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Abstract 
 
 

Despite the progress in sampling many populations, human genomics research is still not fully 

reflective of the diversity found globally. Understudied populations limit our knowledge of genetic 

variation and population history, and their inclusion is needed to ensure they benefit from future 

developments in genomic medicine. In this thesis, I describe extending our understanding of 

global genetic diversity and population history by two main projects. The first is focused on 

structural variation in a diverse set of 54 human populations which are part of the Human 

Genome Diversity Project (HGDP-CEPH) panel. Using whole-genome sequences previously 

produced at the Wellcome Sanger Institute, I generated a comprehensive catalogue of structural 

variation identifying a total of 126,018 variants, of which 78% are novel. Some reach high 

frequency and are private to continental groups or even individual populations, including 

regionally-restricted runaway duplications and putatively introgressed variants from archaic 

hominins. By de novo assembly of 25 genomes using linked-read sequencing, I discovered 

1643 breakpoint-resolved unique insertions, in aggregate accounting for 1.9 Mb of sequence 

absent from the GRCh38 reference genome, highlighting the limitation of a single human 

reference genome. In the second project I collected and analysed a dataset of 137 high-

coverage physically-phased genome sequences from eight Middle Eastern populations using 

linked-read sequencing. Focusing on the population history using single nucleotide variants, I 

found no genetic traces of archeologically documented early expansions out-of-Africa in 

present-day populations in the region. I show that Arabian populations have the lowest 

Neanderthal ancestry of all non-African populations tested, which is explained by them having 

elevated Basal Eurasian ancestry. By comparing Levantines and Arabian historical population 

sizes, I find a divergence that starts before the Neolithic era, when Levantines expanded while 

Arabians maintained small populations that could have derived ancestry from local epipaleolithic 

hunter-gatherers. All populations suffered a bottleneck overlapping the archaeologically-

documented aridification events, with Arabians decreasing in size with the onset of the desert 

climate in Arabia ~6 kya while the Levantine bottleneck overlaps the 4.2 kiloyear aridification 

event. I also identify an ancestry that is associated with the spread of Semitic languages across 

the region during the Bronze Age. Finally, I identify novel variants that show evidence of 

selection, including signals of polygenic selection. This thesis fills an important gap in the study 

of diverse human populations, although further work is needed to sequence and characterize 

additional genetically underrepresented groups. 
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Chapter 1: Introduction  
 
1.1 Thesis outline 
 

I begin this thesis with an introductory chapter where I discuss principles in population genetics 

and methods used for the generation and analysis of genetic variation. I also briefly review 

current understanding of human population history and adaptation. During my work on the 

projects described in this thesis, the field of human genomics has been progressing at a rapid 

pace. I review at the start of each subsequent chapter the state of knowledge at the time of 

investigation, while in the results and discussion sections I cover recent relevant studies 

alongside my work. In the second chapter I describe my work on the analysis of a large set of 

human populations from the Human Genome Diversity Project. The third chapter describes my 

work on Middle Eastern populations. As the work presented here has been published in 

scientific journals or pre-prints (Bergstrom et al., 2020; Almarri et al., 2020a; Almarri et al., 

2020b), I will briefly cover the methods at the end of each chapter and refer to the publication for 

more detail. The final chapter discusses future directions. 

 
1.2 Principles of population genetics 
 
A genome of an organism contains the sum of genetic information encoded in deoxyribonucleic 

acid (DNA) base pairs (bp). At a particular position in a genome, differences, or genetic variants, 

can often be found when comparing individuals. The most abundant class of genetic variants 

are single nucleotide variants (SNV), substitutions at single sites. Insertions or deletions of 

sequences under 50 bp are referred to as indels, while structural variants encompass changes 

≥ 50 bp, which include deletions, duplications, inversions, and insertions. A type of structural 

variant which varies in number of copies is known as a copy number variant (CNV). Tandem 

repeats are sequences in which a pattern of bases is repeated head-to-tail a variable number of 

times, and include satellites, minisatellites and microsatellites. 

 

Genetic variants arise through mutations which have differing rates depending on the class of 

variation. One way of estimating the mutation rate is by directly analysing the number of new 

mutations, or de novo variants, between generations in a parent-child trio (Jónsson et. al., 
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2017). Another less direct approach, sometimes called the phylogenetic rate, is performed by 

comparing genome sequence divergence between species, for example human and 

chimpanzee, with an estimated split time based on fossil evidence (Scally and Durbin, 2012). A 

third approach is by calibrating using accurately-dated fossils which have been sequenced to 

high accuracy, and comparing the number of mutations accumulated since a common ancestor 

with present-day samples: the ‘missing’ mutations provide an estimate of the mutation rate (Fu 

et al., 2014). Autosomal SNVs have an estimated mutation rate of 0.4-0.6 x 10−9 per site per 

year. SNVs on the Y chromosomes and mitochondrial DNA have different rates, 0.7-0.9 x 

10−9  and 1.8-3.2 x 10−8  per site per year respectively (Fu et al., 2014). The mutation rate is not 

uniform across the genome, as it varies due multiple factors including sequence composition 

and nucleotide type. Most de novo mutations are inherited paternally, and the number increases 

as a function of the father’s age (Jónsson et. al., 2017). This is consistent with the multiple 

rounds of mitosis during spermatogenesis after puberty, in contrast to ova which do not divide 

after birth. 

 
Once a mutation arises, it will eventually either be fixed in a population, i.e. reach 100% 

frequency, or be lost. This future trajectory is affected by multiple factors, including natural 

selection and genetic drift. If a variant influences the fitness of the carrier, or the number of 

descendants, positively or negatively, it will be affected by selection. Positive selection acts to 

increase the frequency of a variant in a population, while negative, also called purifying 

selection, will decrease it. If the variant has no effect on fitness, a neutral variant, then its 

frequency will fluctuate randomly between generations and the probability of fixation is equal to 

its frequency. This is due to genetic drift, the random sampling of alleles from one generation to 

the next. It is related to the concept of an effective population size (Ne), which refers to the 

number of individuals contributing genetically to the next generation in a population. When the 

effective population size is small, genetic drift becomes stronger, while if a population size is 

large drift becomes weaker. Consequently, a neutral or even a weakly deleterious variant can 

potentially increase in frequency due to genetic drift. Thus understanding the demographic 

history of a population is important when attempting to pinpoint variants that have undergone 

positive selection. The effective population size of humans has likely been variable across time 

and populations, but has been estimated over the long-term to be around 10,000 individuals 

(Gronau et al., 2011). 
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In a sexually reproducing organism, an individual contains many lineages inherited from its 

ancestors. This is due to the process of recombination, which shuffles the genetic sequences 

across homologous chromosomes during meiosis. An exception to this is the mitochondria and 

the non-recombining part of the Y chromosome, which are inherited with no recombination and 

only differ between generations due to mutations. Recombination does not occur randomly 

across the genome, with hotspots often associated with particular sequence motifs (Myers et al., 

2008). The distance between variants across a chromosome affects whether they will be 

inherited together or be separated by recombination, with closely physically-located variants 

more likely to be inherited together and passed on to the next generation. This is referred to as 

genetic linkage, and is a property of an individual chromosome. The resulting co-segregation of 

variants, more frequently than expected due to chance, i.e. not being in ‘equilibrium’, is referred 

to as linkage disequilibrium (LD) and is a property of a population. 

 
Estimating the rate at which genetic variants accumulate allows us to understand and date 

when a variant arose. For example, assuming that a variant is neutral and in a stable large 

population, common variants are relatively old, while rare variants that are more region-specific 

are generally relatively young. Studying the pattern of shared mutations across populations 

allows us to date divergence times (Scally and Durbin, 2012). A generation time is needed to 

scale the estimates in years, and for humans it is estimated to be 26-30 years (Moorjani et al., 

2016). Genomes thus form a record of the forces that shaped them, and their investigation can 

illuminate the evolutionary history of our species. 

 

1.3 Technology for the generation of genome sequences 
 
The study of genetic variation and its association with phenotypic traits predates the discovery 

of DNA as the carrier of genetic information and the structure of the double helix. Through 

experimenting with pea plants, Gregor Mendel in the mid-19th century identified that certain 

traits follow specific inheritance patterns, which are now referred to as Mendel’s laws. 

Subsequent studies analysed genetic variation indirectly by evaluating their effect on the 

biochemical properties of proteins. The first population-scale study of human genetic variation 

was reported in 1919, where frequencies of certain blood types were found to vary between 

populations (Hirschfeld and Hirschfeld 1919). The use of restriction enzymes in the 1970s 

subsequently allowed the direct study of genetic variation. These enzymes cleave specific 

sequences, which range mostly from 4-8 bases, by introducing double stranded breaks. This 
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creates fragments of different sizes which can be studied by gel electrophoresis. The presence 

of genetic variants within a population, also called polymorphisms, at such restriction sites will 

influence whether or not they can be cut by a restriction enzyme. The ability to detect and study 

variation using this method led to restriction fragment length polymorphism analysis. A 

subsequent improvement was the analysis of microsatellites, which due to their higher mutation 

rate are highly polymorphic, and the variable number of repeats can, after amplification by the 

Polymerase Chain Reaction (PCR), be separated by gel electrophoresis.  

 

The genome sequencing era started in the 1970s when Fredrick Sanger and colleagues 

developed a method to directly read the sequence of DNA using dideoxy chain termination, now 

commonly called ‘Sanger sequencing’ (Sanger et al., 1977). The method relies on modified 

deoxynucleotides which lack another hydroxyl group, dideoxynucleotides. Once incorporated 

into the expanding DNA molecule by DNA polymerase, the expansion will terminate. The four 

dideoxynucleotides are labelled with fluorescent dyes and after random termination the 

fragments of different sizes can be separated by gel electrophoresis and the sequence can be 

read. The method was subsequently automated, and coupled with the development of capillary 

electrophoresis increased throughput and the size of the molecule that can be read, or 

sequenced, to around 800 bp. This contiguous sequence of DNA that is read is referred to as a 

‘read’ of this length. These developments allowed the first, relatively simple, genomes of viruses 

and bacteria to be sequenced. The assembly of large and more complicated eukaryotic 

genomes necessitated the analysis of longer and more repetitive sequences. This challenge led 

to overlapping sections of a genome being cloned separately and sequenced. These reads 

were then assembled into an accurate contiguous sequence, ‘contigs’, computationally. 

Although labour intensive and time consuming, this technique allowed the generation of 

assemblies such as the human genome. Genome assembly today no longer uses Sanger 

sequencing, but this ‘first-generation’ method remains widely used due to its accuracy in specific 

experiments, such as in targeted resequencing of a small region. 

 
Before developments that lead to the widespread use of second-generation sequencing, DNA 

microarrays or ‘chips’ became, and still are, an important technology to investigate genome 

variation. Each array contains hundreds of thousands to millions of short probes which hybridize 

to a sequence that contains a known variant. The relative intensity of fluorescence caused by 

the hybridization of different alleles to the probe determines the genotype. Microarrays are a 

cost-effective way to analyse a large number of variants, and are widely applied to look for 
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associations between a trait and a variant through genome-wide association studies (GWAS). 

They are also a popular method used to study population history, but suffer from the 

requirement of needing to know a variant beforehand. This ascertainment issue is amplified due 

to the history of overrepresentation of European populations in genetic studies. Another 

limitation is that rare variants, which tend to be more population-specific, will likely not be 

included on the array. 

 

Multiple different technologies were developed to usher in the era of ‘next-generation’ or 

second-generation sequencing. These methods were able to generate sequences at a 

substantially higher throughput relative to Sanger sequencing and at a lower cost, which 

continues to decrease. The dominant technology emerging from this period was developed by 

Solexa, and is commonly now referred to as Illumina sequencing. A ‘shotgun’ sequencing 

approach, this method relies on fragmenting DNA into random sequences which after library 

preparation are ‘sequenced-by-synthesis’. A camera captures the identity of a fluorescently-

labelled reversibly-terminated nucleotide incorporated to a DNA molecule by a DNA 

polymerase. The high throughput is achieved by paralleling this step on billions of molecules 

across a flow cell. Initially the read length was only 35 bp (currently it can reach 250 bp), 

significantly shorter than Sanger sequencing, but reads have ~1% base error rate. Since the 

method uses no prior knowledge of the order of sequences, coupled with the relatively short 

length of the reads, these factors severely limit this technology in genome assembly. However, 

if a high-quality reference genome has been generated, this method offers a powerful way to 

study variation by comparing reads to the reference (‘mapping’) and identifying positions with 

differences. This approach can identify variants across the allele frequency spectrum, including 

‘singletons’ or ‘doubletons’, variants that appear once or twice in the population studied, 

respectively.  

 
Despite the wide application of Illumina sequencing today, the short length is an issue for the 

analysis of repetitive regions, which vary in length depending on the genome investigated. For 

example, if a read is 150 bp, but is composed of a long repetitive sequence that is found in 

multiple locations in the genome, this ambiguity means that it cannot be placed. The read needs 

to traverse the repeat in order to accurately place it in the genome on the basis of the non-

repetitive portion. An improvement in Illumina technology is the use of pair-end sequencing, 

where both ends of a DNA fragment are sequenced. If one pair of the reads can be 

unambiguously mapped, this can assist in placing the second of the pair. However, this will still 
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not allow the investigation of large repeats such as segmental duplications, blocks of repetitive 

sequences over 1 thousand bases, or 1 kb, and have a sequence similarity of over 90%.  
An additional challenge in sequencing genomes is ploidy, the number of sets of chromosomes. 

In diploid genomes, such as humans, a genetic variant can be heterozygous or homozygous. A 

pair of physically-nearby heterozygous variants can consequently be located on the same 

chromosome, or be on different chromosomes. This is known as the haplotype phase of the 

variant. If a read, or a read-pair, spans two heterozygous variants then the phase can be known, 

but this is limited by the length of the read and the size of the DNA fragment sequenced. 

Another factor is the heterozygosity of the sample investigated. Humans, on average, have 1 

heterozygous variant every 1kb. A pair of 150 bp reads sequenced from both ends of a 500 bp 

fragment will thus provide limited phasing information. A technology recently developed retains 

long-range information from short-reads by creating pseudo-long ‘linked-reads’. Such reads are 

generated by performing haplotype-level dilution of DNA fragments into over a million barcoded 

partitions, which then undergo standard short-read sequencing (Marks et al., 2019). Linked-

reads can, with high molecular weight DNA, create phased blocks of over several megabases. 

The accurate phasing simplifies genotyping, as each haplotype can only have one allele. 

 
The limitations of short reads technology spurred advances that led to third-generation 

sequencing. Still in active development, the two dominant technologies emerging are single-

molecule real-time (SMRT) sequencing from Pacific Biosciences and nanopore sequencing 

from Oxford Nanopore technologies. In SMRT sequencing, a DNA fragment and a DNA 

polymerase are immobilized at the bottom of an optical waveguide. The sequence is determined 

in real-time by detecting fluorescence from the binding of a labelled nucleotide in the active site 

of the polymerase. Alternatively, nanopore sequencing directly determines sequence by 

monitoring changes in electrical current using protein nanopores as nucleic acids pass through 

them. The reads generated by these technologies are typically over 10kb, and can reach over 1 

million bases (Mb) in nanopore sequencing. Initial use of long-read technology required high 

input DNA, and additionally suffered very high error rates (>15%). A hybrid approach was often 

used where the error-prone long reads were corrected using accurate short reads. At the time of 

writing of this thesis, the latest developments have improved accuracy, especially in SMRT 

sequencing, which now can rival short-read accuracy; however, their costs render them 

impractical for large population studies.  
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Improvements in DNA extraction methods coupled with advances in the aforementioned 

sequencing technology have also allowed the study of genetic variation from ancient remains. 

After early PCR-based studies that were prone to problems with contamination, the ancient 

DNA field has matured over the past decade to provide unprecedented insights into human 

history. The generation and analysis of ancient DNA sequences create their own challenges. 

Since the time of death they start to degrade and fragment, and if successfully extracted, the 

resulting DNA molecules are usually under 50 bp. The finding that the petrous bone of the inner 

ear harbours the highest yield of DNA of all bone fragments has significantly improved the 

recovery of DNA, even allowing studies in relatively warm and humid climates that hinder 

preservation (Lipson et al., 2020; McColl et al., 2018). Ancient DNA molecules also accumulate 

damage that appears non-random. In particular, the deamination of cytosine to uracil, which is 

subsequently read as thymine, results in artefactual cytosine to thymine transitions. This occurs 

especially towards the ends of fragments. Restricting analysis to transversions or excluding the 

end few bases can be used to reduce this issue in analysis. Environmental contamination by 

microbial DNA and in addition by modern human DNA also complicates downstream analysis. If 

possible, increasing the number of reads sequenced can increase the absolute number with 

endogenous DNA up to a certain level for analysis. The high divergence of microbial to human 

DNA can exclude them from impacting analysis, but modern human contamination is a more 

serious issue due to the similarity of sequences. If contamination is found at a relatively high 

level, observing the proportion of reads with damage and limiting analysis to these can 

potentially remove the bias. 

 

1.4 Methods for processing sequencing data 
 
Choosing which way to process reads depends on the aims of the study, the presence of a high 

quality reference genome and the diversity of the organism investigated. Humans have 

relatively low diversity, and the current iteration of the reference genome, GRCh38, is the most 

accurate and complete vertebrate genome generated. For this reason, the most commonly used 

method for studying human variation is by mapping reads to a mostly linear haploid human 

reference. Regions of the reference that are accessible to reads and analysis are included 

within a ‘mappability mask’. The percent of the genome included in this mask depends on the 

read length of the technology and the stringency of mappability required for analysis. For short 

reads mapping to the human reference, the ‘strict mask’ encompasses only around 75% of all 

bases (Bergstrom et al., 2020). Mapping reads has been aided by the development of efficient 
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methods, which can take into account some differences between the sequenced reads and the 

reference. Currently one of the most popular software for this process is BWA (Li and Durbin, 

2009). After alignment, genotypes can be identified by evaluating the relative number of reads 

carrying a reference or alternative allele. For SNVs and indels, many software have been 

developed for this step, including GATK (McKenna et al., 2010) and samtools (Li, 2011). An 

important metric impacting the accuracy of genotype calling is the sequencing coverage (or 

‘coverage’), the number of reads covering a position, on average, in the reference. Genotype 

calling needs to take into account the sequencing errors in reads, as well the noise in coverage 

at heterozygous sites. The target coverage depends on the aims of the study, with ‘high-

coverage’ sequencing usually referring to around 30x, in which genotypes can be determined 

with high accuracy across all frequency bins within mappable regions. Early studies which were 

limited by sequencing costs sequenced a larger number of individuals from a population and 

leveraged the variation found within the entire dataset to call variants from lower coverage data 

and reduce expenses, but are more likely to miss rare variants.  

 
In contrast to short forms of variation, different methods are used to identify structural variants, 

but they still mostly use comparisons with the reference genome. Initial and widely used 

approaches relied on indirect inferences, such as discordant read-pair mapping (Chen et al., 

2009); however, they tended to have high false positive rates and are limited to detecting a 

subset of SV classes. Improvements in subsequent methods, including ones that rely on 

coverage and split reads, resulted in substantially more sensitive and specific variant callers. 

The latest methods can also perform local assembly at putative identified structural variants, 

allowing accurate breakpoints to be determined (Kosugi et al., 2019). 

 

Despite the success and widespread use of the human reference genome in studying genetic 

variation, it does have limitations, such as introducing reference bias. Analysis is restricted to 

regions of the reference genome present and correctly assembled. Although GRCh38 is a high-

quality reference, it is still incomplete and contains gaps and misassemblies which are 

continually updated through patches. Unresolved regions remain, such as ribosomal RNA gene 

arrays on acrocentric chromosome short arms, megabases of satellites in pericentromeric 

regions and large segmental duplications over hundreds of kilobases in size. Moreover, the 

current reference genome is a composite of a few individuals, the majority of which (~66%) is 

contributed by one person (Ho et al., 2019). Sequences that are more divergent to the reference 

are less likely to be mapped due to having too many differences. This is especially a problem in 
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regions with high sequence diversity, such as the major histocompatibility complex. In addition, 

the reference can also harbour rare variants specific to the donor, including complicated 

sequence rearrangements.  
 

Another limitation of the reference sequence is it being mostly a linear haploid genome, which 

cannot reflect the sequence diversity found in human populations. GRCh38 does contain some 

alternative haplotypes, regions of the genome with different versions of a sequence. However, 

the inclusion of such regions in a mostly linear reference brings its own challenges which has 

led many projects to exclude them from analysis. There is a large interest in using genome 

graphs to circumvent the issues of using a linear genome, and it is currently an area of active 

development. The use of graphs will increase in the number of reads aligned and allow better 

representation of the diversity of haplotypes in human populations. This is becoming 

increasingly important due to many population studies reporting tens of megabases of 

sequences that are not found in the reference (Sherman et al., 2018). In addition to haplotypes 

with high divergence to the reference, these missing sequences could also be explained by 

population-specific sequences or by unresolved repetitive and complicated sequences which 

have not been placed in the reference. The lack of inclusion of such sequences in studies limits 

the scope of functional and association analyses, especially in diverse human populations not 

represented well by the reference. 

 
An alternative way to process sequencing reads is by de novo assembly. This creates a 

consensus sequence from overlapping reads that does not make use of a reference genome or 

any prior information. Illumina reads can be used for this process, but they result in highly 

fragmented assemblies with missing sequences, especially for complex repetitive regions. In 

addition, they require relatively high coverage (~50x) and memory requirements. As a result, 

standard short-reads are not routinely used for de novo assembly of complex genomes, but can 

be of use for specific cases such as the investigation of structural variants (Li et al., 2015). 

Linked-reads have the advantage of the accuracy of short-reads with the addition of long range 

information from the barcodes of the DNA molecule. Thus de novo assembly of linked-reads 

can create large contigs and even larger scaffolds, contigs separated by gaps of known length. 

Unsurprisingly, long-read technologies generate the highest quality and most complete 

assemblies. By comparing de novo assemblies to the reference, complicated structural 

rearrangements can be identified and included in population analysis. De novo assemblies can 
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even bypass the reference and the biases it introduces by comparing assemblies with each 

other. 

 

1.5 Methods for analysing population histories using genetic data 
 
A large number of methods have been developed to study population history using genetic data. 

They differ in which features of data are used, their complexity, the number of parameters set 

beforehand and what type of inferences are produced. Popular methods commonly used for 

initial exploration utilise information from allele frequencies at genotyped sites, and generally 

assume that similar allele frequencies are a result of shared ancestry. Principal component 

analysis (PCA) and model-based clustering are two of the most popular methods in this 

category. PCA is a dimensionality-reduction method which differentiates individuals along axes 

of variation, principle components (PCs), in an unsupervised manner (Patterson et al., 2006). 

Different PCs can be investigated to explore the variation and structure of the dataset, and can 

also identify processing artefacts such as batch effects. An advantage of PCA is that it is 

relatively fast, and has essentially no parameters to set beforehand, resulting in it being 

reproducible. Recent developments in dimensionality-reduction techniques have led to more 

powerful clustering algorithms being used to explore genetic data. One is uniform manifold 

approximation and projection (UMAP), which is able to generate a two dimensional 

representation of the data which can be easily visualized (McInnes et al., 2018). However, the 

interpretation of the clustering is more complicated than PCA, due to hyperparameters that need 

to be tuned by the user which affect the local and global clustering, as well as being a stochastic 

algorithm which will produce different results in every run. Model-based clustering implemented 

in algorithms such as STRUCTURE, require a pre-defined number of ancestral components (K) 

defined by the user to partition the variation observed in the dataset (Pritchard et al., 2000). 

Usually, many different Ks are tested and all the results are taken to form a conclusion, although 

a certain K can form a better fit to the data. Extensions have allowed temporally-aware model-

based clustering, which takes into account that different samples have lived at different times 

(Joseph and Pe’er, 2019). These methods work with variants that are approximately in linkage 

equilibrium, and as a result pruning of correlated variants is generally required beforehand.  

 
A classic and important statistic to measure population differentiation is FST, or the fixation index, 

which measures the variation shared within and between populations. In addition to calculating 

average differentiation between populations, FST  is also used to identify regions that show high 
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differentiation, relative to the average, between populations. An extension is the population 

branch statistic (PBS), which can identify regions that show differentiation in a specific 

population, potentially as a consequence of positive selection (Yi et al., 2010). Another 

extension led to the development of f-statistics, a family of drift-based statistics that use allele 

frequency correlations (Patterson et al., 2012). They have become powerful tools to explore 

hypotheses involving population history, and in their simplest form test whether populations are 

related to each other in a simple tree-like topology. They can be used to test whether a target 

population is descended from a specified set of ancestral populations and determine their 

relative contributions. They can also create models of population splits and admixtures that best 

represent the data. As these methods only use allele frequencies, they can be applied to any 

type of genetic data generated from different technologies, but increase in statistical power with 

increasing number of variants. 
 

Alternative methods exploit the density of variants in genetic linkage through haplotype-based 

tests. They generally provide more power to investigate population structure in comparison to 

single marker tests. The Chromopainter/fineSTRUCTURE method produces a haplotype matrix 

of shared segments that can be used to statistically group samples into populations (Lawson et 

al., 2012). Other methods, such as RFMix (Maples et al., 2013), use haplotype information to 

perform local ancestry deconvolution of sequences in admixed samples by comparing to a set 

of reference populations. As these methods are haplotype-based, they require knowing the 

haplotype phase. One common way of phasing is to compare variants in a dataset with a large 

external set of haplotypes, a reference panel, where the most likely phase is determined. 

Alternatively, if a dataset is large, phasing can be determined through analysing variation found 

within the dataset. These two approaches are known as statistical phasing, and come with a 

rate of error which increases with decreasing frequency of the variant, as the number of times a 

variant is present within a panel is correlated with phase determination confidence. This can be 

exemplified by the extreme case of singletons within a dataset, which cannot be statistically 

phased. Experimental phasing of variants is an alternative approach to produce more accurate 

haplotype phasing, and can be performed using linked-read technology. As linked-reads retain 

the long range information from the original DNA molecule, variants across the allele frequency 

spectrum are accurately experimentally-phased.   

 
The previous sets of methods analyse variable sites in a dataset which can be generated by 

genotyping arrays. The continued decreasing costs of sequencing have recently generated a 
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large number of whole genomes. These have led to the development of new methods that use 

information from both variable and non-variable sites in genome sequences to explicitly model 

their relationships through coalescence and recombination events. These models attempt to 

approximately reconstruct the ancestral recombination graph (ARG), a detailed description of 

the data that can be utilised to study population history. As human genomes are composed of 

multiple lineages that descend from many different common ancestors, this information can 

provide insights into ancestral population sizes. This is because the coalescence rate between 

haplotypes is dependent on the effective population size. Extending this to chromosomes from 

different populations, comparing the relative rate of within to between population coalescence 

can estimate population divergence, or split times. PSMC (Li and Durbin, 2011) and its later 

iteration MSMC (Schiffels and Durbin, 2014) have become widely used methods to study 

historical effective population sizes and separation history of humans and other species. The 

former is limited to the analysis of a single genome, providing estimates from ~20,000 years 

ago and older in humans, while the latter extended the analysis to multiple genomes (4 

genomes or 8 haplotypes), increasing resolution in recent times to around 2,000-4,000 years 

ago. However, MSMC requires phased data, and poor phasing has been shown to lead to 

substantially distorted population histories (Terhorst et al., 2017). The small number of genomes 

restricts the analysis to particular uses and time periods. A recently developed method, Relate, 

can create genome-wide genealogies that can scale to thousands of samples (Speidel et al., 

2019). The higher number of genomes handled by Relate increases the resolution of recent 

human population history up to and even within the last millennium, which is of interest as it 

overlaps with events in written history. This approximation of the ARG also allows a more 

powerful method to study the evolutionary history of a variant, in comparison to tests that only 

use summary statistics such as the allele frequency. Analysing local genealogies offers an 

approach to detect variants under selection, both strong and weak, as they will result in a burst 

of coalescent events over a short period of time. This can be extended by studying multiple 

variants simultaneously and investigating polygenic selection, where many variants each have a 

small effect on a trait. 

 

1.6 A brief summary of current knowledge on human evolutionary history. 
 
Anatomically modern humans are the only living species from the genus Homo, and together 

with their closest living relatives chimpanzees, bonobos, gorillas and orangutans are classified 

as hominids, or great apes. The availability of high-quality genomes from different hominids and 
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assumptions about the mutation rate have allowed their historical divergence times to be 

estimated, with humans splitting from chimpanzees around 6 million years ago (mya) and at an 

older time from gorillas and orangutans, ~9 and ~14 mya respectively (Scally and Durbin, 2012). 

The closest extinct groups to modern humans are Neanderthals and Denisovans, populations 

who are thought to have gone extinct ~40 kya. We know a lot more about the anatomy and 

lifestyle of Neanderthals in comparison to Denisovans, due to the large number of fossils 

identified from the former in Europe and the Middle East. The latter is more of a mystery, with 

only a finger bone, a few teeth and a mandible attributed to them in Eastern Eurasia (Chen et 

al., 2019). High-quality whole genomes from both groups have shed light into their historical 

relationships, and for Denisovans even identified their existence as they were previously 

unknown (Meyer et al., 2012; Prufer et al., 2014). Analyses of the sequences have shown that 

modern humans diverged from both archaic groups at around a similar time, 600 kya, while they 

diverged from each other more recently ~450 kya (Prufer et al., 2014). These old split times 

suggests that all three groups inhabited and evolved at different locations with limited contact 

and gene flow for most of their existence. Denisovans also appear to carry sequences that may 

have been introduced through admixture with an early divergent hominin, potentially Homo 

erectus (Prufer et al., 2014). The genomes also showed that both Neanderthals and Denisovans 

had relatively low genetic diversity resulting from long-term low effective population sizes, 

potentially impacting their health by increasing the burden of deleterious variants (Prufer et al., 

2014). In addition, a study using autosomal data suggested gene flow from an early diverged 

modern human population into Neanderthal groups (Kuhlwilm et al., 2016). Moreover, 

population relationships inferred by autosomal data do not mirror uniparentally-inherited 

chromosomes, as the mitochondria and Y-chromosome of Neanderthals appear closer to 

modern humans, instead of Denisovans, suggesting a possible replacement (Posth et al., 2017; 

Petr et al., 2020).   

1.6.1 Africa 

There is a consensus that anatomically modern humans evolved in Africa. Early studies on 

mitochondrial DNA have shown that African populations have the highest genetic diversity of all 

human populations, non-Africans have a subset of this variation, and the phylogenetic tree is 

rooted in Africa (Cann et al., 1987). This conclusion has been repeatedly confirmed using 

different classes of genetic variation in modern and ancient datasets. Additionally, a decrease in 

genetic diversity is found with increasing distance from Africa, consistent with a serial founder 

effect where a subset of the variation is carried in repeated expansions (Li et al., 2008; 
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Jakobsson et al., 2008). The oldest fossil assigned as modern human, although with some 

primitive features, dates to around 300 kya in Morocco, Northwest Africa (Richer et al., 2017). 

Findings in Ethiopia, Eastern Africa, identified ~200 kya modern human remains (McDougall et 

al., 2005). Using ancient autosomal genetic data, the earliest divergence between modern 

human populations has been estimated to be around 350-260 kya (Schlebusch et al., 2017). In 

addition, ancient DNA from Africa have suggested complex diversifications of lineages within 

the continent, with a deeply divergent lineage contributing more ancestry to some West African 

populations (Skoglund et al., 2017). Divergent uniparental chromosomes of present-day modern 

humans appear at different locations: The most divergent Y chromosomes have been identified 

in West and Central Africa (Mendez et al., 2013), while the most basal mitochondrial sequences 

have been identified in Southern and South-eastern Africa (Chan et al., 2019). Modern-day DNA 

has not been able to convincingly pinpoint the location where modern humans evolved within 

Africa; however, advances from multidisciplinary studies suggest that different human 

characteristics may have evolved at the same time across Africa, rather than in one single 

location (Scerri et al., 2018). The degree of gene flow and population structure between these 

historical populations is not fully understood, as modern events have likely collapsed this 

ancient structure. However, an increasing number of studies are identifying divergent lineages 

present within modern-day Africans, suggesting that unsampled and unknown archaic 

populations have been present and their traces survive through admixture (Plagnol and Wall, 

2006; Hammer et al., 2011; Durvasula and Sankararaman, 2020). However, as no genome 

sequences of such archaic populations have been identified, which is not helped with the hot 

and humid climate present across much of the continent negatively affecting the preservation of 

DNA, these inferences of archaic populations are not widely-accepted. Through modern-day 

population comparisons, the deepest genetic splits within Africa appear between 100 and 200 

kya (Mallick et al., 2016). The population consistently appearing the most divergent in these 

comparisons is the Khoi-San speaking population of Southern Africa, who also appear to have 

had the highest historical effective population size of all studied human populations and the 

greatest genetic diversity. The next most divergent populations are rainforest hunter-gatherer 

populations of Central Africa, such as the Mbuti and Biaka.  

 
An important recent event that reduced the older population structure in the continent is the 

complex expansion of Bantu-speaking agriculturists from Western Africa into Central, East and 

Southern Africa starting ~4 kya. In addition, East African populations have notable Eurasian 

ancestry believed to have been a result of Middle Eastern farmer movements and admixture 
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around 3 kya (Pagani et al., 2012; Pickrell et al., 2013; Skoglund et al., 2017), which may be 

reflected in some of them today speaking Semitic languages, although Cushitic speakers have 

similar levels of Eurasian ancestry to Ethiosemitic-speaking groups (Pagani et al., 2012).  

Northern African populations appear distinct from sub-Saharan groups and closer to Middle 

Eastern populations. Most of their ancestry is thought to come from back-migrations from the 

Middle East; however, it appears that Northern Africa and the Middle East have had historical 

and genetic connectivity over the past 15 kya (van de Loosdrecht et al., 2018).  

1.6.2 Out of Africa and archaic admixture 

Most genetic studies suggest that human populations expanded out of Africa around 50-80 

kya, a period in which a divergence between Africans and non-Africans is observed (Schiffels 

and Durbin, 2014). As genetics cannot identify the geographic location of the separation, this 

divergence pattern does not necessarily mean that it occurred through a population movement 

out of Africa. The separation could have started within Africa during a period of restricted gene 

flow between populations. A notable bottleneck is observed in all non-African populations during 

this period, resulting in much less diversity and higher levels of linkage disequilibrium in non-

Africans in comparison to African groups (Li et al., 2008; Jakobsson et al., 2008; Li and Durbin, 

2011; Schiffels and Durbin, 2014). The timing of this genetic expansion contrasts with the 

identification of modern human fossils outside Africa dating to over >80 kya years ago. A jaw 

bone identified in the Levant, a finger found in North Western Arabia and teeth located in 

Southern China have been dated to at least 177 kya, ~85 kya and more than 80 kya 

respectively (Hershkovitz et al., 2018; Groucutt et al., 2018; Liu et al., 2015). In addition to 

fossils, tools and footprints attributed to modern humans have also been identified at similar old 

periods in Arabia around ~125 kya (Armitage et al., 2011; Stewart et al., 2020). Assuming the 

dates are correct, which in some cases are debated (Sharp and Paces, 2018), it is becoming 

clear that there were probably multiple human expansions out of Africa, predating the main 

event estimated by genetic studies. These two ideas can be reconciled by proposing that these 

early expansions became extinct or migrated back to Africa, and in either case did not leave a 

genetic trace in modern human populations. Nevertheless, there has been interest in identifying 

populations that may carry, even a small amount, of descent from an earlier expansion out of 

Africa, and indeed some reports have suggested so (Pagani et al., 2016), although this is 

currently not widely-accepted. A complication for these types of analysis is that the availability of 

Neanderthal and Denisovan genome sequences have conclusively shown that modern humans 

encountered and admixed with archaic hominins in Eurasia during their expansion. Thus the 
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out-of-Africa event needs clarification; indeed if the ancestors of Neanderthals and Denisovans 

expanded out of Africa, they could be thought of an early expansion of humans that left some 

descent in modern humans due to admixture. The out-of-Africa event described in the rest of 

this thesis refers to the event 50-80 kya, described above. The overlap between the 

disappearance of Neanderthals and Denisovans around the same time as humans likely 

encountered them have been suggested to be related, either due to direct conflict or by indirect 

competition for the same resources. It could also be caused by modern humans being better at 

adapting to changes in climate, or having a lower burden of deleterious mutations due to their 

higher effective population size.  
 

Admixture with archaic hominins has resulted in archaic sequences from Neanderthals and 

Denisovans surviving in modern human populations today (Reich et al., 2010; Green et al., 

2010). It has been estimated that contemporary non-African populations have around 2% of 

Neanderthal ancestry, and the admixture event has been dated genetically, using information 

from the breakdown of haplotypes by recombination, to 50-60 kya (Fu et al., 2014). The roughly 

similar amount of this ancestry in all these populations, and the low diversity and uniformity of 

introgressed segments, suggests that humans experienced one major pulse of admixture from 

Neanderthals (Bergstrom et al., 2020). This also indicates that the admixture occurred soon 

after modern humans expanded out of Africa, potentially in the Middle East, and provides more 

evidence for a single major expansion out of Africa. Small differences in the amount of 

Neanderthal ancestry between contemporary populations have been identified, with East Asians 

found to harbour around 8-20% more ancestry in comparison to European populations (Chen et 

al., 2020). This could be explained by East Asians having additional Neanderthal admixture 

events, weaker purifying selection on introgressed variants due to East Asians having a smaller 

effective population size, and/or by Europeans having descent from a population that did not 

participate in the admixture event with Neanderthals. This hypothetical population, called Basal 

Eurasians, is proposed to have diverged from other non-African populations before their 

radiation (Lazaridis et al., 2014; 2016). The existence of such a population raises questions on 

why they seem to lack Neanderthal ancestry: could have they resided in Africa while other 

populations met Neanderthals in the Middle East? When did they come into contact with 

ancestral populations contributing the remaining sources to Europeans? Ancient DNA from a 

Basal Eurasian sample is needed to illuminate their history. 
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Denisovans admixture history shows differences and similarities in comparison to Neanderthal. 

The most apparent contrast is its regional stratification: individuals with Australasian and 

Melanesian ancestry harbour the highest ancestry (2-5%), whereas East Asian and American 

populations show a very small, but detectable, amount of about 0.1% (Reich et al., 2010; Reich 

et al., 2011; Meyer et al., 2012). Denisovan segments also show longer lengths in comparison 

to Neanderthal, suggesting a more recent admixture time (Sankararaman et al., 2016). The 

sequenced Denisovan genome shows some divergence from the Denisovan segments found in 

Melanesians, and lineages found in East Asians and Melanesians come from different 

Denisovan sources, suggesting at least two different pulses of admixture (Browning et al., 

2018). Moreover, Melanesian populations themselves have been reported to harbour two 

independent Denisovan lineages, separate from the East Asian lineage (Jacobs et al., 2019). A 

study has suggested an almost linear decrease in Neanderthal ancestry since the time of 

admixture, potentially due to continuous selection against introgressed segments (Fu et al., 

2016). However, recent analysis have shown that overall levels of Neandertal ancestry did not 

decrease significantly in the past 45ky; with strong negative selection on Neanderthal segments 

likely appearing in the first few hundred generation after the introgression event (Petr et al., 

2019). Both Neanderthal and Denisovan segments appear depleted around functional 

sequences such as genes, suggesting they were in general deleterious and removed from the 

population through purifying selection (Sankararaman et al., 2014). This appears especially 

pronounced on the X-chromosome and in genes expressed in the testes, suggesting that 

Neanderthal ancestry reduced fertility in males when in a modern human genetic background 

(Sankararaman et al., 2014). The introgression event may occasionally have introduced variants 

into modern humans that were positively selected, a process called adaptive introgression 

(Gittelman et al., 2016). A striking example has been reported in the high-altitude living 

Tibetans, where a haplotype thought to have introgressed from Denisovans appears at high 

frequency (Huerta-Sanchez et al., 2014). This haplotype overlaps EPAS1, a gene which 

encodes a hypoxia-inducible factor and is believed to have helped Tibetans to survive in the 

low-oxygen environment of the Tibetan plateau. Thus admixture with divergent archaic hominins 

has had benefits and disadvantages to modern humans, providing access to a gene pool with 

neutral, beneficial or detrimental variants. 

1.6.3 Europe 

Once out of Africa, modern humans quickly populated much of Eurasia and Australasia. The 

region with the best understood genetic history is Europe, due to the large amounts of studies 
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sampling modern and ancient DNA which have documented population turnovers and 

migrations. Europe is thought to have been settled by modern humans around 45 kya (Benazzi 

et al., 2011; Higham et al., 2011). These early populations appear to have not contributed to 

contemporary Europeans, as a discontinuity in ancestry appears before the Last Glacial 

Maximum (LGM), potentially as a consequence of climate change. Later populations, living from 

between around 37 to 14 kya, descend from a founder population which did contribute to 

present-day Europeans (Fu et al., 2016). Major population transformations took place in the 

Holocene, after the LGM, when agriculture developed in the Middle East during the Neolithic 

~10 kya. This ‘Neolithic transition’ began as hunter-gatherers became sedentary and 

transitioned to lifestyles involving agriculture and animal husbandry. Farmers from Anatolia 

expanded into nearby parts of Europe ~8 kya resulting in admixture with, and sometimes the 

replacement of, local hunter gatherers. This change in lifestyle supported larger populations, 

documented genetically by increases in effective population sizes during and after this period 

(Schiffels and Durbin, 2014). During the Bronze Age ~5 kya, another major event that changed 

the genetic landscape of the region is the movement of pastoralists from the Eastern Eurasian 

Pontic-Caspian steppe into Europe, replacing up to half of the ancestry in some regions 

(Allentoft et al., 2015; Haak et al., 2015). These herders, attributed to the Yamnaya culture, 

were themselves descended from various hunter-gatherers from the Caucasus and Russia 

(Jones et al., 2015). The change in ancestry of the region is thought to be associated with 

technological innovations such as horseback riding assisting conquests, and may have spread 

Indo-European languages. Today, Europeans thus form a mixture of these three divergent 

ancestries, with relative differences in proportions in different regions. North Eastern Europeans 

have high steppe-related ancestry, which appears low in Sardinians who instead have high 

Neolithic farmer ancestry (Lazaridis et al., 2014). These population transformations greatly 

reduced the genetic structure within prehistoric Europe, and modern-day European genetic 

variation shows strong correlation with geography (Novembre et al., 2008).  

1.6.4 Asia 

The initial peopling of Asia is not well understood, but the analysis of early ancient genomes 

from the region have provided some insights. An individual from who lived in Western Siberia 

(Ust’-Ishim) 45 kya displays similar genetic affinity to modern-day East Asians, Western 

Eurasians and Aboriginal Australians, after accounting for archaic admixture (Fu et al., 2014). 

This implies that the sample comes from a population that lived before, or around, the 

separation of these populations. Another important sample that comes from Southern Siberia 
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dating to 24 kya (Mal’ta), shows genetic affinity to both Western Eurasians and Native 

Americans, and less affinity to Siberians and East Asians (Raghavan et al., 2014). A ~36 kya 

genome from European Russia (Kostenki14), appears closer genetically to Western Europeans 

than to East Asians, suggesting that these two populations have diverged by that period 

(Seguin-Orlando et al., 2014). Two subsequent expansions into Asia transformed the genetic 

landscape of the region and mixed with and replaced the local Mal’ta-like hunter-gatherers. The 

first, was the movement of steppe pastoralists ~5 kya, around the same time they also 

expanded into Western Europe. The second was replacement of these steppe pastoralists in 

Central Asia ~3 kya by a population affiliated with the Sintasha culture who inhabited the 

Northern Eurasian steppe and subsequently admixed with East Asians (Allentoft et al., 2015). 

 
In the Middle East, agriculture appears to have been independently developed by different 

populations in the Fertile Crescent, as continuity between hunter-gatherers and early farmers 

has been found in both Iran and the Levant (Lazaridis et al., 2016). This suggests that the 

movement of ideas and farming technology spread faster than the movement of people. These 

groups were strongly differentiated, but subsequently these farmer populations mixed with each 

other before expanding into different regions. Anatolian farmers moved westward into Europe, 

while Levantine farmers spread southwards into East Africa. Iranian farmers moved northwards 

and admixed with Eurasian steppe populations, and also moved eastwards into South Asia. 

Most modern-day south Asians can be modelled as a mixture between two historically divergent 

populations: Ancestral North Indians (ANI) and Ancestral South Indians (ASI) (Reich et al., 

2009). The latter is related to, although distantly, modern-day indigenous Andaman Islanders 

while the former is descended from a West Eurasian source: Iranian-ancestry and Steppe-

ancestry. Iranian-related ancestry first entered the region over 4 kya, followed by steppe 

pastoralists during the Bronze Age. Within the past 3ky, populations with varying proportions of 

ANI and ASI mixed with each other to create the modern Indian cline observed today 

(Narasimhan et al., 2019). 

1.6.5 Oceania 

Evidence from archaeology shows that Oceania was populated ~50 kya, indicating that modern 

humans quickly reached the region after expanding out of Africa. However, as with other 

regions, earlier occupations have been reported (~65 kya; Clarkson et al., 2017). Archaeological 

and linguistic data previously suggested likely multiple founding events of the region; however, 

recent genetic studies of modern-day Aboriginal Australians and Papuans indicate a single 
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founding event (Malaspinas et al., 2016). The two populations then diverged from each other 

~35 kya, long before the rise in sea levels which separated New Guinea and Australia after the 

end of the last glacial period around 12 kya. Despite the relatively short geographical distance 

between them, this separation time is similar to when Europeans and East Asian split from each 

other. Within Australia, relatively old split times, 20-30 kya, are identified when comparing South 

Western and North Eastern populations (Malaspinas et al., 2016). This surprising long-term 

isolation and lack of gene flow has been proposed to be due to changes in environment leading 

to the desertification of Australia, which today is the driest continent. The European colonization 

of Australia in the late 18th century introduced substantial European gene flow to Aboriginal 

Australian groups, which is not apparent in New Guinea, who instead show admixture from 

populations of Southeast Asian ancestry, which Australians lack. This ancestry appears mostly 

confined to coastal regions of New Guinea, as the highlands do not appear to harbour 

Southeast Asian ancestry. Within New Guinea, old separation times are observed between 

highlands and lowlands, ~15 kya (Bergstrom et al., 2017). In addition, high levels of population 

structure are observed on the island, with FST pairwise comparisons over 5% (higher than British 

and Sri Lankan populations) being common, reflecting its cultural and linguistic diversity. This is 

despite the independent development of agriculture in New Guinea. While agricultural 

transitions homogenised populations in Africa, Europe and Asia, strong genetic structure still 

persists on the island today. 

1.6.6 Americas 

The Americas are thought to have been populated 15-20 kya (Jenkins et al., 2012), as humans 

moved through the land bridge in Beringia that connected Eurasia and North America, although 

a recent study suggested a much earlier presence around 31 kya (Ardelean et al., 2020). Whole 

genome sequences of Native Americans and Siberians have estimated that they have diverged 

up to ~23 kya (Raghavan et al., 2015), indicating there may have been a period of isolation in 

Beringia for a few thousand years before moving into the Americas. Until around 13 kya, a large 

ice sheet covered most of North America and is thought to have made movements southwards 

across the land difficult (Goebel et al., 2008). An ice-free corridor subsequently opened which 

could have facilitated migrations; however, archaeological sites south of the corridor have been 

uncovered dating before its opening, suggesting that modern humans reached such locations 

before the ice melted (Dillehay et al., 2015). An alternative path that has been proposed is via a 

coastal route along the Pacific West of North America, avoiding the ice sheets (Pedersen et al., 

2016). The expansion quickly reached the south of South America, with southern Chile showing 
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signs of human occupation ~15 kya (Dillehay et al., 2015). The ancestry of the founding 

population appears to be a mixture of one third related to Mal’ta hunter-gatherers and two thirds 

East Asian (Raghavan et al., 2014). The former population also contributed to modern-day 

Europeans, resulting in Native Americans being closer genetically to Europeans than to East 

Asians. The modern-day Inuit populations living in the American Arctic originate from a separate 

and more recent migration event from Siberia ~3 kya. However, the first population to inhabit 

the American Arctic, affiliated with the Paleo-Eskimo culture, were a group that moved 

independently from the previous migrations ~5 kya, and survived for 4 thousand years before 

going extinct and being replaced by Inuits 700 years ago (Raghavan et al., 2014). The 

bottleneck associated with the movement into the Americas is reflected genetically, with the 

populations showing the continental lowest diversity (Li et al., 2008). The European colonization 

of the continent in the last few centuries resulted in significant admixture from African and 

Europeans sources, transforming the population genetic landscape and structure (Moreno-

Estrada et al., 2014; Homburger et al., 2015). 

 

1.7 The effects of culture and lifestyle on adaptation 
 
The expansion of humans, within and outside Africa, resulted in encountering new environments 

that brought with them new selective pressures. Innovations associated with cultural and 

lifestyle changes such as plant and animal domestication also introduced environmental 

changes related to diet and pathogen exposure. The availability of whole genomes from 

different human populations allows the identification of regions that are potentially linked with 

adaptation, and coupled with functional studies that elucidate the function of these variants, can 

illuminate the effect of natural selection on human populations.  

 
Out of Africa, humans had to adapt to an environment with less sunlight, especially at higher 

latitudes. Around the equator, it is thought that human populations with darker skin colour, due 

to higher melanin, have better protection from skin damage and folate degradation by ultraviolet 

radiation (Jablonski and Chaplin, 2017). However, ultraviolet exposure is important for the 

production of vitamin D, which has wider importance for diverse cellular processes linked with 

human health such as skeletal development. Populations at higher latitudes will have less 

exposure to ultraviolet radiation, and it has been proposed that lighter skin colour is 

advantageous for vitamin D production; alternatively, light skin colour may have been 

considered sexually attractive (Darwin, 1871). Variants within several genes implicated in 
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pigmentation have been shown to be under positive selection at higher latitudes including 

SLC24A5 and SLC45A2 (Lamason et al., 2005; Wilde et al., 2014); although the former has 

also been suggested to have increased to high frequency due to migration (Mathieson et al., 

2015). Transition in lifestyles also brought about changes in diet. Selection for lactase 

persistence appears as one of the strongest signals of recent positive selection in some 

populations (Mathieson et al., 2015). Multiple different variants that increase the expression of 

LCT in adults have been identified in different farming populations in Europe, the Middle East 

and Africa (Enattah et al., 2002; Tishkoff et al., 2007; Enattah et al., 2008). In addition, AMY1 

which produces the amylase protein found in saliva that breaks down starch into sugars, has 

been found at variable copy number in human populations (Perry et al., 2007). Higher copies 

are associated with higher expression of the protein, and populations that consume higher 

amounts of starch, such as the Japanese and Hadza, have been found to have, on average, 

higher copies than groups with low-starch diets (Perry et al., 2007). An important selective agent 

for new environments is pathogen exposure. A classic example is malaria infection. 

Heterozygotes for the p.Glu6Val variant in the β-globin encoding gene HBB have some 

protection from malaria, but homozygous individuals suffer from sickle cell anaemia 

(Kwiatkowski, 2005). Another variant that protects against malaria results in the Duffy-null 

phenotype, which prevents the expression of a red blood cell receptor required for Plasmodium 

vivax (Miller et al., 1976; Kwiatkowski, 2005). 

 
Selection can act immediately on de novo mutations, or on variants that are already present and 

polymorphic in the population but only later become advantageous: standing variation (Barrett  

and Schluter, 2008). Additionally, as mentioned previously, introgression can also introduce new 

variants that can be selected, either straight away, or later when a selective pressure arises. 

The long term habitation of archaic populations in Eurasia likely led to adaptations to their 

environment. Thus through introgression, modern humans could rapidly adapt to their new 

environments by incorporating beneficial variants present in archaic hominins. This appears 

particularly important for immunity, as humans are likely to have encountered pathogens that 

they were not previously exposed to in Africa during their expansion (Abi-Rached et al., 2011). 

 
It is also notable that natural selection has responded to selective pressures that were 

introduced by human actions. The transition to a more sedentary lifestyle after the invention of 

agriculture both settled populations and allowed them to grow in size into the major cities we 

see today. Such a much larger and denser population increases the pathogen load, and the 
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domestication of animals exposes infectious agents that can cross into humans (Fan et al., 

2016). Thus cultural and genetic evolution are closely associated; as we engineer the 

environment, the changing conditions will create new selective pressures (Nielsen et al., 2017). 

It is also apparent that many variants that show high stratification in human populations, 

possible due to local adaptation, are linked to visible phenotypic traits such as hair, skin and eye 

colour.  However, these differences in pigmentation-associated genes are outliers to the 

average level of differentiation across the genome. Consequently, human populations are much 

genetically closer to each other than might be predicted based on just observable traits (Nielsen 

et al., 2017).  

 
It is also becoming apparent that single variants with a very strong effect on a trait, such lactase 

persistence or hair colour, are rare. Complex traits are affected by a large number of variants 

across the genome, each with a relatively small contribution (Pritchard et al., 2010). 

Consequently, selection on a complex trait would require a shift in allele frequencies across 

multiple variants, but the magnitude of such change at each locus would be small (Pritchard et 

al., 2010). This complicates the identification of such polygenic selection, and methods for their 

detection are an active area of research (Stern et al., 2021). There have been reports of 

polygenic adaptation, most notably for height (Turchin et al., 2012; Tucci et al., 2018). However, 

recent studies have shown that the analysis of polygenic traits has been confounded by 

uncorrected population structure (Soheil et al., 2019; Berg et al., 2019). The identification of 

variants associated with a polygenic trait or a disease requires large sample sizes in order to 

have adequate statistical power to identify variants with weak effects. This led to studies that 

rely on meta-analyses, combining summary statistics from multiple studies of different 

populations (Turchin et al., 2012). However, these populations may have subtle differences in 

allele frequencies, and introduce systemic biases when analysing hundreds of thousands of 

variants across the genome. As we are now in the biobank era, where countries have generated 

large datasets of their populations documenting hundreds of traits along with genotypes, the 

issues of population structure affecting meta-analyses are likely to reduce, but not completely 

go away (Zaidi and Mathieson; 2020). Such large datasets are important to understand complex 

traits and polygenic adaptation. 
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Chapter 2: Analysis of Global Human 
Structural Variation 
 

This chapter has been published in two papers: Bergström et al., 2020 and Almarri et al., 2020a. 

A small portion of the work presented here was included in the former paper which mostly 

covered SNVs and indels, while most of the analysis in this chapter is presented in the latter 

study, which was restricted to structural variation. I performed all the analysis presented in this 

chapter, except for the fluorescent in situ hybridization analysis which was performed by the 

molecular cytogenetics team at the Sanger Institute. DNA library preparation and sequencing 

was performed by the Wellcome Sanger Institute sequencing facility. 

 
2.1 Introduction 
 

After the initial sequencing of the human genome, efforts began to identify and catalogue 

genetic variants found in human populations. One of the important early projects was the 

International HapMap Project (International HapMap Consortium; 2005), which studied initially 

269 samples from 3 continental populations: Africans (Yoruba from Nigeria), Europeans (Utah 

residents of European Ancestry) and East Asians (Japanese from Tokyo + Chinese from 

Beijing). Subsequently, a major development in the population genomics era began with the 

pilot phase of the 1000 Genomes Project (1000GP), which analysed four different populations 

using low-coverage sequencing (1000 Genomes Project Consortium, 2010). The final Phase 3 

release produced a global reference of variation by analysing 2,504 individuals from 26 

populations (1000 Genomes Project Consortium, 2015). This resource identified ~88 million 

variants in total: 84.7 million SNVs, 3.6 million indels, and 60,000 structural variants. The goal of 

the 1000GP was to identify common genetic variation (minor allele frequency (MAF) > 1%); and 

they identified >99% of such variants with mostly low-coverage sequencing (~7x coverage). An 

additional advantage of the 1000GP is that both the samples as cell lines and the dataset are 

open access and individual genotypes, in addition to allele frequencies, are available with 

essentially no restrictions.  

 

The continued decreasing costs of DNA sequencing has provided genetic data aggregated from 

hundreds of thousands of individuals, particularly sampled from medical genetics studies. This 



 25 

has established resources such as the Haplotype Reference Consortium (McCarthy et al., 2016) 

and Exome Aggregation Consortium (Lek et al., 2016). The consent for these studies do not 

allow open access to genotypes which restricts their utility; however, they are still valuable to 

estimate allele frequencies and the creation of large reference panels for imputation. Another 

limitation of these resources is individuals of European ancestry comprise the majority of such 

samples. Recent studies have sampled individuals from more diverse populations and 

sequenced them to high-coverage. The Simons Genome Diversity Project (SGDP) analysed 

300 samples from 142 populations (Mallick et al., 2016), while the Estonian Biocentre Human 

Genome Diversity Panel (EGDP) sequenced 483 individuals from 148 populations (Pagani et 

al., 2016). These studies were focused on population history, and have extended our 

understanding of human diversity, archaic admixture, and temporal changes in population size. 

Both projects, however, have limitations: the EGDP contains very few African samples, while 

the SGDP contains mostly 2 samples per population, hindering detailed analysis within each 

population. 

 

This over-representation of European populations in genetic and genomic studies limits our 

understanding of genetic variation and population history; and has the potential to exacerbate 

healthcare inequalities as the field moves towards precision medicine (Siriguo et al., 2019). 

The “Centre d’Etude du Polymorphism Humain” (CEPH) foundation and the Human Genome 

Diversity Project (HGDP) have collaborated to establish a cell-line collection from diverse 

human populations (Cann et al., 2002). Throughout this thesis I refer to this dataset as the 

HGDP. This repository has been used extensively to study human diversity and evolution using 

different classes of genetic variation, including microsatellites (Rosenberg et al., 2002) and SNV 

arrays (Li et al., 2008; Jakobsson et al., 2008). The collection has many advantages for the 

study of human population genetics. Extracted DNA samples and the data generated from them 

are available open-access with essentially no restrictions, and the resource contains a 

potentially unlimited amount of DNA. It contains samples from 54 diverse populations (Figure 

2.1), with an average of 17 samples per population, although this ranges from 6 (San) to 51 

(Palestinians). Previous projects such as 1000GP sampled metropolitan populations from major 

continental groups, with criteria set such as relevance to medical studies and being from non-

vulnerable populations. The HGDP panel constitutes a much wider cross-section of human 

diversity, which are of linguistic, anthropological and historical relevance. It contains populations 

that practice different lifestyles: hunter-gathers, agriculturalists, and nomadic pastoralists. Within 

Africa, it contains the Khoe-San population, shown to be the most divergent living human 
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population; in addition to Mbuti and Biaka, rainforest forager populations from Central Africa. In 

the Middle East it contains desert-inhabiting Bedouin nomads and the Druze ethno-religious 

group. The panel comprises a large number of groups from East Asia, including the Yakut living 

in North-eastern Siberia and several ethnic groups from China, including the Tungusic-speaking 

Oroqen from Northern China and Turkic-speaking Uyghurs from Western China. Importantly, it 

contains samples from Oceania which are severely underrepresented in genetic studies, with 

two populations from Papua New Guinea and one from Bougainville. While in the Americas it 

contains Native American samples from groups that do not have recent European admixture, 

such as the Karitiana. In Europe it contains the isolated Orkney islanders, as well as the Basque 

population who do not speak an Indo-European language which is common in the continent. 

Although comprising a diverse set of populations; it should be noted that several regions are not 

sampled in the HGDP: India, Polynesia, Australia and Arabia, while others such as Europe and 

the Americas have limited representation.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: The HGDP dataset. Each point represents a population with colours illustrating regional groups. 

 

The majority of whole-genome sequencing population studies have concentrated on SNVs, and 

have excluded structural variants (SVs). A typical human genome differs from the reference at 

around 4-5 million sites, with over 99.9% of variants being SNVs and short indels (1000 

Genomes Project Consortium, 2015). SVs, although smaller in absolute number, contribute a 

greater diversity at the nucleotide level than any other class of variation as they affect more 

bases. Consequently, SVs are important in disease susceptibility and genome evolution. SVs 
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arise through different mutational processes associated with DNA replication, DNA 

recombination and DNA repair (Carvalho and Lupski, 2016). The organization of repetitive 

sequences in a region, including their orientation, distribution and density, is important in the 

formation and evolution of SVs. For example, repeats such as segmental duplications that flank 

a unique sequence can result in genomic rearrangements by nonallelic homologous 

recombination. Complex SVs can result by template-switching during DNA replication, linked 

with fork-stalling and template switching (FoSTeS) and microhomology-mediated break-induced 

replication. Non-homologous end joining, where double-strand breaks in DNA are repaired 

without information from a homologous template, is another process generating SVs. SV 

formation is also associated with the simultaneous generation of SNVs near breakpoints, 

proposed due to the activity of error-prone DNA polymerase linked with DNA repair (Carvalho et 

al., 2013). The allele frequency spectrum of SVs show that deletions within genes are 

significantly rarer than ones found in intergenic regions, a finding not apparent for duplications, 

suggesting that deletions are less tolerated (Sudmant et al,. 2015b). In addition, a strong 

negative correlation is found between the size of a deletion and its frequency, which appears 

much weaker for duplications, illustrating the effect of negative selection on CNVs (Sudmant et 

al., 2015b). 

 

Large-scale SVs which are detectable with traditional karyotyping, such as chromosomal 

aneuploidies, can result in well-characterized disorders such as Down and Turner syndromes. 

Moreover, sub-microscopic genomic rearrangements are also associated with multiple traits and 

disorders, including Angelman and Prader-Willi syndromes (Weischenfeldt et al., 2013). High-

throughput short-read DNA sequencing technology have allowed the identification and analysis 

of SVs at a much finer-scale resolution, however, in contrast to SNVs, SVs are much more 

challenging to detect (Sudmant et al., 2015a). Multiple variables affect the sensitivity of 

detecting SVs, including the class, size, sequencing coverage and read length. The latest 

release of the 1000 Genomes Project estimated sensitivity rates ranging from as high as 80% 

for deletions to around 32% for inversions, with duplications in between at ~65% (Sudmant et al. 

2015a). The size of SVs plays an important role in their discovery; around 80% of relatively 

small variants (50 bp - 1 kb) are thought to be undetected using short-read methods regardless 

of their frequency (Chaisson et al. 2015). At the other end of the spectrum, large common SVs 

that are segmental duplications, which account for ~5% of the human genome are unresolvable 

using short-reads (Sudmant et al., 2015a). Undetected SVs have been suggested as an 

important source of disease-causing variation and a significant fraction of the “missing 
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heritability” in complex disorders (Manolio et al., 2009), but are not usually included in most 

genome-wide association studies (GWAS), partly due to the challenges associated in their 

identification and genotyping. This is important as SVs are three times more likely to be 

associated with GWAS signal than SNVs, and large SVs (>20 kb) are up to 50 times more likely 

to affect gene expression (Sudmant et al., 2015a; Chaisson et al., 2015).  

 

In this chapter I present the SV analysis of the HGDP dataset sequenced at high coverage 

using short-read data. The aim of this analysis is first to create a comprehensive catalogue of 

SV from these populations, and second to use the catalogue to understand human population 

history.  

 

2.2 Samples, data and genome sequencing 
 
DNA samples were provided by the HGDP-CEPH (Cann et al., 2002). Of the 1063 in the 

complete panel, a total of 951 core samples (Rosenberg, 2006), 628 of which are male, from 54 

populations were analysed. All samples were sequenced at high coverage using Illumina 

sequencing with either PCR or PCR-free libraries. Ten samples (PCR) were sequenced in a 

previous study for comparison with the Denisovan genome (Meyer et al., 2012), all using PCR-

based libraries (subsequently called “Meyer” samples). 142 samples were sequenced 

previously as part of the Simons Genome Diversity Project (SGDP), mostly using PCR-free 

methods (Mallick et al., 2016). The remaining 808 samples were sequenced at the Wellcome 

Sanger Institute using both library preparation methods, and in some cases both on the same 

sample, resulting in 823 genome sequences (“Sanger” samples). Twelve SGDP and 2 Meyer 

samples were also independently sequenced at Sanger with PCR-free libraries. Collectively this 

generated 975 high-coverage genomes using short-read WGS from 952 samples, which 

underwent further QC as described in the next section. Each of the Sanger, SGDP and Meyer 

samples used sequencing technologies with different read lengths (150, 100, and 92 

respectively). In addition, 26 samples from 13 populations (2 samples per population) were 

independently sequenced at high coverage using the pseudo long-read 10x Genomics 

chromium library preparation platform. 
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2.3 Sample Quality Control 
 
The heterogeneous composition of samples within this project introduces challenges. Ideally, all 

samples would be sequenced using the same technology, using the same library preparation 

and read length. However this is not the case within this project, which may introduce batch 

effects. In addition, as samples are from lymphoblastoid cell lines, the repeated culturing steps 

may cause artefactual chromosomal rearrangements, such as large duplications and deletions. 

These are particularly of concern as they may be confused with genuine germ-line structural 

variants we are attempting to identify in this study. These artefacts may sometimes affect the 

viability of the cells, while others may induce proliferation. This illustrates that cell lines are a 

population of individual cells, and if a de novo variant arises within this population, it may 

proliferate to a maximum extent to become present in all cells, or it may be found in just a 

subset of them.  

 

I first attempted to examine evidence for chromosomal artefacts by analysing coverage across 

each chromosome in each sample, by manually visualizing changes in coverage. If a 

chromosome contains a duplication (one copy addition) it should appear at ~1.5 times 

coverage, while a deletion (one copy less) should have ~0.5 times coverage. Many samples 

showed evidence of such abnormalities, which range from multiple whole chromosome 

duplications to smaller (~3Mb) deletions and duplications. Many more gains of chromosomes 

than losses were found, and most trisomies affected chromosomes 9 and 12. This has also 

been found in other cell-line bases studies (Redon et al., 2006), suggesting that these 

chromosomes harbour certain sequences that increase proliferation once duplicated in cell 

cultures. For SNV analysis, duplications were shown not to have large effects on genotype 

calling, and such samples were included for downstream analysis (Bergstrom et al., 2020); 

however structural variation analysis requires more stringent filtering. I excluded 41 samples 

from subsequent analysis; these showed chromosomal abnormalities across multiple 

chromosomes. An example is presented in Figure 2.2. In addition, 74 samples contained 

regions that show abnormalities, but were limited to mostly a single chromosome or part of a 

chromosome. To prevent losing important samples that do not have issues across most of the 

genome, but have limited and observable artefacts, I chose to include these samples in 

downstream analysis. I, however, masked these problematic regions, i.e. all variants within 

these regions were set to missing. Artefacts within the sex chromosomes were identified in 

particular, with mosaic loss of the Y chromosomes being common. A single XXY male was 
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identified, potentially a natural occurrence rather than a culturing artefact. These quality control 

steps left 919 samples, which are divided into 644 Sanger PCR-free, 147 Sanger PCR, 111 

SGDP PCR-free, 9 SGDP PCR and 8 Meyer samples. 

 

 

 

 

 

 

 

 
 
 
Figure 2.2: Putative cell-line artefacts. Coverage plot illustrating a sample (HGDP00452) that was excluded from 
the analysis because of likely cell-line artefacts. Coverage was calculated at ~300,000 single positions across the 
genome and a rolling mean was plotted normalized by the genome-wide median (Y-axis). HGDP00452 shows a large 
duplication in most of chromosome 11 in addition to smaller duplications in other chromosomes. Orange bars indicate 
coverage is >25% than chromosome average, green <25%. Blue represents centromeres. X-axis represents 
chromosome position (Mb).  
 

2.4 Structural Variation Calling and Quality Control 
 
A large number of structural variation callers have been developed and used by different 

projects. Two studies have recently evaluated different SV callers and provided best-practice 

recommendations (Cameron et al., 2019; Kosugi et al., 2019). I chose to use Manta (Chen et 

al., 2016), which is an assembly-based caller, as it seemed to perform well in these studies and 

generates accurate breakpoints for SVs. Additionally, to complement Manta, I also used 

GenomeSTRiP (GS, Handsaker et al., 2015), which uses coverage information to identify 

CNVs, and estimate the copy number of each variant. GS uses joint-calling across all samples 
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to identify variation in coverage caused by CNVs, and requires at least 30 samples, with higher 

numbers providing an increase in sensitivity. Manta, on the other hand, uses single sample 

calling. An advantage of GS is it can also be used to genotype copy number variants in ancient 

and archaic genomes. As the data in these genomes are mostly short (<50bp) and single-end 

reads, they cannot be used by many SV discovery algorithms that use information from split-

read and read-pair discordance. A limitation of GS is it only identifies copy number variants over 

1kb. Manta identifies insertions, deletions, tandem duplications, inversions, and 

interchromosomal translocations > 50bp. Manta can assemble insertions, but up to a maximum 

size of approximately twice read-pair fragment size, generally up to ~1kb. 

2.4.1 GS quality control 

To test for batch effects, I first ran a PCA on genotypes of the GS callset after separating 

different classes of CNVs (biallelic deletions, biallelic duplications and multiallelic variants). 

Plotting the first two PCs shows a noticeable batch effect between different libraries 

preparations and sequencing location. After setting variants with genotype quality (GQ) < 20 to 

missing, this batch effect becomes negligible (Figure 2.3). However, another noticeable batch 

effect is that PCR-based samples seem to have more variants than PCR-free. After setting 

variants GQ<20 to missing, these samples have higher rates of missingness than PCR-free, 

suggesting these additional low-quality calls are artefacts. Analysing the distribution of missing 

variants per library and sequencing location also shows a pattern, with the Meyer samples 

having high missingness > 2%, while the PCR-free libraries showed the lowest missingness (< 

0.5%). I therefore excluded the Meyer samples (8 individuals) from subsequent analysis leaving 

911 samples. I subsequently tested for excessive heterozygosity: variants that are heterozygous 

across all samples suggest they are artefacts, and this excluded a small number of samples but 

the biases in number of calls still remained. I then ran an excessive heterozygosity test for each 

library and sequencing location separately, and this appears to remove the remaining batch 

effects. However, after visualising variants I found another issue, that larger variants were split 

into smaller, sometimes non-overlapping segments. This is a previously reported and known 

behaviour of the GS algorithm that occurs when there are smaller variants within a sub-segment 

of a larger polymorphic variant. It also seems to occur if a low-quality variant resides within a 

larger variant. I subsequently merged high quality (CNQ > 12) calls that have the same diploid 

copy number and are within 50 kb of each other, in each sample separately, to more accurately 

estimate the total number of identified CNVs in our dataset. This identified a total of 39,634 

autosomal variants, 1,102 variants on the X-chromosome and 289 variants on the Y-
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chromosome. Stratifying this dataset by CNV class identifies 22,914 variants as biallelic 

deletions, 16,012 were duplications, and 2,099 were variants carrying both deletion and 

duplication alleles (Figure 2.3).  

2.4.2 Manta quality control 

Manta generated individual VCFs with structural variation calls for each sample, using default 

parameters (Methods). Only variants that pass all the quality thresholds of the algorithm were 

used for downstream analysis. I masked the cell-line artefacts identified as described in the 

previous section and subsequently merged all samples to create one merged VCF. The merged 

dataset contained a total of 160,958 variants. An issue for Manta callset is that it is not joint-

called, and consequently differences in coverage, read lengths, insert sizes and library 

preparation may also introduce batch effects. The same variant found in one sample may be 

missed in another due to the differing variables mentioned. To address this issue, I discarded 

the original genotypes identified by Manta for each sample and then jointly re-genotyped the 

merged dataset across all samples using Graphtyper2 (Eggertsson et al., 2019). This algorithm 

generates a graph structure at each variant site which represents the reference genome and the 

previously-identified structural variants. Reads are subsequently re-aligned to this graph and 

genotyped. I subsequently excluded variants with size over 10 Mb, as they may be potentially 

culturing artefacts, and set all variants with GQ < 20 to missing and excluded variants that show 

excessive heterozygosity as in the previous section. To evaluate whether these steps were 

successful in removing any batch effects, I ran a PCA for each class of variants (deletions, 

duplications, insertions and inversions). A batch effect still appeared, so to explore this further I 

studied the genotype confidence tags provided by the algorithm. I set genotypes with a ‘FAIL1’ 

tag to missing, and for duplications especially, I also set genotypes ‘FAIL2’ and ‘FAIL3’ to 

missing. After these adjustments, no batch effects were found across all classes, with the top 

PCs displaying continental clustering and subsequently population clustering (Figure 2.3). The 

final analysed Manta callset included 68,089 deletions, 25,084 insertions, 7,290 duplications, 

1,895 inversions and 1,667 translocations (Figure 2.3). 

2.4.3 Combining datasets, novelty and genotyping evaluation 

The two datasets are likely to have some overlap in variants. I used a threshold of 50% 

reciprocal overlap to identify non-overlapping variants in both callsets and this identified 126,018 

unique variants. I extracted overlapping regional-specific deletion calls from the two algorithms 

and compared variant allele frequencies as a test for genotyping accuracy. High correlation is 
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found between both callsets (r = 0.97; Figure 2.4), with the slight differences partly due to 

varying missingness. This suggests the genotyping of the dataset is high quality.  

 

To evaluate the novelty of the identified variants, I compared the HGDP dataset with two 

published global-scale structural variation callsets: 

 

1) The 1000 Genomes Phase 3 Structural Variation Dataset (Sudmant et al., 2015a) 

2) The copy number analysis of the Simons Genome Diversity Project (Sudmant et al., 2015b). 

 

As the SGDP callset is mapped using GRCh37, I lifted over the calls to GRCh38. I used a 

threshold of 30% reciprocal overlap between variants to classify them as the same call. Using a 

higher threshold increases the novelty rate for our dataset, and since the published studies used 

older algorithms and are based on shorter reads, this increases the size of the confidence 

interval around the breakpoints of the SV. Therefore I used a more relaxed threshold to be more 

conservative. In addition, during the comparison I chose to be conservative by evaluating 

whether a locus is structurally variable, instead of comparing each class of variant between the 

callsets (e.g. deletions vs deletions). This is due to a possible misclassification of variant class 

(e.g., insertion vs. duplication). This test showed that 78% of variants in our dataset are not 

found in either the 1000GP or SGDP callsets. I also evaluated the number of variants in the 

SGDP and 1000GP that are not found present in our HGDP dataset, which is 53% and 64% 

respectively. In this comparison I included all variants identified in the 1000GP, even classes 

that were not included in this analysis, such as large mobile element insertions. Of the 1000G 

variants that are not present in our dataset, a large percentage, 93%, appear to be rare (MAF < 

1%). This is expected to an extent, as around half of variants in published WGS datasets 

appear as singletons. As the 1000GP is a low-coverage dataset, this may also increase the 

number of false positive variants. A major advantage of our callset is it includes the abundant, 

but understudied, class of relatively small variants (50bp – 100bp) which were not effectively 

characterized by the previous projects (Figure 2.3). At this size range, 91% of variants in our 

callset are not found in either published resource. Of these novel calls, an appreciable number 

are common and even high-frequency within regional groups and individual populations (Figure 

2.5).  
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Figure 2.3: Variant Size distribution and Quality Control. Top: Size distribution of variants identified by Manta (Left) 
and GS (right). DEL: Deletion, DUP: Duplication: INS: Insertion, INV: Inversion, DEL_DUP: multiallelic. Bottom: PCA 
1-4 of deletion genotypes called by GS  stratified by library preparation method and sequencing location. After quality 
control, no batch effects are observed across all classes of SVs identified by GS and Manta after viewing 100 PCs. 
 

To further test the quality of genotyping our dataset, I extracted common deletions (MAF > 5%) 

from African groups in the 1000GP that overlap variants in our callset (50% reciprocal overlap). I 

selected deletions as they had the highest sensitivity in the 1000GP dataset, and also because 

this dataset mostly consisted of deletions (82%, excluding mobile element insertions). Some 

variation in allele frequencies is expected as the HGDP and 1000GP include different African 

 

  



 35 

10
0G

P_
AF

 

populations, however, using common variants at a continental-level there should be some 

correlation. Indeed, a strong correlation is observed (r = 0.95; Figure 2.4). These results 

collectively suggest that the quality control steps performed resulted in a high-quality dataset 

free of batch effects that can be used in population-genetic analysis. It also demonstrates that 

our dataset contains a large amount of previously undocumented variation (Figure 2.5), likely 

due to the more diverse populations sampled, higher coverage and improved SV detection 

tools. This underscores the importance of studying underrepresented human populations. 

 

 

 

 

 
 
 
Figure 2.4: Testing the quality of genotyping. Left: Correlation of allele frequency of variants (Regional-specific 
variants, coloured by region) identified by both Manta+Graphtyper (X-axis) and GS (Y-axis) within the HGDP dataset. 
CSA: Central & South Asian, EA: East Asian, ME: Middle East. Right: Allele frequency (AF) correlations between 
deletions identified in the 1000GP (Y-axis) and the HGDP Manta+Graphtyper callset (X-axis) using common (> 5% 
MAF in 1KG) African-specific deletions. 
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2.5 Population Structure 
 
SNVs have been well-studied for the analysis of population structure, but SVs are less well 

understood. I separated each class of SVs and then ran a PCA on the genotypes of each class. 

For deletions, which are the most numerous class in the dataset, clear structure was found 

across a large number of PCs. As expected, the first PC separated African from non-African 

populations, while the second PC separates Europeans, Middle Easterners and South Asians 

from East Asians, Papuans and Americans. PC3 and PC4 distinguish Americans and Papuans, 

respectively. Subsequent PCs separate African populations, illustrating the diversity of the 

dataset. For biallelic duplications the structure was limited to the first 4 PCs, but surprisingly 

showed a different pattern than deletions, with PC2 separating Papuans from the rest of the 

dataset. I evaluated this further by analysing the PCA loadings of each variant, and found two 

variants with very high loading on PC2. When I excluded these variants from the PCA, the 

pattern returned to one similar to deletions. These two variants, on chr16p.12 and chr8p.21 are 

discussed in more detail in the archaic admixture section. Because GS only identifies a small 

number of biallelic duplications, a small number of variants that shows strong stratification will 

affect the patterns of variation observed in the PCA results. Insertions also showed a very 

similar pattern to deletions. To evaluate population structure further, I ran a 2-dimensional 

UMAP on all PCs that show structure (Figure 2.6). This provided much more 

Figure 2.5: Novel population-specific variants identified in this study. Continental- (red) or Population- (green) 
specific variants (minor allele count > 2) in identified in the HGDP dataset but not present in the 1000GP or SGDP SV 
callsets binned by allele frequency. The same variant can be present in both distributions. 
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resolution; deletions show clear separation of continental groups, and even individual 

populations are clearly separated in many cases. The divergent African populations such as the 

San, Mbuti and Biaka form their own clusters away from the remaining African populations. 

Populations that are known to be admixed such as the Uygur and the Hazara cluster separately 

from the East Asian and Central & South Asian groups. Populations that have experienced 

relatively high amounts of genetic drift such as the Kalash, in addition to Oceanian and 

American populations, are also clearly differentiated. For populations that show less clear 

clustering and project into large continental clusters, I observe examples of finer structure, as 

samples from the same population generally projected closer to themselves than to other 

groups. Other classes of SVs (insertions, duplications, multiallelic variants) also show 

population structure, though not as well-defined as deletions (Figures 2.6). What is particularly 

notable is that Oceanian populations always remain well-differentiated in all classes. The 

observed differences in clustering between different classes of SVs likely partly reflect the 

varying mutational patterns generating each class of structural variant. Duplications, and 

multiallelic variants especially, are more commonly found in repetitive regions in the genome. 

This increases the probability of a recurrent mutation, with a variant mutating to a higher or 

lower copy number, and thus reducing the differentiation between populations. Additionally, the 

total number of variants in each class of SVs will also affect the pattern of structure (Figure 2.3), 

as higher numbers, such as in the case of deletions, will increase resolution. Another potential 

variable impacting the structure is the accuracy of genotyping, as low genotyping quality will 

also reduce the pattern of structure. However, this is unlikely to be a major factor in this 

analysis, as I previously showed that genotyping appears of high quality. 
 

2.6 Population Stratification 
 
I subsequently searched for highly stratified variants between populations, which can be 

potentially a result of selective pressures. As the HGDP dataset has a reasonably large number 

of samples per population, for each population pair I evaluated the relationship between 

average population differentiation, calculated using SNV-based FST, and the  variant allele 

frequency difference. It has been proposed that variants which are outliers to this relationship 

are likely to be under selection (Coop et al., 2009, Huerta-Sánchez et al., 2014). The 

distributions of both deletions and biallelic duplications appear similar although duplications 

show lower stratification. Notable outliers are apparent (Figure 2.7): a deletion in HBA2 is 

almost fixed in Lowland/Sepik Papuans (86%), while it is not found Papuan highlanders  
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Figure 2.6: SV population structure. Each point represents a sample while colours illustrate regional labels as in Figure 2.1. A: 
UMAP of biallelic deletion genotypes. B: UMAP of insertions. C: UMAP of biallelic duplications. D: UMAP of multiallelic variants. 
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(p < 0.001, population stratification test using 1,000 permutations). HBA2 encodes one of the 

alpha globin chains of haemoglobin, and it has been suggested that high frequencies of α-globin 

deletions are protective against malaria. Intriguingly, malaria is present in the lowlands of Papua 

New Guinea, but not in the highlands (Flint et al., 1986). Another highly stratified variant is a 

deletion within MYO5B, which encodes a motor protein that is high frequency (88%) in the Lahu 

from China (Lahu-Hezhen, p = 0.001), while being rare in closely-related populations. This 

group shows a unique population history in comparison to its neighbours, as it also shows high 

numbers of private SNVs and also carries rare divergent Y chromosomes (Bergström et al., 

2020).  

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2.7. Population Stratification. Maximum allele frequency difference as a function of population differentiation for 1431 
pairwise population comparisons. Blue curve represents loess fits. Deletions (Left) and Biallelic Duplications (Right) from the GS 
callset. Three outlying stratified variants are illustrated. HBA2 deletion in Papuan lowlands, a deletion within MYO5B particularly 
common in Lahu, and a deletion downstream of IGHG2 almost fixed in Dai (86% frequency). 
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2.6.1 Population-private variants 

The dataset also allows us to look for variants that are unique to a population, which likely 

suggests that they are recent mutations (Figure 2.8). I searched for common population-private 

variants, and find some that both reach high frequencies and seem to have a functional effect 

(McLaren et al., 2016). A 14kb deletion in the Karitiana population of South America is present 

at 40% frequency and removes the 5′ upstream region and up to the first exon of MGAM, 

potentially inactivating the gene. This encodes maltase-glucoamylase (MGAM), an enzyme that 

is highly expressed in the small intestine and is important in the digestion of plant starches 

(Nichols et al., 2003). A recent ancient DNA study of ancient Andean individuals suggested that 

variants in this region show evidence of selection, and proposed it was due the transition to an 

agricultural lifestyle (Lindo et al., 2018). In addition, in dogs this gene also shows signals of 

selection, which  
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Figure 2.8: Population-Specific Variation. Each point represents a variant private to a population (n > 2) with the x-axis 
reflecting its frequency.  Colours represent regional labels and random noise is added to aid visualization. High-frequency 
variants discussed in the text are highlighted. 
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has also been suggested as an adaptation to a diet rich in starch during domestication 

(Axelsson et al., 2013). If this deletion does limit the expression of the gene, it is puzzling why 

such a variant would reach high frequency in a population which includes starch in its diet. The 

population history of the Karitiana may provide some insights: they have suffered an extreme 

recent population crash which results in them having the highest levels of runs of homozygosity 

of any human population studied to date (Ceballos et al., 2018; Bergstrom et al., 2020). Using 

the population branch statistic (PBS), this variant shows suggestive but not strong evidence for 

a departure from neutrality (98.7% rank). The presence of homozygous individuals for this 

variant and its high frequency suggests that the population crash increased genetic drift to an 

extent that may have counteracted the advantage of the ability to digest starch. Nevertheless, 

even if the deletion does not have a major effect on the function of the protein, it could have also 

drifted to high frequency for the reasons above. In the HGDP dataset, there are distinct 

deletions present in this region, with one removing exons 34 to 38 (out of 48) present at 11% 

global frequency. In addition, a previous study reported an individual with a homozygous 

deletion within MGAM, but appeared to still have functioning protein activity (Eccleston et al., 

2012). The activity of maltase-glucoamylase in the small-intestine forms the final step in 

digesting linear regions of starch to glucose, and its activity is complemented by sucrase-

isomaltase (SI). The exon structure of both enzymes is identical, however MGAM can hydrolyse 

maltose and starch, not sucrose, which can be hydrolysed by SI in addition to isomaltose 

(Nichols et al., 2003). Further work is needed to understand the functional effect, if any, of the 

deletion and if its activity can be compensated by another enzyme. 

 

Another private variant which reaches high frequency (54%) is a deletion that removes most of 

SIGLEC5 in the Central African hunter-gatherer Mbuti. This gene is part of the Siglec gene 

family, which encodes cell-surface receptors expressed on immune cells. They bind to glycans 

that contain sialic acids expressed on host cells to differentiate ‘self’. Most Siglecs act to inhibit 

leukocyte activation after detecting host cells, including SIGLEC5. Adjacent to SIGLEC5 is 

another member of the family, SIGLEC14, proposed to have evolved by gene conversion from 

SIGLEC5 (Angata et al., 2006). In contrast to most of the gene family, SIGLEC14 binding 

results in leukocyte activation, and is thought to have originated by providing a selective 

advantage in combating pathogens that mimic host cells in expressing sialic acids (Akkaya and 

Barclay, 2013). These two genes are an example of paired receptors, one with an inhibitory 

function and the other activating, which are important in fine-tuning immune responses. The 

deletion we find in Mbuti likely removes the function of the inhibitory receptor, SIGLEC5, while 
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the activating receptor is maintained. Such an event has been proposed to result in immune 

hyperactivity and potentially autoimmune disease, and consequently is a surprising finding 

(Lubbers et al., 2018). The deletion shows an extreme PBS (99.87% rank), indicative of positive 

selection. Additionally, it is the most extreme population-private variant in Mbuti. Another 

complication at this locus is the presence of another known and polymorphic deletion, which has 

the opposite effect, removing most of the activating receptor SIGLEC14. This deletion is found 

at 38% global frequency, but particularly higher in East Asians (63%). This common deletion 

results in the fusion of SIGELC5 and SIGLEC14, creating a new gene which has the coding 

sequence of SIGLEC5 but expressed by the promoter of SIGLEC14 (Yamanaka et al., 2009). I 

found only one individual within the dataset (HGDP00450), who has both deletions on separate 

haplotypes. Using only coverage information, the region appears ambiguous. However, 

fortunately this individual was also independently sequenced using linked-read technology. This 

resolved the phase at this locus and clearly shows two distinct deletions (Figure 2.9). The 

environment of the Mbuti population, who live in the Ituri Rainforest in the north-east of the 

Democratic Republic of the Congo, may have exposed them to a pathogen that created a 

selective pressure increasing the frequency of this private deletion. Without functional analysis 

of this variant, this is only speculation, but clearly this variant requires further study to elucidate 

its function and implications. 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2.9: Distinct deletions at the SIGLEC5/SIGLEC14 locus in an Mbuti sample (HGDP00450) resolved 
using linked-reads. One haplotype (top) carries the Mbuti-specific variant that deletes most exons in SIGLEC5 and 
is present at high frequency (54%), while the second haplotype (bottom) carries a globally common deletion that 
deletes SIGLEC14, creating a fused gene. 
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A 2.7kb deletion on chromosome 15 within OCA2 (also known as the P gene) appears private to 

the South African Bantu population at an unusual frequency (44%, Figure 2.8). However, this is 

a well-known deletion reported previously in African populations which causes Brown 

Oculocutaneous Albinism (Manga et al., 2001). Many homozygotes for this deletion are found in 

the HGDP Bantu South Africans, suggesting that individuals who have donated samples to the 

resource had albinism. After contacting CEPH, which hosts the resource, about this information 

we were informed that the researcher who donated the samples to HGDP was Trefor Jenkins 

(now deceased). Since he has published many studies on albinism in African populations (e.g. 

Manga et al., 2001), this suggests that the frequency of this deletion is a result of particular 

sample ascertainment instead of its general frequency in the South African Bantu population. 

Using a pair of samples homozygous for the deletion, I find that SNVs around the deletion 

(±150kb) have an excess proportion of identity-by-decent (IBD = 0.82) relative to the total 

calculated from all SNVs on a different chromosome (chromosome 1; IBD = 0.02). Moreover, 

IBD calculated on all SNVs on chromosome 15 (IBD = 0.49) also show higher values than 

chromosome 1. This suggests that this deletion has likely been inherited from a common 

ancestor, rather than arising independently in both samples. 

 
2.7 Archaic Introgression 
 

To understand the landscape of SV archaic introgression in modern populations, I genotyped 

variants identified in this dataset in two high-coverage Neanderthal (Altai and Vindija; Prüfer et 

al., 2014, Prüfer et al., 2017) and one Denisovan genome (Meyer et al., 2012). I first compared 

the number of shared variants between the archaic genomes and modern-day populations, and 

found hundreds that are exclusive to archaic and African genomes. This suggests that these 

variants were part of the ancestral variation found in the ancestor of modern humans and 

archaic hominins, but were subsequently lost in non-African populations during the out-of-Africa 

bottleneck. I subsequently searched for variants that are present in both archaic and non-

African populations, but not found in Africans. This filtering step will identify putatively 

introgressed variants, and similar strategies are used in SNV-based methods to identify 

introgressed haplotypes (Skov et al., 2018). An important assumption of this approach is that 

African populations within the dataset do not have archaic sequences introduced by 

introgression. I focused on common regionally-stratified variants, and this identified ones with a 

wide range of sizes, the smallest 63 bp and largest 30 kb. Interestingly, all these variants reside 

within or near genes, suggesting they have likely functional implications (Table 2.1). The most 
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extreme putatively introgressed variant in frequency is composed of two regional-specific 

duplications found in Oceanians on chromosome 16p12.2, both present at 82% and appearing 

in perfect LD. This variant is shared with the Denisovan genome, but not with either Neanderthal 

genome. This result has also been reported in a study of smaller scale (Sudmant et al., 2015b). 

Exploring the frequency of this duplication in our larger dataset within each Oceanian 

population, I found that it is present at a similar frequency in all three Oceanian populations 

(∼82%). This result is intriguing, as the Bougainville Islander population, in contrast to the 

Papuan Highlanders, have significant East Asian admixture (~20%) which does not dilute the 

frequency of this variant. These duplications show a remarkably unusual allele distribution, with 

a PBS rank of 99.99% and are the most extreme regional-specific variant in the entire dataset 

(Figure 2.10 and Table 2.1). I also compared the distribution of regional-specific variants 

between SNVs and CNVs, and found that while they appear similar for most regional 

populations, the Oceanians appear as an exception: They have a higher excess of high-

frequency private CNVs compared to what would be expected based on the number of private 

Oceanian SNVs (Figure 2.11). Most of these variants are also found in the Denisovan genome 

and appear introgressed (Figure 2.10). The unusual distribution of these variants (Figure 2.11; 

Table 2.1) indicates that positive selection may have increased their frequency in Oceanians. 

 

 

 

 

 

Position Size 
(bp) Variant EUR CSA EA ME AMR OCE Gene PBS 

rank % NEA DEN 

chr1:64992619-64992994 375 DEL 0 0 0 0 0 0.44 JAK1 98.4 REF DEL 

chr2:3684113-3690212 6099 DEL 0.02 0.003 0.05 0.03 0 0.26 ALLC 90.3 DEL Vin REF 

chr3:177287011-177292441 5430 DEL 0 0 0 0 0 0.39 LINC00501 97.7 REF DEL 
chr8:23124835-23130567 5732 DEL 0 0.02 0 0 0 0.36 TNFRSF10D 96.8 DEL REF 
chr8:23134649-23164796 30147 DUP 0 0 0 0 0 0.48 TNFRSF10D 99 DUP DUP 

chr11:60460681-60461880 1199 DEL 0 0 0.02 0 0.17 0 MS4A1 - DEL REF 
chr12:101882163-101883377 1214 DEL 0.02 0.08 0.32 0.01 0.01 0.33 DRAM1 - DEL REF 
chr12:104799951-104803150 3199 DUP 0.003 0.009 0 0.01 0 0.33 SLC41A2 96.8 DUP REF 

chr15:34920811-34925992 5181 DEL 0 0 0 0 0 0.63 AQR 99.8 REF DEL 
chr16p12.2 Complex DUP 0 0 0 0 0 0.82 Multiple 99.99 REF DUP 

chr16:75059992-75060055 63 DEL 0 0 0 0 0 0.34 ZNRF1 96.4 DEL DEL 
chr17:3038851-3041981 3130 DEL 0 0 0 0 0 0.16 RAP1GAP2 86.1 DEL DEL 

chr19:42529806-42531042 1236 DEL 0 0 0 0 0 0.54 CEACAM1 99.4 DEL DEL 

Table 2.1: Allele frequencies of regionally-stratified variants shared with high-coverage archaic genomes but 
not found in African populations. Neanderthal refers to both published high-coverage genomes. If a variant lies 
within or intersects a gene it is highlighted in bold, otherwise the nearest gene is listed. The deletion within ALLC is 
only shared with the Vindija Neanderthal. The TNFRSF10D duplication common in Oceania is also present at low 
frequency (5%) in Africa. Africans do not have both deletion and duplication variants, which are in LD in Oceanians 
(r2 = 0.48). The duplications at chr16p12.2 at high frequency in Oceania (82%) are part of a complex structural 
variant (Figure 2.12). PBS rank is presented for stratified variants common only in Oceania. EA - East Asia, ME - 
Middle East, AMR - America, CSA - Central South Asia, OCE - Oceania. NEA – Neanderthal, DEN – Denisova. 
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Figure 2.10: Regional-Specific Variation. Each point represents a variant private to a regional group (n > 2) with the y-axis illustrating 
its frequency. Random noise is added to aid visualization. The distribution reflects the ancestral diversity in Africa, the connectivity of 
Eurasia, the isolation & drift of the Americas and Oceania, and the separate Denisovan introgression event in Oceania. Oceania is 
notable for having private high-frequency variants that are all shared with the Denisovan genome and are within (bold) or near the 
illustrated genes, four of which are newly identified in this study (AQR, CEACAM, JAK1, ZNFR1). The Americas contain high frequency 
variants which are not shared with any archaic genomes, suggesting they arose and increased to high-frequency after they split from 
other populations. EA: East Asia, CSA: Central & South Asia, ME: Middle East. 
 

As the 16p12.2 duplication was identified through an increase in coverage using GS, the actual 

location of the variant in the genome is still unknown. This is because we are only mapping 

reads to the reference, but the duplication could be interspersed, even located on a separate 

chromosome. To further understand this variant, we characterized it in more detail using 

fluorescent in situ hybridization (Figure 2.12). This showed that the duplication consists of a 

region of the reference sequence that has duplicated and inserted in an inverted orientation into 

a gene-rich region ~7 Mb away in chr16p11.2. However, it does not seem to be simple 

duplication, as another sequence ~1Mb away from the original site is also present in the 

inserted site. This is consistent with GS calling two separate duplications in perfect LD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I also evaluated the region using samples sequenced using linked-reads by analysing the 

shared barcodes in the region. Using all the information available, it appears that the duplication 

is a complex rearrangement involving a duplication-inverted-insertion, an inversion and a 

deletion. This locus is known to show complex recurrent structural changes as it lies in a 

repetitive region, and variants within this locus are associated with ~1% of autism cases (Weiss 

et al., 2008). While we conclude that this variant increased in frequency after the archaic 

16p12 duplications 

AQR 

CEACAM 

LINC00501 ZNFR1 

JAK1 
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admixture event, the target of selection remains unknown as the insertion lies in a region with a 

large number of genes. In addition, the selective pressure acting on this variant is unclear; 

however, its similar frequency across all three Oceanian populations appears in contrast to the 

variable frequency of the HBA2 malaria-associated deletion in the region. This indicates that 

malaria infection is unlikely to be the selective pressure driving the increase in frequency of the 

16p12.2 duplication. 

 

 

 

 

 

 

 

 
 
Figure 2.11: Comparison of regional-specific variants across SNVs and CNVs. Comparison of Regional-specific 
variants between SNVs (Left) and CNVs (Centre). To test whether the enrichment of high-frequency private 
Oceanian CNVs relative to SNVs could be due to sampling noise or represents positive selection, I randomly 
sampled private Oceanian SNVs (matching the number of private Oceanian CNVs) 1000 times (dashed lines) and 
compared the frequency distributions in these random samples to the observed CNV distribution (purple, Right). Only 
12/1000 sample sets had a variant with an equal or higher frequency than the single most frequent CNV (at a 
frequency of 82.14%) and are shown. However, even among these 12 sets, none appear to match the distribution at 
the higher frequency range. Note the Y-axis scale in the right figure is different to visualize the random samples. 
  

In chromosome 8p21.2 an intriguing deletion-duplication variant which is shared only with 

Neanderthals is located in a region containing two genes, TNFRSF10C and TNFRSF10D. 

These variants are common in Oceanians but rare globally (Table 2.1). The 5.7 kb deletion is 

located between TNFRSF10C and TNFRSF10D, while a 30kb duplication encompasses all of 

TNFRSF10D. The frequency distribution of the two variants appears complicated; the 

duplication is common in Oceania (48%), but also present at low frequency (5%) in Africa. 

However the deletion is not found in Africans, but is present in high frequency in Oceanians 

(36%) and is in moderate LD with the duplication (r2 = 0.48). These two genes encode cytokine 

receptors which form members of the tumour necrosis factor receptor superfamily (TNFSF). 

These receptors are commonly found on leukocytes, and their activation is involved in diverse 

cellular processes, including inflammation and apoptosis (Johnstone et al., 2008). In the same 

region two other genes with similar sequences, TNFRSF10A and TNFRSF10B, are found, also  
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Figure 2.12: chr16p12 Papuan-specific expansion shared with Denisovan genome in more detail. A: Cartoon 
illustration of location of original (16p12.2) and inserted site 7Mb away (16p11.2). Names and colours of probes (e.g. 
K21) are indicated. B: Fiber-FISH illustrating the original site (top), the (inverted) insertion sites (centre) and the 
region surrounding the insertion site (bottom). Region flanking the insertion site (C9) is a sequence 1Mb away from 
the original site, consistent with GenomeSTRiP calling a second duplication at this site in perfect LD with the initial 
duplication. This suggests a complex event involving a duplication-inverted-insertion, an inversion and a deletion. 
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called Death receptor 4 and 5 respectively. These two contain receptors that mediate apoptosis 

upon binding TNF-related apoptosis-inducing ligands (TRAIL). However, TNFRSF10C and 

TNFRSF10D, do not contain receptors that induce apoptosis and are called Decoy receptors 1 

and 2. It has been suggested that these receptors act as an antagonist to protect cells from 

apoptosis caused by TRAIL (Johnstone et al., 2008). Since the four genes appear very similar in 

sequence, a duplication that encompasses all of TNFRSF10D could have potentially resulted in 

a new gene.  

Multiple additional high-frequency variants are private to Oceanians and are shared with the 

Denisovan genome (Figure 2.10 and Table 2.1). This illustrates the long-term isolation of 

Oceanian populations, and the separate Denisovan introgression event (Browning et al., 2018, 

Jacobs et al., 2019). Many, but not all, show unusual PBS values (Table 2.1), indicative of 

positive selection. A very common deletion, at 63% frequency is found within AQR, an RNA 

helicase gene. RNA helicases play an important role in detecting viral RNAs and mediating 

antiviral immune response, and are a necessary host factor for viral replication (Ranji and Boris-

Lawrie, 2010). In addition, AQR is known to be associated with regulating the integration of 

HIV1 DNA, and in recognizing and silencing of transposable elements (König et al., 2008; Akay 

et al., 2017). Two other Denisovan-shared and Oceanian-private deletions reaching high 

frequency are in JAK1, which encodes a kinase essential in cytokine signalling (44%), and in 

CEACAM1 (also known as CD66a), a glycoprotein part of the immunoglobulin superfamily 

(54%) which modulates immune responses associated with inflammation and infection. 

Outside Oceania, a deletion, shared only with Neanderthals, reaches ∼26% frequency in the 

Surui and Pima of the Americas. This deletion removes an exon of MS4A1, which encodes the 

B cell differentiation antigen CD20. This gene has recently been a target of multiple developed 

monoclonal antibodies for B cell-associated leukemias, lymphomas, and autoimmune diseases 

(Kuijpers et al., 2010, Marshall et al., 2017), as it plays an important role in T cell-independent 

antibody responses. This suggests that this deletion could have medical implications, with 

therapies developed for one population potentially not effective in others. 

2.8 Multiallelic variants and runaway duplications 

CNVs are not limited to biallelic deletions and duplications, but also include multiple copies. I 

identified a dynamic range of copy number expansions, and some variants that were previously 

thought to be biallelic contained additional copies in our diverse dataset. I focused here on a 
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particular type of multiallelic variants, called ‘runaway duplications’ (Handsaker et al., 2015). In 

these, the duplicated units are found in most populations at low copy numbers, but expand to 

much higher copies in a small number of populations, potentially due to a regionally-restricted 

selection pressures (Figure 2.13). It should be noted that the number of copies stated is for a 

diploid genome and expressed relative to the reference genome, which itself may have an 

atypical copy number. Experimental analysis have shown that GenomeSTRiP provides very 

accurate integer copy number estimation for multiallelic variants, even at high copy numbers 

(Handsaker et al., 2015). 

Some runaway duplications are only found within Africa, or in populations with recent African 

admixture (Figure 2.13A and 2.13F). The hunter-gatherer Biaka from the Central African 

Republic have a private expansion downstream of TNFRSF1B, where many individuals have 9 

copies. All other populations within the dataset have only 2 copies. This gene is also a member 

of the TNRSF, as is the introgressed deletion-duplication variant previously discussed in the 

Oceanian populations. We also identified expansions in HPR (Figure 2.13A), which has been 

previously reported in some African populations (Handsaker et al., 2015, Sudmant et al., 

2015b). This gene encodes a protein which is associated with defence against trypanosome 

infection (Smith et al., 1995). Interestingly, populations that have the highest copy number are  

Central and West African groups, correlated with the geographic distribution of the infection 

(Franco et al., 2014). However, we also identify the expansions in all Middle Eastern groups, but 

at a lower frequency. This is possibly due to recent admixture from African groups. 
 

A striking expansion is found upstream of the olfactory receptor gene OR7D2 which is restricted 

to samples with East Asian ancestry (Figure 2.13B). The expansion ranges from 2-18 copies, 

and through haplotype phasing I find that many samples contain the expansion on just one 

chromosome. This demonstrates that these expansions have mutated repeatedly on the same 

haplotype background. One particular Han Chinese sample had a high copy number, 18 copies. 

This individual appears to have nine copies on each chromosome, indicating that the same 

runaway haplotype is found twice in the same person. This could in the future lead to an even 

higher number of copies through non-allelic homologous recombination. 

 

I then focused on medically-relevant expansions. One is found encompassing all of HCAR2 

(Figure 2.13C). Although the duplication is found in many continental groups, it is especially 

common in the Kalash population of Pakistan, with almost a third of the population carrying an  
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Figure 2.13: Copy Number Expansions and Runaway Duplications. Red bar illustrates the location of the 
expansion. Dots represent diploid integer copy number with random jitter added on the x-axis to aid visualisation. A: 
Expansion in HPR in Africans and Middle Easterners. B: Expansions upstream of OR7D2 that are mostly restricted to 
East Asia. The observed expansions in Central & South Asian samples are all in Hazara samples, an admixed 
population carrying East Asian ancestry. C: Expansions within HCAR2 which are particularly common in the Kalash 
population. D: Expansions in SULT1A1 which are pronounced in Oceanians. E: Expansions in ORM1/ORM2. F: 
Expansions in PRB4 which are restricted to Africa and Central & South Asian samples with significant African 
admixture (Makrani and Sindhi). 
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increase in copy number. HCAR2 encodes HCA2, a receptor expressed on immune cells and 

adipocytes. Once activated, it is involved in cellular processes that mediate anti-inflammatory 

effects, and as a result, has been proposed as a therapeutic target (Offermanns, 2017). Another 

expansion is found encompassing SULT1A1 (Figure 2.13D), which encodes a sulfotransferase 

involved in metabolism of hormones and drugs (Hebbring et al., 2008). All continental groups  

show variable copy numbers at this locus; however, the expansion is particularly pronounced in 

Oceanians (Figure 2.13D). 

 
2.9 De novo Assemblies and Sequences Missing from the Reference 
 

The results presented so far relied on short-read Illumina sequencing. To further explore 

insertions, which are difficult to identify and assemble using short-reads, we sequenced 26 

samples from 13 populations (2 per population) using linked-read technology at ~50x coverage. 

We subsequently processed the sequences using the Supernova assembler to generate 

phased de novo assemblies (Weisenfeld et al., 2017). One sample was subsequently excluded 

due to having substantially lower quality. By comparing these sequences to the reference 

genome (GRCh38), we identified 1,643 non-repetitive breakpoint-resolved insertions across all 

autosomes and the X-chromosome. In total, these sequences account for ~1.9 Mb not found in 

the reference (Figure 2.14). The sample that showed the highest number of insertions is from 

the San population, consistent with their known divergence from other populations. Notably, the 

number of insertions appears positively correlated with the quality of the assembly (r = 0.91, 

Contig N50 and number of identified insertions. Figure 2.14D) which suggests that many 

insertions remain to be identified. 

 

I performed a PCA on the insertion genotypes and found that the populations show structure, 

with Central Africans and Oceanians appearing the most differentiated (Figure 2.14). This 

reflects the ancestral variation and deep divergences within Africa and the effect of long-term 

isolation, drift, and possibly private Denisovan introgression in Oceania. The majority of 

identified insertions are relatively small in size, with a median of around 500bp (Figure 2.14). 

However, large insertions of over 20kb are also found, but they are relatively rare. Ten of the 

insertions lie within or near exons, suggesting they have functional consequences. These genes 

are involved in different cellular processes, including regulation of glucose (FGF21), immunity 

(NCF4), and a potential tumour suppressor (MCC).  
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Many insertions appear uncommon, with 41% only appearing in one or two individuals. 

However, 290 insertions are found in over half of these diverse individuals, indicating that the 

reference potentially harbours rare deletions at these sites. To further explore this, I compared 

the inserted sequences with the chimpanzee, gorilla, and orangutan reference genomes 

(Gordon et al., 2016, Kronenberg et al., 2018). The majority of the identified insertions are also 

present in the great ape genomes, with 62% in chimpanzee, 59% in gorilla, and 35% in 

orangutan, values consistent with their evolutionary divergence from humans. In total, 68% of 

the sequences are also found in at least one great ape genome, and 33% in all three genomes. 

Notably, for insertions present in more than half of the individuals, 85% are also present in the 

chimpanzee reference. This value decreases to 18% for variants only found in two samples or 

less. The high number of common insertions also found in the chimpanzee genome indicates 

that instead of being them insertions, they are actually human-specific deletions that arose after 

the split from chimpanzees and are found in donors to the human reference. 
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Figure 2.14: Non-Reference Unique Insertions (NUIs). A: Ideogram illustrating the density of identified NUI locations across 
different chromosomes using a window size of 1 Mb. Colours on chromosomes reflect chromosomal bands with red for 
centromeres. B: PCA of NUI genotypes showing population structure (PC3-4). Previous PCs potentially reflect variation in size 
and quality of the assemblies. C: Size distribution of NUIs using a bin size of 500bp. D: Positive correlation between Contig N50 
and Number of identified NUIs (r = 0.91). Their relationship can be modelled by simple linear regression: y = 3x + 210 (the null 
hypothesis of the slope = 0 is rejected, P = 1.6E-10). Colours refer to the regional group of the samples 
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2.10 Discussion 
 

In this study, I generated a comprehensive catalogue of SVs from one of the most diverse sets 

of human populations studied to date. I find that a substantial amount of genetic variation has 

not been documented in previous studies, with a considerable number of these SVs being 

common and high-frequency in regional groups and even in individual populations. This 

resource will be important for future medical studies, as the variants identified can be included in 

GWAS. SVs are important in disease susceptibility, and recent studies are identifying 

associations of SVs with very high effect sizes in many traits (Beyter et al., 2020). As the 

scientific community moves to address the disparity in genomic studies by including 

underrepresented populations, our dataset becomes important as it catalogues variation found 

in diverse populations. Because of sample size, our dataset is restricted to mostly common 

variants. Another limitation is it still lacks adequate representation from many regions globally, 

such as Africa, the Americas, Oceania and Arabia. The identification of common and medically-

relevant, regionally-private variants argues for further efforts in sequencing diverse genomes 

without data restrictions from under-represented groups.  

 

Our resource allowed us to investigate the selective histories of SVs globally. The finding that 

even genetically closely-related populations can have variants with large allele frequencies 

differences illustrates the effect of geographically-localised selective pressures. This can 

happen even in geographically-nearby populations, such as in the malaria-associated HBA2 

deletion in Papuan Highlanders compared with Sepik/Lowlanders. In addition, the relatively 

large number of samples in each population allowed the identification of regional-specific and 

even population-specific variants. The latter finding in particular demonstrates that recent de 

novo mutations increased to appreciable frequencies after populations split from each other. It 

should be noted that the particular geographical sampling of the HGDP populations and the 

number of samples in each group will influence the number of private variants in this dataset. 

Nevertheless, we find a surprising number of high-frequency population-private variants that 

seem to have functional relevance. Some appear consistent with positive selection as noted 

above, while others may have increased in frequency due to genetic drift.  

Our results demonstrate that admixture with archaic hominins has contributed potentially 

functional SVs to contemporary human populations. It is striking that many of the variants that 

have signatures of positive selection are involved in immune processes. This suggests that they 

may be associated with adaptation to newly-encountered pathogens after modern humans 
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expanded into new environments outside of Africa. Around the same time this work was posted 

as a pre-print and was under review, another study which focused on CNV archaic introgression 

was published (Hsieh et al., 2019). Encouragingly, many of the putatively introgressed variants 

were independently replicated in the two studies. The two Oceanian variants I discussed in 

detail, on chr16p12 and chr8p21, were, in particular, characterized by Hsieh et al., using long-

read DNA and RNA sequencing. The duplication at chr16p12 was found to create a new 

member of the NPIPB gene family which has multiple amino acid substitutions indicative of 

positive selection. The chr8p21 variant, as speculated in this chapter, was found to generate a 

new TNFRSF10D gene which also appears to have amino acid substitutions. These results add 

more evidence that these variants have been under selection after archaic introgression. 

However, we still do not understand the selective pressures driving many of these introgressed 

variants, and other non-introgressed variants that seem to be under selection, and in most 

cases the target of selection is not understood. Experimental and association studies are 

needed to understand the function of these variants. It is also notable, perhaps even surprising, 

that despite the whole-genome sequencing of hundreds of thousands of human samples, we 

are still identifying new genes that are common in some populations today. This highlights the 

historical disparity of human genomics, and the need to study underrepresented populations to 

understand human history and adaptation. 

By using linked-read sequencing, we generated one of the most diverse sets of phased de novo 

assemblies. Using these assemblies, we identified non-repetitive sequences that are absent 

from the human reference. These insertions also need to be included in future medical studies, 

as has been shown by a recent analysis in Icelanders that identified over 100 unique insertions 

in LD with a GWAS marker, and demonstrated that one insertion was associated with 

myocardial infarction (Kehr et al., 2017). An important result of our analysis is that these 

insertions show population structure, demonstrating that each population harbours unique 

insertions missing from the reference. It is likely that even within each population, individuals 

also have rare and private insertions. Our findings, coupled with other recent studies that have 

identified megabases of such sequences, illustrates the limitation of a single human reference 

(Wong et al., 2018, Sherman et al., 2019), and the need of high-quality reference genomes from 

diverse human populations. It is encouraging that such efforts have already begun with the 

establishment of the Human Pan-genome Reference Consortium (Porubsky et al., 2020).  

Another limitation of our study is the use of mostly short-reads, which restricts the identification 

of complex SVs. Recent studies have uncovered substantially higher numbers of variants per 
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individual using multi-platform or long-read technologies (Audano et al., 2019, Chaisson et al., 

2019). Although these studies were limited to very small sample sizes, with continuing 

decreasing costs of such methods it will become economically feasible to study thousands of 

populations, and such studies have begun (Beyter et al., 2020). However, even with the use of, 

and further developments in, long-read sequencing, computational methods that can integrate 

the large number of SVs that will be discovered with many new diverse reference genomes 

need to be developed (Garrison et al., 2018). Only then will the full spectrum of human 

structural variation can be understood. 
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2.11 Methods                                          
                                               
This section provides a summary of the methods used in this chapter, more details are provided 

in Almarri et al., 2020a and Bergstrom et al., 2020.  

 

Sample Sequencing and Quality Control 

Samples were sequenced to an average coverage of 36x, minimum 25x, using Hiseq X or Hiseq 

2500 Illumina instruments. All raw reads were subsequently processed using the Wellcome 

Sanger Institute automated sequencing pipeline and mapped to GRCh38. Coverage for each 

sample was visualized at ∼300,000 positions across the genome and the rolling mean was 

plotted normalized by the genome-wide median.  

 

Variant Calling and Quality Control 

Structural variants were identified by GenomeSTRiP v2.00 (Handsaker et al., 2015) and Manta 

v1.6 (Chen et al., 2016) using default parameters. Individual sample VCFs generated by Manta 

were merged using svimmer using default conditions and re-genotyped across all samples 

using Graphtyper-v2.0 (Eggertsson et al., 2019). In all callsets, variants with genotype quality < 

20 were set to missing. Overlap between variants within the dataset and in comparison with 

other global datasets was performed using bedmap v2.4.35 (Neph et al., 2012). LiftOver 

between genome builds was run using the online UCSC LiftOver function, and variants that 

failed liftover were not included in the novelty estimate. Bcftools v1.9 was used to filter and 

manipulate VCFs and add annotations such as excessive heterozygosity. Sequencing reads 

from the archaic genomes were extracted and realigned to GRCh38 using bwa aln v0.7.12 (Li & 

Durbin 2009) using the options -l 16500 -n 0.01 -o 2. Picard v2.6.0 was used to mark duplicates. 

Each archaic genome along with 30 Sanger PCR genomes were joint-called separately using 

GenomeSTRiP after supplying a site VCF of CNVs identified in this study. We restricted 

downstream analysis to archaic variant calls with CNQ ≥ 13 and manually confirmed putatively 

introgressed variants using IGV (Thorvaldsdóttir et al., 2013).  

 

Population Genetic Analysis 

PCA was run using plink2 v2.00a2LM and v2.00a3LM including variants with MAF > 1%, 

missingness < 1% and pruned for LD using the option –indep-pairwise 50 5 0.2 (Chang et al., 

2015). UMAP was run in R-3.6.0 using the uwot package v0.1.3 using option ‘spca’, min_dist = 

0.001, and n_neighbors = 16. The Variant Effect Predictor was used to identify the functional 
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effects of SVs (McLaren et al., 2016). For the selection analysis, we calculated PBS 

distributions for each class of SVs and SNVs, and found all distributions to be very similar, but 

SNVs to be slightly more conservative, and consequently used it as a conservative null 

distribution. Variants were filtered for MAF > 1% and excluding > 10% missingness. A threshold 

of 99% of the PBS distribution was used as for evidence of departure from neutrality (i.e. top 

1%). PBS was calculated using the following populations: (Oceanians; Sardinians, Han), 

(Karitiana; Surui,Han) and (Mbuti; Biaka, Han). The maximal variant allele frequency difference 

was calculated for each population pair (1431 pairwise comparisons) and compared to the 

average SNV differentiation (SNV FST). SNV FST was calculated for each population pair using 

EIGENSTRAT (Price et al., 2006), on all biallelic SNPs within the accessibility mask generated 

in Bergström et al. (2020). Structural variant allele frequency and missingness was calculated 

for each population separately setting variants excluding variants with missingness > 25%. pVst 

from the vcflib package was used to test for significance of allele frequency differentiation using 

1000 permutations. For multiallelic SNVs, we restricted the analysis to variants with CNQ ≥ 13. 

As this score is phred-scaled, CNQ ∼13 represents ∼95% confidence of diploid copy number.  

 

Non-reference Unique Insertions 

De novo assembly on linked-reads was run using Supernova v2.1.1 (Weisenfeld et al., 2017). 

Phased BAMs and VCFs were generated using the Long Ranger v2.12 pipeline (Marks et al., 

2019). Non-reference unique (non-repetitive) insertions (NUIs) were identified using the NUI 

pipeline (Wong et al., 2018), which compared each Supernova assembly to the GRCh38.p12 

reference. Great ape reference genomes, chimpanzee (panTro6), gorilla (gorGor5) and 

Orangutan (ponAbe3), were downloaded from UCSC (Gordon et al., 2016, Kronenberg et al., 

2018). Blastn was run to align NUI sequences to the great ape genomes, including 50 bp 

flanking NUI sequences, using the options –task megablast and –dust no. NUI Sequences were 

considered to be present in the great ape genomes if they aligned with ≥ 95% identity and 95% 

query coverage.  

 

Fluorescent in situ Hybridization (FISH) 

Melanesian lymphoblastoid cell lines (GM10543 and GM10540) were purchased from Coriell 

Institute for Medical Research. All FISH analysis was performed by the molecular cytogenetics 

team at the Sanger Institute.  
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Chapter 3: The Genomic History of the 
Middle East 
 

This chapter has been published as a preprint (Almarri et al., 2020b). I performed all the 

analysis presented in this chapter, except for some ancient DNA analysis (qpAdm and qpGraph) 

which was performed in collaboration with Dr. Marc Haber, and the Y-chromosome phylogeny 

which was performed in collaboration with Dr. Pille Hallast. DNA library preparation and 

sequencing was performed by the Wellcome Sanger Institute sequencing facility. 

 

3.1 Introduction 
 

The Middle East is particularly understudied by large-scale human genome sequencing 

projects. Geographically situated between Africa, Europe and South Asia, it forms an important 

region to understand human history, migrations and evolution. It is where modern humans first 

expanded out of Africa, where hunter-gatherers first settled and transitioned into farmers, where 

the first writing systems developed and where the first major known civilizations emerged. The 

underrepresentation of Middle Easterners in genetic and genomic studies has rendered much of 

the demographic history and prehistoric population movements of the region unknown. In 

addition, the relationships of Middle Easterners among themselves and to other global 

populations is unclear. The region contains some of the earliest evidence of modern humans 

outside Africa, with fossils dated to ~180 kya and ~85 kya identified in the Levant and North 

West Arabia respectively (Hershkovitz et al., 2018; Groucutt et al., 2018). In addition, tool kits 

and footprints suggesting their presence have been identified in Arabia dating to ~120 kya 

(Armitage et al., 2011; Stewart et al., 2020). Most of the limited number of studies in the region 

have focused on the Levant, despite Arabia, with an area of 3.2 million km2, being larger than 

the Levant, Turkey and Egypt combined. The region has experienced large climatic fluctuations 

documented over the past 10 ky (Petraglia et al., 2020). Although most of Arabia is a hyper-arid 

desert today, this was not always the case, as there were several late Pleistocene and 

Holocene humid periods resulting in a ‘green Arabia’, with the onset of the current desert 

climate starting around 6 kya (Petraglia et al., 2020). The toggling from humid to arid periods 

has been proposed to result in population movements adapting to the climate. The Neolithic 

transition within Arabia may have developed independently within the region, or resulted from 
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an expansion of Levantine Neolithic farmers southwards (Drechsler, 2009; Crassard et al., 

2013; Hilbert et al., 2015). 

 

More recently, the genetic landscape of the region was affected by the Trans-Saharan slave 

trade from the 8th to 19th centuries, when millions of African individuals were captured, enslaved 

and traded. It has been historically suggested that individuals captured before the 16th century 

were Afro-Asiatic or Nilotic speakers from a region that today encompasses modern-day 

Ethiopia (Mirzai et al., 2009). While from the 18th century, when the Omani Empire was in 

control of much of the African east coast, individuals enslaved are thought to be Bantu speakers 

from South Eastern Africa (Mirzai et al., 2009). Most studies on modern-day populations in the 

Middle East have used mitochondrial, Y-chromosome or array-based analyses, and they have 

identified wide-spread, but variable, African admixture in the region (Abu-Amero et al., 2008; 

Abu-Amero et al., 2009; Haber et al., 2013; Hellenthal et al., 2014). Within the HDGP dataset, 

which includes Bedouins, Palestinians and Druze from the Levant, all populations show 

detectable African ancestry, highest in the Bedouins and lowest in the Druze. Cultural factors 

also appear to affect this pattern: in the Lebanese, studies have shown that Christian groups 

appear to have very limited African admixture, in contrast to much higher proportions in Muslim 

groups (Haber et al., 2013). In Southern Arabia, in Yemenis in particular, while almost all 

populations harbour African ancestry, a subpopulation appear to lack African admixture (Haber 

et al., 2019). It is important to account for African admixture within population-genetic analyses, 

as even small amounts can bias some tests. 

 

Another social factor affecting the genomic landscape of the region is the widespread practice of 

consanguinity, among the highest in the world (Bittles and Black; 2010). A signature resulting 

from such practices is large blocks of homozygosity, or runs of homozygosity (ROHs). An 

exome-based study evaluating this in Middle Eastern and Northern African groups found that 

these populations can have extremely long ROHs (Scott et al., 2016). This contributes to the 

relatively higher number of certain diseases in the region, as a rare and pathogenic variant 

acting in a recessive mode of inheritance can be present twice in the same individual due to 

consanguinity. Another issue is that consanguinity coupled with long-term genetic isolation, 

possibly due to cultural reasons such as religious practices (e.g. the Druze), increases genetic 

drift which also needs to be taken account in analysis. 
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In this chapter, I address the gap in the genomic research of the region by generating and 

analysing a high-coverage experimentally-phased open-access dataset of eight populations 

from the Middle East: the Arabian Peninsula, the Levant and Iraq. I note that there is no ideal 

name for this specific group of populations, and use “Middle East” because it is widely used and 

understood. I use the term ‘Arabian’ to refer to samples from the Arabian Peninsula (Emirati, 

Saudi and Yemeni), Levantine for Syrians and Jordanians, and Iraqi-Arabs and Iraqi-Kurds for 

samples from Iraq. As well as creating a catalogue of genetic variation from this understudied 

region that will assist future medical studies, I investigated the population structure, 

demographic and selective histories, and admixture events with modern and archaic humans. In 

particular, I use the dataset to address the following questions: 

 

1) What is the population structure in the present-day Middle East? And how is this 

related to ancient populations who lived in the region? 

2) Do modern Middle Easterners have traces of archeologically-documented earlier 

expansions out of Africa older than 60 kya ? 

3) What is the demographic history of Middle Eastern populations? When did they 

separate and diversify from each other and from other global populations ? 

4) What is the landscape of archaic introgression in the region and how does it compare 

to other populations?   

5) Has the Neolithic revolution impacted all populations in the Middle East equally? 

6) Has the spread of Semitic languages in the region left any genetic traces? 

7) How did humans adapt to historical droughts and the desertification of the region? 

 

3.2 Ethical Approval and Sample Collection  
 
I applied and received approval from two different Research Ethical Committees to perform this 

study. First, I applied to the Dubai Scientific Research Ethics Committee which (DSREC-SR-

02/2018_01). After receiving approval, I subsequently also applied and was approved by the 

Wellcome Sanger Institute Human Materials and Data Management Committee (HMDMC 

18/026). All sample donors were interviewed and the aims of this research project explained, 

and provided informed consent. Saliva samples were collected using Oragene DNA kits (OG-

600) from individuals from eight Middle Eastern populations (Figure 3.1). All populations 

included in this study speak Arabic, a Semitic language of the Afro-Asiatic language family, with 

the exception of the Iraqi Kurdish population who speak an Iranian language belonging to the 
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Indo-European family, Kurdish. DNA extraction, sample and variant quality control are detailed 

in the Methods section (3.10).  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Overview of the dataset. Top: Map of sampled populations. Numbers in brackets refer to number of 

individuals samples from each population Bottom: Physically-phased haplotype blocks illustrated using alternating 

blue and green colours (sample APPG7555924). N_50 phase block: 5.2Mb. Longest phase block: 31.9 Mb 
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3.3 Comparison with the HGDP 

I first compared the Middle Eastern dataset with the HGDP SNV callset (Bergstrom et al., 2020), 

and found a total of 4.9 million autosomal SNVs in our dataset that are not present in the HGDP. 

As expected, most of the novel variants are rare (93%, MAF < 1%); however, I find ~370,000 

that are common (> 1%). I subsequently evaluated whether these new variants lie within or 

outside the strict accessibility mask, and interestingly find that most of the novel common 

variants are outside the mask (66%, ~246,000). This demonstrates that although the HGDP 

dataset contains Middle Eastern samples from the Levant, it still does not capture all common 

genetic variation found in the region, highlighting the importance of studying underrepresented 

populations. In addition, it illustrates that, perhaps unsurprisingly, a large amount of 

undiscovered variation resides in regions that are not accessible to standard short-reads.  

3.4 Population structure and admixture using single-variant methods. 
 
I explored the structure and diversity of our dataset using both single-variant and haplotype-

based methods. I first ran an unsupervised model-based clustering using ADMIXTURE 

(Alexander et al., 2009); after combining our dataset with the HDGP and restricting to 1.3 million 

SNVs ascertained as polymorphic in archaic hominins, as they provide more accurate results 

from drift-based statistics (Bergstrom et al., 2020). I chose K values ranging from 3 to 12, and 

find that K = 9 provides the lowest cross validation error. I show K = 5 and K = 9, as the former 

separates the whole dataset into 5 global clusters: Africans, West Eurasians, East Asians, 

Oceanians and Americans (Figure 3.2). At K = 5, ADMIXTURE shows that Middle Eastern 

populations appear to share ancestry from the component common in Europeans. It also shows 

that putative African ancestry is ubiquitous across Arabia and the Levant, with all population 

displaying such ancestry with the exception of the Iraqi Kurds. Generally, the African component 

appears to form a cline that is the highest in the south in Yemen which decreases moving 

Northwards. Within each population, variable amounts of such ancestry are detected (excluding 

major outliers): Yemenis (4-16%), Saudis (2-19%), Emiratis (0-20%), Iraqis (2-5%), and Syrians 

(1-6%), Jordanians (0.05-5%) and Iraqi-Kurds (0%). In the Arabians, Saudis and Emiratis in 

particular, 3 samples show very high African ancestry (>30%), likely due to recent admixture.  
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Figure 3.2: ADMIXTURE runs of our dataset with the HGDP samples. Top: Run setting K = 5. Bottom: Run 

setting K = 9, which has the lowest cross-validation rate. The Yoruba, Kalash, Han and Basque were included to help 

visualize different components. 

 

At K = 9, a component appears that is the highest in Middle Easterners, in particular Arabians 

and Bedouins from the HGDP (>80%). Levantines (Druze and Palestinians) have a lower 

proportion of this component (40-70%) which is also present at an even lower proportion in 
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Southern Europeans (Sardinians, Bergamo Italians and Tuscans 4-20%). The Bedouin 

population from the HGDP appears to consist of two subpopulations, one with a high 

percentage of this Middle eastern component (many appearing ~100%), the other having 

percentages closer to Druze and Palestinians. A similar observation was reported using array 

data (Moorjani et al., 2011), and we followed their approach by dividing the populations into 

BedouinA and B, with the latter being closer to Arabians. I also find the Emirati (UAE) population 

to show substructure, with a group similar to other Arabians, and other groups that appear to 

have ancestry related to Central & South Asians. Eastern Arabia has been previously shown to 

have groups with Iranian-related ancestry (Rodrigo-Flores et al., 2016). At K = 9 much of the 

inferred African ancestry present in Middle Easterners appearing at K = 5 is reduced, with many 

samples also showing no such component. The next highest percentage component in 

Levantines (BedouinA, Palestinians, Druze and Syrians), ranging from ~20-40%, is maximal in 

Western Europeans (Basque and French, ~ 100%). Iraqis, both Arabs and Kurds, show a 

different pattern to Levantines: the European-like component is reduced (~10-30%) and the 

second highest component (~20-40%) is the one common in Central & South Asian populations 

(Kalash, ~100%).  

 

It should be noted that the patterns displayed in ADMIXTURE are not necessarily caused by 

admixture, but also can result from shared ancestry. These values can also vary depending on 

the sample sizes of each population included in the analysis, however, it is still useful for initial 

exploration of the data. Another issue to note is populations that have experienced high rates of 

genetic drift, such ones caused by bottlenecks and long-term isolation, tend to form their own 

separate components, the Kalash being a notable example (Rosenberg et al., 2002). If we were 

to make conclusions on population history solely, and naively, based on these ADMIXTURE 

results, it would appear that Arabians (Yemenis, Saudis and Emiratis) formed from an ancestral 

population, which contributed ancestry to Levantines and Iraqis, who themselves have mixtures 

from Europeans and Central & South Asians sources. However these conclusions would be 

premature and require further analysis. An issue that should be taken into consideration is 

whether Arabian populations, similar to the Kalash, experienced high rates of drift caused by 

bottlenecks which could create the patterns seen in the ADMIXTURE runs. 

 

To measure the average differentiation between populations, I calculated pairwise FST using the 

Hudson estimator, as recommended by Bhatia et al., 2013 (Figure 3.3). I surprisingly found high 

values for some pairs within the Middle East: within Iraq and the Levant, moderate 
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differentiation is observed, when excluding BedouinB. The Druze show the highest 

differentiation (FST = 0.6-0.9%) in these pairwise comparisons. When including BedouinB in the 

comparison, strikingly high values are observed (> 2%). It should be noted that these 

populations are sampled from a relatively small geographic range in the Levant, and the 

differentiation values are much higher than found in comparisons between some European 

populations separated by a greater geographic distance (e.g., HGDP French and Tuscan = 

0.02%). It is clear that BedouinB is strongly differentiated from other surrounding populations, 

even from the other Bedouin group in the HGDP (BedouinA, 1.7%). When including Arabian 

populations in the comparisons (Saudis and Yemenis), BedouinB shows lower differentiation to 

these populations in comparison to other Levantines (~1.7%). Interestingly the Emirati 

population shows more differentiation to BedouinB (2%), and they also show relatively high 

differentiation to Saudis and Yemenis (0.8-1%). These FST values provide some context to 

understand the patterns seen in the ADMIXTURE runs, as it appears BedouinB and Arabian 

groups are highly drifted and differentiated from other populations. It also demonstrates that 

strong population structure exists in the Middle East, particularly between Arabia and the 

Levant/Iraq, and even within the two sub-regions. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Pairwise FST estimates for Middle Eastern samples. FST calculated using 1.2M SNVs ascertained as 

polymorphic in archaic genomes as suggested by Bergstrom et al., 2020. 
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To run a formal test for the African admixture suggested in the ADMIXTURE results, I ran an f3 

test on the Middle Eastern populations using f3(Middle Eastern; African, European/Central & 

South Asian) presented in Table 3.1. A significantly negatively result provides unequivocal 

evidence that the target population is admixed from the two source populations (or populations 

genetically related to the source populations), even if it occurred hundreds of generations ago 

(Patterson et al., 2012). The test exploits the fact that allele frequencies of an admixed 

population, genome-wide, will be intermediate between the two source populations. Within 

Arabia, the Yemenis show significant negative f3 values (Z < -3) when including African and 

European populations, confirming the relatively high African admixture found in them in 

comparison to the other regional populations. For the Emiratis and Saudis however, 

surprisingly, no significantly negative values were identified. On the contrary, high positive 

values are found (Z > 3), especially for the Emirati population (Z > 10). Within the Levant, both 

Palestinians and BedouinA show significant admixture using African and European sources (Z < 

-3), which is not the case in Druze. The BedouinB stand out by showing very high positive f3 

statistics (Z > 20). Although an admixture f3 test provides a robust test for admixture, non-

negative values do not necessarily suggest admixture did not happen in the past. One issue that 

can affect this statistic is that if the target population has undergone strong drift since the 

admixture event, allele frequencies will fluctuate to an extent that they are no longer 

intermediate between the two admixing sources. This seems to be the case here, with the 

Emirati, Saudi and BedouinB, although showing small percentages consistent with African 

ancestry in ADMIXTURE, have drifted to an extent where the f3 test cannot detect admixture. 

An alternative way to test for admixture is exploiting admixture-induced LD (Loh et al., 2013; 

Pickrell et al., 2014). This test can also estimate the time of admixture, although with the 

assumption of discrete pulses of admixture. A limitation is it cannot detect admixture that 

occurred many generations ago due to the breakdown of LD with time through recombination. I 

tested for admixture using this LD-based method using the same sources (African and 

European/Central & South Asian) and Middle Easterners as targets. I confirmed African 

admixture in all Middle Eastern populations, with the exception of the Iraqi Kurds. All 

populations show a pulse of admixture, assuming a generation time of 29 years, at 500-1000 

years ago, overlapping the Trans-Saharan slave trade period. 
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Reference_1 Reference_2 Target Z-score 
Yoruba French BedouinA -20.604 
Yoruba Basque BedouinB 19.514 
Yoruba Basque Druze  3.241 
Mbuti Basque Emirati 12.295 

Yoruba Basque Iraqi_Arab -8.927 
Yoruba Basque Iraqi_Kurd -1.83 
Yoruba Basque Jordanian -2.717 
Yoruba Druze Omani -11.371 
Yoruba Basque Palestinian -14.188 
Yoruba Basque Saudi 3.227 
Yoruba Basque Syrian -9.404 
Yoruba Basque Yemeni -6.12 

 
Table 3.1:Testing for African admixture using f3 admixture test. For Reference_1 (African), Yoruba, Mandenka, 

Mbuti, Biaka and South Africa Bantu, were used. For Reference_2 (Eurasian), Basque, French, Balochi, Druze, 

Brahui, Sindhi and Makrani were used. Most negative Z-score is presented for each target population. 

 

I also used f4 statistics, which can be run as a symmetry test for population relationships based 

on the number of shared derived alleles. The test f4(Mbuti, BedouinB, 

[Druze/Palestinian/BedouinA]; [Saudi/Emirati]) always gives significantly positive statistics (Z > 

3); indicating that BedouinB shares more alleles with Arabian populations compared to other 

Levantine populations. Within Arabia, Yemenis do not show any extra affinity to either Saudis or 

Emiratis, f4(Mbuti; Yemen; Emirati, Saudi); Z = -0.6. While Emiratis and Saudis show higher 

affinity to each other relative to Yemenis, f4(Mbuti; Emirati; Yemeni, Saudi); Z > 3, however, as 

the Yemeni population has higher African-related ancestry, this will bias this statistic and render 

them more distant to the other Arabian populations.  

 
3.5 Population structure and admixture using haplotype-based methods. 

I subsequently used the Chromopainter/fineSTRUCTURE pipeline to investigate population 

structure in more detail. fineSTRUCTURE analyses the haplotype matrix of shared segments 

generated by Chromopainter to distinguish samples into statistically distinct populations, and is 

useful in our analysis in two ways. First, it allows investigating population structure at a finer-

scale and identifying sub-clusters from the same group not apparent by single-variant methods, 

and second, to identify representative samples that show minimal or no evidence of recent 
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Figure 3.4: Coancestry matrix generated by the Chromopainter/fineSTRUCTURE pipeline 
illustrating shared haplotypic segments based on total chunklength (in cM) using 1.4 million 
SNVs. Numbers on tree edges represent the posterior assignment probabilities, edges with no numbers 
have a posterior assignment probability = 1. To increase visibility of haplotype matrix, the highest value 
has been capped at 70 cM.  
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admixture that could be used in subsequent more sensitive demographic history analyses. I first 

ran the pipeline using only samples within our dataset, and it generally supported the 

ADMIXTURE results; however, previously undetected sub-clusters of populations were 

identified. The tree shows that self-labelled populations generally cluster with each other (Figure 

3.4). A distinction between the Levant and Arabia is identified, and the Levantine samples seem 

to cluster into two main subclusters. fineSTRUCTURE was generally not able to distinguish the 

self-labelled Levantine groups, in contrast to Arabian populations, suggesting potentially older 

structure and/or higher drift in Arabia. 
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Another result is that samples that appear to have relatively high African ancestry cluster 

together, even if they were from different populations. The Saudi and Emirati population showed 

multiple sub-clusters, while the Yemeni population showed two main clusters, with samples that 

have relatively lower African ancestry forming a separate cluster. The finding that Yemeni 

samples show little substructure is interesting, and possibly suggests recent structure, or high 

migration. A larger dataset sampling different regions would be required to further explore this 

pattern. Some clusters of Emirati samples appear closer to Levantines than to other Arabians, 

which is concordant with the ADMIXTURE results and potentially reflects samples with Iranian-

like ancestry. At this step I separated the samples in each population into a ‘core’ subpopulation 

representative of the population and a non.core subpopulation, based on the fineSTRUCTURE 

and ADMIXTURE results. For the Emirati population I created 3 subpopulations, Emirati.core, 

Emirati.2 and Emirati.3. Emirati.core is the population that clusters with the other Arabian 

populations.  

I subsequently ran Chromopainter/fineSTRUCTURE on a merged dataset composed of our 

samples with other Middle Eastern groups (Figure 3.5), in this case not just the HGDP 

populations, but including other groups such as Lebanese, Assyrians and different Iranian 

populations from published studies (Lazaridis et al., 2014; Lazaridis et al., 2016). A limitation is 

that these published studies are array-based; however, Chromopainter still performs well using 

a set of densely-typed markers. The fineSTRUCTURE results again show abundant structure 

across the Middle East, generally concordant with geography, with self-labelled groups, or 

related groups, generally clustering together. Groups known to be isolated such as the Druze 

and Assyrians form clearly-defined clusters. As with the previous analysis, populations from the 

Levant and Iraq (Lebanese, Syrians, Jordanians, Druze, BedouinA and Iraqi-Arabs) clustered 

together; however, Iraqi-Kurds clustered with Central Iranian populations, correlating with the 

linguistic affinity between the two populations. The Levantine BedouinB from the HGDP 

clustered with Arabian groups (Saudis, Emiratis, Yemenis and Omanis) in agreement with our 

single variant analysis. 

Although single variant LD-decay methods can be used to test for and date admixture, they 

are unable to distinguish multiple admixing sources as only a pair of source populations are 

tested at a time. A set of methods that use the haplotype-sharing matrix produced by 

Chromopainter can exploit this information to test for and date admixture, and in addition 

provide proportions of multiple different ancestry sources. To perform this analysis I ran the 

Chromopainter pipeline with a larger number of individuals from diverse global populations, 
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particularly including groups that potentially admixed into Middle Easterners, such as African, 

European and Central & South Asian populations. The fineSTRUCTURE tree was then 

curated to exclude sample outliers and re-label populations that are indistinguishable to result 

in a total of 54 groups. To investigate potential sources of admixture, I subsequently ran 

SOURCEFINDv2 (Chacón-Duque et al., 2018), a haplotype-based method that represents a 

population as a mixture of surrogates and has been shown to provide high accuracy. I divided 

the 54 curated populations into donor and recipient groups, with all populations from our dataset 

set as recipients. I performed this analysis multiple times, including setting one of our 

populations (Saudis or Emiratis) as a donor instead of a recipient to have a representative 

source from Arabia. This analysis confirmed that the Emirati cluster appearing closer to 

Levantines and more distant from other Arabians had modern Iranian-ancestry. Specifically, the 

closest source to these samples was inferred to be coastal Iranians (Iranian.Bandari). The third 

Emirati cluster had South Asian- and African-related ancestry. I find that the African ancestry 

present in all populations is from a source closest to Bantu-speakers from Kenya, with the 

exception of the Saudi population who also show ancestry from Nilo-Saharan-speaking 

Ethiopians. To date the admixture events I subsequently ran fastGLOBETROTTER, including 

only as surrogates populations that contributed >1% ancestry in the previous SOURCEFIND 

step (Figure 3.5). The only population where we don’t find evidence for any recent admixture is 

the Iraqi-Kurdish population. Generally, the admixture dates presented by fastGLOBETROTTER 

are similar to those produced by ALDER/MALDER. 

 

3.6 Modern population structure in the context of ancient populations 
 
To further understand the population history of the region, especially the formation of modern-

day populations, I also analyzed our dataset in the context of published ancient human 

populations from the region (Figure 3.6). A PCA including regional ancient groups shows that 

modern Middle Eastern samples form a cline positioned among ancient Levantine hunter-

gatherers (Natufians) and Neolithic Levantines (Levant_N), Bronze Age Europeans, ancient 

Iranians (Iran Neolithic and Chalcolithic) and Neolithic Anatolians (Anatolia_N). This suggests 

that the modern populations can be potentially modelled using these ancient groups. 
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Figure 3.5: Population structure and admixture using haplotype-based methods. Left: fineSTRUCTURE tree of 
the modern-day Middle East population with population clusters highlighted. Right: Co-ancestry curves showing 
relative probability of jointly copying two chunks from donors at varying genetic distances. The curves fit an 
exponential decay (1-date green line, 2-date red line). The positive slope implies that these donors (illustrated at the 
top of each figure) represent admixing sources to the target (at the bottom of each figure). The estimated time of 
admixture is presented on the left of each figure, in generations (g). 
 
 
The positioning of populations on this cline can also provide some insights into their ancestry: at 

the top of the cline, Arabian populations and BedouinB are located near Natufians and 

Levant_N. At the bottom of the cline lie the Iraqi-Arabs, Iraqi-Kurds and Assyrians, positioned 
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closer to ancient Iranians and Bronze Age Armenians. Positioned in the Middle of the cline are 

modern-day Levantines, closer to Bronze Age Europeans, and differentiated into two groups: 

the first composed of Palestinians, Jordanians and BedouinA, higher up the cline, while the 

second contains the Druze, Lebanese and Syrians lower on the cline. 

 
We subsequently ran a temporally-aware model-based clustering on the same dataset above 

accounting for the time of death of the ancient samples (Joseph et al., 2019, Figure 3.6 of this 

thesis). This approach may offer a solution to the high drift of modern populations which may 

have affected the standard ADMIXTURE analysis. Indeed, the results of this method provide 

more insights than the standard run and show that modern-day Middle Eastern populations can 

be modelled as deriving ancestry from Anatolian_N, Natufian/Levant_N, Iran_N and Steppe 

sources, similar to the PCA analysis. Differences between populations are apparent: the 

Arabian.core populations have very little Anatolia_N ancestry which is abundant in modern-day 

Levantines. This is an intriguing result, as the Levant_N population is known to share around a 

third of its ancestry with Anatolia_N, in comparison to the preceding Natufian hunter-gatherer 

groups (Lazaridis et al., 2016). Consequently, a hypothesized Neolithic expansion from the 

Levant southwards into Arabia should have also introduced Anatolia_N ancestry in these 

populations, but that does not appear to be the case. The observed large difference in 

Anatolian_N ancestry could also be magnified due to subsequent post-Bronze Age events 

which introduced Eastern Hunter Gatherer (EHG) ancestry to the Levant (Haber et al., 2020). 

Also observable in our results is that Iraqi-Arabs and Iraqi-Kurds have noticeably higher 

proportions of Iran_N ancestry than Levantines and other regional populations. The Iraqi-Kurds 

in particular have higher steppe-related ancestry than the other populations examined. This 

appears to be in agreement with the language spoken by the population, as in contrast to the 

Semitic-speaking regional populations, Iraqi-Kurds speak an Indo-European language proposed 

to have been introduced into the region by the movement and admixture of pastoralists from the 

Eurasian steppe (Haak et al., 2015). 
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Figure 3.6: Population structure of modern samples in the context of ancient groups. Left: PCA of ancient and 

modern populations. Principal components were calculated from present-day populations and ancient samples were 
subsequently projected (all modern non-Middle Easterners shown as grey points). The Middle Eastern cluster is also 

magnified. Right: Temporally-aware model-based clustering using Dystruct (Joseph et al., 2019) based on ∼80,000 

transversions and 9 time points. K=13 is presented, when the Natufian and Anatolia_N components split. 

 

 

Informed by the previous results, we extended the admixture analysis by explicitly modelling 

modern populations as a mixture of a set of source populations using qpAdm (Patterson et al., 

2012; Haak et al., 2015). We find that the majority of contemporary Middle Eastern populations 

can be successfully modelled as deriving their ancestry from four ancient populations (Table 

3.2): Levant_N, Iran_N, EHG, and a ~4,500 year old East African who lacks recent Eurasian 

admixture (Mota; Gallego Llorente et al., 2015). The results illustrate a contrast between the 

Levant/Iraq and Arabia: Levantines have higher EHG ancestry (~12-14%), almost double 

amount inferred in Arabians, which appears even higher in Iraqi Kurds (16%). Conversely, 

Arabians have higher Levant_N ancestry (~50%), which is much lower in Iraqis, especially Iraqi 

Kurds (23%). Higher African ancestry is also found in Arabian populations, although when 
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Test
P value for 

rank=3 Levant_N SE Iran_N SE EHG SE Mota SE
P value for 

rank=3 Natufian SE Iran_N SE EHG SE Mota SE

Assyrian.HO 2.78E-03 0.32 0.02 0.61 0.02 0.10 0.01 -0.02 0.01 8.00E-06 0.38 0.02 0.56 0.02 0.09 0.01 -0.03 0.01
BedouinA.HO 4.53E-01 0.42 0.02 0.39 0.02 0.09 0.01 0.09 0.01 5.70E-04 0.48 0.02 0.36 0.02 0.09 0.01 0.08 0.01
BedouinB.HO 7.94E-01 0.54 0.02 0.35 0.02 0.06 0.02 0.05 0.01 2.47E-02 0.56 0.02 0.32 0.02 0.07 0.01 0.04 0.01
Druze.HO 1.86E-02 0.39 0.02 0.49 0.02 0.13 0.01 0.00 0.01 5.00E-06 0.45 0.02 0.44 0.02 0.12 0.01 -0.01 0.01

Egyptian.HO 3.10E-01 0.45 0.02 0.32 0.02 0.08 0.01 0.15 0.01 1.18E-03 0.50 0.02 0.30 0.02 0.08 0.01 0.12 0.01
Iraqi_Arab 1.59E-01 0.31 0.02 0.54 0.02 0.12 0.01 0.03 0.01 4.15E-02 0.38 0.02 0.49 0.02 0.11 0.01 0.02 0.01

Jew_Iraqi.HO 1.21E-02 0.35 0.02 0.55 0.02 0.11 0.02 -0.01 0.01 1.35E-03 0.41 0.02 0.51 0.02 0.10 0.01 -0.02 0.01
Jordanian.HO 3.68E-01 0.38 0.02 0.43 0.02 0.13 0.01 0.06 0.01 4.09E-03 0.46 0.02 0.38 0.02 0.11 0.01 0.05 0.01
Jordanian 1.04E-01 0.43 0.03 0.44 0.03 0.11 0.02 0.02 0.01 5.41E-03 0.48 0.02 0.40 0.03 0.11 0.02 0.01 0.01
Iraqi_Kurd 6.97E-02 0.23 0.02 0.62 0.02 0.16 0.02 -0.01 0.01 2.01E-02 0.31 0.02 0.56 0.03 0.15 0.02 -0.01 0.01

Lebanese_Christian.HO 2.01E-02 0.42 0.02 0.46 0.02 0.13 0.01 -0.01 0.01 9.00E-06 0.49 0.02 0.41 0.02 0.12 0.01 -0.02 0.01
Lebanese_Muslim.HO 1.23E-01 0.39 0.02 0.48 0.02 0.11 0.01 0.02 0.01 2.95E-04 0.45 0.02 0.44 0.02 0.11 0.01 0.01 0.01

Omani 2.95E-01 0.41 0.03 0.41 0.03 0.09 0.02 0.10 0.01 4.20E-02 0.46 0.02 0.37 0.03 0.09 0.02 0.09 0.01
Palestinian.HO 5.48E-02 0.40 0.02 0.43 0.02 0.11 0.01 0.06 0.01 2.02E-04 0.47 0.02 0.39 0.02 0.10 0.01 0.04 0.01
Saudi.core 1.09E-01 0.49 0.02 0.42 0.02 0.06 0.01 0.03 0.01 9.08E-02 0.52 0.02 0.39 0.02 0.07 0.01 0.02 0.01

Saudi 3.07E-01 0.50 0.02 0.32 0.02 0.05 0.01 0.14 0.01 1.25E-02 0.50 0.02 0.31 0.02 0.07 0.01 0.12 0.01
Saudi.HO 2.83E-01 0.50 0.02 0.40 0.02 0.07 0.02 0.04 0.01 1.42E-01 0.51 0.02 0.38 0.02 0.09 0.01 0.03 0.01
Syrian 1.81E-01 0.34 0.02 0.50 0.02 0.14 0.01 0.02 0.01 1.12E-02 0.40 0.02 0.46 0.02 0.13 0.01 0.01 0.01

Syrian.HO 6.62E-02 0.38 0.02 0.45 0.02 0.12 0.01 0.05 0.01 9.50E-05 0.44 0.02 0.41 0.02 0.11 0.01 0.04 0.01
Emirati.core 2.02E-02 0.49 0.02 0.43 0.02 0.06 0.01 0.03 0.01 2.30E-01 0.53 0.02 0.39 0.02 0.07 0.01 0.02 0.01

Emirati 2.00E-06 0.29 0.02 0.52 0.02 0.09 0.01 0.10 0.00 1.11E-03 0.34 0.02 0.48 0.02 0.09 0.01 0.09 0.00
Yemeni 3.69E-02 0.52 0.02 0.35 0.02 0.04 0.01 0.09 0.01 3.09E-02 0.55 0.02 0.32 0.02 0.06 0.01 0.08 0.01

Yemeni.HO 3.77E-02 0.38 0.02 0.40 0.02 0.06 0.01 0.16 0.01 9.76E-02 0.42 0.02 0.37 0.02 0.07 0.01 0.14 0.01

Ancestry proportions Ancestry proportions

limiting to the ‘core’ populations it appears similar to Levantines (~3%). When substituting 

Levant_N with Natufian in the model and find that only Arabians can be successfully modelled, 

illustrating they can derive their local ancestry from Natufian-like hunter-gatherers without any 

input from Levant_N. Interestingly, none of the contemporary Levantines can be successfully 

modelled using Natufians instead of Levant_N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.2: Modelling present-day Middle Easterners as deriving their ancestry from four ancient populations. 
Using qpAdm we set seven outgroup: Ust’-Ishim, Kostenki14, WHG, CHG, Natufian (or Levant_N), Papuan, and 
Mbuti. SE = standard error. P value > 0.05 (bold) indicates the model is not rejected. ".HO" refers to samples from the 

Human Origins dataset. ‘.core’ represents the curated samples, samples without ‘.core’ represent the general 

population. 

 

Another ancestry that is found in all Middle Eastern populations is from the Iranian Neolithic 

source. Previous ancient DNA studies have shown that this ancestry was not present in the 

region during the Neolithic period, but appears in the Bronze Age (Lazaridis et al., 2016). This 

source was shown to replace around 50% of the ancestry in the region, and we confirm this in 

our analysis (Table 3.2). Such a large turnover of ancestry motivated us to explore the time of 

its spread. Using admixture-induced LD we tested whether or not this source has entered the 

region at a similar time in different populations. The results indicate that the admixture occurred 

following a generally North to South cline (Figure 3.7). The oldest admixture dates appear in the 

Levant (3,900-5,600 years ago (ya)), followed by Egypt (2,900-4,700 ya), East Africa (2,200-
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3,300 ya) and Arabia (2,000-3,800 ya). Intriguingly, these admixture dates overlap with the 

dates suggested for the Bronze Age origin and spread of the Semitic languages estimated from 

linguistic data (Kitchen et al., 2009; Figure 3.7 of this thesis). The Y-chromosome haplogroup J1 

is present at the highest frequency in the Middle East globally, especially Arabia, and its origin 

has been hypothesized to be from the Zagros/Taurus mountain region, suggesting a population 

movement southwards (Chiaroni et al., 2010; Lazaridis et al., 2016). In addition, the published 

ancient Iran_N samples Y-chromosomes are mostly J1. As the Y-chromosome can provide 

independent, although from a single male-specific lineage, evidence towards understanding the 

history of the region, we created a Y-chromosome phylogeny of our samples with global 

populations (1333 samples). The phylogeny demonstrates that the majority of the J1 

chromosomes in the Middle East coalesce around ~5.6 [95% CI, 4.8-6.5] kya, in agreement with 

a potential Bronze Age expansion (Figure 3.8). However, rarer earlier diverged lineages are 

also present coalescing ~17 kya. The Y chromosome haplogroup found in Natufians, E1b1b, is 

also common in our dataset and the majority of lineages coalesce ~8.3 [7-9.7] kya, though we 

also find a rare deeply divergent E1b1b Y-chromosome coalescing ~39 kya. 

 

We subsequently attempted to create graph models of admixture history informed by the results 

above and by previous literature. We used two modern-day populations from the region to 

simplify the models, Lebanese Christians as a representative of the Levant and the Emirati.core 

of Arabia. Of the models we tested, one seems to have a good fit to the data (worst f-statistics Z 

< |3|). The best fit (worst f-statistic Z = -2.9, Figure 3.9), shows Lebanese forming from the 

Bronze Age Sidon (89%) population, with an additional contribution of Steppe-like ancestry 

(11%), consistent with the literature (Haber et al., 2017). While Emirati.core, instead, form from 

a Natufian-like (25%) and Sidon-like population (75%). Other models explored, with Emiratis 

descending from Iran_N and Natufians, or from Levant_N and Iran_N show poorer fits (worst f-

statistic Z = -3.7 and -7.1, respectively)  
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Figure 3.7: Correlation between the spread of Semitic languages and Iranian-like ancestry. Dates in thousands 

of years ago, (red) are based on our admixture analysis and Semitic languages dispersal dates were estimated by 
Kitchen et al. 2009 from lexical data (blue). Kitchen et al. estimated an Early Bronze Age origin for Semitic ~5.7 kya in 

the Levant. Admixture also appears in non-Semitic, Cushitic-speaking populations such as the Somalis.   

Kitchen et al. suggested that Semitic languages would have spread into East Africa with little gene flow, as 
Ethiosemitic-speaking populations share similar proportions of non-African ancestry and are genetically similar to 

Cushitic-speaking populations (Pagani et al., 2012). They proposed that the current distribution of Ethiosemitic 

languages reflect a language diffusion process through African populations, rather than gene flow. 
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Figure 3.8: Y-chromosome phylogeny. We merged 
our dataset (samples in Blue) with Haber et al., 2019 
(samples in Red) and Hallast et al., 2020 (samples in 
Green). We display common haplogroups found in our 
dataset (Left) J1 and (Right) E1b. Numbers at each 
node represent coalescence date in thousand years with 
95% confidence intervals in brackets. 
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3.7 Effective population size and separation history  
 

A major advantage of our dataset is that all samples are physically-phased using linked-read 

sequencing. This large number of accurately phased haplotypes can be exploited using 

coalescent-based methods to study population history from very old periods (>250 kya) to very 

recent periods (1 kya). The resolution at recent periods is of particular interest since they 

overlap historical and archeologically-documented events. Applying a new method, Relate 

(Speidel et al., 2019), that generates genome-wide genealogies from the supplied haplotypes 

shows that Middle Easterners display a significant decrease in population size around the out-

of-Africa event ~50-70 kya, typical of non-African populations (Figure 3.10). A recovery from this 

bottleneck follows a similar trajectory for all populations until around 15-20 kya, when Arabian 

and Levantine populations begin to diverge in size. All Arabian population maintain similar sizes, 

while Levantine and Iraqi groups continue to show a substantial population expansion. This 

contrast is intriguing as it begins after the end of the Last Glacial Maximum and is prominent 

during the Neolithic period, when agriculture developed in the region and resulted in settled 

societies supporting much larger populations. After this period, and around the beginning of the 

archeologically-documented aridification of Arabia ~6ya (Petraglia et al., 2020), the Arabian 

populations appear to experience a bottleneck while Levantine groups continue their expansion. 

Around the 4.2ky aridification event, Levantine populations begin to plateau in size and 

subsequently decrease. Among the Arabian populations, the bottleneck in the Emirati group is 

particularly prominent, with an inferred effective population size of around ~5k, substantially 

smaller than Levantines during the same period (> 100k). 
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Figure 3.9: A possible model for population formation in the 
Middle East. Populations in ellipses are sampled, while those in 
boxes are hypothetical. Worst f-statistics: Z score = -2.9. 
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I was concerned about the potential effect of recent consanguinity on the estimated population 

size history, especially at the recent bottlenecks associated with climatic events. I calculated 

ROHs for each sample and found that some Arabian samples in particular have large ROHs, 

which is consistent with recent consanguinity. When I first ran the demographic history analysis 

I did not take into account such factors, and found that some of the curated samples chosen for 

this analysis had large ROHs. Using a threshold of 50 Mb of total ROHs of at least 1 Mb in size, 

I repeated the analysis three times. The first run I included some samples with >50Mb total 

ROH, the second all samples had < 50Mb, the third I only included one haplotype per sample. 

The latter test, even in highly consanguineous individuals, will remove the effect of recent 

consanguinity. Some differences are detected in the three runs (Figure 3.10): including samples 

with >50Mb ROHs leads to a more pronounced reduction in the past 4ky, while a modest 

recovery is seen in the last 1ky. Samples with <50 Mb ROHs show a similar history, but the 

recent bottleneck is smaller in magnitude while a stronger recovery is identified. The single 

haplotype analysis shows the recent recovery starts at 2 kya and is much stronger than the 

previous runs. The second bottleneck is observed in all three runs, suggesting it is not an 

artefact of recent consanguinity. 

 

I subsequently analysed the separation history of populations within our dataset among 

themselves and in comparison to other global populations (Figure 3.11). Accurate phasing is 

crucial for this type of analysis, as demonstrated by a previous study that suggested that 

contemporary Papuans have traces of an earlier expansion out of Africa (Pagani et al., 2016), 

while our HGDP SNV study, which repeated this analysis using physically-phased samples, did 

not replicate this finding and suggested that it was due to an artefact of statistical phasing 

(Bergstrom et al., 2020). Physical-phasing is also crucial when attempting to explore population 

separation history at very recent times as rare variants become more important but are less 

accurately phased using statistical approaches, and are also unlikely to be present in reference 

panels. I first explored whether contemporary Middle Eastern populations have any detectable 

ancestry from an early expansion out of Africa by comparing the separation times against 

populations with physical-phasing from the HGDP (Bergstrom et al., 2020). I used a relative 

cross-coalescent rate (rCCR) of 0.5 as an estimate of split time and find that all populations 

tested, Levantines, Arabians, Iraqis, Sardinians and Han Chinese, share the same separation 

history, and additionally the same gradual and complicated pattern of separation from Mbuti,  

around 120 kya. I subsequently compared the Middle Eastern populations with Sardinians and 

find that they all seem to separate ~20 kya, with Arabians exhibiting a slightly earlier divergence  



 82 

Iraqi_Kurd
Iraqi_Arab

Syrian

Emirati

Yemeni
Saudi

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05
Years ago

Ef
fe

ct
ive

 P
op

ul
at

io
n 

Si
ze

 (N
e)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.10: Effective population size histories for Middle Eastern populations. Top: Estimates using a single 
haplotype per sample. Bottom: Testing for the effect of recent consanguinity on population size histories in Arabian 
groups.  
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Figure 3.11: Separation history analysis. Top: Coalescent-based separation history between Mbuti, Sardinians 
and Han (indicated at the top of each panel) and each Middle Eastern group (identified within each panel). All Middle 
Eastern populations show a similar split time with each of these global populations. Bottom: Separation history within 
the Middle East (population indicated at the top of each panel, and within each panel). Note the different X-axis 
scales between the top and bottom sections. 
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time in contrast to Levantines. However in contrast to the gradual separation curves found in the 

comparison to Mbuti, Sardinians show an almost clean split from Middle Easterners. An 

important result in this analysis is all lineages within Arabia and the Levant, in addition to all 

lineages within Middle Easterners and Sardinians, coalesce within 40 kya (rCCR = 1). This 

indicates that contemporary populations do not have any detectable traces of earlier expansions 

out of Africa and descend from the same population that expanded out of the continent ~50-60 

kya. 

 

I subsequently compared the split times of the populations within the Middle East. The oldest 

separation times were between the Levant/Iraq and Arabia (Figure 3.11). The population 

appearing to diverge the first from Arabians was the Iraqi-Kurdish population. The Emiratis split 

from Iraqi-Kurds ~10 kya, and at a more recent time to Syrians, Jordanians and Iraqi Arabs (~7 

kya). The Saudi separation curves from the same populations indicate a more recent 

divergence, 5-7 kya, while Yemenis appear as an intermediate between the Saudi and Emirati 

curves. These split times suggest that Arabian and Levantine populations separated before the 

Bronze Age, indicating any Bronze age expansion into Arabia from the north, if it indeed 

occurred, did not result in a complete replacement of local ancestry. Within Arabia, Yemenis 

appear to split from Emiratis ~3 kya, while Saudis appear to split more recently from both 

populations (<2 kya). Within the Levant and Iraq, all populations have separated from each 

other within the past 3-4ky. The separation curves of populations within the region appear 

gradual, suggesting possible ongoing gene flow after separation rather than clean splits. The 

separation curves also reflect the admixture histories of these populations. 

 

3.8 Archaic introgression and deep ancestry in the Middle East 
 
Previous studies have reported that Middle Eastern populations have lower Neanderthal 

ancestry in comparison to European and East Asian populations (Rodriguez-Flores et al., 2016; 

Bergström et al., 2020). However the interpretation of this is result is complicated by recent 

African admixture which will decrease Neanderthal ancestry. Moreover, many analyses require 

the use of an outgroup, in which African populations are commonly used. However, if the 

outgroup itself contains even small amounts of Neanderthal ancestry, for example due to back-

to-Africa migrations introducing Eurasian ancestry, this will introduce bias into the analysis 

(Chen et al., 2020). To explore the landscape of Neanderthal introgression on our dataset I 

relied on different analyses: first, I exploited the accurate phasing and compared the rCCR of 
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our samples with the high coverage Vindija Neanderthal genome (Prufer et al., 2017). The 

rCCR decreases to < 0.01 at round 200 kya for all populations we tested, including Africans 

(Figure 3.12A). However, in more recent time segments, a small increase in rCCR reaching 

0.02-0.03 is only found in Eurasian groups, including Middle Easterners. The pattern reaches its 

peak ~50-60 kya, in agreement with the proposed time of introgression event. 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vi
nd

ija
 N

ea
nd

er
th

al
 

Figure 3.12: Archaic introgression and deep 
structure in the Middle East. A) rCCR of Middle 
Eastern groups, Mbuti and Han against the 
Vindija Neanderthal. Note the y-axis range. B) 
Distribution of total length of Neanderthal 
sequences per sample in each population (in 
megabases). Horizontal lines depict 25%, 50%, 
and 75% quantiles. Colors reflect regional 
grouping. C). Neanderthal ancestry 
f4(Vindija,Chimp;X,Mbuti) is negatively correlated 
with a deep ancestry f4(Kostenki14,X;Ust'-
Ishim,Chimp) in the Middle East. Two clines 
explain the depletion of Neanderthal Ancestry in 
Middle Easterners; one formed by basal 
Eurasian ancestry and the other is African 
ancestry. Regression lines plotted using ancient 
Eurasians (blue) and ancient Africans (red). 
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I subsequently used a recently-developed probabilistic identity-by-descent-based method 

(IBDmix), which directly compared a populations with a high-coverage Neanderthal genome to 

identify introgressed haplotypes (Chen et al., 2020). Running this method on a merged dataset 

composed of our samples and the HGDP dataset identified segments totalling ~1.27 Gb 

suggested to be of Neanderthal origin. The amount of Neanderthal segments that were private 

to our dataset and not found non-Middle Eastern Eurasians was 25Mb, suggesting that most of 

the Neanderthal segments in the Middle East are shared outside of the region. I subsequently 

compared the total number of Neanderthal bases in each individual, and found on average, 

lower values in Arabian populations in comparison to other Eurasian groups, including 

Levantines. In this analysis I excluded the Yemeni population as they have high African 

ancestry and focused on the Emirati.core and Saudi.core populations which have  

≤ 3% African admixture (Four different methods are in agreement with this estimated proportion: 

ADMIXTURE, qpAdm, qpGraph and fastGLOBETROTTER). The Sardinian and Druze 

populations have similar amounts of Neanderthal admixture, ~56.4 Mb per individual on 

average (Figure 3.12B). Arabia in contrast, Saudi.core and Emirati.core have 52.1 and 52.7 Mb 

of Neanderthal segments respectively. This value is ~8% lower than Sardinians and Druze and 

~20% less than Han Chinese. The estimated African ancestry in the Arabian.core populations 

cannot explain the depletion of Neanderthal ancestry. A basal Eurasian population with low-to-

no Neanderthal ancestry has been proposed to have existed and contributed different 

proportions to ancient and modern Eurasian populations, with the highest proportion in Neolithic 

Iranians and Natufians (~50%; Lazaridis et al., 2016). Since we have shown that Arabian 

populations have higher Natufian-related ancestry than other populations in the region, this 

indicates that this is the likely reason they have lower Neanderthal ancestry relative to other 

populations, including Levantines. To further explore this while controlling for African ancestry, 

we find a significantly negative correlation (Pearson’s r = -0.81, P = 2.7x10-6) when plotting the 

statistics f4(Vindija,Chimp,X,Mbuti) and f4(Kostenski14,X,Ust-Ishim,Chimp). The former 

estimates the amount of allele sharing with the Vindija Neanderthal, the latter the amount of 

‘deep ancestry’ relative to Ust-Ishim. In other words, populations with more Vindija-related drift, 

share less drift with Ust'-Ishim and thus derive some ancestry from a pre-Ust'Ishim ("Basal 

Eurasian") ancestry. Two clines are apparent in Figure 3.12C which thus explain the depletion 

of Neanderthal ancestry, one due to recent African-admixture, and the other to Basal Eurasian 

ancestry present in ancient Eurasians. Modern-day Middle Easterners seem to be affected by 

both clines since they have both ancestries. 
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To complement this analysis without direct comparison to the Neanderthal genome, I used 

another method, Sprime, which identifies divergent segments not present in an outgroup. 

Instead of including only African groups in the outgroup, I included all non-Middle Eastern 

HGDP populations with the aim of identifying divergent segments not present, or found at very 

low frequency, outside of the region. These diverged segments do not have to be of 

Neanderthal origin, as it could identify segments introduced from another hypothetical diverged 

hominin that admixed with the Middle Easterners. I compared the results of Sprime with 

published Vindija Neanderthal and Altai Denisovan high-coverage genomes, and find that most 

of the identified segments are Neanderthal, but a few match Denisova. The latter are perhaps 

also likely to be Neanderthal, but absent from the Vindija genome to due to polymorphism 

between Vindija and the admixing Neanderthals. This analysis identified two relatively large 

segments that are common in Arabia, but very rare elsewhere. The first is a 496kb segment 

located on chromosome 13 which is present at ~20% frequency in Saudis but found at 0.02% 

globally (1000GP). This segment overlaps GPC5, a gene expressed in brain tissues. The 

second is a 499kb segment on chromosome 4 present at ~20% frequency in the Emirati.core 

groups and less than 0.05% globally, which overlaps two genes: CFAP299 which is expressed 

in the testes and plays a role in spermatogenesis, and BMP3, a cytokine which involved in 

cartilage and bone development. I searched for amino acid substitutions within these segments, 

but none were identified within canonical transcripts, with variants mostly in introns. As these 

segments show varied frequency within Arabian populations, which have diverged recently as 

shown in our demographic analysis, it is likely that their current appreciable frequency has 

increased recently due to genetic drift.  

 

3.9 Selection in the Middle East 
 

The current arid climate in Arabia and the long-term nomadic-like lifestyle of many of its 

populations may have exerted selective pressure for adaptations. The further understand this, I 

searched the genome-wide genealogies for lineages that carry mutations which have spread 

unusually quickly (Speidel et al., 2019). I used P < 5×10−8  as a conservative genome-wide 

significance threshold of evidence of selection. In agreement with two previous candidate-based 

resequencing studies (Imtiaz et al., 2007; Enattah et al., 2008) I find evidence of positive 

selection in the LCT/MCM6 locus (Figure 3.13A). It is known from these two studies that 

Arabian populations harbour two correlated variants (rs41380347 and rs55660827), distinct 

from the known European variant (rs4988235), which are associated with lactase persistence. I 
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estimated the strength of selection by measuring how fast the lineage spread (Stern et al., 

2019), and the Arabian LCT/MCM6 variants show evidence of strong selection (s = 0.011, 

logLR = 13.27). Interestingly, this selection coefficient is similar to, but slightly weaker than, the 

variant identified in Europeans (s = 0.016-0.018; Mathieson and Mathieson, 2018; Stern et al., 

2019). Within our dataset, the haplotype appears at the highest frequency in the core Arabian 

groups: ~50% in Emiratis and Saudis, and at much lower frequency in the Levant and Iraq (4%). 

Notably, it is not present in any Eurasian and African population in the 1000GP, but has been 

reported at low frequency in some East African groups (Tishkoff et al., 2007). To explore the 

history of this variant further, I checked if it is present in any published ancient samples, 

including ancient Iranians and Levantine populations. As many studies use a capture-based 

approach that enriches for a set of variants (e.g. 1240K SNVs) in which this SNV is not present, 

I was limited to whole-genome-sequenced ancient datasets; however, none of the samples 

examined carry the variant. This appears consistent with a recent origin of the haplotype within 

the region, with a subsequent increased in frequency due to positive selection. This was 

confirmed after reconstructing the allele frequency trajectory of this variant using coalescent-

based analysis (Figure 3.13A), as it shows a striking increase in frequency between around 6-9 

kya and the present day. Notably, this overlaps the transition from a hunter-gatherer to a herder-

gatherer lifestyle in Arabia, suggesting a change in lifestyle created a selective pressure for 

which this variant was a target. It has been proposed that the domestication of dromedary camel 

and the consumption of its milk are implicated with selection on this variant (Enattah et al., 

2008).  

 

We find another significant locus showing strong selection at rs35241117 (Figure 3.13B, s = 

0.007, logLR = 8.1, which lies downstream of the gene TNKS which encodes the enzyme 

tankyrase. Multiple microRNA genes are also found in the region, including MIR-124 and MIR-

597. The variant is present at the highest global frequency in Saudis and Yemenis (~60%), and 

is associated with a many immunological, metabolic, and skeletal traits, including hypertension, 

glomerular filtration rate, diuretics and BMI (Canela-Xandri et al., 2018; Watanabe et al., 2019). 
This variant lies outside a haplotype that has been recently proposed to be under selection in 

Kuwaitis and Saudis (Eaaswarkhanth et al., 2020). There is moderate LD between the variant 

and the haplotype (r2 = 0.51). Although we do detect signals of selection on variants within this 

haplotype as well, after fine-mapping rs35241117 shows the highest evidence of selection. As 

the previous paper used a dataset genotyped on array data, it is likely that their signal is actually 

linked to rs35241117, so they underestimate the strength of selection by almost a half based on 
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A B rs41380347 (s = 0.011, logLR = 13.3) rs35241117 (s = 0.007, logLR = 8.1) 

our analysis. As many of the traits associated with this variant in GWAS appear to affect kidney-

related functions, it is tempting to speculate that it is linked to adaptation to the hyper-arid 

climate of Arabia. However, further functional work is required to support this hypothesis.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Another variant, rs11762534, located within LMTK2 shows evidence of moderate selection 

(s=0.005; logLR = 16.49; Figure 3.13C) and has been reported to be associated with malignant 

neoplasm of prostate and blood cell percentages (Canela-Xandri et al., 2018; Watanabe et al., 

2019). In addition, this variant is an eQTL for many genes (The GTEx Consortium, 2020). 

LMTK2 encodes a kinase that is implicated in multiple cellular processes including growth factor 

signalling and apoptosis, and appears to be necessary for spermatogenesis in mice (Kawa et 

al., 2006; Cruz et al., 2019). This variant shows high stratification globally: it is almost absent in 

Africans and East Asians, at low frequency in South Asians (< 10%), and is present at 45% in 

Europeans (1000GP). However it appears at higher frequency, 66%, in the Arabian populations 

C rs11762534 (s =0.005, logLR = 16.5) 
 Figure 3.13: Selection in Arabia. A) Historical allele 

trajectory of rs41380347 which is associated with 
lactase persistence and almost private to the Middle 
East. s = selection coefficient. B) Frequency trajectory of 
rs35241117 which is present at the highest frequency 
globally in Arabia and is associated with multiple traits 
including glomerular filtration rate, bone mineral density, 
BMI, standing height and hypertension. C) Frequency 
trajectory of rs11762534 which is associated with 
lymphocyte and neutrophil percentages and prostate 
neoplasm malignancy. 
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Emirati Yemeni 

rs1734235 

rs2814778 

and notably the variant also shows an even higher frequency in BedouinB (81%), while 

appearing less common in Levantines (Druze and Palestinians, both ~55%).  

 
Genome-wide genealogies are powerful in identifying variants under positive selection as they 

represent the data in a rich format, an ARG, in contrast to other selection tests that use 

summary statistics. However, a limitation of the method used here is it tests for selection only on 

derived alleles, and in addition it is not clear if it can identify post-admixture selection. To further 

explore this, I compared Arabians and Levantines and looked for strongly differentiated variants 

(Figure 3.14). The most extreme PBS value in Yemenis is rs2814778, which results in the Duffy-

null phenotype and is almost confined to African populations (1000GP). In Yemenis, however, 

this variant appears at high frequency (74%), and appears to decrease higher up the peninsula 

and in the Levant (59% in Saudis, 6% in Iraqi-Arabs). I ran a local ancestry deconvolution 

algorithm to distinguish African from non-African segments in our dataset, and this locus shows 

the highest enrichment of African ancestry across the genome (Maples et al., 2013), not only in 

Yemenis, but also in other Arabian populations. As the proportion of African ancestry in 

Yemenis and Saudis appears to be around 9% and 3% respectively, this over-representation of 

African ancestry at this locus is indicative of positive selection after African admixture. The 

derived allele is a well-known variant that has been suggested to be protective of P. vivax 

infection (Miller et al., 1976), historically present in Arabia, particularly in the South West 

(Yemen) and West of Arabia; moreover, the historical geographic range of P. vivax seems to 

correlate with the frequency of rs2814778 in the Middle East. 

 

 

 

 

 

 

 

 

 
Figure 3.14: PBS comparing Arabians with Iraqi_Arabs and using Syrians as an outgroup. Red line illustrates 
99.999% quantile. Note the different y-axis scales between the two figures. Left: In Emiratis (also in Saudis), we find 
a strong signal of differentiation at a 97kb haplotype on chromosome 7. Variants on this haplotype (rs1734235) 
almost reaches fixation (97% and 85%, in Emiratis and Saudis respectively) and are associated with increased 
expression of the lincRNA (AC003088.1). Right: rs2814778 is found at high frequencies in Yemenis and results in 
the Duffy-null genotype. 
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As genome-wide genealogies have the potential of identifying relatively weak selection, I 

subsequently searched for evidence of polygenic adaptation in Arabian populations. In contrast 

to selective sweeps, where strong selection on a variant results in a large change in allele 

frequency over a short period, polygenic selection is thought to occur through a more subtle 

allele frequency shift across a large number of variants. Using summary statistics calculated 

from Biobank-based GWAS, and genome-wide genealogies of Arabian populations generated 

by Relate, I tested for transient directional selection across 20 polygenic traits specifically over 

the past 2,000 years (Stern et al., 2021). Most traits show no, or inconclusive, evidence of 

recent polygenic selection, including skin colour, height and BMI (Figure 3.15). However, I do 

find a few traits that show significant evidence of polygenic selection, with selection for higher 

years of education (EduYears) showing a consistent signal across all three Arabian groups (P = 

0.0002 in Saudis). This result has also been found in the British populations (Stern et al., 2021); 

however, this signal becomes much reduced when conditioning on other traits, which suggests 

that polygenic selection is not directly acting on the phenotype (EduYears), but indirectly 

through a correlated trait. Contrasting with findings in the British population (Stern et al., 2021), I 

do not find any evidence of selection on traits such as hair colour, sunburn or tanning ability. 

Across the three Arabian populations, the direction of selection appears similar on most traits, 

potentially due to shared ancestry; however, it should be noted that the current varied 

environment across the region may result in different recent selective pressures on the 

populations. In the Emiratis in particular, I found a significant signal of selection on variants that 

increase type 2 diabetes (P = 0.004). This is an interesting result as the prevalence of type 2 

diabetes in Emiratis is among the highest globally, and has been proposed, in part, as a 

consequence of a strong recent shift from a herder-gatherer and fishing-based mode of 

sustenance to a sedentary lifestyle (Malik et al., 2005). In the same population we also find 

nominal evidence of polygenic selection on variants decreasing the levels of Apoliprotein B (P = 

0.01) and increase the levels of low-density lipoproteins (P = 0.01); however, after correcting for 

multiple testing they appear only suggestive (P adj= 0.06 at 5% FDR). 

 

3.10 Discussion 
 
In this chapter I presented the analysis of a high-coverage open-access dataset from the Middle 

East, a region particularly understudied by global sequencing projects. This is the first human 

dataset where all samples are physically-phased using linked-read sequencing, which allowed 

the reconstruction of accurate haplotypes for analysis. I find that millions of variants are 
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identified within this dataset that are not catalogued in previous projects, with an appreciable 

number appearing common in the population. Notably, most of the common variants are located 

in regions that are inaccessible to short-read studies, highlighting the limitations of such 

technology, as a significant proportion of the human genome remains inaccessible for high 

confidence analysis (~25%; Bergstrom et al., 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I exploited the large number of experimentally-phased genomes to reconstruct the demographic 

history of Middle Eastern populations from relatively old periods (>250 kya), to up to the last 

thousand years. I found no evidence that contemporary populations have ancestry from 

archeologically-documented early expansions out of Africa (>60 kya) in the region, suggesting 

that, within the limits of resolution of the method (Schiffels and Durbin, 2014; Bergstrom et al., 

2020), these populations did not contribute genetically to modern groups. This result supports 

the growing consensus that present-day non-African populations descend from a single 

Figure 3.15: Polygenic 
selection in Arabia. Testing for 
recent polygenic selection, over 
the past 2000 years, on 20 traits 
within Arabian populations. 
Asterisks indicate the test is 
significant after correcting for 
multiple testing (FDR = 5%). 
TRIGL: Triglycerides; T2D: 
Type2 Diabetes; SYS: Systemic 
Blood Pressure; LDL: Low-
density lipoproteins; HTN: 
Hypertension; HIP_CIRC: Hip 
circumference; HDL: High-
density lipoproteins; GLYC_H: 
Glycosylated haemoglobin; 
FVC: Forced Vital Capacity; 
EDU_YEARS: Years of 
Education; DIAS: Diastolic blood 
pressure; BMI: Body Mass 
Index; BMD: Bone Mass 
Density; APOB: Apoliprotein B 
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expansion out-of-Africa, which was quickly followed by encountering and admixing with 

Neanderthals, probably in the Middle East, before populating the rest of the world (Mallick et al., 

2016; Bergstrom et al., 2020). 

 

I found that Middle Eastern groups have little Neanderthal DNA that is private to region, with the 

vast majority of introgressed segments shared with other Eurasians, implying that they share 

the same admixture event. Arabian populations appear to have a lower percentage of 

Neanderthal ancestry than Levantine, European and East Asian groups, due to them having 

relatively higher basal Eurasian ancestry than other non-African populations, in addition to more 

recent African ancestry. This hypothetical basal population did not contribute directly to modern-

day Arabians, but through ancient populations who themselves had high basal Eurasian 

ancestry, Neolithic Iranians and Natufians. Differences between Arabia and the Levant are 

apparent: Arabians have higher Natufian ancestry, while Levantine groups have higher 

Anatolian and European hunter-gather-like ancestry. This suggests that many post-Bronze-Age 

events that changed the genetic landscape of the Levant did not reach Arabia. The contrast 

between the two regions also appears in population size history estimates, as they diverge 

around 15-20 kya, predating the Neolithic period. The Levantine expansion becomes especially 

prominent in the Neolithic period, suggesting that the transition to a sedentary agricultural 

lifestyle allowed the population to grow dramatically in numbers within a short time. This pattern 

is not found in Arabian populations who maintained similar sizes since their divergence. The 

population history analysis also shows that Arabian populations experience a bottleneck around 

the time of the aridification of Arabia 6-7 kya, while Levantines experience a distinct bottleneck 

overlapping the 4.2 kiloyear aridification event. This indicates that climatic events appear to 

have had strong effects on these populations, which is in agreement with archeologically data: 

the 4.2 kiloyear event has been suggested to be associated with the collapse of empires and 

kingdoms in the Middle East (Weiss et al., 1993). 

 

Our analysis also allows us to address ongoing debates in archaeology. It has been suggested 

that a complete population turnover occurred during the late Pleistocene/early Holocene in 

Arabia, and the peninsula was repopulated by Levantine Neolithic farmers moving southwards 

from the Fertile Crescent (Uerpmann et al., 2010). Our analyses do not support such an event, 

a complete replacement. Moreover, our modelling indicates that Arabian populations can derive 

ancestry from Natufian-like local hunter-gatherers instead of Levantine Neolithic groups, in 

contrast to modern-day Levantines who cannot be modelled as such. The Levantine Neolithic 
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population shares around one third of their ancestry with Anatolian Neolithic groups; if such a 

Neolithic expansion occurred, we would expect to find Anatolian Neolithic ancestry in Arabian 

populations, which we find to be very low. Moreover, if Neolithic Levantines repopulated Arabia, 

we would expect to see similar population size histories during this period, which is not 

apparent. These results also address a second archaeological debate regarding prehistorical 

Arabian and Levantine connections which centres on whether, and how, animal domesticates 

moved between the Levant and Arabia, whether this represents population movements or 

cultural diffusion (Crassard et al., 2013). Our results suggest the latter scenario, and if 

admixture did actually occur, it appears to be limited. 

 

Another significant source of the ancestry found in contemporary Middle Eastern populations is 

the Iranian Neolithic, which replaced almost half of the local ancestry during the Bronze Age. In 

our admixture analysis we show that this ancestry was introduced into the Levant first, and then 

subsequently reached Egyptian, East African and Arabian populations. By comparisons with the 

published linguistic analysis, we find that the timing of this movement appears to be correlated 

with the origin and spread of Semitic languages during the Bronze Age (Kitchen et al., 2009). 

While the broad formation of Middle Eastern populations appears to be somewhat understood, it 

is clear that more ancient DNA studies from the region are needed, especially from Arabia as no 

such study has been published at the time of writing this thesis. Although the hot, arid and 

sometimes humid climate in the region renders the preservation of DNA difficult, the success of 

several recent studies from tropical and hot climates raises some hope of the possibility of being 

able to analyse ancient remains from Arabia (Lipson et al., 2020; McColl et al., 2018). In this 

study we suggest that local hunter-gatherers from Arabia, which have Natufian-like ancestry, 

could have directly contributed ancestry to modern-day populations; however, the epi-paleolithic 

period of Arabia is poorly understood. Samples are needed at this crucial period to test our 

findings, and to understand the population structure of the region at that time. It is known that 

the development of agriculture has led to population movements which have strongly reduced 

genetic structure in many regions, thus it is likely that the hunter-gathers of the Levant and 

Arabia were strongly differentiated. 
 
Exploiting the accurate physically-phased haplotypes in generating genome-wide genealogies, I 

was able to reconstruct the historical trajectory of variants and identify ones that show evidence 

of positive selection. We replicated, refined and identified novel signals of selection within 

Arabian populations, although for most of them there doesn’t appear to be an obvious reason 
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for why such variants were selected. Further functional studies are required to elucidate their 

function and pinpoint why, and how, they aided adaptation. The almost private lactase 

persistence allele within the region, which in just a few thousand years appears to have 

increased in frequency to reach 50%, correlating with lifestyle changes, illustrates the 

importance of including underrepresented groups in genomic analysis to illuminate genetic 

adaptations. In addition to single variants, I find evidence that polygenic selection seems to 

have also played a role in adaptations. It appears that variants that may have been beneficial in 

the past, potentially due to adaptation to the climate, are now associated with diseases such as 

T2D. However, it also should be noted that we find very few traits that show signals of polygenic 

adaptation. This could be potentially due to the long-term small effective population size of 

Arabian populations, which result in higher rates of genetic drift reducing the impact of selection. 

Moreover, as Middle Eastern groups are among the most understudied populations included in 

GWAS (Sirugo et al., 2019), this creates challenges and limitations for the analysis of polygenic 

traits. Such long-term small effective population size, especially coupled with the recent practice 

of consanguinity, is also likely to increase the genetic burden of Arabian populations. This can 

be exploited for the study of Mendelian traits, such as in homozygosity mapping, and also to 

understand gene function as individuals are more likely to carry homozygous loss-of-function 

mutations and serve as natural ‘human knockouts’. In a positive development, many countries in 

the region have recently established national biobanks, a first step in hopefully reducing these 

disparities, and offer an opportunity to understand complex and disease traits in the wider 

Middle East. 

 
  



 96 

3.11 Methods 
 

This section provides a summary of the methods used in this chapter, more details are provided 

in Almarri et al. 2020b.  

 

Sample Extraction and Sequencing 

Saliva samples were collected using Oragene DNA kits (OG-600) and DNA was extracted using 

a high molecular weight method (Qiagen MagAttract HMW kit). Quality and size of the extracted 

fragments were assessed using a pulsed-field capillary electrophoresis (Femto Pulse system). 

For most samples the fragments appeared to be relatively large and of a useful size (>30kb). 

Based on these results, 137 samples were subsequently processed for library preparation at the 

Wellcome Sanger Institute sequencing facility. All libraries were prepared using 10X Genomics 

Chromium kits and each sample was then sequenced in a separate lane on a HiSeq X 

instrument. Raw FASTQ files generated from the sequencing instruments were processed using 

the Long Ranger pipeline (version 2.2.2, using GATK v3.7) and mapped to the GRCh38 

reference supplied by 10x Genomics using barcode-aware alignment into phased BAM files and 

subsequently phased VCF files. The average sequencing coverage for all samples was 32x, 

median 31x. Around 98% of SNVs on average were physically-phased in each sample.  

 

Sample and Variant Quality Control  

Sample quality control was assessed using indexcov (Pederson et al., 2017) which exploits 

coverage to identify chromosomal abnormalities and quality issues. No such large 

rearrangements were observed; however, a few samples showed issues with variable coverage, 

mostly affecting one sample, with a more limited issue in three other samples. These samples 

were sequenced in the same batch, suggesting a shared issue. After exploring this issue 

further, it appears related to relatively low input DNA used during library preparation, which was 

confirmed after contacting the sequencing facility. These samples still provide accurate 

genotypes and were included in most subsequent analysis, but were highlighted and excluded 

from sensitive demographic history analyses. Using the relative coverage of X to Y 

chromosome, 79 samples were inferred to be male and 58 female.  

 

For variant quality control, the QUALITY tag of each variant was assessed within each sample 

VCF separately. The Long Ranger pipeline analyses of haplotype structure informed by the 

experimental phasing was used to tag variants that are potential false positives. Quality tags 
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produced include: PASS, 10X_PHASING_INCONSISTENT, 10X_QUALITY_FILTER, 10X_ALLELE_FRACTION_FILTER, 

10X_HOMOPOLYMER_UNPHASED_INSERTION, 10X_RESCUED_MOLECULE_HIGH_DIVERSITY. Analysing each 

quality tag separately, non-PASS variants generally had low transition to transversion ratio 

(Ts/Tv) values, suggesting they contain false positives. This ranged from 0.55 in the 

10X_QUALITY_FILTER variants to 1.16 in the 10X_RESCUED_MOLECULE_HIGH_DIVERSITY variants. The latter 

tag rescues variants in duplicated regions where the reference likely harbours deletions. I chose 

to be conservative by setting all non-PASS variants to missing and subsequently merged the 

samples into one multi-sample VCF file. I then set any variant with GQ < 20 and regions that 

show twice or more average sample coverage to missing, and also excluded variants that show 

excessive heterozygosity. The Ts/Tv after quality control was 1.97, and remained consistent 

throughout different allele frequency bins, suggesting that the variants are of high quality. This 

identified 23.1 million SNVs. I subsequently tested for possible relatedness using the --genome 

option in plink-v1.9 (Chang et al., 2015) and excluded one Syrian sample from a pair that show 

evidence of being related (PI_HAT > 0.15). 

 

Population Genetic Analysis 

Our dataset was combined with published modern and ancient global populations extracted 

from the available curated dataset from the Reich Lab 

(https://reich.hms.harvard.edu/downloadable-genotypespresent-day-and-ancient-dna-data-

compiled-published-papers). Variants were lifted over to GRCh38 using picard (v2.18.26, 

https://broadinstitute.github.io/picard/). To avoid bias from different phasing methods, as 

advised by the authors of the Chromopainter/FineSTRUCTURE software, we discarded for this 

specific test the physical phasing from our samples and phased the merged dataset with Eagle 

v2.4.1 (Loh et al., 2016) using the 1000 Genomes Project phase 3 panel (1000 Genomes 

Project Consortium et al., 2015) and subsequently run using the 

Chromopainter/FineSTRUCTURE pipeline v4.1.1. Based on the output, we divided the self-

labelled populations into representative ‘core’ subpopulations that show limited-to-no recent 

admixture. To investigate potential sources of admixture, we used SOURCEFINDv2 (Chacón-

Duque et al., 2018) which was run using the default parameters. To test for and date admixture, 

fastGLOBETROTTER, was run using the parameters (prop.ind: 1, bootstrap.date.ind: 1, null.ind: 

1, with all remaining parameters default) including only as surrogates populations that 

contributed >1% ancestry in the previous SOURCEFIND step. We also tested for admixture 

using MALDER (Loh et al., 2013; Pickrell et al., 2014) using default parameters using 590k 

variants using 6 references: (Luhya;Yoruba;Druze;Iranian;Indian Telugu;Punjabi). 
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For the demographic history analyses we leveraged the physical-phasing in our dataset to 

generate genome-wide genealogies using RELATE v1.1 (Speidel et al., 2019). We limited the 

analyses to regions within the genome accessibility mask described in Bergstrom et al., 2020 

and set unphased variants to missing (i.e. excluded from analysis). We scaled the results using 

a mutation rate of 1.25e-8 and a generation time of 29 years. For the separation history analysis 

with global populations, we downloaded the Mbuti, Sardinian, and Han Chinese physically-

phased samples from the HGDP (2 samples per population, Bergstrom et al., 2020). Since the 

published data used an older version of Long Ranger, we recalled the samples using v.2.2.2 to 

be consistent with our dataset. We filtered the VCFs as described above for our dataset. We 

used MSMC2 v2.1.1 to infer split times between our populations and the HGDP samples using 

8 haplotypes for each comparison (4 haplotypes from each population). MSMC2 was run using 

the --skipAmbiguous option, to calculate coalescent rates within and between populations, 

restricted to the genome accessibility mask described in Bergstrom et al., 2020. 

 

We used IBDMix (Chen et al., 2020) to call Neanderthal segments in a merged dataset of our 

samples with the HGDP. We followed all the variant filtering steps performed in Chen et al., 

2020 and filtered the output using a minimum size threshold of 50kb and LOD score higher than 

4. We also ran Sprime (Browning et al., 2018) on a similar dataset. As Sprime requires non-

missing genotypes, we removed variants that were >5% missing and imputed the remaining 

missing variants using Eaglev2.4.1 (Loh et al., 2016). We set all non-Middle Eastern samples 

from the HGDP as outgroup (768 samples) and ran Sprime for each Arabian population. We 

filtered the output using a score threshold of 150,000. We applied MSMC2 using 4 haplotypes 

(2 diploid samples) to examine the separation history between our populations and the high 

coverage Vindija Neanderthal (Prufer et al., 2017). Briefly, this analysis exploits the fact that the 

Vindija Neanderthal shows extremely low heterozygosity, which renders much of the genome 

homozygous and essentially phased. We used the --skipAmbiguous option to exclude sites with 

unknown phase and ran MSMC2 using the parameters previously described. 

 

We used the Relate Selection Test in Relate v1.1 (Speidel et al., 2019) to look for lineages that 

spread faster than competing lineages. We used BEAGLEv4 (Browning and Browning, 2016) to 

statistically phase the remaining unphased variants (~2%) using gtgl, setting the option 

usephase=true to take into account the physical-phasing already provided in the VCF. We only 

analysed variants that show selection at a “genome-wide threshold” of P < 5e-8. To further 

refine and understand the evolutionary history of the variant we used CLUES (Stern et al., 
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2019). We fine-mapped variants using the likelihood ratio statistic produced by CLUES as 

suggested by Stern et al., 2019, and focused on variants that show moderate to strong selection 

(s > 0.005). To test for polygenic selection, we used PALM (Stern et al., 2021). We extracted 

GWAS summary statistics performed on the UK BioBank (Bycroft et al., 2018; Gazal et al., 

2018; Hujoel et al., 2020; http://www.nealelab.is/uk-biobank/). For each trait investigated, we 

split the genome into 1,700 approximately independent blocks (Berisa and Pickrell, 2016) and 

selected the variant with the lowest p-value within each block for analysis. Variants were filtered 

for minor allele frequency > 5%, Rsq > 0.5, INFO score > 0.8, and indels were excluded. To 

further explore the choice of significance threshold, and potential effects of uncorrected 

population structure, on the results, we repeated the analysis using more stringent significance 

thresholds (P < 1e-8 and P < 5e-9; which will drop blocks not passing the threshold) and found 

similar results. 

 

For model-based clustering, ADMIXTUREv1.3 (Alexander et al., 2009) was run on modern 

samples in an unsupervised mode from K=3 to K=15 using 1.3 million variants ascertained as 

polymorphic in archaic genomes (Bergstrom et al., 2020). For tests including ancient samples, 

Dystruct (Joseph et al., 2019) was run using default parameters on ~80,000 transversions. 

Samples were randomly subsetted to ≤ 10 individuals per modern population and ≤ 20 

individuals per ancient population. We set nine time points binned as follows (in years ago): 

14,500-10,000; 10,000-8000; 8000-6000; 6000-5200; 5200-5000; 5000-3000; 3000-1400;1400-

200; and present-day. 

 

We used the Phewas search option in the GWAS atlas (Watanabe et al., 2019) and Gene Atlas 

(Canela-Xandri et al., 2018) to look for trait associations with variants that show evidence of 

selection. We used the GTEx portal (GTEx Analysis Release V8; The GTEx Consortium, 2020) 

to look for eQTL associations. We used plinkv1.9 (Chang et al., 2015) to identify ROHs using 

the option --homozyg. Genotype calling, filtering and Y haplogroup prediction were run as 

performed in Hallast et al., 2020. To identify African haplotypes within our samples, we used 

RFMix v2.03 (Maples et al., 2013) using 105 samples from the HGDP as references: 41 Druze 

and 64 Africans. f4 and FST statistics, qpAdm, qpGraph were run using the ADMIXTOOLS 

package (Patterson et al., 2012). 

 



 100 

Chapter 4: Future Directions 
 
As the specific results of each chapter have already been discussed, in this final chapter I 

discuss general future directions in these areas. 
 
4.1 Future directions for the analysis of structural variation. 
 

Large-scale datasets of SVs have been published recently, much larger than the HGDP, based 

on short-read data. One is the gnomAD SV release (Collins et al., 2020), which analyzed 14,891 

genomes at high coverage (32x). Although the dataset claims to study diverse populations, 

almost half of the samples are of European ancestry, while the African samples in the dataset 

(35%), are mostly African-American, which will generally encompass admixed genomes with 

some West African ancestry. Another recent study, Abel et al., 2020, examined 17,795 

genomes at medium coverage (20x), but also had half of the dataset composed of European 

individuals. Moreover, for both these studies, samples are aggregated from different projects, 

mostly medical-based, and are subsequently assigned a continental-level ancestry after genetic 

analysis. These projects are useful in providing resources of allele frequencies of SVs at a 

broad continental-level, and have also identified rare and large SVs that affect coding 

sequences. In agreement with previous studies, such large SVs appear to be under purifying 

selection (Sudmant et al., 2015a; Sudmant et al., 2015b). However, the lack of population-level 

labels limits genetic analysis. For example, if the HGDP dataset was composed of only 

continental-level labels, we would do not have identified that specific groups have high 

frequencies of variants that show evidence of positive selection, that are rare in the wider 

region, or even private to the population. In our analysis, this is most evident in populations that 

have high diversity, such as African groups, and ones that show long-term isolation or private 

introgression events such as Oceanians. Another limitation is the restrictions imposed on the 

data, as both of these large-scale projects do not provide genotype-level data, just site-

frequency data. This collectively illustrates the importance of projects such as the HGDP, and in 

addition the 1000GP, with their carefully-sampled populations and essentially open-access 

nature. While the HGDP has a large number of populations, 54, many populations have 

relatively-small sample sizes (27 populations have 12 samples or less). Nevertheless we find 

many examples of population-specific variants that appear to be medically and evolutionarily 

important. This suggests that additional projects with larger population-level sampling are 
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needed, to further understand the structure and stratification of SVs globally, especially for low-

frequency and rare variants. 

 

The 1000GP is a resource containing 2504 samples from 26 populations, with an appreciable 

number of samples per population (~100). However, its published SV callset is composed of 

~68K variants, mostly deletions, much smaller than our HGDP dataset despite being more than 

double in sample size. A limitation of the 1000GP is the low-coverage of the 1000GP (~7x) and 

the shorter reads used (~100bp). A recent project, as yet unpublished, has sequenced the 

entire 1000GP samples at high-coverage, and has made the data available for the scientific 

community. It will be important to perform an SV analysis of this new dataset and compare it 

with other published datasets. Other recent studies with population-level sampling, although not 

open-access, are the GenomeAsia100K project (GenomeAsia100K Consortium, 2019) and a 

high-coverage dataset of 50 ethnolinguistic groups in Africa (Choudhury et al., 2020). Although 

important datasets from understudied groups, it is disappointing that these projects did not 

analyse SVs. This demonstrates how they remain understudied in comparison to SNVs, despite 

their importance in genome evolution and disease susceptibility. Analyses of these datasets 

should be extended to include SVs. 

 

The current state-of-the-art algorithms for the identification of SVs based on short-read 

sequencing studies identify 4-7 thousand variants per sample, substantially less than the >20 

thousand identified using long-read and multi-platform technologies (Ho et al., 2019). This 

demonstrates that the majority of SVs within a genome are undetected using widespread short-

read technology. From a medical and complex trait perspective this is important, as SVs may be 

associated with diseases and traits but are missed by short-read technologies and subsequently 

not included in further analysis. For example, in the Deciphering Developmental Disorders 

project which attempts to pinpoint mutations associated with developmental disorders, a 

majority of patients, almost 70%, have not had a pathogenic mutation identified (Personal 

Communication, Hilary Martin). Additionally, from an evolutionary perspective, such 

undiscovered SVs may be involved in adaptation and positively selected. One cost-effective 

approach proposed is sequencing a small number of samples using long-read technologies in a 

discovery-phase, and then re-genotyping these variants in a larger short-read based cohort 

using a graph-based approach. This has recently been shown to have relatively good accuracy 

in genotyping different classes of SVs (Chen et al., 2019; Eggertson et al., 2019; Hickey et al., 

2020), as although short-reads cannot discover these variants, they provide some information to 
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genotype them. However, this approach will only include in analysis variants identified in the 

discovery-phase, which will miss many low-frequency and rare variants. Moreover, despite 

advances presented by these methods, they do not seem to perform well in genotyping variants 

in repetitive regions, complex variants, or large insertions, especially ones that are not 

completely assembled. Accurate genotyping is essential to test for associations, such as ones 

now routinely performed in SNV-based GWAS. Thus the development of accurate SV 

genotyping algorithms, for all classes of SVs and across the allele-frequency spectrum, will be 

an important advance for the inclusion of SVs in future association studies. A recent pre-print 

developed a graph-based method that exploits haplotype information from a reference of de 

novo assemblies to genotype SVs in short-read sequenced samples (Ebler et al., 2020). This 

approach appears to provide high accuracy in genotyping different classes of SVs, even in 

repetitive regions, and is a promising method addressing the issues faced by previous 

algorithms. 

 

The development of new technologies such as Strand-seq, which allows the sequencing of the 

paternal and maternal haplotype separately, coupled with advances in long-read sequencing, is 

now allowing the generation of chromosome-scale phased de novo assemblies (Porubsky et al., 

2020). This will allow balanced rearrangements, such as inversion and translocations, to be 

identified and included in analysis. Such structural variants are commonly excluded in 

population-scale analysis, due to the challenges in their discovery and genotyping. Inversions 

are an important class of structural variants, as they suppress recombination at heterozygous 

sites. For example, a 900kb inversion has been reported to be under positive selection in 

Europeans and is associated with higher fertility and recombination rates (Stefansson et al., 

2005). Translocations are known to associated with cancer, such as the relatively large 

translocation between chromosome 9 and 22 (‘Philadelphia chromosome’) which contributes to 

chronic myelogenous leukaemia (Nowell and Hungerford, 1960). Moreover these technologies 

will allow the analysis of complex SVs, which are unresolvable using short-reads. An extreme 

case is chromothripsis, a mutational event where thousands of clustered rearrangements occur 

in one or multiple chromosomes which are common across different cancers (Cortés-Ciriano et 

al., 2020). The chromosome-scale phasing would also make genotyping much simpler, as each 

haplotype is genotyped separately. 

 

These advances will also allow an important metric to be estimated, the mutation rate of SVs. 

Although it is known that indels and smaller repeats, such as STRs, have a higher mutation rate 
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than SNVs, the mutation rates of other classes of SVs are still unclear. Trio-based studies using 

long-read data coupled with accurate SV calling and genotyping is a promising approach to 

estimate their mutation rate. Moreover, this analysis can be extended to different primates 

allowing comparisons between different species. This will also assist in understanding the 

population structure of SVs. We have shown in the HGDP that all classes of SVs show 

population structure, although variable in degree, and we have suggested that this may be due 

to their varying mutation rates. It is becoming evident that even subtle population structure can 

confound association signals of SNVs, a class of variation that we have a relatively accurate 

estimate of mutation rate for (Jónsson et al., 2017; Fu et al., 2014). Thus it is unclear how to 

control for population structure of SVs in association studies, given their higher and variable 

mutation rates between classes. While SNVs can be in LD with SVs and be used to tag them in 

GWAS, SVs that are highly mutable, such as multiallelic variants, or ones that are located in 

repetitive regions, are unlikely to be in high LD with commonly used tag SNVs. 

 

One of the 1000GP goals was to catalogue common global genetic diversity, especially from 

metropolitan populations, and they have mostly been able to do this successfully. Given the 

essentially open-access nature of the 1000GP and HGDP, and the availability of almost 

unlimited high-quality DNA, an important future project would be to sequence these samples 

using long-read and multiplatform technologies to create a comprehensive catalogue of global 

SVs, which crucially includes variants missed from short-read studies. A limitation of these 

projects is the lack of phenotype data available to look for associations. In contrast, the UK 

biobank, with around 500,000 samples, has extensive phenotyping data and will in the near 

future release full genome-data available for researchers, based on short-read technology. 

Although sequencing of such a large dataset using long-read technologies is economically-

unfeasible today, the continued decreasing costs of such methods will hopefully make such a 

project more practical in the future. However, it should be noted that high molecular weight DNA 

needs to be extracted for such future projects. An SV-based GWAS analysis of this dataset will 

likely be an important resource to understand the functional effects of SVs on complex and 

disease traits. However, as the UK biobank is mostly of British European ancestry, such 

projects need to be initiated across the world to study human genetic diversity. In particular, a 

biobank-based project of populations with significant Denisovan introgression, such as 

Oceanians, would be instrumental in understanding the effect of introgressed sequences on 

complex and disease traits, potentially explaining the signals of adaptive introgression we find in 

our study.   
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The analysis of SVs, and even smaller classes of variation such as SNVs and indels, is affected 

by the reference genome used. Due to the limitations of a mostly linear human reference such 

as GRCh38, which does not encompass human genetic diversity, it is likely that future analyses 

will use a different reference format to account for the sequence variation found globally. 

Advances in technology are now generating assemblies that rival, and even exceed, the quality 

of GRCh38, are uncovering some of the most complex regions of the genome for functional 

study (Miga et al., 2020). Moreover, many countries are generating population-specific 

reference genomes that offer a better representation of variation in their population (Cho et al., 

2016; Maretty et al., 2017). While graph-based references are suggested as a solution to the 

limitations of a linear-based reference, there is currently no consensus on a standard that will 

integrate the variation found in multiple reference-quality genomes. Ideally, a human reference 

pangenome graph will maintain one coordinate system, while integrating variation supplied from 

many reference genomes. Encouragingly, a recent study has proposed a new format that can 

generate a human pangenome reference panel, although it is unclear if it can handle a large 

number of genomes (Li et al., 2020). However, even if a reference standard is agreed upon 

which will provide a much better representation of human genetic diversity, it is uncertain when 

the research community will move on to using a newer reference genome. This is illustrated by 

many groups still using the GRCh37 reference in their analyses, despite GRCh38, which was 

released in 2013, being a substantially better-quality assembly (Schnieder et al., 2017). 

Surprisingly, even high-profile large-scale genome sequencing projects are still being published 

using GRCh37, most recently in a large-scale analysis of African whole-genomes (Choudhury et 

al., 2020).  

 
 
4.2 Future directions for the population genomics of the Middle East 
 
 
One of the main issues affecting the study of Middle Eastern populations is the lack of available 

genomic data, especially ones that are open-access. Surprisingly, there have been more 

published ancient genomes from the region than modern-day open-access whole-genomes. In 

work presented in this thesis, some progress has been achieved towards reducing the lack of 

representation of Middle Eastern genomes in global projects. The sequenced HGDP dataset 

analysed in chapter 2 has 134 high-coverage Levantine samples, while the Middle Eastern 

dataset presented in chapter 3 sequenced 137 high-coverage samples, using linked-read 

sequencing, from Arabia, the Levant and Iraq. Recently, in a positive development, the 



 105 

gnomaAD allele frequency database has included the whole-genome sequenced HGDP 

populations in their online browser, allowing variant frequencies to be easily viewed in the three 

Levantine Middle Eastern groups: Bedouins, Palestinians and Druze. Although a warning is 

presented that due to their relatively small sample size, allele frequencies should be viewed with 

caution. In relatively-wealthy countries from Arabia, thousands of whole-genomes and exomes 

have been sequenced by ongoing national projects; however, the data are not publicly 

available, even for summary statistics such as allele frequencies (Kaiser, 2016). It is unclear if 

this data will be available to outside researchers, limiting the usefulness of such resources to 

the wider scientific community. In our analysis we show that Arabian populations have 

diversified recently, within the past 3ky. At the very least, regional national projects should 

collaborate to generate a reference panel that will be extremely useful for phasing and 

imputation of variants for GWAS. Privacy concerns regarding data of sequenced participants 

can be addressed by creating a web-based imputation service, such as the Michigan imputation 

server (Das et al., 2016), that removes any issues with data access agreements and provides a 

fast and user-friendly method for imputation. While some Arabian countries are making progress 

in national biobanks, other countries in the region are unfortunately affected with political 

instabilities, making the planning and execution of large-scale national sequencing projects 

difficult.  

 

An interesting follow-up study for the population structure of the Middle East is the careful 

sampling of individuals whose grandparents were all born in the same area, as has been done 

in the People of the British Isles project (Leslie et al., 2015), and more recently in Spanish 

groups (Bycroft et al., 2019). These projects have found strong substructure within these 

populations, with multiple genetically-differentiated sub-populations, even ones geographically 

located near each other, and have linked these patterns to historical events. In our analysis, we 

find strong substructure within the Middle East, concordant with geography, even within a small 

area. This should be further explored using a larger dataset with more comprehensive sampling 

across the region. In addition to providing insights into population history, such information 

would be important in designing and interpreting medical studies, as it has been recently 

demonstrated that including fine-scale haplotype information in GWAS reduces confounding 

caused by population structure in comparison standard SNV-based methods (Byrne et al., 

2020). 
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Ancient DNA from the region has provided unprecedented insights into the history of the Middle 

East, with almost all of the studies focused on the Levant, Iran and Anatolia. However, a nearby 

region that is surprisingly not sampled so far at the time of writing this thesis is Iraq, or historical 

Mesopotamia. One of the first civilizations developed in this region, Sumer, during the 

Chalcolithic and early Bronze Age (~7 kya). Moreover, one of the first written languages was 

Sumerian, a language isolate, which was written in cuneiform script. The language was 

gradually replaced by Akkadian, an East Semitic language during the rise of the Akkadian 

empire in the region. Who were the people living in these civilizations and speaking these 

ancient languages? Was the gradual language replacement accompanied by a turnover of 

ancestry? How did the establishment of the first civilizations and empires affect the population 

structure of the region? Many interesting questions can be addressed if ancient DNA is 

successfully extracted and analyzed from the region. The study of Mesopotamia also has 

important relevance for Arabian population history. The ancient civilization of Magan, thought to 

be in present-day Oman and United Arab Emirates, was referred to in Sumerian cuneiform texts 

as a source of copper trade to Mesopotamia. Another Bronze Age ancient civilization with 

strong trade links to Mesopotamia in Eastern Arabia was Dilmun, thought to be modern-day 

Bahrain. Whether or not these frequent contacts between different populations resulted in gene-

flow is an open question. Moreover, parts of Arabia were conquered by different groups, and it 

is unclear whether this facilitated in population movements. Studies in the Levant have shown 

broad continuity in ancestry in the period after the Bronze Age until the present-day (Haber et 

al., 2020); despite the region being under the rule of a large number of different groups at 

different times, such as the Ancient Egyptians, Babylonians, Assyrians, Persians, Greeks, 

Romans, Crusaders, Arabs, and Ottomans. These periods are associated with large cultural, 

linguistic and religious changes, but interestingly, do not seem to be paralleled with large 

changes in ancestry. Ancient DNA studies from Arabia are needed to investigate if similar 

patterns occurred there. Moreover, ancient DNA is important to uncover transient pulses of 

admixture that are not apparent in modern-day populations. An example is how the Crusades 

introduced European ancestry into the Levant, as they admixed with the local population during 

the military expeditions (Haber et al., 2019). These admixture events appear to have been 

limited and did not survive in modern-day populations (except in one Y chromosome lineage; 

Zalloua et al., 2008), and prior to ancient DNA results were largely unknown.  

  

We find that the admixture dates of an ancient Iranian population in the region are correlated 

with the spread of Semitic languages estimated by linguistic data. This population replaced 
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around half of the local ancestry present at the time, and such a large turnover is often 

associated with technological innovations. For example, the domestication of the horse and 

invention of the wheel are thought to have assisted the spread of steppe pastoralists into 

Europe, where they replaced around half of the ancestry and may have introduced Indo-

European languages. In the Middle East, we find that this population admixed first in the Levant 

(4-6 kya), and subsequently in Arabia (2-4 kya). While the invention of farming is known to have 

resulted in population movements and admixture, it is unclear how beneficial this technology 

was to movements into Arabia since the Arabian environment was already mostly desert at that 

time. This is also illustrated by the much smaller historical population size history of Arabians, 

around an order of magnitude lower than the Levant, illustrating that these population did not 

expand during and soon after the Neolithic period. This admixture and replacement of ancestry 

should be further studied, and additionally explored to investigate if it was sex-biased. For 

example, while the steppe ancestry movement into Iberia replaced around 40% of the local 

ancestry at the time, it replaced almost 100% of the local Y-chromosomes (Olalde et al., 2019). 

 
In addition to further work based on single nucleotide variant analyses discussed above, SVs 

need to be analyzed in Middle Eastern populations. Other than the dataset generated and 

analysed in the HGDP, there hasn’t been a thorough investigation of SVs in Middle Eastern 

populations. As all the samples from our Middle Eastern dataset have been sequenced using 

linked-reads, having such a large number of de novo assemblies offers an opportunity to 

characterize SVs at relatively high resolution, overcoming limitations of standard short-read 

technology. However, to fully investigate the landscape of SVs, and it’s implication in disease 

and adaptation, reference-quality assemblies need to be generated from the region.  

 
4.3 Concluding Remarks 
 
The availability of a large, and increasing, number of whole-genomes, including from diverse 

populations, offers an exciting opportunity to study human evolution and adaptation from a 

genetic perspective. While it is apparent that single variants with large effect sizes on traits are 

uncommon, I expect that regions of the genome that are inaccessible to standard short-reads 

will be an important source of genetic variation affecting complex traits, potentially including 

ones with strong effects. Such regions are repetitive and complex, with a higher mutation rate 

resulting in complex rearrangements, generating a pool of variation accessible to natural 

selection. The maturity of long-read technology, and the availability of extensive phenotype data 

from large biobanks, will allow the characterization of these variants and their function to be 
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elucidated. In addition, such resources are important in understanding the effects of polygenic 

selection, which, coupled with the developments of robust methods in their analysis, will provide 

a more comprehensive understanding of the role of natural selection in shaping human 

genomes. Finally, as we are now in an era where current and future generations will likely be 

sampled and sequenced by biobanks, we can for the first time witness and study human 

evolution in real-time. It is remarkable that such progress has been achieved since the 

publication of human genome sequence just twenty years ago. 
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