chamber outlet.

The experimental flame describing function (FDF) depends on the frequency of the excitation
and on the ratio of the root mean square of the velocity fluctuation measured at the reference
point, u′, to the average flow velocity in the injector, ū. We obtain the experimental flame
transfer function (FTF) from the FDF, considering a small forcing amplitude, |u′/ū| = 0.1. As
explained in Section 2.2, the experimental FTF is the frequency response given at real-valued
frequencies, while the transfer function, F(ω), is defined in the complex plane. In order to
calculate the first derivative of the linear operator, L(ω), with respect to the eigenvalue, ω,
exactly, we need the transfer function to be analytic in the complex plane. We obtain an analytic
transfer function by applying the Vector Fitting algorithm (Gustavsen, 2006; Gustavsen and
Semlyen, 1999) to the frequency response. The experimental FTF and the transfer function (of
the linear state-space model) are shown in Fig. 6.2.

We impose Neumann boundary conditions at the combustor walls. Laera et al. (2017) added
in the discrete model an end correction to the length of the combustion chamber and imposed
Dirichlet boundary conditions at the outlet boundary. We do not add any end correction and
instead we impose Robin boundary conditions. We tune the specific acoustic impedance by
matching the angular frequency and the absolute value of the normalized eigenvector of the first



6.2 Preliminary shape sensitivity analysis 63

longitudinal (1L) and first azimuthal (1A) acoustic modes with the case with end correction and
Dirichlet boundary conditions. The value of the reflection coefficient is R = −0.875 − 0.210i.

Symmetric annular combustors present a discrete rotational symmetry. When generating
the mesh, we start with half sector and apply a reflection. Then we copy and rotate the single
sector (n − 1 times). The mesh we obtain features a rotational symmetry of order n.

z

r

rp

Rp

rcc

Rcc

lp

lb
lpp

lcc

�db

�dpp

l f

�d f

Fig. 6.1 Slice section view of one sector of the MICCA combustor. The dash-dotted line is the
axis of symmetry. The subscripts stand for: plenum (p), burner (b), perforated plate (pp), flame
(f ), combustion chamber (cc).

The thermoacoustic mode we examine is a plenum-dominant azimuthal mode (1A) with
frequency of 506 Hz and growth rate of 504 rad s−1. Because of the discrete rotational symmetry
of the annular combustor, the mode is degenerate with algebraic and geometric multiplicity
equal to 2. We normalize the eigenvector, p̂, such that ⟨p̂| p̂⟩ = 1. Fig. 6.3 shows the real part of
the eigenvector, p̂. We want to reduce the growth rate of this mode by modifying the geometry
of the annular combustor.

6.2 Preliminary shape sensitivity analysis

When using a non-parametric approach, the boundary displacement is proportional to the
shape gradient. When using a parametric approach, as in the case of B-spline or non-uniform
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Table 6.1 MICCA annular combustor

rp 0.14 [m]
Rp 0.21 [m]
lp 0.07 [m]
db 0.033 [m]
lb 0.014 [m]
dpp 0.0189 [m]
lpp 0.006 [m]
d f 0.036 [m]
l f 0.006 [m]
rcc 0.15 [m]
Rcc 0.2 [m]
lcc 0.2 [m]
r 287 [J kg−1 K−1]
γ 1.4
pa 1.01325 × 105 [Pa]
Ta 300 [K]
Tu 300 [K]
Td 1521 − 321(z/lcc)

2 [K]
R −0.875 − 0.210i
ÛQt 2.08 × 103 [W]

Ub 0.66 [m s−1]
z f 0.0 [m]
zr −0.02 [m]

rational B-spline (NURBS) surfaces, the set of admissible boundary displacements and shapes
is reduced (see Appendix B for more details). The boundary perturbation, V i, is the derivative
of the surface with respect to the position of the i-th control point. The shape derivative in the
direction V i is the shape derivative with respect to the i-th control point.

In the case of simple eigenvalues, the shape gradient is the eigenvalue sensitivity to normal
boundary perturbations. The upper bound of the shape derivative is given by the shape derivative
for a boundary perturbation proportional to the shape gradient. We obtain an upper bound
for the angular frequency drift from the real part of G and for the growth rate drift from the
imaginary part of G. In other words, shape changes proportional to the real part of the shape
gradient have the maximum effect on the angular frequency and shape changes proportional to
the imaginary part of the shape gradient have the maximum effect on the growth rate.

In the case of semi-simple two-fold degenerate eigenvalues, the shape gradient, Gi j , has four
entries and the shape derivatives are the eigenvalues of the matrix

∫
CGi j dS, where C is the

normal boundary perturbation. Table 6.2 contains the values of the eigenvalue shape derivatives
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Fig. 6.2 Gain and phase of the flame transfer function (|u′/ū| = 0.1) as a function of the frequency.
The squares are the values obtained from the experiments (Laera et al., 2017), and the solid line
is the transfer function of the linear state-space model, evaluated at real values of ω.

for shape changes proportional to the entries of the shape gradient applied to the rear plenum
boundary patch. G11 gives the upper bound for ω1 and G22 gives the upper bound for ω2. For
boundary perturbations proportional to G12 and G21, either their real or imaginary parts, the
diagonal elements of the matrix

∫
CGi j dS are equal to zero. Therefore, its eigenvalues, i.e. the

shape derivatives, take the form ω′ = ±(a + bi). The shape derivative is the same for the two
eigenvalues, ω1 and ω2, but with opposite sign. In other words, at first order the eigenvalues
split in opposite directions. The off-diagonal elements also have the property that:∫

Gi j dS = 0 if i , j (6.1)

which means that the volume of the combustor does not change if we apply boundary
perturbations proportional to the off-diagonal elements. Interestingly, this is conceptually
similar to what was observed by Mensah et al. (2019a) for the same annular combustor. When
the injectors are perturbed such that the FTF perturbations have the same phase and their
average is zero, the eigenvalue perturbation for the two modes is the same but with opposite sign.
Bauerheim et al. (2014) studied symmetry-breaking using burners of different type, specifically
different interaction index and time delay. They derived an analytical formulation where the
frequency and growth rate depend on two terms, a coupling and a splitting strength. Splitting
eigenvalues results in one eigenvalue becoming less unstable and the other becoming more
unstable. The eigenvalue drift is the same, except for the sign. The optimal burner pattern is
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Fig. 6.3 Real part of the eigenvector, p̂, of the first azimuthal mode of the MICCA combustor.
It is a weakly coupled plenum mode. The associate eigenvalue is ω = 3181 + 504i rad s−1.

such that the coupling strength is minimized and the splitting strength is zero. In this way, the
symmetry is broken but the degeneracy is preserved.

In the simple case, the eigenvalues are shape differentiable, i.e. the derivative dω(Ω)
exists for all directions V and the mapping V 7→ dω(Ω) is linear and continuous. In the
semi-simple degenerate case, the eigenvalues are not shape differentiable because the mapping
V 7→ dω(Ω) is nonlinear due to the possible eigenvalue splitting. This can be an obstacle in
optimization problems because the gradients are in general discontinuous and the cost functional
is non-convex. Strictly speaking, however, this is not an optimization problem, in the sense that
we are not trying to find the minimum of a cost functional. We are instead trying to reduce the
eigenvalue growth rate using the information provided by the gradient and avoiding eigenvalue
splitting.

6.3 Results - Shape sensitivity analysis

In this chapter we consider changes that do not break the discrete rotational symmetry of the
annular combustor. In particular, we consider changes to the length and to the radii of plenum
and combustion chamber and changes to the diameter of the burners and to the total flow
passage area of the injectors.

We partition the boundary into boundary patches, ∂Ωi: rear, front, inner and outer plenum,
etc. For each boundary patch, we use Eq. (6.2) to compute the shape derivatives for a unitary
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Table 6.2 Shape derivatives for perturbations proportional to the shape gradient applied to the
rear plenum boundary patch.

C ∝ Re(ω′1) Im(ω′1) Re(ω′2) Im(ω′2)

Re(G11) +208.0 +7.588 −84.48 +20.23
Im(G11) −53.69 +24.94 +209.4 +13.44

Re(G12) −162.2 +7.116 +162.2 −7.150
Im(G12) −162.3 +7.015 +162.2 −7.017

Re(G21) −161.2 +6.921 +161.2 −6.962
Im(G21) −162.3 +7.022 +162.3 −7.021

Re(G22) −84.48 +20.20 +208.0 +7.535
Im(G22) +209.4 +13.44 −53.85 +24.93

boundary displacement

C =


1 on ∂Ωi

0 elsewhere
(6.2)

Then we divide the shape derivatives by the surface area of the patch. In this way we obtain a
local average of the derivatives that does not depend on the area of the patch. When applying
symmetry-preserving changes, the two repeated eigenvalues do not split and the two shape
derivatives have the same value. We point out, however, that more elaborate shape changes
could be considered with the same approach, the only challenge being the parametrization of
the shape.

Figure 6.4 shows the real and the imaginary part of the shape derivatives for the plenum and
the combustion chamber as virtual boundary displacements proportional to the shape derivatives.
The real part represents changes that reduce the angular frequency and the imaginary part
represents changes that reduce the growth rate. We observe that changes to the shape of the
combustion chamber have little or no effect on the angular frequency, which we expect since
this is a plenum mode. We also observe that the sensitivity of the eigenvalue growth rate in the
plenum is higher than in the combustion chamber. This can be explained by the fact that the gas
is cooler, so the local wavelength is shorter and therefore geometry modifications of a given
size have more influence. We can also compute shape derivatives for changes to the diameter of
the burner and to the total flow passage area of the perforated plate. However, such changes
would alter the flame transfer function. In this chapter we have used an experimentally-derived
flame transfer function. We do not know how it would change due to these changes, so we do
not consider them further. For an estimate of this in a different burner, the reader is referred to
(Aguilar and Juniper, 2020).
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Fig. 6.4 Real (top) and imaginary (bottom) part of the eigenvalue shape derivatives for changes
to the length and the radii of the plenum and the combustion chamber. The real part gives the
influence on the angular frequency and the imaginary part the influence on the growth rate.

6.4 Results - Shape changes

When we modify the shape, we fix the geometry of the burner and allow changes only in the
plenum and in the combustion chamber. Our goal is to reduce the eigenvalue growth rate by
following the steps below.

(i) We compute the shape derivatives for each boundary patch with C such that
∫
∂Ωi

C dS = 1,
as explained in Section 6.3.

(ii) We take the imaginary part and normalize such that the maximum absolute value among
all the shape derivatives is equal to 1. Then we multiply the normalized shape derivatives
by the maximum displacement size, which in this case we choose equal to 0.0025 m.

(iii) For each boundary patch we subtract the displacements from the corresponding geometric
parameters. For example, for the inner (outer) plenum, we subtract the imaginary part of
the corresponding normalized shape derivative, multiplied by the maximum displacement
size, from the inner (outer) radius, rp (Rp).

Here we present the results when the growth rate has reduced by 20%, which is after 4 iterations.
Although the process can be continued, the salient points are most easily demonstrated before
the geometry has changed significantly.
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Fig. 6.5 (Top) Slice section view of one sector of the MICCA combustor before (blue) and
after (red) applying the shape changes to the plenum and the combustion chamber to reduce
the growth rate. (Bottom) Absolute value of the eigenvector of the first azimuthal mode of
the MICCA combustor, along the black dotted line in the top figure, before (blue) and after
(red) the optimization. The sector is that in which the pressure is maximum. The associated
eigenvalues are ωΩ = 3181 + 504.8i rad s−1 and ωΩt = 3050 + 401.3i rad s−1

.

Fig. 6.5 (top) shows the initial and the final shape of a sector of the annular combustor.
The size of the plenum has increased. The only boundary that has moved inwards is the
combustion chamber outlet. Fig. 6.5 (bottom) shows the modulus of the corresponding pressure
eigenvectors along the dotted line at r = 0.175 m, where the absolute value of the eigenvector is
maximum.

The physical mechanism behind the growth rate’s reduction can be explained by using
the generalized Rayleigh criterion, Section 2.4. According to the Rayleigh criterion, a
thermoacoustic system is unstable if the average of the product between the pressure, p′, and the
heat release rate perturbation, Ûq′, over the volume and over one period of oscillation is greater
than the average of the losses due to acoustic radiation from the boundaries, Eq. (2.29). If
we expand the Rayleigh index, p′ Ûq′, we see that it depends on the modulus of the pressure in
the flame volume, | p̂|, and of the component of the velocity along the reference direction at
the reference point, | û(xr) · nr |, and on the phase angle difference between the heat release
rate perturbation and the pressure perturbation as well as on the modulus of the flame transfer
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function. If we expand the acoustic energy flux, p′u′, we see that this only depends on the
modulus of the pressure at the boundary.

Fig. 6.6 shows the modulus of the pressure at x f , the modulus of the axial component of
the velocity at xr , the phase angle difference between heat release rate and pressure, and the
modulus of the square of the pressure at the outlet boundary for all sixteen burners. We see
that, by changing the geometry, the algorithm increases the phase difference between the heat
release rate, q̂, and the pressure, p̂, and slightly decreases the modulus of the pressure within the
flame volume. This reduces the heat converted into work at each cycle and therefore reduces
the growth rate of the system, Eq. (2.33). The modulus of the flame transfer function increases
from 0.360 to 0.436. In this process, the velocity along the reference direction at the reference
point does not change. It would change, however, if we were to allow the shape of the injector
to change. The algorithm would try to decouple the plenum and the combustion chamber by
expanding the diameter of the burner, db, and contracting the diameter of the perforated plate,
dpp. Consequently it would reduce the modulus of the velocity perturbation at the reference
point as well as the modulus of the pressure perturbation within the flame volume. As a final
note, the modulus of the square of the pressure at the outlet boundary is not affected by the
shape changes.

The mode was not fully stabilized for a variety of reasons. We changed the acoustics,
therefore we changed the flame-acoustics interaction, but it was not enough. For low-frequency
modes, small changes to the shape have relatively small effects on the acoustics and in turn on
the thermo-acoustics, more than anything else on the phase relationship between pressure and
heat release rate fluctuations. The growth rate was exceedingly large. Nonetheless, we were
able to reduce the growth rate by 20% by applying shape and volume changes. The aim was
then to explore the effect of different families of boundary perturbations in order to find the best
ones and to study the mechanisms involved in the reduction of the growth rate.

This analysis shows how to significantly alter the growth rate of thermoacoustic oscillations
by changing the geometry of a combustion chamber and plenum. In most practical devices, it
would be possible to alter the geometry of the plenum without extensive re-design. It would
be less feasible to alter the geometry of the combustion chamber, which is constrained by
other considerations such as cooling and high altitude re-light. Nevertheless, as seen here
and in (Aguilar and Juniper, 2020), the most influential component is the burner, due to its
effect both on the flow rate through the burner and the heat release rate response of the flame.
In aero engine applications, any changes to the burner require, however, extensive re-design
and re-certification. Although this would be worthwhile in the long term, it is likely that
plenum modifications, as identified with the method in this chapter, would identify useful and
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easily-implemented changes to reduce or eliminate thermoacoustic oscillations in practical
devices without affecting other aspects of their performance.

6.5 Conclusion

We have combined a thermoacoustic Helmholtz solver with adjoint-based shape optimization
to reduce the growth rate of a linearly unstable thermaocustic mode in a symmetric annular
combustor. The mode is azimuthal and therefore two-fold degenerate. We express the shape
derivative of the eigenvalue in Hadamard form, i.e. for arbitrary shape changes. We preserve
the symmetry by restricting the shape changes to modifications applied to lengths and radii. We
use an experimentally-derived flame transfer function and, because we do not know how this
would change with the burner geometry, we fix the burner geometry. After modifying the shape,
we use the analysis to reveal the physical mechanism that causes the growth rate’s reduction.
The shape changes decrease the pressure in the flame volume and increase the phase difference
between the pressure and the heat release rate fluctuations.

This study shows how to calculate the shape derivatives and iteratively modify the shape of a
laboratory-scale annular combustor using a Helmholtz solver with adjoints. It explains the effect
on the eigenvalues of both symmetry-breaking and symmetry-preserving shape changes and
how the eigenvalue growth rate can be reduced. The method can be applied to the plenum, the
burner, and the combustion chamber. In practical devices, modifying the burner and combustion
chamber may be impractical in the short term because of their influence on other factors, such
as high altitude relight. Therefore modifying the plenum may be the most practical option and,
as shown in this chapter, has an influence on the thermoacoustic growth rate.

The most influential, but hardest to change, component on thermoacoustic behaviour is
the burner. If adjoint methods are to be used for combustor design, then these methods must
include the influence of the burner shape on the flow behaviour, as in Tammisola and Juniper
(2016), and hence on the flame. This is a significantly larger challenge and we leave it for future
work. The methods in this chapter can now be applied to more complex geometries such as
those on aircraft gas turbines, in which the plenum surrounds the combustion chamber and is
connected to it by dilution holes. Although the conceptual challenge of this has been answered
by this chapter, the extra geometric complexity presents a significant technical challenge. A
possible strategy to deal with the geometric complexity would be to use parametric shapes and
consider a displacement field of the form V (z) (independent of the azimuthal coordinate).
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Fig. 6.6 Modulus of the pressure perturbation at x f , modulus of the component of the velocity
perturbation along the reference direction at xr , phase angle difference between the heat release
rate, q̂, and the pressure perturbation, p̂, and modulus of the square of the pressure perturbation
at the outlet boundary for all sixteen burners of the MICCA combustor before and after the
optimization. This shows that the geometry changes have decreased the pressure in the flame
volume and increased the phase difference between the flame and the pressure, thereby reducing
the growth rate.



Chapter 7

Conclusions and future work

This thesis is on the shape sensitivity analysis of thermoacoustic oscillations in laboratory-scale
combustors, both axial and annular. The physics is modelled with an inhomogeneous Helmholtz
equation for the flame-acoustics interaction, assuming a zero Mach number base flow, and
acoustic impedance boundary conditions. The differential problem is discretized using the
finite element method. The sensitivity of the thermoacoustic oscillations to the domain shape is
determined using shape calculus. We derive formulae for the shape derivatives of both simple
and semi-simple degenerate eigenvalues for different boundary conditions (Dirichlet, Neumann
and Robin). These formulae have the structure of a projection of the shape gradient onto the
direction of the boundary perturbation. The shape gradient, which does not depend on the
direction, is a function of the direct and adjoint eigenfunctions. We compute the shape gradient
for the unperturbed problem, and then the shape derivative for a boundary displacement. We
study three cases: an electrically heated Rijke tube, a turbulent swirl combustor and an annular
combustor (MICCA).

The first two systems are longitudinally unstable. We model the two systems as two-
dimensional planar and parametrize the shapes using B-spline curves. We compute the
eigenvalue shape derivatives for each control point, i.e. we project the shape gradient onto the
direction given by the displacement field associated with each control point. We stabilize both
systems by making small geometry changes proportional to the eigenvalue growth rate’s shape
derivatives. Overall, these small changes have the effect of reducing the heat converted into
work at each cycle and increasing the losses due to acoustic radiation, mainly by increasing the
phase angle difference between the pressure and the heat release rate oscillations in the flame
domain and the amplitude of the pressure oscillations at the outlet boundary.

The third case is the MICCA annular combustor, which is azimuthally unstable. The
azimuthal mode is two-fold degenerate due to the discrete rotational symmetry. We study
the sensitivity to both symmetry-breaking and symmetry-preserving shape changes. The first
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are proportional to the shape gradient and the second consists in changes to lengths and radii.
Compared to symmetry-breaking, when applying symmetry-preserving boundary perturbations
(the perturbations are normalized such that they sweep the same volume) the eigenvalues do not
split, and the growth rate of the most unstable eigenvalue is smaller. We restrict the geometry
modifications to changes to the length and the radii of the plenum and the combustion chamber.
We reduce the growth rate of the unstable mode. Similarly to the case of the axial combustors,
the growth rate’s reduction is achieved by increasing the phase angle difference between pressure
and heat release rate fluctuations in the reaction zone.

Success in stabilizing an unstable mode ultimately depends on how large the growth rate
is. In a Helmholtz solver, shape changes have an effect on the acoustics and thus on the
flame-acoustics interaction (but not on the mean flow). For low-frequency modes, small changes
are not enough if the growth rate is large. We can significantly reduce the growth rate by
applying shape and volume changes, but the mode will still be unstable. At the current stage of
development, gradient information is provided for arbitrary boundary perturbations (without
accounting for the dynamics of the flame with respect to the mean flow).

In aircraft applications, modifying the burners or the combustion chamber would not be
practical because of their influence on other factors, such as high-altitude relight. Therefore,
modifying the plenum may be the most practical option and, as shown in this thesis, has an
influence on the growth rate of the thermoacoustic oscillations. Throughout this thesis we
assume that the flame transfer function is not affected by geometry modifications, which is
reasonable only for plenum modifications. If adjoint methods are to be used for combustor
design, then these methods must include the influence of the burner on the flow behaviour, as in
(Tammisola and Juniper, 2016), and hence on the flame. This is a significantly bigger challenge,
and we leave it for future work.

Another aspect that should be considered in the future is the damping that results from
the flow-acoustics interaction within perforated plates, dilution holes and swirlers, where the
acoustic waves interact with the shear layer and acoustic energy is converted into vortical energy
and therefore dissipated. This mechanism has a strong influence on the thermoacoustic stability
in real combustors and it is likely that this could be enhanced via small geometry modifications.

By adding more physics to the model, it will be possible to reformulate everything into an
optimization problem with a richer parameter space to explore. The eigenvalues are expected to
show increased sensitivity to small changes in shape, as more parameters and mechanisms are
available.

The methods developed in this thesis can now be applied to more complex geometries such
as those in aircraft gas turbines, in which the plenum surrounds the combustion chamber and is
connected to it through dilution holes. Although the conceptual challenge is addressed in this
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thesis, the extra geometric complexity presents a significant technical challenge. A strategy to
deal with the geometric complexity would be to use parametric shapes, e.g. NURBS surfaces,
and consider boundary perturbations independent of the azimuthal coordinate.
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Appendix A

First-order eigenvalue sensitivity

In this appendix we derive the formula for the first-order sensitivity to parameter changes
of the eigenvalues of a nonlinear, non-self-adjoint eigenvalue problem. Useful references
are the textbooks on perturbation theory for self-adjoint linear operators by Kato (1995) and
non-self-adjoint linear operators by Kirillov (2021). A detailed account of single-parameter
perturbation theory of arbitrary order for non-linear, non-self-adjoint eigenvalue problems
can be found in (Mensah et al., 2020) for simple eigenvalues and in (Orchini et al., 2021)
for semi-simple eigenvalues, with some applications in thermoacoustics. An application of
multi-parameter perturbation theory for simple eigenvalues for uncertainty quantification in
thermoacoustics can be found in (Mensah et al., 2018a).

We apply single-parameter perturbation theory to the nonlinear eigenvalue problem

L(ω; ε)p = 0 (A.1)

The matrix L is a linear operator that depends nonlinearly on ω and is analytic with respect to ε.
ω is the eigenvalue, ε is a parameter and p is the eigenvector. (ω0,p0) is an eigenpair of Eq.
(A.1) for ε = ε0. It can be either simple or degenerate, provided that the degeneracy is retained
after the perturbation is applied. We add a small perturbation ∆ε = ε − ε0 to the parameter
ε0. We expand the perturbed eigenvalue, ω, and the perturbed eigenvector, p, in power series
around the unperturbed eigenpair.

ω(ε) =

∞∑
n=0
ωn(ε − ε0)

n = ω0 + ω1∆ε + O(∆ε
2) (A.2)

p(ε) =
∞∑

n=0
pn(ε − ε0)

n = p0 + p1∆ε + O(∆ε
2) (A.3)
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We also expand the perturbed operator, L, in Taylor series around the unperturbed operator.

L(ω; ε) = L(ω0; ε0) +
∂L(ω0; ε0)

∂ω
ω1∆ε +

∂L(ω0; ε0)

∂ε
∆ε + O(∆ε2) (A.4)

We substitute Eqs. (A.2), (A.3) and (A.4) into Eq. (A.1).

L(ω; ε)p = L(ω0; ε0)p0

+

(
L(ω0; ε0)p1 +

∂L(ω0; ε0)

∂ω
ω1p0 +

∂L(ω0; ε0)

∂ε
p0

)
∆ε

+ O(∆ε2) = 0

(A.5)

At order ∆ε1 (first order), we obtain

L(ω0; ε0)p1 +
∂L(ω0; ε0)

∂ω
ω1p0 +

∂L(ω0; ε0)

∂ε
p0 = 0 (A.6)

We left-multiply Eq. (A.6) by the conjugate transpose of the unperturbed left (or adjoint)
eigenvector, p†0.

p†
H

0 L(ω0; ε0)p1 + p†
H

0
∂L(ω0; ε0)

∂ω
ω1p0 + p†

H

0
∂L(ω0; ε0)

∂ε
p0 = 0 (A.7)

The first term of Eq. (A.7) is zero, regardless of p1. In fact,

(L(ω0; ε0))
Hp†0 = 0 (A.8)

Equation (A.8) is the unperturbed adjoint eigenproblem. The formula for the first-order
eigenvalue sensitivity with respect to the parameter ε is

ω1 ≡
dω
dε
= −

p†
H

0 ∂L(ω0; ε0)/∂ε p0

p†
H

0 ∂L(ω0; ε0)/∂ω p0
(A.9)

By knowing the adjoint eigenvector, we can calculate the eigenvalue sensitivity with respect to
any parameter, without having to solve the perturbed eigenproblem.



Appendix B

B-spline curves

In this appendix we define the B-spline basis functions and the non-rational B-spline curves
(Piegl and Tiller, 1995), and illustrate some of their properties. We then explain how to obtain
the admissible displacement fields of a B-spline curve.

B.1 Definition and Properties of B-spline Basis Functions

There are a number of ways to define the B-spline basis functions. We use the recurrence
formula, since it is the most useful for computer implementation.

Let U = {u0, . . . ,um} be a non-decreasing sequence of real numbers, i.e., ui ≤ ui+1 for
i = 0, . . . ,m − 1. U is the knot vector and its elements, ui, are called knots. The i-th B-spline
basis function of degree p, denoted by Ni, p(u), is defined as

Ni,0(u) =


1 if ui ≤ u < ui+1

0 otherwise
(B.1)

Ni, p(u) =
u − ui

ui+p − ui
Ni, p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1, p−1(u) (B.2)

For p > 0, Ni, p(u) is a linear combination of two basis functions of degree p − 1. A set of basis
functions is uniquely defined by the knot vector, U, and the degree, p. The half-open interval,
[ui,ui+1), is called the i-th knot span; it can have zero length since the knots need not be distinct.
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B.2 Definition and Properties of B-spline Curves

A p-th degree B-spline curve is defined as

C(u) =
n∑

i=0
Ni, p(u)Pi, a ≤ u ≤ b (B.3)

where Pi are the control points, and Ni, p(u) are the p-th degree B-spline basis functions defined
on the non-periodic (and in general non-uniform) knot vector

U = {a, . . . ,a︸  ︷︷  ︸
p+1

,up+1, . . . ,um−p−1, b, . . . , b︸  ︷︷  ︸
p+1

} (B.4)

with m + 1 knots. The polygon defined by the control points, Pi, is called the control polygon.

Properties:

• C(u) is a piecewise polynomial curve, since Ni, p(u) are piecewise polynomial basis
functions. The number of control points (basis functions), n + 1, the degree, p, and the
number of knots, m + 1, satisfy

m = n + p + 1 (B.5)

A basis function of degree p spans p + 1 knot intervals.

• With this choice of the knot vector, Eq. (B.4), N0,0(a), . . . ,Np−1,0(a) = 0, and Np,0(a) = 1.
Therefore, N0, p(a) = 1, and, since Ni, p(a) = 0 for i , 0, from Eq. (B.3), C(a) = P0.
Similarly, C(b) = Pn. The B-spline curve is clamped.

• Ni, p(u) = 0 outside the interval [ui,ui+p+1). If we shift the control point, Pi, the curve
C(u) is modified only in the interval [ui,ui+p+1).

• All the derivatives of Ni, p(u), and C(u), exist in the interior of a knot span. At a knot,
Ni, p(u), and C(u), are p − k times continuously differentiable, where k is the multiplicity
of the knot. Therefore, increasing the degree increases the continuity and increasing the
knot multiplicity decreases the continuity.

We use a uniform knot vector, structured as a non-decreasing sequence of natural num-
bers (non-negative integers). If n = 10, i.e., the control points are 11, and p = 3,
U = {0,0,0,0,1,2,3,4,5,6,7,8,8,8,8}. Given a set of control points, and a degree, the
knot vector is uniquely defined, and we can create the uniform non-rational B-spline curve.
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B.3 Displacement fields

P = {Pi} is a set of n + 1 points, the control points. In two-dimensions, each control point has
two components, P1

i and P2
i or P j

i . We are interested in the admissible displacement fields of a
B-spline curve. The shape morphs in accordance with the position of the control points. The
Cartesian components of the displacement fields are given by the derivative of the B-spline
curve with respect to the coordinates of the position of the control points.

Vi(u) =
∂C j(u)

∂P j
i

= Ni, p(u) (B.6)

Each displacement field has compact support (B-spline properties). We have a set of admissible
normal boundary perturbations V i. The shape derivative in the direction V i is equivalent to the
shape derivative with respect to Pi.
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