
Disease Model Discovery from 3,328 Gene Knockouts by The 
International Mouse Phenotyping Consortium

A full list of authors and affiliations appears at the end of the article.

Abstract

Although next generation sequencing has revolutionised the ability to associate variants with 

human diseases, diagnostic rates and development of new therapies are still limited by our lack of 

knowledge of function and pathobiological mechanism for most genes. To address this challenge, 

the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-

wide catalogue of gene function by characterizing new knockout mouse strains across diverse 

biological systems through a broad set of standardised phenotyping tests, with all mice made 

readily available to the biomedical community. Analysing the first 3328 genes reveals models for 

360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes 

syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence 

for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular 

Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 

Genomes and other projects.

INTRODUCTION

With its extensive toolkit for genome modification and capacity for recapitulating human 

disease, the laboratory mouse is arguably the preferred model organism for studying and 

validating the effect of genetic variants in Mendelian disease, as well as identifying 

previously unsuspected disease genes. Null mouse mutations have hitherto been generated 

and described in the literature for approximately one-half of the genes in the genome1. 

However, hypothesis-driven phenotyping of these mutants reveals discoveries in areas that 
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largely reflect the expertise and specific research questions of individual investigators. As a 

result, the extent of functional annotation, potential to fully uncover pleiotropy, and 

opportunity to exploit mutant mouse models for disease-agnostic interrogation is limited. 

Furthermore, the lack of replicability in knockout experiments is a well-documented 

challenge in drug target development, behavioural and other translational studies 2,3 and is 

commonly due to using poorly defined statistical methods, performing studies in only one 

sex, and practicing bias in animal selection4. The development of a comprehensive reference 

phenotype database employing fully validated, standardised and automated phenotyping 

procedures across all body systems that are applied to mutants of both sexes provides a 

robust dataset to corroborate disease-causing factors in humans.

The IMPC is creating just such a catalogue of mammalian gene function that systematically 

associates mouse genotype-to-phenotype data and enables researchers to formulate 

hypotheses for biomedical and translational research, and purpose-driven preclinical 

studies5,6. The IMPC adult phenotyping pipeline analyses cohorts of male and female 

knockouts on an isogenic C57BL/6N background from Embryonic Stem (ES) cell resources 

produced by the International Knockout Mouse Consortium comprising targeted null 

mutations with reporter gene elements7–9. Homozygotes are characterised, except in those 

strains (approximately 30%) where gene inactivation necessitates the use of heterozygotes to 

study mice that are embryonic/perinatal lethality or subviable10,11. The pipeline measures a 

total of 509 phenotyping parameters that encompass diverse biological and disease areas 

including neurological, behavioural, metabolic, cardiovascular, pulmonary, reproductive, 

respiratory, sensory, musculoskeletal, and immunological. Standardised and harmonised 

protocols developed by the IMPC are used to reduce phenotype variance across the centers 

and builds off experience from the pilot EUMODIC project where a limited 7% discordant 

phenotype rate was observed for a large set of 22 common reference mutant lines6. Rigorous 

data quality control is applied to the captured data from the 10 phenotyping centers and an 

automated statistical analysis pipeline (PhenStat12, see Methods) identifies mutants with 

statistically significant phenotype abnormalities.

In the current IMPC data release 5.0 (2nd August 2016), 3,328 genes have been fully or 

partially phenotyped, generating over 20 million data points and 28,406 phenotype 

annotations. Complementing the physiological, behavioural and structural phenotype 

datasets, the IMPC also provides annotated expression of LacZ data across multiple organ 

and tissue systems for 1413 genes13 and extensive histopathology analysis of adult tissues 

for 333 genes14. The IMPC portal is the single point of access to phenotype data, ES cell 

and Cas9-RNA-guided nuclease resources and mutant mouse strains. Sophisticated query 

interfaces of both gene and phenotype data are provided, as well as tools to visualise 

phenotypes encompassing quantitative, categorical, and image data15. Periodic data releases 

provide the latest genotype-phenotype associations.

In our current analysis, we identify 1) new mouse models for human Mendelian disorders 

with a known genetic basis, 2) uncover candidate disease genes for human Mendelian 

disorders where to date only a genomic location is associated, and 3) identify new mouse 

disease models involving genes with previously little or no functional annotation. A 
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summary of the results is presented in Figure 1 and described in more detail in the following 

sections.

RESULTS

Comparison of IMPC findings with previous knowledge

We first investigated how concordant our phenotype annotations are with previously reported 

data for mouse lines involving the same genes. 621 genes assessed by us have previous 

mouse models annotations from literature review of knockout lines by the Mouse Genome 

Informatics (MGI) group1. An assessment of the corresponding 2547 MGI gene-phenotype 

associations that have already been assessed by an IMPC procedure revealed 958 (38%) 

were detected, with 62% (385 out of 621) of the genes having at least one phenotype 

reproduced (Supplement Table 1). This is in line with previous reports describing 

reproducibility of biomedical models16. Non-reproduced phenotypes could be due to several 

factors including different genetic backgrounds and variations in experimental technique and 

statistical methods e.g. evidence for previously reported increased circulating glucose for 

Gad2 mice is seen in our data (see URLs) but not considered statistically valid by our robust 

methods. There are also an additional 10,068 MGI phenotypes for these genes that we have 

not assessed despite our best efforts to be as broad-based as feasible in the context of a high-

throughput project, or that require a different type of allele to be introduced to observe the 

effect. However, we show below that our pipeline covers all the major disease areas, MGI’s 

literature curation of over 1300 publications published to date using our resources is 

generating numerous additional annotations, and upcoming changes to our pipeline such as 

phenotyping a subset of genes at later ages (12–18 months) and new behavioural tests will 

increase our coverage. Furthermore, we generate extensive new knowledge, as discussed 

further below, with 90% (8984 of 9942) gene-phenotype annotations described by IMPC 

having not been described in the literature before.

Models of Human Mendelian Disease

The high volume and complexity of data produced by the IMPC presents challenges for 

finding relevant human disease models. To facilitate discovery, we developed a translational 

pipeline to automatically detect phenotype similarities between the IMPC strains and over 

7000 rare diseases described in the Online Mendelian Inheritance in Man (OMIM)17 and 

Orphanet databases18. The pipeline utilises the human phenotype ontology (HPO)19 

annotations for rare diseases maintained by the Monarch Initiative20 and our Mammalian 

Phenotype Ontology (MP)21 annotations of phenotype abnormalities and the PhenoDigm 

algorithm, also developed by the Monarch Initiative22. The results provide a quantitative 

measure of how well an adult mouse model recapitulates clinical features of a disease and is 

based on previous work that demonstrated superior identification of disease models 

compared to defining mouse strains solely by orthology or by other methods of calculating 

phenotype similarity22.

From the ~15% of mouse protein-coding genes phenotyped thus far by IMPC, 889 known 

rare disease-gene associations represented within OMIM and Orphanet have an orthologous 

IMPC mouse strain and display at least one phenotype (Supplement Table 2). By comparing 
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human and mouse phenotypes, our automated pipeline identified 185 adult disease-gene 

associations where the IMPC mutant mouse strain modelled the human disease, with the 

majority (134) involving genes that have not had a mouse generated before or reported as a 

model of that disease from the curation efforts of MGI (Table 1, Supplement Tables 2 & 3). 

Each of the 889 associations had a mean of 14.7 ± 27.8 (SD) candidate genes for the disease 

from the algorithm, with a median rank of 3 for the true associated gene in the 185 sets of 

recalled associations.

The range of human Mendelian diseases with matching mouse phenotypes was broad and 

included multiple biological systems (Table 2). Three examples of new mouse models first 

reported here (Figure 2) are for Bernard-Soulier syndrome, Type C (OMIM:231200), 

Bardet-Biedl syndrome-5 (OMIM:615983) and Gordon Holmes syndrome (OMIM:212840). 

Bernard-Soulier syndromes are bleeding disorders that result from mutations in genes 

encoding protein products of the glycoprotein Ib (GP Ib) complex that serves as the platelet 

membrane receptor for von Willebrand factor. GP Ib is composed of 4 subunits encoded by 4 

separate genes: GP1BA, GP1BB, GP9, and GP5 with mutations in all these genes being 

associated with an autosomal recessive disorder characterised by prolonged bleeding times, 

enlarged platelets, an inability to clot, and incomplete penetrance of thrombocytopenia23. 

Gp9tm1.1(KOMP)Vlcg null homozygotes have a decreased number of platelets with a larger 

cell volume (Figure 2A,B), recapitulating key features of the disease and adding evidence 

that the point mutations associated with disease in humans lead to a functionally null 

complex. Bardet-Biedl syndromes (BBS) are heterogeneous autosomal recessive ciliopathies 

characterised by retinitis pigmentosa, obesity, kidney dysfunction, polydactyly, behavioral 

dysfunction, and hypogonadism. The disorder is associated with no fewer than 19 genes 

whose products form the BBSome, a protein complex involved in signaling receptor 

trafficking within cilia, which may also have functions not involving cilia24. Twenty 

mutations that include splice site, missense/nonsense, insertion, indels and deletion 

mutations within the BBS5 gene account for 4% of all BBS cases. Bbs5tm1b(EUCOMM)Wtsi 

null mice exhibit abnormal retina morphology resembling the retinal dystrophy observed in 

Bardet-Biedl syndrome patients. Other phenotypes were also observed in null mice 

recapitulating many hallmarks of BBS including obesity (Figure 2C,E) as well as other 

features such as impaired glucose homeostasis (Figure 2D). Gordon Holmes syndrome is 

another autosomal recessive disorder characterised by hypogonadism as well as cerebellar 

ataxia that has been associated with RNF21625,26. Male infertility was observed in 

Rnf216tm1b(EUCOMM)Wtsi homozygous null mice with histopathology identifying 

seminiferous tubule degeneration and atrophy characterised by diffuse absence of most or all 

germ cells and presence of occasional multinucleated spermatids with pyknotic nuclei within 

tubules that are lined by vacuolated Sertoli cells. Seminiferous changes were accompanied 

by diffuse interstitial cell (Leydig cell) hyperplasia. The epididymis was devoid of 

spermatozoa (epididymal aspermia) (Figure 2F).

From the 704/889 known associations where we did not detect an IMPC model, 48 have not 

yet been tested in the mouse for a phenotype that could recapitulate any of the clinical 

phenotypes, leaving 656 (74%) associations where our automatic algorithm did not detect a 

potential disease phenotype from the IMPC pipeline. To evaluate the sensitivity of the 

automated human-mouse phenotype matching, we manually evaluated 100 randomly chosen 
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examples of these missed associations (Supplement Table 4), leading to 12 additional 

discoveries where the phenotype matches fell below the similarity threshold used in our 

algorithm e.g. the decreased startle reflex match for deafness. PhenoDigm is optimised to 

maximise precision and recall (Supplementary Figure 1) and reducing our threshold to 

detect such matches would introduce many false positives. Manual assessment is not feasible 

in the long term given the ever-increasing number of strains, and new data for existing 

strains, but future implementations will incorporate histopathology data to increase recall as 

seen by the additional model detected by manual assessment.

Human Mendelian disease is caused by a variety of complete loss, partial loss or gain-of-

function mutations under various modes of inheritance. The IMPC only phenotypes the null 

allele in a homozygous state or, if embryonic/perinatal lethal, in the heterozygous state. 

Thus, IMPC mouse strains are suitable for putative disease gene, as opposed to variant 

identification e.g. for identifying which genes expressing variants of unknown significance 

are pathogenic. The 889 human diseases associated with genes orthologous to the IMPC 

mouse strains were inherited with roughly equal frequency by autosomal dominant (AD) or 

recessive (AR) genetics (n = 379 AD vs 423 AR, and 87 unknown/X-linked). The frequency 

of inheritance by AD and AR genetics was also equivalent for the 185 adult disease-gene 

associations where the IMPC mutant mouse line modelled the human disease (n = 82 AD vs 

94 AR, and 7 unknown/X-linked). This indicates that the mouse models were effectively 

modelling human disease independent of the mode of human inheritance. Human AR 

disease is likely a consequence of a complete or partial loss-of-function mutation where 

haploinsufficiency is not adequate to produce symptoms. As would be expected, AR human 

disease was more frequently modelled by homozygous null mouse mutants: 65% (61/94) of 

the AR models were viable and phenotyped as homozygous mice, while 35% (33/94) were 

subviable/lethal as homozygotes and therefore heterozygous mice were phenotyped. AD 

inheritance can be attributed to either haploinsufficiency or gain-of-function mutations and 

we found that 46% of the dominant human mutations were modelled by heterozygous 

mutants in the mouse, consistent with a haploinsufficient mechanism for almost half of the 

diseases.

Interestingly, 227 of the 423 (54%) tested AR associations were homozygous lethal/

subviable in the mouse leading us to consider whether early mortality occurred in these 

patients or would have occurred without extensive medical intervention. Lethality matches 

are not detectable by our automated algorithm, as human lethality is rarely recorded in the 

disease HPO annotations, and for 74 of the 889 associations (8%), homozygous lethality is 

the only mouse phenotype we have detected so far. To address this, we manually investigated 

whether the associations involving mouse homozygous lethal/subviable strains were 

associated in OMIM/Orphanet with human embryonic or early death (< 2 years) or with 

severe, early onset disorders in patients not likely to survive through puberty without 

significant medical support e.g. cleft palate is a lethal phenotype in mice but easily treatable 

in humans. This uncovered a further 97 new mouse/human disease associations (Supplement 

Table 2, column J annotated with Y-L) where human lethality was recorded and another 78 

where the disease would probably have been lethal without medical intervention 

(Supplement Table 2, column J annotated with Y-PL). The majority of these lethality 
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matches were inherited with AR genetics (73%, 122 of the 166 diseases with reported 

inheritance from OMIM/Orphanet) and modelled by homozygous mouse mutants, consistent 

with the conclusion that homozygous loss of function mutations in essential genes in 

humans produces either early death or severe congenital medical conditions requiring 

advanced medical support for survival. Examples of mouse and human embryo/early-onset 

lethality include: ventriculomegaly with cystic kidney disease that results in in utero or 

neonatal human fatality (OMIM:219730, gene: CRB2) and Stuve-Wiedermann Syndrome 

(OMIM:601559, gene: LIFR). Diseases that would probably have been lethal without 

medical support with a corresponding lethal/subviable mouse strain include: Coach Disease 

(OMIM:216360, gene: RPGIP1l), Meier Gorlin Syndrome 1 (OMIM:224690, gene: ORC1), 
and Human phospherine phosphatase deficiency (OMIM:614023, gene: PSPH). In the latter, 

a homozygous lethal mouse mutant in Psphtm1b(EUCOMM)Wtsi has structural abnormalities at 

Embryo day (E) 15.5 detected by micro-computed tomography (micro-CT) that closely 

resemble the developmental and structural defects in the human phosphoserine phosphatase 

deficiency patients (Figure 3).

When we include these manually curated lethality matches, 40.5% (360) of the disease 

models have phenotype overlap with the 889 disease genes (Table 1) with the majority 

(78%; 279 of 360) being the first report of a candidate mouse model for these diseases. The 

discovery rate of disease models in our analysis is comparable to previous reports on smaller 

high-throughput mouse phenotyping studies that found modelling of 46% of 59 and 33% of 

42 associations using manual investigation of data6,27.

Where we did not detect a model despite testing for at least one equivalent phenotype (54%; 

484), explanations could range from differences in human and mouse biology, the genetic 

background and a null allele not being appropriate to model the disease, or differing 

methodologies used for annotation e.g. rarely observed phenotypes for a disease are often 

recorded in the HPO annotations and would likely fall below the statistical threshold if 

similarly, non-penetrant in mice. Finally, there is a slight possibility that some earlier alleles 

may have influenced disease modelling where a hypomorph rather than null is possible (90 

tm1a) or a retained neomycin cassette may have altered expression of genes in cis (90 tm1a, 

10 KOMP1).

New Functional Knowledge and Mendelian Disease-Gene Candidates

The second major clinical use case for the IMPC’s data is providing new data on the 

phenotypes and functions of genes. IMPC has prioritised genes with no known disease 

associations or minimal GO annotation to address this. Based on MGI’s literature curation 

of mutant strains involving any allele type except conditional mutations, 1830 of the 3,328 

genes phenotyped in this IMPC release have never had a mouse produced before. No Gene 

Ontology (GO) molecular function or biological process annotations are available for 189 

genes, while another 903 genes had inferred annotations from computational analysis 

(Figure 4A)28. The phenotypes of these mutant strains provide substantive insights into the 

function of a large class of genes (sometimes described as the ignorome)29 for which there is 

little or no existing functional information (Supplement Table S5).
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Examples of candidate genes for human Mendelian disease with previously little functional 

information include Family with sequence similarity 53 member B (Fam53b), which had no 

reported phenotypic variants in human or mouse. The gene is differentially expressed in 

adult definitive erythrocytes compared to primitive erythrocytes with a >6-fold log2 change 

as shown in the Expression Atlas (see URLs)30,31. Homozygous Fam53btm1b(EUCOMM)Hmgu 

knockout mice showed increased mean corpuscular hemoglobin and decreased erythrocyte 

cell number (Figure 4B,C), suggesting the gene is involved in hematopoiesis and is a 

candidate for macrocytic hyperchromic anemias. PhenoDigm identified this gene as a 

phenocopy for Diamond-Blackfan Anemia (DBA; OMIM:105650), a group of fifteen unique 

anemias generally attributable to defects in ribosome synthesis but for which known 

mutations only account for approximately 54% of all DBA patients32. A single functional 

study suggested that Fam53b is required for Wnt signaling, which is a key step in 

determining cell fate, cell proliferation, stem cell maintenance and anterior-posterior axis 

formation33. The Fam53b knockouts thus implicate a new candidate pathway to be 

considered for the 46% of DBA patients where genetic causes are not known.

As well as providing fundamental insights into the function of genes with little or no 

previous functional annotations, the phenotype analyses are also identifying numerous new 

candidate disease models that may provide a foundation for relating gene function to disease 

phenotype. This new data and biological resources may be used to detect novel genotype to 

phenotype associations in disease where simply considering existing human data would lead 

to causative variants being overlooked among the overwhelmingly abundant associated 

variants of unknown significance, as happens in many exome sequencing studies: over half 

of diagnosed rare diseases still have no known causative gene and diagnostic rates in most 

high-throughput Mendelian disease sequencing projects are 20–30%, largely due to a lack of 

functional information for most genes. To remedy this and to start achieving better 

diagnostic rates we can utilise the data that the IMPC provides. As a demonstration of the 

potential of IMPC data for novel disease gene discovery, we identified candidate genes for 

Mendelian diseases with an unknown molecular mechanism but where a broad genetic 

localization was available in OMIM from previous studies. Our disease matching algorithm 

identified 135 associations where our predicted disease gene falls within these loci 

(Supplement Table S6).

For example, adult mice heterozygous for the Klhdc2tm1b(EUCOMM)Hmgu allele have a 

complex syndrome of abnormalities including altered ECG findings. The phenotypes match 

the clinical signs described for the autosomal dominant disease Arrhythmogenic Right 

Ventricular Dysplasia 3 (ARVD3; OMIM:602086) that presents with cardiac arrythmias 

caused by fibro-fatty replacement of right ventricle myocardium. Klhdc2 is syntenic with the 

ARVD3 locus, suggesting it as a candidate gene. Usmg5 null mice recapitulated the clinical 

symptoms of muscle weakness and abnormal gait seen in patients with the dominant 

intermediate A form of Charcot-Marie-Tooth disease. The human orthologue (USMG5) is 

located within a 9.8Mb critical region identified in patients with this disease. While the 

implicated human loci are sometimes Mbps in length and encompass hundreds of genes, 

these examples illustrate how IMPC phenotype data allows for the scoring of candidate 

genes with disease causing variants and has important implications for current rare disease 

genetic projects that are using next generation sequencing technologies.
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DISCUSSION

By analysing phenotype similarities between IMPC’s mouse strains and human disease, we 

have provided new disease models and identified novel functional knowledge for a 

significant and growing proportion of protein coding genes. These models are made readily 

available and can be exploited to study disease mechanisms, develop new gene therapy and 

pharmacological treatments, and further our understanding of gene function. The novelty of 

the IMPC is both the scale of the vision to produce the first comprehensive catalogue of 

mammalian gene function across all genes as well as the non-hypothesis driven, standardised 

approach to the phenotyping facilitating novel discoveries about the function of genes and 

their role in diseases as highlighted above.

The potential of IMPC phenotype comparisons for prioritising candidates in human 

Mendelian syndromes is made accessible to clinical researchers performing next-generation 

sequencing based diagnostics through inclusion within the Exomiser software package that 

combines an assessment of variant pathogenicity with gene candidacy based on similarity of 

the patients’ phenotypes to known phenotypic knowledge from human, mouse and fish34. 

Exomiser is being applied within the NIH Undiagnosed Disease Program and Network 

(UDN)35 as well as the 100,000 Genomes Project that embeds genomics into a national 

healthcare system.

The IMPC goes beyond modelling Mendelian syndromes by leveraging its existing global 

infrastructure to address complex biological questions. IMPC mouse strains are widely used 

with over 1300 citations across every major biological system (see URLs) including SNP 

validation studies for complex traits in both humans and mice36–41. Such studies will be 

supported by ongoing work using the IMPC phenotyping pipeline to characterise the eight 

founder inbred mouse strains for the collaborative cross (CC) resource used in the study of 

complex traits and in targeted non-coding mutant mice strains (11 miRNA, 4 lincRNA in the 

current data release) to study regulatory activities. Other collaborative, multi-centre, efforts 

are using IMPC mouse strains to study gene function in hearing, vision, metabolism, and 

pervasive sexual dimorphism. Starting this year, a significant fraction (~15%) of mutant 

strains will be re-phenotyped at 12–18 months of age to identify genes involved with late-

onset disease.

A major change in our strategy has been the adoption of CRISPR based methods to increase 

production rate and the opportunity to characterise strains containing the same single 

nucleotide variants or indels as human patients e.g. the MRC Genome Editing Mice for 

Medicine service (GEMM) is characterising patient variants identified through whole 

genome sequencing by the 100,000 Genomes Project to functionally validate variants of 

unknown significance and/or facilitate mechanistic and therapeutic studies in collaboration 

with the clinicians and researchers. Generation of these precision models is key to 

addressing the issue of new therapies for rare disease lagging behind the discovery of new 

disease genes. The approach will be expanded in the coming years to characterization of 

candidate non-coding, regulatory variants in undiagnosed 100,000 Genomes Project cases as 

well as other large-scale sequencing projects such as the UDN. We believe many of the 

lessons we have learned establishing the IMPC will also be of value to the recently launched 
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precision medicine efforts whose goals are to improve treatment through the customisation 

of healthcare based on a patient’s genomic information and environmental factors. 

Harmonisation of phenotype traits captured in diverse formats across multiple centers will 

be critical to the stratification of disease populations for improved treatment as well as using 

model organism data to better identify causal disease gene variants.

While advances in CRISPR and induced-Pluripotent Stem cells (iPSc) technologies have 

now vastly expanded the researchers’ toolkit, the work of the IMPC highlights the 

continuing importance of mouse models to understanding disease mechanisms. Mice are 

vertebrate mammals with physiological characteristics that recapitulate all major human 

biological systems, allowing study of processes not possible with in vitro studies including 

the impacts of behavioral, inflammatory, endocrine, and gender-specific processes on 

disease. While CRISPR-based methodologies now allow for genome engineering in nearly 

every species, mice have other characteristics that have made them a widely used model 

organism for over a century. Inbred mouse strains such as the C57BL/6N strain used by the 

IMPC have standardized, uniform genetic backgrounds that reduce phenotypic variability, 

with most strains having a 2-year lifespan that allows for comprehensive studies in a timely 

manner.

Reproducibility of results in translational studies is a significant issue and we found the 

overlap of phenotypes between IMPC mouse strains with previously published mutant 

strains are in line with other studies investigating reproducibility. This highlights the 

importance of high-quality phenotype annotation of human clinical records and mouse 

phenotypes, and demonstrates the importance of open sharing of data. Towards this, the 

IMPC adheres to the ARRIVE guidelines for reproducibility of animal model experiments 

including making all data available and having transparent statistical analysis via free 

distribution of our PhenStat software12.

In conclusion, the IMPC has established an ever-expanding knowledgebase of mammalian 

gene function, a large resource of novel disease models and the capacity for functional 

validation of variants identified in disease sequencing projects that will be of great value to 

the human disease community.

ONLINE METHODS

Mouse Production

Targeted ES cell clones obtained from the International Knockout Mouse Consortium 

(IKMC) resource7,42 were injected into mouse blastocysts for chimera generation. The 

resulting chimeras were mated to C57BL/6N mice, and the progeny were screened to 

confirm germline transmission. Following the recovery of germline-transmitting progeny, 

the majority of strains (82%) were crossed with a coisogenic C57BL/6N transgenic strain 

bearing a germ-line expressing Cre recombinase to excise the floxed neomycin selection 

cassette (neo) and critical exon for EUCOMM alleles) and generate a true deletion. For the 

rest, the requirement early on for establishment and testing of the pipeline without additional 

breeding meant lines were characterised that contained either tm1a alleles (16%: rely on a 

stop codon that could potentially be spliced around and retain the neo cassette that can alter 
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transcriptional activity of other genes in cis) or the KOMP1 allele (2%; retain neo cassette). 

The resulting C57BL/6N heterozygotes were intercrossed to determine viability and 

generate homozygous mutants. All strains are made accessible from the IMPC portal.

Mouse Phenotyping and Experimental Design

Based upon previous analysis on appropriate sample sizes to detect significant effects by our 

statistical framework (see below), a minimum of seven male and seven female mice were 

characterised from 9 weeks of age until 16 weeks of age using a broad-based phenotyping 

pipeline that assessed every major biological system. IMPC centers employed a common 

control strategy where cohorts of age-matched, wild-type C57BL6/N mice are phenotyped in 

a continuous manner alongside mutant C57BL6/N strains. These cohorts are used in quality 

control (e.g. baseline drift) and in statistical analysis of the data. A centralised database of 

consensus IMPC standard operating procedures (SOPs), IMPReSS, (see URLs) ensured that 

all phenotyping data and metadata are collected in a reproducible and standardised format. 

Cohorts of at least seven homozygous mice of each sex per line were generated. If no 

homozygotes were obtained from 28 or more offspring of heterozygote intercrosses during 

production, the strain was scored non-viable. Similarly, if less than 13% of the pups 

resulting from intercrossing were homozygous, the strain was scored subviable. For non-

viable and subviable strains, heterozygous mice were committed to the phenotyping 

pipelines. The individual mouse was considered the experimental unit within the studies.

Data quality control (QC)

Defined criteria were established for QC failures (e.g. insufficient sample, incorrect 

instrument calibration) and detailed within IMPReSS to provide valid reasons for discarding 

data. A second QC cycle occurred when data was uploaded from the phenotyping center to 

the IMPC Data Coordination Centre (DCC) using an internal QC web interface. Data was 

only QC failed from the dataset if clear technical reasons were identified for a measurement 

being an outlier and this was tracked within the database.

Wild-type–knockout comparisons

Wild-type vs null comparisons, i.e. a dataset, were restricted to data collected at one centre 

and were assembled by selecting data from knockout and wild-type mice that had data 

collected from the same versioned protocols and with the same metadata parameters (e.g. 

instrument). As wild-type mice are measured every week, a null strain is generally compared 

to data from hundreds of wild-type control mice. In the case when all members of a null 

mouse strain are measured on the same day with an equal number of control mice, the 

comparison is restricted to this smaller set of data to eliminate batch effects.

A dataset consists of the collection of data values (mutant and control) for a single measured 

variable (parameter) with the same allele, zygosity, center, and experimental metadata. 

Using IMPC data release version 5.0, (2nd August 2016), IMPC has analysed 352,729 

continuous datasets and 944,270 categorical datasets produced from 10 phenotyping centres. 

These raw data are available at the IMPC web portal with a page detailing the various 

methods by which data can be extracted (see URLs).
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Statistical analysis

Statistical analysis was performed using PhenStat R package developed for IMPC. PhenStat 

is a statistical analysis tool suite that accounts for known variation in experimental workflow 

and design of phenotyping pipelines12. Briefly, categorical data analysis was completed 

using a Fisher’s Exact test. Continuous data analysis was performed using PhenStat Linear 

Mixed Model framework (see URLs) which uses linear mixed models that treat batch as a 

random effect. Through high throughput phenotyping programs, such as EUMODIC, where 

data was systematically collected on one genetic background, the significant sources of 

variation can be identified and it became obvious that batch (defined here as those readings 

collected on a particular day) can lead to large variation in phenotyping variables43. Linear 

mixed models (LMM) include a class of statistical models that are suited to modelling 

multiple sources of variability on a phenotype such as batch effects. Details of the 

implementation including decision tree model, descriptions and the lower FDR rates 

associated with multi-batch data are available in the PhenStat package user’s guide (see 

URLs), and described in the literature43. For this analysis, results from one batch, low batch 

(mutants measured in batches between 2–4 times, and multi-batch (5 or greater) experiments 

were used. For viability and fertility data, the center conducting the experiment used a 

statistical method appropriate for the breeding scheme utilised at that center (exact details 

are available on the IMPC data portal) and supplied the analysis results to the IMPC DCC. 

All available wild-type and mutant mice were used in the analysis with center-specific 

blinding strategies during group allocation, no specific inclusion/exclusion criteria, and no 

randomisation approach beyond relying on Mendelian inheritance to randomise as detailed 

in our ARRIVE guideline document (see URLs). All analysis presented in this publication is 

based on the binary assignment of a significant deviation (or not) from wild-type and the 

associated phenotype term. Detailed output of our statistical analysis for each test is 

presented on our portal pages (mousephenotype.org) including all raw data, the summary, 

visualisations, variance and calculated p-value for the genotype being associated with the 

phenotype.

Matching Mouse Phenotypes to OMIM and Orphanet Disease Descriptions: Automated 
PhenoDigm

We utilised the Human Phenotype Ontology (HPO) annotations available from the Monarch 

Initiative (Accessed 2nd September 2016) describing the clinical phenotype features of over 

7,000 diseases reported in OMIM17 and Orphanet18. These HPO terms were semantically 

compared with the phenotype features (MP annotations) of IMPC mouse strains using the 

PhenoDigm algorithm22, developed by us and fellow members of the Monarch Initiative as 

reflected in authorship, to generate an overall score for how phenotypically similar a mouse 

strain is to a particular disease. PhenoDigm calculates the individual score for each HPO-MP 

phenotypic match based on the proximity of the two terms in the overall cross-species 

ontology (Jaccard index; simJ) and the observed frequency of the phenotype in common 

from the overall disease and mouse annotations (Information Content; IC) i.e. exact clinical 

and mouse phenotype matches involving rarely observed phenotypes score highest. The 

geometric mean of the IC and simJ is used to generate the HPO-MP pairwise score. The 

overall PhenoDigm percentage score is a comparison of the best and mean scores for all the 

pairwise HPO-MP comparison relative to the maximum possible scores for a perfectly 
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matching mouse model to that disease. The disease models described in this paper were 

selected by applying a threshold of at least one HPO-MP match with a score greater than 

1.35 which maximised precision and recall compared to other similarity thresholds of 1.0, 

1.25, 1.5, or 1.75 (Supplementary Figure 1).

Known human genes and regions associated with diseases were extracted from OMIM and 

Orphanet and matching mouse orthologues were identified from HomoloGene44. 

Comparisons to previous mouse mutants from the MGI resource1 were achieved by 

download and processing a file named MGI_GenePheno.rpt containing literature curation of 

mouse lines associated with all allele types except those involving conditional mutations and 

ALL_OMIM.rpt which curates any literature assertions of a particular mouse line being a 

mouse model of a particular OMIM disease (see URLs and downloaded 2nd September 

2016).

Lethality Matching

Screening for lethal or potentially lethal genes from data within the OMIM database could 

not be automated. For the set of mouse genes that were homozygous pre-weaning subviable 

or lethal, and also had OMIM records, we manually inspected the OMIM records to identify 

those with reported in utero or early deaths (prior to two-years of age) and coded these in 

Supplementary Table 1 as Yes-Lethal (Y-L) indicating that for some human cases with 

mutations for these genes, the phenotype of human lethality matched the phenotype of 

mouse sub-viability. We also screened for OMIM records with severe congenital defects 

and/or rapid progression of early onset severe disease in human patients requiring significant 

medical support for survival. Mice with similar phenotypes would not be likely to survive 

through weaning in the absence of medical support and therefore were scored as Yes-

Probable Lethal (Y-PL) indicating a probable match of the human phenotype with the mouse 

subviable phenotype.

Matching Candidate Gene Phenotypes to Human Traits from OMIM Linkage and 
Cytogenetic Findings

Diseases with no known molecular mechanism but a narrowed down cytogenetic region 

containing the likely causative gene were extracted from OMIM (downloaded 2nd September 

2016). Ensembl was used to identify the human genes contained within these regions and 

their mouse orthologues retrieved from HomoloGene. The overlap between these genes and 

candidates from the PhenoDigm analysis of the same disease were then flagged within our 

database and are highlighted on both our portal as well as the supplementary tables 

presented here.

Identifying Novel Gene-Phenotype Relationships from the IMPC Database

An online tool on the IMPC portal (see URLs) imports GO annotations daily from the Quick 

GO resource45 and categorises them based on the evidence codes assigned by GO curators. 

Annotations were analysed on 24th March 2017. We started with 2668 genes that had IMPC 

non-lethal phenotypes. Categories incorporate the following evidence codes:
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• Experimental: Inferred from Experiment (EXP), Inferred from Direct Assay 

(IDA), Inferred from Physical Interaction (IPI), Inferred from Mutant Phenotype 

(IMP), Inferred from Genetic Interaction (IGI), Inferred from Expression Pattern 

(IEP)

• Curated computational: Inferred from Sequence or structural Similarity (ISS), 

Inferred from Sequence Orthology (ISO), Inferred from Sequence Alignment 

(ISA), Inferred from Sequence Model (ISM), Inferred from Genomic Context 

(IGC), Inferred from Biological aspect of Ancestor (IBA), Inferred from 

Biological aspect of Descendant (IBD), Inferred from Key Residues (IKR), 

Inferred from Rapid Divergence(IRD), Inferred from Reviewed Computational 

Analysis (RCA)

• Automated electronic: Inferred from Electronic Annotation (IEA), Other: 

Traceable Author Statement (TAS), Non-traceable Author Statement (NAS), 

Inferred by Curator (IC)

• No biological data available: No biological Data available (ND), Not listed as a 

gene in GO (no evidence code)

Ethical approval

Mouse production, breeding, and phenotyping at each center was done in compliance with 

each centers’ ethical animal care and use guidelines in addition to their applicable licensing 

and accrediting bodies, reflecting the national legislation under which they operate. Details 

of each centers’ ethical review organization, processes, and licenses are provided in 

Supplementary Table 7. All efforts were made to minimize suffering by considerate housing 

and husbandry. All phenotyping procedures were examined for potential refinements that 

were disseminated throughout the IMPC. Animal welfare was assessed routinely for all 

mice.

Urls

IMPC portal, http://www.mousephenotype.org; Glucose results for Gad2, http://

mousephenotype.org/data/charts?accession=MGI:95634&allele_accession=MGI:

5548938&parameter_stable_id=IMPC_IPG_010_001&metadata_group=297b1cf545aee8ee

a0113b14aca71ef1&zygosity=homozygote&phenotyping_center=HMGU; IMPC FTP site, 

ftp://ftp.ebi.ac.uk/pub/databases/impc/latest/; IMPC publications, http://

www.mousephenotype.org/data/alleleref; IMPRESS, http://www.mousephenotype.org/

impress; IMPC data access, http://www.mousephenotype.org/data/documentation/index; 

IMPC Arrive guidelines, http://www.mousephenotype.org/about-impc/arrive-guidelines; 

IMPC GO annotations, https://www.mousephenotype.org/data/gene2go; ExpressionAtlas 

result for Fam53b, http://www.ebi.ac.uk/gxa/genes/ENSMUSG00000030956?bs=%7B“mus

+musculus”%3A%7B“ORGANISM_PART”%3Atrue%7D%7D&ds=%7B%7D - 

differential; GEMM, https://www.har.mrc.ac.uk/gemm-call-guidance-applicants; PhenStat, 

http://goo.gl/tfbA5k; MGI, http://www.informatics.jax.org/; MGI downloads, ftp://

ftp.informatics.jax.org/pub/reports/; Monarch Initiative, https://monarchinitiative.org; 

OWLtools, https://github.com/owlcollab/owltools
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DATA AVAILABILITY

All data presented here is openly available from the IMPC portal via our FTP site. We also 

provide regular data exports to the MGI group who provide public access to all available 

mouse data and the Monarch Initiative who integrate genotype-phenotype data from human 

and numerous other species.

CODE AVAILABILITY

The automated phenotype comparisons were performed using the open-source OWLtools 

package provided by the Monarch Initiative.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IMPC Mutant Models of Human Disease and Gene Function
Human disease models were identified by measuring the degree of phenotype similarity 

between IMPC null mutant mouse strains and their orthologous human disease genetic loci. 

Models of Mendelian Disease- of 889 potential disease models, 360 mutant strains had 

both phenotype overlap and an orthologous null allele to diseases with known mutations as 

described in OMIM and Orphanet; Novel Mendelian Disease Candidates- 135 strains had 

phenotype overlap and null alleles syntenic to linkage or cytogenetic regions associated with 

human diseases with unknown molecular mechanisms; New Functional Knowledge- of 

2564 genes with a non-lethal IMPC phenotype, IMPC data provide the first functional 

experimental evidence for 1092 of these genes based on Gene Ontology Annotation.

Meehan et al. Page 18

Nat Genet. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. New Mouse Models for Mendelian Human Disease
Gp9- Bernard-Soulier syndromes are bleeding disorders that result from mutations in the 

glycoprotein Ib platelet membrane receptor complex. Gp9tm1.1(KOMP)Vlcg homozygotes have 

abnormal platelet development represented by an increased platelet volume (A; box plots 

representations throughout represent first and 3rd quartiles with the line indicating the 

median and whiskers representing the min and max values. Female control=479, female 

homozygous=8, male control=428, male homozygous=8; linear mixed-effects model 

without Weight; p=0) and decreased platelet numbers (B; Female control=439, female 

homozygous=8, male control=428, male homozygous=8; linear mixed-effects model 

without Weight; p= 2.31E-06). Bbs5- BBS5 is associated with Bardet-Biedl syndrome 
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(BBS), a ciliopathy with multisystem involvement with severe and early-onset of symptoms. 

Bbs5tm1b(EUCOMM)Wtsi homozygotes display profoundly increased body fat percentage (C; 

Female control=1276, female homozygous=8, male control=1296, male homozygous=8; 

linear mixed-effects model without Weight; p=1.99E-11) and impaired glucose tolerance as 

shown by the time series box plot (D; blood glucose levels at time points after 16 hours 

fasting followed by intra-peritoneal (IP) glucose injection. Female control=491, female 

homozygous=8, male control=509, male homozygous=8; linear mixed-effects model 

without Weight; p= 2.85 E-07). Whole body X-ray visualization of Bbs5 homozygous and 

control, showing increased body fat in mutant animals (E). Rnf216 - Gordon Holmes 

syndrome is associated with RNF216 and is characterised by hypogonadism and cerebellar 

ataxia. Rnf216tm1b(EUCOMM)Wtsi homozygous null male mice are infertile. Histopathology 

images at 20x magnification show seminiferous tubule degeneration and atrophy with 

Leydig cell hyperplasia (Fa) and epididymal aspermia (Fb) in null mice compared to 

unaffected seminiferous tubules (Fc) and epididymis (Fd) in control mice.
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Figure 3. Psph
Phosphoserine phosphatase deficiency (OMIM: 614023) is an autosomal recessive disorder 

characterised by prenatal and postnatal growth retardation, psychomotor retardation and 

facial dysmorphologies with the severity of the symptoms requiring medical support for 

survival. Complete preweaning lethality was observed in Psphtm1.1(KOMP)Vlcg homozygous 

null mice. Pup number, genotypes and sex ratios of heterozygous intercrosses were set to 

generate cohorts for phenotyping. No homozygous pups were observed whereas respectively 

66% (54/82) and 34% (28/82) were produced (A; # of pups, asterisks indicate no surviving 

homozygotes). LacZ reporter expression regulated by the Psph promoter in asymptomatic 

heterozygous E12.5 embryos shows extensive gene expression (B; bar 1mm). Gross images 

of E15.5 homozygous mutant embryos confirmed growth retardation, haemorrhage, and 

facial dysmorphologies (C; bar 5mm). Imaging of E15.5 embryos by microCT showed 

significant growth retardation, as well as facial dysmorphologies consistent with the human 

Mendelian disorder (D).
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Figure 4. Novel Mouse Models of Disease –
Over 40% of IMPC strains are for genes that lack experimental evidence for function 

according to the Gene Ontology Consortium (A in grey). Fam53b - 
Fam53btm1b(EUCOMM)Hmgu homozygous mutant mice had significantly decreased red blood 

cell counts (B; box plot representations throughout represent first and 3rd quartiles with the 

line indicating the median and whiskers representing the min and max values and asterisks 

indicating a significant difference between mutant and same sex controls using the mixed 

model with a p < 0.0000. Female control=597, female homozygous=8, male control=635, 

male homozygous=8; linear mixed-effects model without Weight; p=2.81E-11), and 

enlarged erythrocytes (C; Female control=598, female homozygous=8, male control=634, 

male homozygous=9; linear mixed-effects model without Weight; p=0), consistent with 

Diamond-Blackfan Anemia (DBA, OMIM: 105560). Dnajc5b - Dnajc5btm1b(EUCOMM)Hmgu 

homozygous mutants displayed significantly shortened QT interval as measured by 

electrocardiogram (D; Female control=7, female homozygous=6, male control=7, male 

homozygous=8; generalized least squares without weight; p=7.41E-08), supporting a role 

for DNAJC5b variants associated with human variability to statin effects on cardiovascular 

incident frequency.
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Table 1
Frequency of IMPC Models that correspond to Mendelian Disease-Gene Associations in 
OMIM or Orphanet

650 known rare disease-gene associations covered by OMIM and Orphanet have a phenotyped IMPC strain 

involving the orthologous mouse gene. The PhenoDigm automated pipeline and manual curation approaches 

identified matching phenotypes between mouse strains and human disease. A correspondence between the 

human disease and mouse model was defined when at least one of the human clinical phenotypes was 

recapitulated by the IMPC line. Novel models were defined when MGI contains no curated mouse line or 

literature asserted disease model for the gene. The manual lethality matching category corresponds to IMPC 

mutant strains for which homozygosity produced embryo or neonatal lethality/subviability and matched 

reports of human lethality/subviability in the OMIM/Orphanet summaries (see methods).

Category Frequency

Automated IMPC Disease Model (novel only) 134/889 (15.1%)

Automated IMPC Disease Models (all) 185/889 (20.8%)

Additional Manual Lethality IMPC Disease Models (all) 175/889 (19.7%)

Total IMPC Disease Models (all) 360/889 (40.5%)
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Table 2

Examples of IMPC Disease Models Across Diverse Biological Systems

Biological system Disease Gene Human Mendelian disease Relevant Human Phenotype Overlapping Mouse phenotype

Bone SCARF2 Van Den Ende-Gupta Syndrome Long metacarpals increased length of long bones

Cardiovascular LMNA Cardiomyopathy Dilated 1a Dilated cardiomyopathy increased heart weight

Craniofacial MSX1 Orofacial Cleft 5 Cleft palate Cleft palate

Embryo PSPH Phosphoserine Phosphatase Deficiency Intrauterine growth retardation abnormal embryo size

Growth/Body size GHRHR Isolated Growth Hormone Deficiency, 
Type Ib Short stature decreased body length

Hearing SLC52A2 Brown-Vialetto-Van Laere Syndrome 2 Sensorineural hearing impairment increased or absent threshold for 
auditory brainstem response

Hematopoietic GP9 Bernard-Soulier Syndrome Thrombocytopenia Thrombocytopenia

Metabolism KCNJ11 Diabetes Mellitus, Noninsulin-Dependent Type II diabetes mellitus Impaired glucose tolerance

Muscle COL6A2 Bethlem Myopathy Distal muscle weakness Decreased grip strength

Neurological GOSR2 Epilepsy, Progressive Myoclonic, 6 Difficulty walking abnormal gait

Reproductive System RNF216 Gordon Holmes Syndrome Infertility male infertility

Retina BBS5 Bardet-Biedl Syndrome 5 Rod-cone dystrophy abnormal retina morphology
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