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Forward models demonstrate that repetition
suppression is best modelled by local neural scaling
Arjen Alink1, Hunar Abdulrahman2 & Richard N. Henson 2

Inferring neural mechanisms from functional magnetic resonance imaging (fMRI) is chal-

lenging because the fMRI signal integrates over millions of neurons. One approach is to

compare computational models that map neural activity to fMRI responses, to see which best

predicts fMRI data. We use this approach to compare four possible neural mechanisms of

fMRI adaptation to repeated stimuli (scaling, sharpening, repulsive shifting and attractive

shifting), acting across three domains (global, local and remote). Six features of fMRI

repetition effects are identified, both univariate and multivariate, from two independent fMRI

experiments. After searching over parameter values, only the local scaling model can

simultaneously fit all data features from both experiments. Thus fMRI stimulus repetition

effects are best captured by down-scaling neuronal tuning curves in proportion to the dif-

ference between the stimulus and neuronal preference. These results emphasise the

importance of formal modelling for bridging neuronal and fMRI levels of investigation.
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Inferring the properties of neurons from gross measurements
like functional magnetic resonance imaging (fMRI) is notor-
iously difficult. Because the fMRI signal integrates over mil-

lions of neurons, such inferences represent an inverse problem
with no unique solution. However, progress can be made by
comparing different “forward” models that formalise the map-
ping from neural activity to fMRI responses. This problem applies
for example when trying to understand the phenomenon of
reduced fMRI responses associated with repeated stimulation—
referred to as “fMR adaptation” or “repetition suppression”1–11.
These fMRI reductions have been attributed to a range of dif-
ferent neural mechanisms, such as “sharpening”, whereby repe-
tition is thought to narrow neural tuning-curves12,13. Here we
address this problem by implementing a range of forward models
that map from neuronal firing to fMRI signals, and comparing
their predictions to key empirical features of fMRI repetition
effects.

A previous study by Weiner and colleagues14 formally mod-
elled the relationship between neuron-level and voxel-level
repetition effects. This study was an important demonstration
that neural scaling and neural sharpening can reproduce similar
effects of repetition on the mean fMRI response across voxels (a
“univariate” response). They also assessed effects of repetition on
fMRI activation patterns (“multivariate” responses). However,
they did not determine whether multivariate repetition effects
were best modelled by neural scaling or neural sharpening. This
question is especially relevant given the recent claim by Kok
et al.15 that the prediction of upcoming stimuli (which may also
arise from repetition) causes neural sharpening based on the
observation that prediction improves fMRI pattern-based sti-
mulus classification. Here we overcome the limitation of these
studies by considering a wider range of neural models and by
evaluating a larger combination of both univariate and multi-
variate fMRI data features. This enables us to determine, for
example, whether repetition effects on fMRI pattern information
are specific to neural sharpening.

Our forward models are based on four mechanisms associated
with neuronal adaptation, each of which is grounded in previous
neurophysiological studies: (1) scaling, where adaptation reduces
response amplitude16–18, (2) sharpening, where adaptation
tightens tuning-curves10, (3) repulsive shifting, where the peak of
tuning-curves moves away from the adapting stimulus19 and (4)
attractive shifting, where the peak moves towards the adapting
stimulus20,21. Each of these basic mechanisms is applied across
three domains: (1) global, where all tuning-curves in a voxel are
affected, (2) local, where tuning-curves close to the adapting
stimulus are affected most, and (3) remote, where tuning-curves
close to the adapting stimulus are affected least. Global effects
could arise, for example, from neuromodulatory changes that
affect a whole brain region; local effects could arise from activity-
dependent changes such as synaptic depression22; while remote
effects could arise from strengthening of inhibitory interneurons
that implement “winner-takes-all” dynamics23. Figure 1 illustrates
the 12 models resulting from crossing these four mechanisms and
three domains. Tuning-curves are modelled by either Gaussian or
von Mises distributions, and each model has only 2–3 free
parameters: (1) the width of tuning-curves (σ), (2) the amount of
adaptation (a) and, for non-global models, the extent of the
domain of adaptation (b).

We compared the fMRI repetition effects predicted by these
models to real fMRI data from two different experiments. Each
experiment provided data for two stimulus-classes across multiple
voxels within a single region-of-interest (ROI) in the brain. In
Experiment 1, the data were responses from voxels in a fusiform
face-responsive region (FFR) to initial and repeated brief pre-
sentations of face and scrambled face stimuli; in Experiment 2,

the data were responses in early visual cortex (V1) to initial and
repeated sustained presentations of gratings with one of two
orthogonal orientations. For each experiment, we examined how
repetition affected six data features: (1) Mean Amplitude Mod-
ulation (MAM), the traditional univariate measure of repetition
suppression, averaged across all voxels in the ROI; (2) Within-
class Correlation (WC), the mean correlation of multivariate
patterns across voxels between all pairs of stimuli of the same
class; (3) Between-class Correlation (BC), the mean pattern cor-
relation between all pairs of stimuli from different classes; (4)
Classification Performance (CP), here operationalized as the
difference between WC and BC, but validated by a Support
Vector Machine (see Methods); (5) Amplitude Modulation by
Selectivity (AMS), where the repetition-related change in ampli-
tude is binned according to the selectivity of each voxel (defined
as the T-value when contrasting the two stimulus classes); and (6)
Amplitude Modulation by Amplitude (AMA), where the
repetition-related amplitude change was binned according to the
overall amplitude of each voxel. Some of these data features dif-
fered across our two experiments, presumably owing to important
differences in ROI, stimulus type, stimulus duration, etc. To
foreshadow our results, while no data feature on its own is
diagnostic of a specific neural model, only the local scaling model
can simultaneously reproduce all six data features using the same
parameter values, and this is the case for both experiments,
despite their different paradigms.

Results
Empirical results. The two paradigms are illustrated in Fig. 2.
Experiment 1 measured the impulse response to brief presenta-
tion (<1 s) of unfamiliar faces and scrambled faces that repeated
immediately on 50% of occasions, in a randomly-intermixed,
event-related fMRI paradigm24. Experiment 2 measured the
sustained response to 14 s blocks containing rapid presentations
of oriented visual gratings, with the orientation alternating
between 45 and 135 degrees across blocks25.

The six data features are shown for each experiment in Fig. 3.
As expected, both Experiment 1 and Experiment 2 showed
significant repetition suppression (MAM): in FFR (t(17)=−7.53,
p < 0.001) and V1 (t(17)=−7.13, p < 0.001), respectively.
Stimulus repetition also reduced both within-class (WC) and
between-class (BC) correlations between trials in both experi-
ments (Exp1/FFR, WC, t(17)=−8.61, p < 0.001, and BC, t(17)=
−5.84, p < 0.001; Exp2/V1, WC, t(17)=−7.19, p < 0.001, and BC,
t(17)=−7.76, P < 0.001). However, while the difference between
repetition effects on within- and between-class correlations (CP)
increased for V1 in Experiment 2 (t(17)=+ 4.15, P < 0.001), it
decreased for FFR in Experiment 1 (t(17)=−3.84, P= 0.0012).
In other words, repetition improved the ability to classify stimuli
according to their two classes in Experiment 2 (consistent with
the improved classification for predictable stimuli reported in
Kok et al.15), but impaired such classification in Experiment 1 (as
confirmed by support-vector machines in both cases). Further-
more, while linear regression showed that repetition suppression
increased with mean amplitude (AMA) in both experiments
(Exp1/FFR, t(17)=+ 9.26, P < 0.001; Exp2/V1, t(17)=+ 7.83, P
< 0.001), its dependence on voxel selectivity (AMS) differed
across experiments: increasing with selectivity in Experiment 1
(FFR, t(17)=+ 3.46, p= 0.003), but decreasing with selectivity in
Experiment 2 (V1, t(17)=−2.31 p= 0.034). Thus, given their
different ROIs, stimulus-types and stimulation protocols, it is
interesting to note that there are both commonalities and
differences in the effects of repetition across the two experiments.

To further check the generalisability of these results, we
examined other ROIs that responded selectively in each
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experiment. In Experiment 1, an occipital face-responsive region
(OFR) showed the same pattern of data features as the FFR
(Supplementary Figure 6), while in Experiment 2, both V2 and
V3 showed the same pattern of data features as V1 (with the
possible exception of AMS in V2, which was in the same direction
but only borderline in significance, p= 0.066; Supplementary
Figure 7). We also examined their generalisability across
repetition lag in Experiment 1: delayed repeats showed the same
pattern of significant data features in FFR as immediate repeats
(just weaker in size, Supplementary Figure 8). Finally, because
FFR responds more to faces than scrambled faces on average
(unlike V1 which responds equally on average to different grating
orientations), we split MAM and AMA data features by faces and
scrambled faces and found the same pattern (Supplementary
Figure 9), demonstrating that the effects are significant for both
stimulus types, but just weaker for scrambled faces. Note that the
other four data features depend on the difference between face
and scrambled face responses, and therefore cannot be reported
separately.

Simulation results – unconstrained parameters. We explored
the predictions of each of the twelve models for each of the six
data features in a grid-search covering a wide range of values for
the 2–3 free parameters (see Methods for specific ranges used).
We ran 50 simulations for each model for all unique parameter
combinations. For each such combination, we calculated the 99%
confidence interval across the 50 simulations for the mean of each
of the six data features, and tested whether this was above, below
or overlapped zero.

In this initial analysis, different parameter values were allowed
for each data feature, in order to see whether any data features
were diagnostic of a neural model, and whether each model could,
in principle, explain each data feature. Figure 4 summarises the
results for each experiment. Each circle represents a specific
model, data feature and experiment. If there existed at least one
parameter combination in which a model’s 99% confidence
interval for a feature was above zero, then that circle included red.

If there existed at least one parameter combination in which the
confidence interval was below zero, then that circle included blue.
If at least one combination produced a confidence interval that
straddled zero, then that circle included white. When different
parameter combinations produced two or more of these patterns,
the circle was given a mixture of the corresponding colours.

The first thing to note is that no single data feature was
sufficient to identify the underlying neural model, illustrating the
difficulty of inferring from fMRI data at the level of voxels to
mechanisms at the level of neurons (i.e., no value in any row in
Fig. 4 is unique to one of the twelve models). Note that this
conclusion holds regardless of the empirical value of the data
features observed in the present experiments (leftmost column).
This conclusion is important because some of these features, such
as the increase in classification performance (CP) after repetition,
have been assumed to support sharpening models15, yet Fig. 4
shows that several other non-sharpening models can produce an
increase in CP. The same goes for the negative slope in AMS,
which was also thought to support sharpening models15.

The second thing to note is that some of the neural models
cannot produce at least one of the data features observed in the
present experiments (whatever their parameter settings within the
large range explored here). This can be seen by comparing the
leftmost column with the remaining twelve columns. This means
that, by considering a range of consequences of repetition (both
univariate and multivariate), one can at least rule out some neural
models. Nonetheless, with unconstrained parameters, there were
six models that could fit the data features in Experiment 1
(FFR) – local and remote scaling, all three sharpening models and
global repulsion – and three models that could fit the data
features in Experiment 2 (V1) – local scaling, local sharpening
and remote attraction.

Simulation results – constrained parameters. Figure 4 shows
results based on parameters whose values were varied for each
data feature separately (e.g., the values σ, a and b that produce a
decrease in MAM may not be the same values that produce a
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Fig. 1 Example tuning curves along a stimulus dimension (ranging from 0 to X), both before (blue) and after (red) repetition of a single stimulus (with value
X/4, shown by green line) according to the twelve different neural models of repetition suppression, created by crossing four mechanisms (rows) with
three domains (columns). Mechanisms: scaling – adaptation reduces response amplitude, sharpening – adaptation tightens tuning-curves, repulsion – the
peak of tuning-curves moves away from the adapting stimulus, attraction – the peak moves towards the adapting stimulus. Domains: global – all tuning-
curves in a voxel are affected, local – tuning-curves close to the adapting stimulus are affected most, remote – tuning-curves close to the adapting stimulus
are affected least. For illustrative purposes, only five neural populations are shown, equally-spaced along the stimulus dimension. Note that this figure
illustrates the Gaussian tuning-curves used for Experiment 1 (see Supplementary Figure 1 for illustration of von Mises tuning-curves used for Experiment 2)
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decrease in WC). When we constrained the parameters to have
the same values across all six data features, only one model could
simultaneously fit all six features: local scaling. This is shown in
Fig. 5. If a circle is coloured green, then there existed a parameter
combination in which that model’s 99% confidence interval was
consistent with the significant effect for that data feature (in that
experiment); otherwise a circle is red. The particular parameter
combination chosen was the one that simultaneously reproduced
as many of the six data features as possible. Thus only if at least
one parameter combination could simultaneously reproduce all
six features would a whole column of Fig. 5 be green.

Only the column for the local scaling model has green colours
for all data features. Moreover, this was the same model for both
Experiment 1 and Experiment 2. The range of parameter values
required for local scaling can be found in the Supplementary
Table 1, and an illustrative fit to the data features can be found in
Supplementary Figure 4 and the Supplementary Table 1. There-
fore, the constraints offered by simultaneously fitting six different
data features are sufficient to single out one of the twelve models
considered here, and this was the same model across two
independent experiments (just with different parameter values
needed to capture differences between representations of the
different stimuli across different ROIs, different stimulation
protocols, etc.).

Discussion
Several neural mechanisms have been hypothesised to underlie
the observation of reduced fMRI responses to repeated stimula-
tion, i.e. repetition suppression3,12,13,26. These include neural
habitation or fatigue, which down-scale neuronal firing rates, and

neural tuning or sharpening, which tighten neuronal tuning
curves3. In principle, any of these mechanisms can explain the
basic effect of repetition on the mean univariate fMRI response
across voxels. However, we show that by (1) considering a range
of features of fMRI repetition effects, both univariate and mul-
tivariate, and (2) formally modelling a range of potential neural
mechanisms, various hypothetical neural mechanisms can be
distinguished. Indeed, our results show that local scaling of
neuronal firing is the only model, of the twelve considered here,
that can simultaneously explain six features of repetition in fMRI
data from two independent experiments. Importantly, local
scaling at the neuronal level can explain sharpening of patterns at
the voxel level (e.g. leading to improved classification after
repetition), i.e., conceptually, sharpening at the voxel level does
not imply sharpening at the neural level. This insight enables us
to reconcile fMRI repetition effects with claims that tuning width
of neurons in Macaque IT are unaffected by repetition27,
and emphasises the importance of formal modelling to bridge the
differences between the neuronal and fMRI levels of investigation.

Our modelling also allowed us to demonstrate that no single
feature of fMRI repetition effects was diagnostic of any of our 12
models (allowing for the 2–3 degrees of freedom corresponding to
the parameters of each model). This reinforces the importance of
simultaneously considering multiple data features. The local
scaling model was the only model capable of simultaneously fit-
ting our six data features with the same set of parameter values.
This was true across datasets that differed in terms of the stimuli,
brain region of interest, stimulation protocol and analysis method
(randomly intermixed events vs. sustained blocks of repetition). It
is possible that these findings could be explained by combinations
of mechanisms (e.g. global scaling and local sharpening), or by

Immediate
repeat (rep)

Repeat (rep)

Initial (init)
Exp1. face dataset paradigm

Exp2. grating dataset paradigm

45° 135° 1st repetition

2s

3s
≈1s

14s

2nd repetition

Initial (init)

Fig. 2 Visualisation of the two experimental paradigms and the corresponding brain region used in the analyses. Note that in our analyses we randomly
dropped half of the initial trials in the Face dataset to balance the number of the initial and immediate repeats and that we used the 2nd repetition as the
repeat condition for Experiment 2. The two face images shown are open license images presented for illustrative purposes only. The actual images used
during Experiment 1 are described in Wakeman and Henson24
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neuronal mechanisms beyond the twelve considered here. Inter-
estingly, our results show that fMRI experiments with just two
levels for each stimulus type still enable one to differentiate
between a wide range of possible models based on continuous
neural tuning curves. However, it is possible that more than two
stimulus levels will be needed to test simulations of repetition-
related changes in neural tuning curves in future studies, e.g., to
detect more subtle differences between different types of local
scaling. Nonetheless, local scaling remains the most likely current
explanation, in terms of parsimony.

A study by Weiner and colleagues14 also used formal neural
models to examine fMRI repetition suppression. They assessed
the validity of two models—comparable to our global scaling and
global sharpening models—and found that the validity of each
model depended both on brain area and lag between stimulus
repetitions. Neither global scaling nor global sharpening however
was able to account for the full range of repetition effects in our
two fMRI datasets. Nonetheless, Weiner et al.’s investigations
raise the important possibility that the neural mechanisms
underlying fMRI repetition effects may vary with other factors,
e.g., in brain regions beyond those considered here.

To our knowledge, only two studies14,15 have previously
examined a combination of univariate and multivariate fMRI data
features to elucidate neural mechanisms of fMRI response
reductions. Specifically, Kok et al.15 observed that stimulus pre-
dictability reduced mean fMRI responses (MAM) while increas-
ing fMRI pattern information about stimulus class (CP). This
observation, in conjunction with their finding that fMRI response
reduction was reduced for voxels with higher stimulus selectivity
(AMS), was interpreted as evidence for (global) neural sharpen-
ing. For the grating experiment (Experiment 2), we observed a
similar pattern of empirical results. Although we did not explicitly
manipulate prediction, the clear block structure of repeating sti-
muli would have produced strong predictions for upcoming sti-
muli (the same was not true for the face experiment, which may

be why it showed the opposite pattern for AMS). Importantly
however, our simulations revealed that this conjunction of data
features does not, in fact, uniquely identify neural sharpening.
This is consistent with single-cell recording studies that claim that
neural scaling provides a better description of repetition effects in
macaque IT than neural sharpening27. Nonetheless, our results do
not directly contradict the sharpening claim of Kok and collea-
gues15, in which the paradigm differs from that employed in the
two current experiments; rather the models considered here
would need to be applied to Kok et al.’s data to see if local scaling
was again the only model able to explain the full pattern of
results, or whether local sharpening was better in this case.

How is the local scaling model flexible enough to produce
opposite effects of repetition on CP and AMS across Experiment
1 and 2? The critical parameter turns out to be σ, the width of the
neuronal tuning curves. As can be seen in the Supplementary
Table 1, the optimal σ values ranged between 0.2 and 0.4 for
Experiment 1, but between 0.4 and 1 for Experiment 2. When σ is
low, a greater number of voxels have a selectivity for one stimulus
(by chance), and so when these are suppressed, there is a decrease
in WC after repetition (because highly tuned voxels are sup-
pressed more), but relatively less decrease in BC. On the other
hand, when σ is large, there are fewer selective voxels and hence
these are suppressed less, and there is less reduction in WC after
repetition and a relatively larger reduction in BC. This trade-off
between WC and BC allows CP to decrease for the face-
scrambled distinction in Experiment 1 (when σ is low) but
increase for the orientation distinction in Experiment 2 (when σ is
high). For AMS, when σ is low and a greater number of voxels are
highly selective, the effect of local scaling is to lower their selec-
tivity ranking. Because such selective voxels also show more
suppression, there is a positive dependency between suppression
and selectivity. Conversely, when σ is large, local scaling tends to
increase the selectivity ranking of less selective neurons, so there
is a negative dependency between suppression and selectivity.
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Note that σ reflects the tuning curve width relative to the range of
possible stimulus values (which was fixed as X here for both
experiments), so the differences between experiments could be a
property of the different ROIs and/or the different stimuli used
(the differences in CP and AMS could also reflect other proce-
dural differences between the experiments, but it is less obvious
how such differences would affect σ). In any case, it is interesting
that a single parameter within a simple model can produce such a
range of different qualitative outcomes at the level of fMRI ana-
lysis, again questioning any “inverse” inference one might be
tempted to make from fMRI.

Our finding that local scaling best explains fMRI repetition
suppression does not question previous findings of stimulus
repetition effects on single-cell recordings16,17,19–21. As alluded to
above, it is possible that multiple mechanisms operate in parallel,
but in different neural populations or cortical layers, and that the
dominance of the local scaling model for fitting fMRI data is
simply due the greatest proportion of neurons exhibiting local
scaling. It is also important to keep in mind that our fMRI signals
are dominated by changes in local field potentials28, rather than
the action potentials in large pyramidal cells that are normally
measured in single-cell studies. Unfortunately, our fMRI data
cannot speak to the temporal dynamics of repetition effects, such

as the acceleration of evoked responses predicted by facilitation
models1 and neural synchronisation11, which may also be
important features of neural repetition effects.

Note that local scaling of neuronal tuning curves could itself
arise from multiple potential mechanisms within the context of a
neuronal circuit, such as synaptic depression of bottom-up
inputs, or recurrent inhibition by top-down inputs. As reviewed
by Vogels18, firing-rate dependent response fatigue, e.g., a pro-
longed hyperpolarization that is intrinsic to the recorded neuron,
is unlikely to explain the properties of the stimulus-specific
repetition effects of the type described here. Indeed, when we
simulated a simplified, two-parameter version of the local scaling
model, in which the b parameter was fully determined by the
initial firing-rate of neurons, we could no longer reproduce the
present repetition effects (see Fatigue model section of Methods).
It is possible that the repetition effects observed here in FFR, OFR
and even V1 are “inherited” from earlier stages in the visual
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Amplitude Modulation by Amplitude (AMA)
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processing pathway (i.e, arise in the inputs to these areas18),
which can potentially explain the need for a wider domain of
adaptation (i.e, our additional b parameter). Alternatively, the
effects might arise from top-down input from regions later in the
processing pathway. For example, the hypothesis of predictive
coding, in which top-down predictions from higher-order regions
are refined after repetition13,29, could also result in maximal
suppression of neurons that are most selective for the (repeated)
stimulus—i.e., local scaling.

In sum, our work illustrates the value using forward models
that map from neurons to voxels, like those considered here, to
interpret fMRI data, i.e., map back from voxels to neurons.
Despite the simplicity of the models considered here, their pre-
dictions are not always intuitive, and they therefore help protect
against superficial analogies, for example that sharpening of
multivoxel fMRI patterns entails the sharpening of neuronal
tuning curves.

Methods
Ethics. All participants gave their informed consent after being introduced to the
experimental procedure, in accordance with the Declaration of Helsinki. Experi-
mental procedures were approved by the Cambridge Psychology Research Ethics
Committee (ethics reference numbers: CPREC 2005.08 and CPREC 2010.52 for
Experiments 1 and 2 respectively).

Experiment 1–participants and task. We report data from 18 of the 19 partici-
pants (8 female, aged 23–37) described in Wakeman & Henson24, after removing
one participant who had fewer fMRI volumes than the others. In brief, participants
made left-right symmetry judgments to faces or scrambled faces (no image was
perfectly symmetrical, and the range of perceived degrees of symmetry was made
apparent during a practice phase). Half of the faces were famous, but only the
remaining unfamiliar faces were analysed here. Every stimulus was repeated either
immediately or after a delay of 5–15 intervening stimuli; for our main analysis, only
initial presentations and immediate repetitions were analysed, though we also
analysed delayed repetitions in Supplementary Figure 8). For more details on the
experimental paradigm see Wakeman & Henson24.

Experiment 1–fMRI acquisition and processing. The MRI data were acquired
with a 3 T Siemens Tim-Trio MRI scanner with 32-channel headcoil (Siemens,
Erlangen, Germany). The functional data were acquired using an EPI sequence of
33, 3 mm-thick axial slices (TR 2000 ms, TE 30ms, flip angle 78°). 210 volumes
were acquired for each of the 9 sessions. Slices were acquired in an interleaved
fashion, with odd then even numbered slices and a distance factor adjusted to
ensure whole-brain coverage, resulting in a range of native voxel sizes of 3 × 3 ×
3.75 mm to 3 × 3 × 4.05 mm across participants (for details see24). We also obtained
a high-resolution (1 mm isotropic) T1-weighted anatomical image using a Siemens
MPRAGE sequence for normalisation of brains.

The fMRI data were preprocessed using the SPM12 software package (www.fil.
ion.ucl.ac.uk/spm) in Matlab 2012b (uk.mathworks.com). After removing the first
two EPI images from each session to allow for T1 saturation effects, the functional
data were corrected for the different slice times, realigned to correct for head
motion, and coregistered with the structural image. The structural image was
warped to a standard template image in MNI space, and the warps then applied to
the functional data.

The main a priori ROI was the FFR, as defined by the group univariate contrast
of unfamiliar faces vs. scrambled faces (averaged across initial and repeated
presentations, and therefore not biasing analysis of subsequent repetition effects),
thresholded at p < 0.05 family-wise error corrected using random field theory.
(While this region is likely to overlap with the Fusiform Face Area (FFA) defined
by Kanwisher and colleagues30, the FFA is normally defined for individual
participants using a wider range of non-face control stimuli). We extracted fMRI
timeseries data from voxels combined across both left and right FFR. The
combined masked contained 135 voxels for the right FFR and 50 voxels for the left
FFR. The only other region that responded more to faces than scrambled faces at
this threshold was a right Occipital Face-responsive Region (OFR). We also
examined this region, but after lowering the threshold to p < 0.001 uncorrected to
include left OFR as well (resulting in 75 and 193 voxels in left and right OFR
respectively).

Since this design used a short SOA of between 2.9–3.3 s (randomly jittered), the
BOLD response for each trial was estimated using the Least Squares Separate (LSS-
N) approach31,32, where N is the number of conditions (qualitatively similar results
were achieved with the standard Least Squares All approach). LSS-N fits a separate
General Linear Model (GLM) for each trial, with one regressor for the trial of
interest, and one regressor for all other trials of each condition (plus 6 regressors
for the movement parameters from image realignment, to capture residual

movement artefacts). This implements a form of temporal smoothness
regularisation on the parameter estimation32. The regressors were created by
convolving a delta function at the onset of each stimulus with a canonical
haemodynamic response function (HRF). The parameters for the regressor of
interest for each voxel in the mask were then estimated using ordinary least
squares, and the whole process repeated for each separate trial. The number of
trials varied slightly from session to session but it was balanced across participants,
totalling 49 trials for each of the 4 trial-types considered here (initial and
immediate repetitions of unfamiliar and scrambled faces).

Experiment 2- participants and task. We report fMRI data from the visual
gratings conditions of a larger study reported previously22,29,30. Eighteen healthy
volunteers (13 female, age range 20–39) with normal or corrected-to-normal vision
took part in the experiment.

The gratings were oriented 45° clockwise and 45° anticlockwise (135° clockwise)
from the vertical, with a spatial frequency of 1.25 cycles per visual degree. These
stimuli were presented during 2 runs of 8 min, with each run divided into
4 subruns, and each subrun containing 6 blocks, with the orientation presented in
each block alternating (Fig. 1). Each block lasted 14 s and contained 28 phase-
randomised gratings of one orientation, presented at a frequency of 2 Hz. The
stimulus duration was 250 ms, followed by an interstimulus interval (ISI) of 250
ms, during which a central dot was present, surrounded by a ring that determined
the task (see below). The spatial phase was drawn randomly from a uniform
distribution between 0 and 2π. Stimulus blocks were separated by 2 s fixation
periods and subruns by 24 s fixation periods.

In addition, each participant participated in a 12-min run for retinotopic
mapping. A description of the stimuli employed and the procedure used to define
individual regions of interest (ROIs) for the primary visual cortex can be found in
Alink et al.25.

Participants were instructed to continuously fixate on a central dot (diameter:
0.06° visual angle). The dot was surrounded by a black ring (diameter: 0.20°, line
width: 0.03°), which had a tiny gap (0.03°) either on the left or right side. The gap
switched sides at random at an average rate of once per 3 s (with a minimum inter-
switch time of 1 s). The participant’s task was to continuously report the side of the
gap by keeping the left button pressed with the right index finger whenever the gap
was on the left side, and keeping the right button pressed with the right middle
finger whenever the gap was on the right side. The task served to enforce fixation
and to draw attention away from the stimuli.

Experiment 2–fMRI acquisition and processing. Functional and anatomical MRI
data were acquired on the same scanner as Experiment 1 (see above). During each
stimulus run, we acquired 252 volumes containing 31 transverse slices covering the
occipital lobe as well as inferior parietal, inferior frontal, and superior temporal
regions for each subject using an EPI sequence (TR= 2000ms, TE= 30 ms, flip
angle= 77°, voxel size: 2.0 mm isotropic, field of view: 205 mm; interleaved
acquisition, GRAPPA acceleration factor: 2). The same EPI sequence was employed
for a retinotopic mapping run, during which we acquired 360 volumes. We also
obtained a high-resolution (1 mm isotropic) T1-weighted anatomical image using a
Siemens MPRAGE sequence.

Functional and anatomical MRI data were preprocessed using the Brainvoyager
QX software package (Brain Innovation, v2.4). After discarding the first two EPI
images for each run to allow for T1 saturation effects, the functional data were
corrected for the different slice times and for head motion, detrended for linear
drift, and temporally high-pass filtered to 2 cycles per run. The data were aligned
with the anatomical image and transformed into Talairach space33. After automatic
correction for spatial inhomogeneities of the anatomical image, we created an
inflated cortex reconstruction for each subject. Our main a priori ROI was V1,
given prior evidence for its orientation-specific adaptation7, though we also
examined V2 and V3 for comparison (the only other regions that can be reliably
localised by means of meridian mapping). All three ROIs were defined separately
for each participant by functionally localising the borders between them on an
inflated cortex reconstruction using meridian mapping34. ROIs contained only
voxels responsive to the area spanned by the oriented grating stimuli (on average,
the number of such voxels was 1230 (STD= 215), 1266 (STD= 211) and 1030
(STD= 198) for V1, V2 and V3 respectively). See Alink et al.25 for more details on
the stimulation protocol used during the separate fMRI localiser session.

Each grating stimulus type was presented three times during a subrun. In line
with previous studies12, repetition suppression increased across the two repetitions,
with average BOLD response amplitude (% signal change) of 3.32, 2.73 and 2.68 for
the 1st, 2nd and 3rd presentations respectively. To maximise repetition effects, we
therefore compared responses to the first and third stimulus presentation (referred
to as the initial and repeated condition). There are likely to be effects induced by
intermediate presentations of the other orientation, which are modelled fully in the
models described below. Any effects of the order of specific orientations were
controlled by counterbalancing (i.e., averaging data over 45°-135°-45°-135°-45°-
135° and 135°-45°-135°-45°-135°-45° subruns).

fMRI data properties. Let Bvtpc be the BOLD signal at voxel v for trial t involving
presentation p of stimulus class c (where c is face or scrambled face in Experiment
1, or 45 vs. 135 degrees in Experiment 2). The number of voxels (Nv) was 185 for
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the FFR ROI in Experiment 1, and varied from 775-1598 across participants (M=
1100, SD= 220) for the V1 ROI in Experiment 2. The number of trials (replica-
tions) for each stimulus class and presentation (Nt) corresponded to 49 events in
Experiment 1, and the 8 sub-runs in Experiment 2. We identified 6 properties of
the fMRI data, based on various analyses that have been reported in various fMRI
studies14,15, though never investigated simultaneously within a single study:

1-Mean Amplitude Modulation (MAM): this represents the mean, over voxels,
trials and the two classes, of the difference in the fMRI response to the initial vs.
repeated presentations:

MAM ¼ B::1: � B::2: ¼
XNv

v¼1

XNt

t¼1

X2

c¼1

Bvt1c �
XNv

v¼1

XNt

t¼1

X2

c¼1

Bvt2c

 !
= 2 ´Nt ´Nvð Þ

This is the typical univariate measure of repetition suppression3.
2-Within Class Correlations (WC): this is the mean pairwise correlation of

patterns over voxels, averaged across all trials and classes, and then contrasted for
initial vs. repeated presentations:

WC ¼
X2

c¼1

XNt

i¼1

XNt

j>i

cor B:i1c;B:j1c

� �
�
X2

c¼1

XNt

i¼1

XNt

j>i

cor B:i2c;B:j2c

� � !

= Nt ´ Nt � 1ð Þð Þ

This captures how repetition makes patterns for the same class more or less
similar.

3-Between Class Correlations (BC): This is the mean pairwise correlation of
patterns over voxels for all trials of different classes, contrasted for initial vs.
repeated presentations:

BC ¼
XNt

i¼1

XNt

j¼1

cor B:i11;B:j12

� �
�
XNt

i¼1

XNt

j¼1

cor B:i21;B:j22

� � !
= Nt ´Ntð Þ

This captures how repetition makes patterns of the opposite class more or less
similar.

4-Classification Performance (CP): The ability of MVPA to classify the two
classes relates to the difference between Within- and Between-Class correlations:

CP ¼ WC� BC

Note that this measure it is not redundant with the previous two features, since
repetition might decrease both WC and BC, but decrease BC more, for example,
such that CP increases. To confirm the relationship between CP and MVPA
classification, we compared our CP results to the results of an analysis using linear
Support Vector Machine classification (SVM, Bioinformatics Toolbox in Matlab
2012b) with leave-one-session-out cross-validation for the face dataset and with
leave-one-subrun-out cross-validation for the grating dataset. Classification
accuracy was found to be higher for initial than for repeated presentations of face
stimuli (initial: 70%, repeated: 61%, t(17)= 3.06, p < 0.005) while the opposite was
observed for grating stimuli (initial: 56%, repeated: 69%, t(17)=−3,09, p < .005)—
which fits with our CP results.

5- Amplitude Modulation by Selectivity (AMS): This is a further breakdown of
the first feature above, where the degree of amplitude modulation is related to the
degree of “selectivity” of each voxel. Thus voxels were first binned (into six bins) by
the absolute t-value of the difference between mean activity to each class (averaging
across trials and both presentations, to avoid regression-to-the-mean), and then the
slope estimated of a linear regression of repetition-related modulation against
selectivity bin:

AMS ¼ slope MAMb; binb ttest Bv::1;Bv::2ð Þj jð Þð Þ

where slope() is the slope of best-fitting linear function, binb(t) bins voxels to the
six bins according to ascending values of t from a t-test at each voxel across all trials
of each condition, and MAMb is the amplitude of the repetition effect averaged
across all voxels in bin b. A negative slope indicates that adaptation suppresses
non-selective voxels more than selective ones.

6- AMA: This is identical to AMS above, except that voxels were binned by
amplitude (averaging across trials, classes and presentations) rather than by
selectivity.

AMA ¼ slope MAMb; binb Bv¼

� �� �

A positive slope means that adaptation suppresses more responsive voxels
more, which Weiner et al.14 claimed is indicative of scaling models.

Modelling approach. Assuming that neural populations (e.g. orientation columns)
have a unimodal tuning-curve along a relevant stimulus dimension (e.g., orienta-
tion), at least four basic neural mechanisms of adaptation have been suggested: (1)
scaling, where neural populations reduce their firing rate, i.e., their tuning curves
are suppressed3,10,16,17, (2) sharpening, where the width of neural tuning curves
decreases10, (3) repulsive shifting, where the peaks of tuning curves shift away from
the adaptor19 and (4) attractive shifting, where the peaks shift towards the adap-
tor20. These four mechanisms can be further parametrised according to whether
the adaptation is (1) global, affecting all neural populations regardless of their
preferred stimulus, (2) local, where adaptation is greater for neural populations
whose preferences are closer to the adaptor, and (3) remote, where adaptation is
greater for neural populations whose preferences are further from the adaptor. This
results in a space of twelve possible models, as defined formally below.

Simulating neural responses. For simplicity, neuronal tuning curves were
assumed to lie on a single stimulus dimension. These tuning curves where
characterised by the firing rate, fi(j), for the i-th neural population in response to
(the first presentation of) stimulus j:

fi jð Þ ¼ g xj; μi; σ
� �

ð1Þ

where g xj; μi; σ
� �

is a function of the value of stimulus j, xj, parametrised by the
preference of the i-th neural population (peak of its tuning curve), μi, and the width
of the tuning curve, σ. The value of xj was bounded from 0…X and for
comparability with the circular dimension of orientation for Experiment 2 (see
below), X= π. The preferred stimulus for each neural population (μi) was selected
randomly from a uniform distribution across this range, whereas the tuning width
was assumed equal for all populations.

For Experiment 1, the single dimension represented faces, and the tuning curve

g θj; μi; σ
� �

was a Gaussian function (such that μi was its mean and σ was its

standard deviation). For Experiment 2, the stimulus dimension represented the
orientation of gratings, which is a circular dimension, and so tuning curves were
modelled by a von Mises distribution16,17. Given that the response of orientation
columns is symmetrical around 180°, xj varied from 0…π radians, such that the von

Mises distribution was defined as g θj; μi; σ
� �

¼ VM 2xj; 2μi; 1=σ
� �

. Both

distributions were normalised to have a peak height of 1 (i.e., the tuning curves do
not represent probability distributions).

As in Weiner et al.14, the extent of repetition suppression was expressed
through the variable 0 < c < 1. Thus, according to the four basic neural mechanisms
of adaptation, the firing rate in response to second presentation of stimulus j was:

I. Scaling models: fiðjÞ ¼ c i; jð Þ ´ g xj; μi; σ
� �

II. Sharpening models: fiðjÞ ¼ g
_

xj; μi; c i; jð Þ ´ σ
� �

III. Repulsive Shifting models: fiðjÞ ¼ g
_

xj; μi þ c′ i; jð Þ ´ X
2 ; σ

� �

IV. Attractive Shifting models: fiðjÞ ¼ g
_

xj; μi � c′ i; jð Þ ´ X
2 ; σ

� �

where c′(i, j), for shifting models, is defined below, and where g
_
, for all models

except scaling, is a re-normalised version of g such that its peak height remains 1
(i.e., we assumed that sharpening and shifting do not affect the peak firing rate).

Unlike Weiner et al.14, c was itself a function of the distance between the neural
preference and stimulus value, i.e., c(i, j)= h(d(i, j);a,b) where d(i, j)= μi−xj and a
and b are free parameters that control the domain over which neural adaptation
applied. (Note that, for the circular dimension in Experiment 2, the distance
function is also circularised to d i; jð Þ ¼ min d i; jð Þj j;X � d i; jð Þj jð Þ). The parameter
0 < a < 1 controlled the maximal adaptation, while 0 < b < X/2 controlled how
rapidly adaptation changed with the distance between neural preference and
stimulus property. Three different distance functions were considered:

A. Global adaptation: c(i, j)= a

B. Local adaptation: c i; jð Þ ¼ min 1; aþ d i;jð Þ
b

���
��� 1� að Þ

� �

C. Remote adaptation: c i; jð Þ ¼ max a; 1� d i;jð Þ
b

���
��� 1� að Þ

� �
:

The parameter b represents a linear slope, and in combination with the min/
max operations, provides a piecewise linear function that implements the simplest
form of a nonlinear saturation, as shown in Supplementary Figure 2. This
nonlinearity is important for Experiment 2, to break the symmetry of results after
adapting to two opposite orientations (otherwise the response of neural
populations whose preference is half-way between the two adaptors could never
exceed that of neural populations whose preference matches either adaptor). Global
adaptation is a special case of Remote adaptation when b= 0, and a special case of
Local adaptation when b=∞.

Finally, for the two shifting models, the adaptation factor c′(i, j) additionally (1)
depended on the sign of the difference between neural preference and stimulus
value:, i.e., c′(i, j)= sign(d(i, j)) × c(i, j), and (2) was defined such that c′(i= j)= 0,
which means that even for local shifting, the population whose preferred stimulus
matches the adaptor is not affected by adaptation. This is what is found
empirically19,35 and would actually correspond to a quadratic distance function.
Rather than parametrise this quadratic function further, by defining c′(i= j)= 0,
we are effectively limiting this quadratic function to the level of discretization of
stimulus angles (π/8 here).
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For multiple presentations of stimuli, we simply multiply the effects of c. Thus
for the p-th presentation of a stimulus (p > 1):

c i; j; pð Þ ¼
Yq¼p

q¼2

c i; jðqÞð Þ

where j(q) represents the sequence of stimuli presented. For Experiment 1, each
stimulus was only repeated once, so p= 2. For Experiment 2, the two types of
stimuli alternated across 6 blocks, such that j=[π/4, 3π/4, π/4, 3π/4, π/4, 3π/4] or
j=[3π/4, π/4, 3π/4, π/4, 3π/4, π/4] (with the initial stimulus type counterbalanced
across subruns). Given the gap between subruns, we assumed adaptation wore-off
between subruns, by resetting f to Eq. (1) (an assumption that is supported by the
activity patterns across the whole experiment shown in Supplementary Figure 3).
Note also that the pattern of simulation results below remained unchanged if we
additionally simulated repetition effects occurring within each block (i.e., affecting
mean response to the first block too).

Fatigue model (special case of local-scaling). We also implemented a two-
parameter version of the local scaling model, in which the degree of adaptation is
directly proportifonal to the initial response of each neural population. This
activity-dependent scaling, or “fatigue” mechanism3,40, may occur because neurons
that fire more experience a greater decline in their synaptic resources, and hence
are less able to fire subsequently22. This model is a simplification of local scaling
because the initial response acts as a proxy for the degree to which a stimulus
matches the neural preference. This model can be expressed as:

fiðj2Þ ¼ cG θj2 ; μi; σ
� �

c ¼ 1� aG θj1 ; μi; σ
� �

0<a � 1

where j1/j2 refer to first and second presentations of stimulus j. In other words, if
G θj2; μi; σ
� �

¼ G θj1; μi; σ
� �

¼ G, then fi(j2) is non-linearly related to initial firing
rate:

fi j2ð Þ ¼ 1� aGð ÞG ¼ G� aG2

This fatigue model has only two parameters, a and σ, rather than the three used
for local scaling. However, while a grid search showed that this fatigue model could
simultaneously fit the data features in Experiment 1, it could not fit those in
Experiment 2. In particular, it could not simultaneously produce an increased CP
and a decreased AMS for any of the values of a and σ examined. Thus the greater
flexibility of the three-parameter local scaling model (expressed through the
distance parameter b) seems necessary to explain all the data-features across both
datasets. Therefore, the winning local scaling model cannot simply be reduced to
activity-dependent adaptation, and it is likely to result from more complex neural/
synaptic processes, such as interactions between neurons.

Simulating voxel responses. Each voxel was assumed to contain N neural
populations, whose preferences were randomly selected from a uniform distribu-
tion (see below). Since the BOLD response is proportional to the neural firing
rate36,37, the voxel response was simply the average firing rate of each population
within that voxel. The number of neural populations per voxel, N, does not have a
qualitative effect on the simulation results. However, it does have a quantitative
effect: When N is large, the majority of the voxels would be similar to each other in
their response, with very weak overall voxel biases towards particular stimulus
classes. If N is small however, the voxels have stronger biases, and the quantitative
differences among the models become more evident. Here we used N= 8.

We then simulated V= 200 voxels, and added a small amount of independent
noise to each voxel, drawn from a zero-mean Gaussian distribution with standard
deviation of 0.1.

To generate voxels that vary in their selectivity and activity, the value of μi was
sampled randomly with uniform probability from 8 possible orientations from θ=
0 … 7π/8 in steps of π/8. For Experiment 2, these values therefore included two
neural populations that responded optimally to one of the stimuli (tuned to
orientations 45°, or π/4, and 135°, or 3π/4), two highly non-selective populations
(tuned to orientations 0° and 90°), and four partially-selective populations in
between. This sampling allowed us to generate a sufficient variety of voxel activity
and types, ranging from highly-selective voxels to partially-selective to non-
selective voxels for each orientation. Even though the faces used in Experiment 1
are likely to be represented along multiple dimensions, these can be projected onto
a single dimension for the present argument. Thus, a prototypical face could be
considered to have value π/4 and a prototypical scrambled face could be considered
to have value 3π/4. We also performed additional simulations in which the
sampling of neural preferences was biased towards faces (i.e, a greater probability
of a preference of π/4), in order to produce the greater mean activation for faces
than scrambled faces that was found empirically, and the simulation results were
unchanged.

Each model had 3 free parameters: a, b and σ (except for the Global models
where there was no b parameter). We explored the predictions of each of the twelve
models for each of the 6 data features in a grid search covering a wide range of
values for the three parameters. The a values ranged from 0.1 to 0.9 in steps of 0.1

to cover a wide range of maximal adaptation, while b values ranged from 0.1 to π/2;
in steps of 0.2 radians. For σ, values ranged from 0.1 to 1 in steps of 0.2, and then
from 2 to twelve in steps of 3 to cover a wide range of tuning widths. For each
model, we ran 50 simulations for each of the 648 unique combinations of these
three parameters (or 81 for Global models with just two parameters). For each
parameter combination, we calculated the 99% confidence interval across the
50 simulations for the value associated with each of the 6 data properties, and
tested whether this was above, below or overlapped zero. Figures 4, 5 summarise
the results.

The fitted data properties for local scaling (using parameter values a= 0.8, b=
0.4, s= 0.4 for grating dataset and values a= 0.7, b= 0.2, s= 0.2 for the face
dataset) are shown in Supplementary Figure 4. Note that, while all the qualitative
effects of repetition are reproduced successfully, the absolute values of BC
correlations in our simulations are negative rather than positive.

The positive correlations of BC in the data could owe to several factors, such as
correlated scanner noise or temporal drift (extrinsic scanner factors). Alternatively,
there could be intrinsic factors such as neural populations within a voxel that are
not selective, responding equally to both stimulus classes (i.e. flat tuning curves).
Such diversity in the neural tuning curves has been reported in single cell
literature38,39. Hence, quantitative fitting of the data would require additional
assumptions and scaling parameters that are not of theoretical interest in this paper.
However, as a sanity check, we confirmed that we were able to achieve a positive BC
correlation by adding a proportion of neural populations with flat tuning curves that
respond and adapt equally to both stimulus types (Supplementary Figure 5). It is
worth noting that this addition did not change the overall conclusions of this paper,
i.e. local scaling was still the wining model in both datasets even after adding this
extra type of neurons to emulate correlated neural activity.

Data availability. The Matlab code for our simulations and the region of interest
fMRI response data used in this paper can be downloaded from the Open Science
Foundation project: https://osf.io/ph26y/.
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