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Abstract
Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however,
they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely,
noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-
cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated
technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white
matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer
IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar
analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays
the foundation for in-depth, whole-brain analyses of cortical layering.
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Introduction
The isocortex, which forms the major part of the human cere-
bral cortex, has six layers, where the properties of layers vary
between cortical areas (Brodmann 1909). Individual layers exhibit
differing cellular composition and distributions (von Economo
and Koskinas 1925), developmental trajectories (Conel 1939), con-
nectivity (Rockland 2015), physiology (Douglas and Martin 1991),
and functional roles (Bastos et al. 2012). To date, quantitative
measurement of laminar structure has required manual delin-
eation of the layers on histological sections, which is time-
consuming, two-dimensional, and largely observer-dependent,

with a few exceptions (Schleicher et al. 1999). While whole-brain
noninvasive neuroimaging is beginning to resolve laminar-scale
features (Yann et al. 2015; Bastiani et al. 2016; Fracasso et al.
2016), the resolution is not yet sufficient to analyze cellular archi-
tecture, and MRI signal corresponds more closely to myeloarchi-
tecture than to cytoarchitecture (Schleicher et al. 2005; Glasser
and Van Essen 2011). Thus, patterns of cytoarchitecture across
the entire brain have not hitherto been characterized. We have
therefore developed a fully automated method to identify cortical
laminar structures within the BigBrain, a 3D high-resolution his-
tological dataset (Amunts et al. 2013), and to comprehensively

© The Author(s) 2018. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded from https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhy074/4975486
by University of Cambridge user
on 05 June 2018

http://www.oxfordjournals.org
http://orcid.org/0000-0003-3439-5808
http://orcid.org/0000-0003-3439-5808
http://orcid.org/0000-0003-3439-5808
http://creativecommons.org/licenses/by/4.0/


quantify classically observed patterns of laminar structure. Such
a capability opens new vistas in our understanding of laminar
patterns across the brain; moreover, if we can use noninvasive
imaging approaches to laminar analyses, it creates the potential
for novel insights into structure–function relationships and of
characterizing pathophysiology.

Classical histological atlases are the primary source of infor-
mation on cytoarchitecture, as current noninvasive imaging
cannot readily resolve cytoarchitectonic layers. For example,
one principle drawn from 2D histological sections was that
laminar structure appears to be related to the cortical folds. In
particular, the upper cortical layers are thinner at the top of
gyral crowns and thicker in sulcal fundi, while lower cortical
layers show the inverse relation (von Economo and Koskinas
1925; Bok 1929; Van Essen and Maunsell 1980). Furthermore,
both total and laminar cortical thicknesses vary from area to
area, in a way that is systematically related to cytoarchitecture,
connectivity, and functional specialization (von Economo and
Koskinas 1925; Hilgetag and Grant 2010; Wagstyl et al. 2015;
Glasser et al. 2016). Drawing on these principles, it has been
possible to better localize the laminar origin of structural and
functional signals measured in vivo (Muckli et al. 2015; Wagstyl
et al. 2016).

In order to fully exploit histological measurements made in
2D, they must be represented in 3D. However, their registration
to volumetric MRI is beset with problems. First, measurement
is carried out on 2D sections of a 3D curved object, which intro-
duces uncertainties in measurements and errors due to the
angle at which the section intersects the cortex. Second, there
are also difficulties associated with registering restricted tissue
sections back to the entire cortex. Third, manual measurement
is time-consuming and highly observer-dependent (von
Economo and Koskinas 1925), which places limits on the num-
ber and reliability of recorded samples. Together, these manual
and two-dimensional limitations have made it difficult, if not
impossible, to obtain whole-brain models of the cortical layers.
Therefore, while 2D histological studies provide detailed high-
resolution insights into regional cortical neuroanatomy, they
require extrapolation from a limited number of measurements.
There is, therefore, a pressing need for automated methods
that measure 3D laminar structure comprehensively.

The BigBrain is a unique high-resolution, comprehensive 3D
histological model of a complete human brain, including the
cerebral cortex (Amunts et al. 2013)(https://bigbrain.loris.ca/).
The original 2D coronal sections were stained for cell bodies
before being digitized and reconstructed into a 20μm isotropic
3D volume, wherein it is possible to visualize bands of cell bod-
ies corresponding to cortical layers in three orthogonal planes
or any oblique angle (Fig. 1) (Borgeat et al. 2007).

We therefore sought to develop a 3D surface-based, auto-
mated method for quantitative analysis of laminar cytoarchi-
tecture, based on BigBrain. White and pial cortical surfaces,
similar to those used for MRI, had already been reconstructed
for the BigBrain (Lewis et al. 2014). Based on these, we first
extracted profiles of staining intensity from pial to white sur-
faces at all vertices. Next, we sought to identify two surfaces
related to within-cortical layers—the boundary between layers
I and II and a surface within layer IV. The layer I/II boundary
was chosen as it is commonly used as the upper bound in
analyses of cortical cytoarchitecture (Schleicher et al. 1999,
2005), as layer I exhibits little inter-regional variability. Layer IV
was chosen as an important division between supragranular
and infragranular layers, which have different connectivities
and functional roles (Felleman and Van Essen 1991; Bastos
et al. 2012; Markov et al. 2014). Importantly, these layers

exhibited relatively consistent features in simulated profiles
between cortical regions derived from neuronal density mea-
surements made on 2D sections in the von Economo atlases
(von Economo and Koskinas 1925). Critically, these automati-
cally defined surfaces were then verified through comparison
with the histology. The layer I/II boundary surface was com-
pared with a manually defined layer I/II and the automatically
identified surface within layer IV was tested against manual
delineations of the upper and lower boundaries of layer IV.
Based on cortical reconstructions, we measured cortical mor-
phology, specifically curvature and layer thicknesses, enabling
us to test the relationship between laminar structure and corti-
cal folding across the entire cortex, and mapped the inter-
regional variation in the position of cortical layers. Finally, we
measured the angles between cortical profiles and the original
coronal sections to estimate the measurement errors and lim-
itations for similar 2D analyses. The volumetric and surface
data are freely available for download from https://bigbrain.
loris.ca/.

Materials and Methods
Data Preparation

BigBrain is a 20 × 20 × 20 μm (henceforth described as 20 μm) res-
olution volumetric reconstruction of the histologically processed
post mortem brain, which in full is approximately 250GB in size.
Running computations on this amount of data were achieved
using a combination of two techniques—subsampling to lower
resolutions or dividing the data into manageable blocks. Thus,
the data were subsampled at a range of isotropic resolutions
20 μm, 40 μm, 100 μm, 200 μm, 300 μm, and 400 μm. Between
100 μm and 1000 μm, the data could be analyzed as a single vol-
ume. For 20 μm and 40 μm, the data were stored into 125 indi-
vidual blocks, corresponding to five subdivisions in the x, y, and
z directions, with overlap. The overlap of blocks was calculated
to be sufficient such that a theoretical cortical column span-
ning the height of the cortex would be completely contained in
a single block. This would enable extraction of complete inten-
sity profiles between pairs of vertices at the edge of blocks
without intensity values being altered by boundary effects
when the data were smoothed. In order to align intensity distri-
butions with histological and MRI conventions, computations
were calculated on inverted images such that background
intensity was 0, and image intensity increased with staining
intensity. Staining intensity is based on the selective staining
of cell bodies and is thus a measure different from the Grey
Level Index GLI (Schleicher et al. 1999), which gives an estimate
of the volume proportion of stained cell bodies.

Voxel Resolution

In order to investigate the minimum voxel size required for cor-
tical layer identification, sample profiles were extracted for a
vertex in the primary visual cortex (V1) in the calcarine sulcus
at isotropic resolutions of 20 μm, 40 μm, 100 μm, 200 μm, 300 μm,
400 μm, and 1000 μm (Fig. S1). The staining intensity of volumes
with a voxel resolution between 100 and 1000 μm was sampled
from a single image volume, whereas for 20 μm and 40 μm, they
were sampled from the overlapping blocks.

Volumetric Smoothing

Data were smoothed anisotropically using a geometric heat
equation and nonlinear smoothing approach (Kimia and Siddiqi
1996). This iterative technique removes small-scale intensity
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changes, preserving the contours of cortical layers by maximally
smoothing in the direction tangential to the cortical layers, to
retain interlaminar intensity differences while minimizing the
effects of intralaminar intensity variations caused by histological
artifacts, for example, circumscribed variations in staining inten-
sities, small defects caused by the sectioning using a microtome
(Fig. S2). The overall extent of image smoothing is controlled by
the number of iterations, from which the maximum resultant
Full Width at Half Maximum (FWHM) of the smoothing kernel
can be estimated (Kimia and Siddiqi 1996).

The optimal smoothing kernel was chosen as follows. Profiles
were sampled at 40 μm from regions distributed across the four
lobes (frontal, occipital, parietal, and temporal lobes). Smoothing
was increased until the number of peaks in most profiles was
between 3 and 5, approximately the number of peaks expected
due to 6–8 cortical layers. These remaining peaks are likely due
to interlaminar differences (Figs S2 and S3).

Tissue Classification

The initial tissue classification was performed on the single-
modality cell-body–stained intensities of the individual 20 μm
coronal sections. Voxels were classified into two main tissue
types (i.e., white matter and cortical gray matter) and back-
ground using an artificial neural network trained on manually
identified points as priors (Zijdenbos et al. 2002). Over 100 sam-
ples were used for each tissue class. The samples were defined
manually every 20 sections, then interpolated nonlinearly to

the nearby sections. Using a segmentation of the brain for the
cerebrum and the cerebellum, the main tissue classes were fur-
ther differentiated into cortical layer I, a single class for cortical
layers II–VI, white matter, subcortical and brainstem gray mat-
ter, pineal gland, and cerebellar granular layer (Lewis et al.
2014). Layer I was generally separable as it showed white-mat-
ter–like intensities disconnected from white matter.

The data for the 20 μm sections were too large to be recon-
structed as a single volume, so the histological and classified sec-
tions were assembled into a single volume at 200 μm, which was
deemed sufficient for the purpose of cortical gray and white sur-
face extraction. The classified slices at 200 μm were assembled by
averaging the tissue fractions of 10 sections at 20 μm, thus improv-
ing the signal-to-noise ratio on the 200 μm classified volume.

Cortical Surface Reconstruction and Registration

The cortical surfaces of the BigBrain were extracted using tools
from the CIVET pipeline for in vivo MRI cortical surface analysis
(Lepage et al. 2017), adapted for histological volumes (Lewis
et al. 2014). High-resolution polygonal mesh surfaces were fit-
ted to the gray–white matter boundary based on the tissue clas-
sification of a downsampled 200 μm histological volume. Errors
in the placement of the white matter surface, due to factors
such as technical artifacts (e.g., remaining tears in the sections
and small localized staining artifacts) and tissue misclassifica-
tions, were manually corrected on the 200 μm classified volume
by overlaying the surface on the 40 μm histological blocks. The

Figure 1. Automatically identified cortical layers on the BigBrain displayed on three orthogonal planes. The brain was sectioned coronally and reconstructed to create

a 3D isotropic volume at 20 μm. Cortical intensity profiles (zoomed insert), perpendicular to the cortex, were extracted at all vertices on the surface and used to iden-

tify continuous cortical layers. On the gray-scale histological images, minimum intensity pixels are white, maximum are black.
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white surfaces were then locally adjusted to the maximum
intensity gradient of the histological volume.

The white surfaces were subsequently expanded to the gray
matter/cerebrospinal fluid (CSF) boundary using the CLASP
algorithm (Kim et al. 2005). The resulting white and pial matter
surfaces each contain 163,842 vertices per hemisphere, with
each pial vertex being linked to its homologous vertex on the
white surface. Morphological landmarks—cortical gyri and sulci—
were used to register these surfaces to the MRI-based MNI152 aver-
age template surface (Lyttelton et al. 2007; Evans et al. 2012). Thus,
cytoarchitectural information from the BigBrain can be readily
mapped to in vivo neuroimaging data via surface registration.

Cortical Staining Intensity Profiles

Profiles of staining intensity throughout the cortical depth were
created by sampling the BigBrain volumes at 100 equidistant
points between linked vertices on the pial matter surface and
the white matter surface (Schleicher et al. 1999). Profiles were gen-
erated from a 40 μm anisotropically smoothed volume (see Figs S1
and 2 for details on resolution and smoothing parameters).

von Economo Profiles

The BigBrain dataset is based on histological sections that were
silver stained for neuronal cell bodies (Merker 1983). The cell
bodies are more heavily stained, whereas the neuropil remains
unstained. Thus, changes in voxel intensity are primarily
related to cellular packing density (Wree et al. 1982). To inter-
pret the cortical profiles obtained in BigBrain, we simulated
density profiles based on the manual measurements of neuro-
nal density and thickness of each cortical layer in multiple
areas carried out by von Economo and Koskinas (Fig. 2a) (von
Economo and Koskinas 1925). These authors provided numbers
for layer thickness and neuronal packing density, which served
as a basis to create a histogram-like profile, where the height
was given by the density of a layer and the width by the thick-
ness of that layer. For visual comparison, these histograms
were then smoothed to the same degree as the smoothed
BigBrain intensity profiles. von Economo density profiles were
simulated for 30 areas for which measurements were available.
Cortical staining intensity profiles were sampled from manu-
ally identified corresponding areas in the BigBrain. While there
is uncertainty as to the precise location of areal boundaries rel-
ative to morphological features (Amunts et al. 2007), we can be
more confident of the approximate center of cortical areas. For
example, area FA is located in the postcentral gyrus, while PA
is at the fundus of the central sulcus. Guided by morphological
approximations of the locations sampled by von Economo and
Koskinas, we manually identified vertices within each of the
corresponding areas on the surface of the BigBrain and
extracted the cortical intensity profiles for each (Fig. 2b). The
von Economo and BigBrain profiles were then visually com-
pared for profile features that were consistent across most cor-
tical areas and which could be used to heuristically identify
cortical layers automatically on the BigBrain intensity profiles.

Identification of Cortical Layers

The cortical intensity profiles extracted between white matter
and pial surfaces were used to identify cortical layers. Based on
the von Economo profile features, the two most common lami-
nar features were a sharp rise in neuronal density at the

boundary between layers I and II, and a peak in neuronal den-
sity at the center of layer IV (Fig. 2).

The histological profiles (100 points from the 40 μm volume)
were intersected with the tissue classification (200 μm isotropic
voxels), which served to identify the layer I/II initial boundary.
When no appropriately classified voxel was found, the initial
estimate was placed at 200 μm below the pial surface (Fig. 3b).
The position of the layer I/II boundary was subsequently cor-
rected to the nearest inflection point (local maximum gradient
in staining intensity). To account for noise artifact and staining
inhomogeneities, the surface mesh was improved using the fol-
lowing two steps, iteratively.

• Gradient adjustment: Locally move each vertex to the posi-
tion of the closest maximum gradient (inflection point) of the
staining intensity profile.

• Smoothing on surface: The intensity values at the maximum
gradient position for each vertex were smoothed on the corti-
cal surface by three iterations of nearest-neighbor averaging,
to remove noise from isolated misplaced vertices. The sur-
face was then adjusted to the point in the profile that
matched this smoothed intensity value. When no matching
intensity value was found or its position was deeper than the
expected thickness of layer I (200 μm), vertices were adjusted
to the average depth of their neighbors (Fig. 3c).

The mid-layer IV surface was obtained in a similar manner by
sampling the histological volumes at 100 points between layer
I/II and white surfaces. Layer IV was initially identified as a
large peak in intensity, which followed an inflection point cor-
responding to part of layer II/III (layer II is often but not always
a peak; thus, an upward inflection point more reliably marks
layer II/III in the profile). This provided an initial estimate for
the location of layer IV. To account for noise artifact and staining
inhomogeneities, the surface mesh was iteratively improved using
the following three steps.

• Geometric smoothing of the mesh without shrinkage (Taubin
1995) (Fig. 3b).

• Smoothing of equivolumetric cortical depth (Fig. 3c).
Equivolumetric cortical depth was calculated for each vertex
on a volume at 200 μm. Intensity values that represent the
fractional equivolumetric depth between the white and layer
I/II surfaces were calculated for each voxel (https://github.
com/neurospin/highres-cortex) (Bok 1929; Waehnert et al.
2014; Yann et al. 2015). Equivolumetric depth values were
then smoothed across the surface with a 10mm FWHM iso-
tropic Gaussian kernel (Boucher et al. 2009) and a new surface
was created at these depths.

• Local adjustment of each vertex to the nearest peak in the inten-
sity profile for each vertex to generate a new layer IV surface.

The 3 steps were repeated until fewer than 100 of the 163 842
cortical vertices changed location between successive iterations.

Validation Through Manual Delineation of Histology
Sections

To test the accuracy of layer I/II and layer IV surface placement,
we compared automatically identified cortical layers against
manually delineated cortical layers carried out on a subset of
the original 2D histological sections of the BigBrain rescanned
at 5 μm resolution, which allows clear identification of single
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cells. Samples were identified on 7 sections, chosen from those
available at 5 μm, to have several suitable portions of cortex in
different cortical areas. Sections 1066, 2807, 3300, 3863, 4366,
4892, and 5431 from the total of 7404 were included, represent-
ing a range of positions from caudal occipital to rostral frontal.
On each of the 7 sections, 6 sample regions were chosen where
a number of cortical intensity profiles were within ~5 degrees
from the plane of the section, thereby minimizing measure-
ment errors due to oblique cutting planes. For each sample,
structures (pial, layer I/II boundary and the upper and lower
limits of layer IV, the border between the gray and white mat-
ter) were manually delineated. In six of the 42 sample regions,
the borders of layer IV were not clearly visible. For two of these,
layer IV was reduced (“dysgranular”) to such a degree that a
single line was used to label boundary of layers III and V. This
was not possible in the final four regions (“agranular”), in which
layer IV was not visible. These samples were therefore
excluded. A further sample was omitted due to excessive tissue
tearing in the original section. The remaining 37 manually
delineated regions were then downsampled to 20 μm and regis-
tered to the aligned 3D BigBrain volume for comparison with
the automatically identified layers.

In addition to visually comparing the layers, two statistical
tests were carried out to verify cortical layer placement. First,
absolute distance was calculated between the manually delin-
eated layers and the coordinates at which the two automatically
identified surfaces intersect the plane. After testing the distance
error for normality with the Anderson–Darling test, a t-test was
carried out on the mean distance for each sample to test whether
the error differed from zero—that is, whether a different surface
was being systematically identified. Second, we tested whether
within-sample changes in mid-layer IV position matched the
variations of layer IV position in the manual annotations (Fig. 4).
For the manual segmentations, relative depth of layer IV was

calculated by measuring the distance from a line mid-way
between the upper and the lower limits of layer IV to the layer I/
II layer and white matter surface. Pearson’s correlation coeffi-
cient was calculated between relative depth of the automated
layer IV and the manually delineated layer IV, for each sample.

Morphological and Inter-Regional Variations

The relative depth of layer IV at each vertex was correlated
against mean cortical curvature to quantify in 3D curvature-
dependent changes in the position of layer IV. This relationship
was first hypothesized in classical studies of 2D sections (von
Economo and Koskinas 1925; Bok 1929). Mean cortical curvature
was calculated at each vertex on a mid-surface, which was
equidistant between white and layer I/II surfaces. Similarly, the
percentage depth of layer IV, taken between the layer I/II and
white matter surface, was calculated for each vertex. Both sets
of data were smoothed with 3mm isotropic FWHM Gaussian
kernel, to remove isolated extreme values. Surfaces were
masked to exclude the medial wall and hippocampal cortex,
and vertices where the cortical thickness was smaller than a bio-
logically implausible 0.5mm—these values generally occurred
where the cortex was damaged due to histological processing.
Finally, linear, quadratic, and cubic models were used to test the
relationship between mean curvature and layer IV relative depth.
Bayesian information criteria (BIC) were calculated to compare
the model fits (Schwarz 1978). Regional variability in layer IV
depth was mapped by calculating the equivalent equivolumetric
depth at each vertex.

Analysis of Cortical Shape

The 3D coordinates of paired pial and white matter vertices
were used to calculate the angle at which they intersect the

Figure 2. Investigation of density profiles. (a) Cellular density profiles were created from areal measurements of thickness and neuronal density of each cortical layer

reported by von Economo & Koskinas (von Economo and Koskinas 1925). The first letter of each areal code corresponds to the lobe, the second letter indicates succes-

sive lobar measurements e.g., OA, occipital area A, TB, temporal area B, etc. All von Economo profiles exhibited a large positive gradient between layer I, which has

the lowest neuronal density, and layer II. Most profiles also exhibited a consistent mid-profile peak corresponding to high neuronal density in layer IV. A notable

exception included FA, the agranular motor cortex, so called because no granular layer is visible under a microscope. (b) von Economo density profiles were compared

with intensity profiles from corresponding areas in the BigBrain. Shown here are von Economo areas OA (extrastriatal occipital cortex) and FD (granular anterior fron-

tal cortex). The layer I/II boundary and mid-cortical layer IV peak is consistently present in both von Economo and BigBrain profiles.
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coronal sections and the amount of error this would introduce
if measured with 2D cortical histology. The angle α is given by:

⎛
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where N is the normal vector to the section plane and vwhite

and vpial are the coordinates describing pial and white vertex
locations. The overestimation error introduced when measur-
ing the thickness of a piece of cortex where the profile inter-
sects the plane at an angle α is given by:
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Results
Voxel Resolution

Examining the intensity profiles at a variety of resolutions
serves two purposes. First, higher resolution incurs a greater
computational cost. Second, it enables us to investigate the
minimum resolution required for laminar discrimination. As
expected, increasing voxel resolution revealed progressively

clearer layer-related variation in cortical intensity (Fig. S1). At
1mm, clear laminar features were not visible, and layer-related
intensity peaks were first visible at around 400 μm. These fluc-
tuations became increasingly well defined as the resolution
was increased to 20 μm. Thus, while the highest level of lami-
nar detail was not visible at the limits of resolution for in vivo
MRI, certain layer-related features could be detected. However,
as resolution was further increased, small-scale fluctuations in
intensity also increased, such that at 20μm, there were dozens
of peaks in intensity, many within the same cortical layer.
Layer-related changes in cortical intensity were sufficient at
40 μm to identify major laminar features, which provided an 8-
fold reduction in data volume enabling greater computational
efficiency relative to 20 μm volume.

Anisotropic Smoothing Parameters

To minimize the level of noise, data were anisotropically
smoothed, with maximal smoothing in the tangential direction
and minimal smoothing across layers in the radial direction
(Fig. S2). A range of anisotropic smoothing kernels was tested
against number of cortical profiles sampled from across the
cortex (Fig. S3). The degree of anisotropic smoothing is deter-
mined by the number of iterations, with the effective FWHM

Figure 3. Identification of cortical layers. (a) Automatically detected layers from cortical profiles between pial and white surfaces. (b) An initial estimate for layer I/II

boundary position was placed at the layer I/gray boundary of the tissue classification, made on 200 μm isotropic voxels (yellow/gray voxels). Surfaces were adjusted to

the nearest maximum gradient, with two different smoothing steps to produce a smooth surface following the visible boundary between these layers: intensity val-

ues were smoothed across the surface and vertices were moved to the position on the profile nearest the smoothed value, and geometric mesh smoothing removed

high curvature kinks by averaging neighboring coordinates—as shown by the arrow and the green dotted line. (c) The initial position of layer IV was placed at the first

major peak after an upwards inflection in the intensity profile, which corresponds to layer II/III. Surfaces were adjusted to the nearest profile maximum, with two

iterative smoothing steps: equivolumetric depth values (spectral colored 200 μm voxels) were smoothed across the surface to reposition smooth but inaccurately

placed regions (purple dashed line) and geometric mesh smoothing was again used to remove high curvature kinks. On the gray-scale histological images, minimum

intensity pixels are white, maximum are black.
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being calculated post hoc (Kimia and Siddiqi 1996). At 0.163mm
maximum FWHM smoothing, the number of peaks was
between 3 and 5. Six-layered isocortex was expected to have 3
peaks (layers II, IV, and VI) and 2 troughs (layers III and V),
while additional sublayers such as those found in V1 might
give rise to additional peaks. Thus, this range represented an
optimal balance between differentiating laminar peaks and
minimizing noise-related intensity changes. Subsequent analy-
ses were therefore carried out on 40 μm isotropic voxels, aniso-
tropically smoothed at a maximum FWHM of 0.163mm
(Fig. S2).

Characteristic Laminar Features of Cortical Profiles

Comparison of profiles from neuronal density changes in von
Economo and Koskinas’ neuronal numerical density (number
of cells per area) and BigBrain staining intensity profiles
revealed characteristic changes (Fig. 2). While there were differ-
ences between these profiles due to factors such as nonuniform
numerical cell density within layers, variations in cell body size
and methods for smoothing data, many features of the profiles
were consistent between the two sets of profiles. The most

characteristic, consistent feature was a sharp change in inten-
sity at the boundary between layers I and II. This was found in
all von Economo profiles and was clearly visible in histological
sections. The corresponding feature on the BigBrain profiles
was a peak in the first derivative of the profile, close to the pial
surface. The second most characteristic feature was a large
peak in neuronal density at the center of layer IV, the granular
layer. While this peak was not present in all samples, particu-
larly in the “agranular” cortices (e.g., area FA, the primary
motor, and premotor areas (Zilles et al. 2015a)), it was present
across most other cortical areas (Fig. 2a). The corresponding
intensity peak was then identified in the BigBrain intensity pro-
files. Comparison of BigBrain staining intensity profiles with
von Economo histological numerical density profiles revealed
features that were consistent across most cortical areas and
which could therefore be used for automated identification of
cortical layers from intensity profiles (Fig. 2).

Verification of Automatically Identified Cortical Layers

Across the 37 samples, automatically identified layer I/II
boundary and layer IV (Fig. 3) closely followed the manually

Figure 4. Verification of cortical layers. (a) Distance of layer IV vertices from layer IV boundaries manually delineated in 37 areas on 5 μm histological sections. Most

points lie directly within or close to layer IV and there is no apparent systematic bias in the small number of points lying outside of these bounds. (b) Verification that

local, morphologically determined variability in automatically identified layer IV depth followed that of the manually delineated layer IV bounds, shown here for six

samples on a single coronal section: 2807. The percentage depth of the midpoint of the manually delineated layers between the white and layer I/II boundary and the

percentage depth of the automated layer IV between automated white and layer I/II surfaces was compared for each sample region. The mean Pearson’s correlation

coefficient for this section was r = 0.80 (across all sections r = 0.72). (c) Visual validation that layer I/II and layer IV closely follow manually defined boundaries for sec-

tion 2807 at 20 μm. The automatically identified surfaces have the following colors: white–red, layer IV - burgundy, layer I/II - green, pial–blue. The white–blue overlays

indicate distance below the manually defined layer IV/V boundary, with the lower bound at the white surface. The white–red overlays indicate distance above layer

III/IV boundary, with the upper bound at the layer I/II boundary. The automatically identified layer IV surface consistently lies within or close to layer IV. On the gray-

scale histological images, minimum intensity pixels are white, maximum are black.

Mapping Cortical Laminar Structure in 3D BigBrain Wagstyl et al. | 7

Downloaded from https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhy074/4975486
by University of Cambridge user
on 05 June 2018



delineated layer bounds (Fig. 4c). The absolute distance from
the manual delineations was calculated for each vertex within
a sample region of interest. These error distances were aver-
aged across the sample to give a mean error for each of the 37
regions. Signed mean distance was calculated to assess for sys-
tematic biases in the layers being identified, while unsigned
mean distance was calculated to assess the consistency of the
accuracy. For signed mean distance, negative distance values
indicated that the automated surface was closer to the white
matter surface than the manually delineated boundary and
positive distance values indicated the surface was closer to the
pial surface.

The mean distance between manually and automatically
identified layer I/II boundary across all samples was −13 μm
(s.d. 40 μm, range −120 μm to 70 μm, unsigned error was 63 μm).
To put this distance in context, these surfaces were calculated
on 40 μm resolution data. The Anderson–Darling (AD) test indi-
cated that the data were normally distributed (A = 0.45, P =
0.26) and a one-sided t-test indicated that the mean error did
not differ significantly from zero (t = −1.78, P = 0.08). Thus,
there was no evidence of a systematic error in which layer I/II
was identified. For layer IV, the mean error across all samples
was −11 μm (s.d. 68 μm, range −161 μm to +140μm, unsigned
error was 72 μm) (Fig. 4a). The AD test indicated that the data
were normally distributed (A = 0.23, P = 0.80) and a one-sided
t-test indicated that the mean error did not differ significantly
from zero (t = −1.03, P = 0.31). Again, there was no evidence of a
systematic error—the layer being identified was within layer
IV. For each sample, the percentage depth of layer IV between
layer I/II boundary and the gray/white boundary correlated
strongly with the percentage depth of the middle of the manu-
ally delineated layer IV (across all samples mean Pearson’s r =
0.72) (Fig. 4b). Per-sample measurements of regional accuracy
mapped to the cortical surface can be found in Fig. S3.
Therefore, the automatically defined layer IV closely followed
within-area and between area variations in position of the
manually delineated layer IV.

Layer IV Depth and Cortical Morphology

We quantified the relationship between cortical morphology
and cortical laminar structure (Fig. 5a), a relationship that was
first noted in 2D histological studies (von Economo and
Koskinas 1925; Bok 1929). Testing across all cortical vertices on
both hemispheres, the depth of layer IV was strongly related to
mean curvature, as measured on a mid-surface between the
layer I/II boundary and white surfaces (Fig. 5b). The linear (β=
−15.5, F(1 302273) = 4.164 × 105, P < 0.0001), quadratic (F(2 302272) =
2.102 × 105, P < 0.0001), and cubic (F(3 302271) = 1.483 × 105, P <
0.0001) models were all highly predictive. BIC analysis revealed
that the cubic model best predicted the relationship (linear:
df = 3, BIC = 1893302; quadratic: df = 4, BIC = 1891660; cubic:
df = 5, BIC = 1881609). Overall, layer IV was more superficial in
gyri and deeper in sulcal fundi. This finding was consistent
with classical histological studies including the equivolumetric
model of laminar structure and provided 3D evidence that
upper cortical layers (I–III) are thinner in gyral crowns but
thicker in sulcal fundi while lower layers (V–VI) show the
inverse relation. This relationship was present across the entire
cortex and, therefore, must be considered when sampling corti-
cal tissue either with histological techniques or for MRI.

There was almost no change in equivolumetric depth with
cortical curvature (β=−1.07, F(1 302273) = 2706, P < 0.0001), sug-
gesting that the model is an appropriate way to account for the

relationship between laminar depth and folding. Accounting
for the effect of curvature on layer IV depth by using the equi-
volumetric model of layer depths revealed considerable resid-
ual variability position of layer IV depth (Figs 5c and 5d). Thus,
the relative depth of layer IV is determined both by local mor-
phology and by inter-regional differences in cytoarchitecture.

3D Histology Overcomes 2D Oblique Sectioning Error

Analysis of the angles at which cortical profiles intersected the
coronal sections demonstrated how the curved shape of the
cortex affects 2D histological measurement (Fig. 6). Importantly,
while the 3D BigBrain enables estimation of this error, for most
2D classical histology, these measurements cannot be readily
adjusted, as computational reconstruction of the cortical surfaces
is required to estimate these angles.

Discussion
We have developed and validated a fully automated 3D analy-
sis of the laminar structure of the cerebral cortex in the
BigBrain. This enabled the identification of two layers across
the entire cerebral cortex and revealed cross-cortical patterns
of cytoarchitecture. Our results demonstrated that features of
cortical staining intensity profiles corresponded to specific cor-
tical layers, and at 40 μm isotropic resolution, these can be used
to identify surfaces automatically at the layer I/II boundary and
within layer IV (Fig. 1). The accuracy of layer extraction was
subsequently corroborated through manual histology. Based on
these layers, we have quantified the systematic relationship
between cortical layer IV depth and cortical mean curvature
and the extent to which the relative depth of this cortical layer
changes among cortical areas. These findings have implications
for a deeper understanding of cytoarchitectural organization
and future directions for in vivo cortical neuroimaging. In par-
ticular, they offer exciting possibilities for more precise charac-
terizations of the nature of structural changes associated with
neuropsychiatric conditions and for linking such characteriza-
tions to functional disturbances.

We used cortical intensity profiles generated to identify his-
tological cortical layers in 3D, at the boundary between layers I
and II and a mid-cortical peak in intensity that corresponded to
layer IV. The position of the automatically identified layer IV
closely varied with the curvature of the cortex (Figs 1 and 5),
such that at the top of gyral crowns, it was closer to the pial
surface, and in the sulcal fundi, it was closer to the white mat-
ter surface, this finding being consistent with known cortical
anatomy (von Economo and Koskinas 1925; Bok 1929). These
findings further validate the equivolumetric model of laminar
structure, which is used to predict the position of layers in MRI,
from the curvature of the cortex (Bok 1929; Waehnert et al.
2014). Layer IV depth, as with many other aspects of cytoarchi-
tecture (Welker 1990), varies as much between crowns and
fundi within the same cytoarchitectonic area as across cortical
areas. Although the precise functional impacts of these differ-
ences are unclear, morphology is likely to affect the neurophys-
iology, connectivity, and therefore perhaps even the functional
role of the cortex (Welker 1990; Hilgetag and Barbas 2005).
Furthermore, when modeling cortical layers in vivo, it is crucial
to account for morphological position to ensure that quantita-
tive sampling is carried out within a single target layer.

After accounting for the close relationship between layer IV
position and gyral/sulcal morphology (Fig. 5a), there was
remaining inter-regional variability in the depths of cortical
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layers (Fig. 5c and 5d), which has methodological and neurobio-
logical consequences. Methodologically, neuroimaging studies
must consider these regional differences when modeling layer
depths in MRI even after accounting for folding. Regional differ-
ences in laminar depths mean that a single equivolumetric sur-
face is located in different cortical layers of different cortical
areas. Neurobiologically, inter-regional differences in the thick-
nesses of upper and lower cortical layers support the hypothe-
sis that the cytoarchitecture of different cortical areas is
associated with its connectivity (Beul et al. 2017). Variability in
layer thickness can arise from a number of linked microstruc-
tural properties, including neuronal density (von Economo and
Koskinas 1925), dendritic arborization (Elston and Rosa 1998),
and myelination (Nieuwenhuys et al. 2015; Zilles et al. 2015b).
For example, within the cortical hierarchies, the infragranular

layers are thought to be the origin of corticocortical feedback
connections, which are relatively sparse in primary sensory
regions (Felleman and Van Essen 1991). In the BigBrain, layer IV
was very deep (i.e., close to the white surface) in primary visual
cortex, which is already thin (Brodmann 1909; Wagstyl et al.
2015). This suggests that layers V and VI are particularly thin in
the visual cortex (von Economo and Koskinas 1925), reflecting
perhaps the sparsity of cortical feedback connections originat-
ing from this area. Further investigation of quantitative
cytoarchitecture might help disentangle relationships between
laminar thicknesses, intracortical circuitry, and interareal
connectivity.

Analysis of cortical profiles between vertices on 3D surfaces
enables cytoarchitectural analyses, such as border detection
(Schleicher et al. 2005) and quantitative cytoarchitecture (von

Figure 5. Layer depth and morphology. (a) Layer IV percentage depth was strongly predicted by mean curvature (mm−1) measured on a mid-surface between layer I/II

and white surfaces, being deeper in negatively curved fundi and more superficial in positively curved crowns. The relationship between layer IV depth and curvature

was best predicted by a cubic regression. This relationship is consistent with predictions from the equivolumetric model. (b) Relative depth of automatically identified

layer IV displayed on a spatially smoothed white surface. Consistent with histological studies (Bok 1929), layer IV was located deeper in sulcal fundi and more superfi-

cial in gyral crowns. Upper layers (II & III) were therefore relatively thinner in gyral crowns and thicker in sulcal fundi, while the opposite was true for lower cortical

layers (V–VI). (c) Layer IV equivolumetric depth showed almost no correlation with curvature, lending support to the use of this model in modeling layers in MRI. (d)

Equivolumetric depth of layer IV on a spatially smoothed white surface. Across cortical areas, there remained a variability in layer IV equivolumetric depth. Layer IV

was relatively deeper in the calcarine sulcus (V1) and parts of the medial prefrontal cortex. Due to the presence of border effects and allocortex, areas directly adja-

cent to the medial wall (black) should be interpreted with caution.
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Economo and Koskinas 1925) across the entire cortex, with sev-
eral advantages over classical 2D histological techniques. First,
2D histology is limited by the original orientation of the plane
of section. 2D histological measurement is restricted to cortical
samples cut approximately perpendicularly to the surface. For
some obliquely sectioned regions of cortex, measurements can
be made, but they are subject to errors introduced by the angle
between the section and the surface (Fig. 6); for other areas, the
angle is too great and measurement is impossible. Our
approach based on the 3D histological reconstructed BigBrain
and intensity profiles that can take any oblique angle enabled
us to carry out full coverage of the cerebral cortex. Second, 2D
manual delineations are labor intensive, even with a limited
number of samples. Here, analyses of 325,000 cortical vertices
distributed across the entire cortex requires around 40minutes
on a single processor and is entirely reproducible; manual mea-
surement of this many samples is simply not feasible. Moreover,
manual measurement is highly observer-dependent—for exam-
ple, von Economo estimated an interobserver measurement error
of up to 500 μm for the placement of the white matter surface (von
Economo and Koskinas 1925). For comparison, our automated sur-
faces had a mean error in automated layer IV position of 11 μm
(Fig. 4), with reduced accuracy primarily in regions lacking a clear
layer IV (Fig. S4). Therefore, this approach offers several advan-
tages over classical histology in being 3D, rapid, observer indepen-
dent, and reproducible. These attributes are of great value in
exploring larger scale datasets, especially developmental and clini-
cal samples, where structural changes can be subtle.

Finally, these measurements were carried out on a recon-
structed cortical surface, complete with the characteristic pat-
tern of gyri and sulci. While cytoarchitectonic and functional
areas can be variably related to cortical folds (Rajkowska and
Goldman-Rakic 1995; Amunts et al. 1999; Glasser et al. 2016),
surface-based landmarks do improve interindividual coregis-
tration and prediction of areal localization (Fischl et al. 2008).
Crucially, cortical mesh reconstructions are readily ideally
suited for translation between imaging modalities. This has

enabled registration of these BigBrain surfaces and their associ-
ated cytoarchitectural information to an in vivo average tem-
plate surface (Lyttelton et al. 2007). Thus, patterns of cortical
structure gleaned from these data are transferable to MRI-
based cortical reconstructions to generate and directly test
novel hypotheses. For example, characterizing gyral–sulcal dif-
ferences in cytoarchitecture can aid interpretation of morpho-
logical change (Wagstyl et al. 2016), and accurate sampling of
high-resolution BOLD fMRI signal in specific cortical layers has
revealed differential functional responses (Muckli et al. 2015).

A limitation from the analysis of post mortem brains is the
effect of tissue shrinkage on measurements. While it is possible
to account for this artifact (Amunts et al. 2005), we were pri-
marily interested in the percentage depth of layer IV, on which
shrinkage would have little effect (Amunts et al. 1995).
Furthermore, there is only a single BigBrain and it is the brain
of a single 65-year-old man. Thus, relationships identified here
are not necessarily representative of all human brains at all
ages. Nevertheless, morphological and inter-regional differ-
ences match and extend those reported in classical histological
studies, and these insights will aid the future identification of
cortical layers in vivo.

This study presents an approach to analyze cortical laminar
structure using staining intensity profiles. While the present
study was limited to identifying two intracortical surfaces, 1D
intensity profiles could potentially be used to further segment
the layers and sublayers of the cortex (Figs 2, 3 and S3). However,
interareal differences in cytoarchitecture, and by extension pro-
file features corresponding to histologically defined layers, pre-
clude the simple extension of this method (Fig. 3). Instead, future
extensions of this approach to fully segment the six layers of the
cortex will require more flexible algorithms such as deep learn-
ing and could incorporate areal identification alongside laminar
segmentation. Importantly, although these techniques were
here applied to histological profiles, a similar approach could be
used for laminar analysis of cortical profiles derived from MRI
(Ferguson et al. 2018).

Figure 6. Measurement errors in 2D histology. (a) Errors are introduced due to the angle α between the cortical profile vector and the original 2D coronal section. (b)

Estimated 2D thickness measurement error of a 3mm cortex due to the angle between the coronal plane and cortical profiles. Red areas indicate errors of 1mm or

greater. Thickness measurements made at vertices colored blue and purple would be little affected by oblique slicing. Occipital (top left) and frontal (top right) views

showed many profiles approaching 90° such that a single cortical column would be distributed across hundreds of coronal sections making laminar analysis impossible

in 2D. (c) Histogram showing the distribution of angles across vertices. At angles above 18°, which made up approximately 69% of vertices, there was a 5% overestimation

in any 2D thickness measurement. (d) Calculation of the error in thickness measurement associated with a given profile section angle.
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In summary, we used a fully automated technique to iden-
tify cortical layers in 3D on the BigBrain. There was a close rela-
tionship between layer IV depth and morphology across the
entirety of the cortex, but layer IV depth varied between regions
above and beyond this relationship. These patterns can now be
used with inter-regional differences to generate strong prior
expectations of the location of cortical layers, strengthening
our ability to interpret subtle changes in MRI voxel intensity
associated with interlaminar differences. Moreover, our analy-
sis characterizing the effects of varying voxel resolution of the
BigBrain indicated that high-field MRI is approaching resolu-
tions at which, with suitable sequences, identification of cer-
tain cortical layers is feasible. Thus, the principles of laminar
structure derived here, and the tools for cortical intensity pro-
file analysis, can be readily used to improve translation
between cytoarchitectural studies and in vivo cortical analyses.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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