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SUMMARY

More than one-half billion people are obese, and
despite progress in genetic research, much of
the heritability of obesity remains enigmatic. Here,
we identify a Trim28-dependent network capable
of triggering obesity in a non-Mendelian, ‘‘on/off’’
manner. Trim28+/D9 mutant mice exhibit a bi-modal
body-weight distribution, with isogenic animals
randomly emerging as either normal or obese and
few intermediates. We find that the obese-‘‘on’’
state is characterized by reduced expression of an
imprinted gene network including Nnat, Peg3,
Cdkn1c, and Plagl1 and that independent targeting
of these alleles recapitulates the stochastic bi-sta-
ble disease phenotype. Adipose tissue transcrip-
tome analyses in children indicate that humans too
cluster into distinct sub-populations, stratifying ac-
cording to Trim28 expression, transcriptome organi-
zation, and obesity-associated imprinted gene dys-
regulation. These data provide evidence of discrete
polyphenism in mouse and man and thus carry
important implications for complex trait genetics,
evolution, and medicine.
INTRODUCTION

Complex traits such as height, shape, and weight emerge from

the integration of multiple genetic and epigenetic determinants.

They underpin susceptibility to and severity of virtually all disease.

Current estimates place obesity incidence at more than 600

million individuals worldwide (WHO, 2015). As a prime risk factor

for heart disease, stroke, cancer, type 2 diabetes, and neurode-

generation, obesity poses a major socio-economic challenge.

Although studies over the last decades have provided a genetic

framework for understanding obesity, the contribution of epige-

netic regulation remains poorly understood. Measurements in

monozygotic twins and inbredmouse strains indicate that epige-

netic control can have substantial effects on body-mass out-

comes. Isogenic C57Bl6/J mice, for instance, can vary by as

much as 100% in body weight when fed a high-fat diet, even

when reared in highly standardized laboratory conditions (Koza

et al., 2006). Experiments in multiple model organisms suggest

that pre-conceptual and early-life environment contribute to vari-

ability by reproducibly shifting offspring phenotype (reviewed in

Patti, 2013; Daxinger and Whitelaw, 2012; Rando and Simmons,

2015). Also, epidemiological data suggest that similar regulatory

mechanisms determine human phenotypic outcomes. Despite

many investigations, we still know little about the mechanisms

by which developmental trajectories are canalized and how

these states are reproducibly altered. Changes in imprinting
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(Morgan et al., 1999), DNAmethylation (Wolff et al., 1998; Water-

land et al., 2006; Carone et al., 2010; Anway et al., 2005; Radford

et al., 2014), and non-coding RNA expression (Rechavi et al.,

2014; Rassoulzadegan et al., 2006; Gapp et al., 2014; Kiani

et al., 2013; Seong et al., 2011; Shirayama et al., 2012; Lee

et al., 2012; Greer et al., 2011; Ashe et al., 2012) have been impli-

cated in altering phenotypic outcomes in model organisms, and

there is evidence that chromatin states, coding RNAs, and chro-

matin-associated molecular machinery are important (Öst et al.,

2014; Greer et al., 2011).

Chromatin provides the cell with a template for regulating

genome output. Genetic screens have identified numerous fam-

ilies of proteins that generate and define chromatin composition

(Hollick and Chandler, 2001; Schotta et al., 2003; Allshire et al.,

1994), and more recent (epi)genomic efforts have revealed in-

sights into how the genome is physically and functionally parti-

tioned (Naumova and Dekker, 2010). In these contexts, the

Whitelaw group used ENU mutagenesis to uncover novel chro-

matin regulators in the mouse (Daxinger et al., 2013). Among

42 ‘‘Momme’’ (modifiers of murine metastable epialleles) mu-

tants, the group identified and mapped MommeD9 (Trim28+/D9)

to a non-sense mutation in the chromatin-interacting protein

Trim28 (also known as Tif1b or Kap1). Trim28+/D9 mutant mice

stood out in that they exhibited exaggerated phenotypic varia-

tion specifically in body mass and adiposity (Whitelaw et al.,

2010). TRIM28 is a large multi-domain protein that supports het-

erochromatin deposition and silencing by bridging interactions

between KRAB-zinc finger transcription factors and histone

de-acetylases (HDAC1/2) and methyltransferases (SETDB1).

Homozygous Trim28 deletion strains are early embryonic lethal,

demonstrating critical requirements for the protein in develop-

ment. Also, consistent with the exacerbated phenotypic varia-

tion reported for Trim28+/D9 animals, conditional maternal dele-

tion mutants of Trim28 exhibit highly variable developmental

abnormalities (Messerschmidt et al., 2012).

Here, we report the characterization of body-mass hyper-vari-

ability in Trim28+/D9 mice. Interestingly, we find that isogenic

Trim28+/D9 mutant animals exhibit obesity in an ‘‘on/off’’ manner,

emerging into adulthood as either obese or normal, and thus

yielding a bi-modal body-weight distribution for the population.

Individuals of the obese sub-population exhibit reduced expres-

sion of an imprinted gene network that includes Nnat, Peg3,

Cdkn1c, and Plagl1, and we find that deletion of either Nnat or

Peg3 alone is sufficient to recapitulate the bi-modal adiposity

phenotype. Examining transcriptional profiles of multiple cohorts,

we find evidence that humans too segregate into two apparent

sub-populations stratified by Trim28 expression, high-dimen-

sional transcriptome arrangement, and body-mass index. The

data provide genetic evidence that mechanisms exist in mam-

mals to canalize developmental and phenotypic outcome along

discrete trajectories, a concept also known as polyphenism.

RESULTS

Trim28 Haploinsufficiency Induces a Stochastic
Bi-stable Obesity
Whitelaw et al. previously reported exaggerated variability

in body mass in Trim28+/D9 haploinsufficient mice (Whitelaw
354 Cell 164, 353–364, January 28, 2016 ª2016 The Authors
et al., 2010). In an effort to understand the nature of the variable

phenotype, we generated large cohorts of Trim28+/D9 animals

well-controlled for parental and offspring litter size (7–10 pups),

lactation sufficiency, and housing conditions, factors all known

to influence growth and metabolism and thus to add noise to

phenotypic data. As examples, individually housed mice eat

�25% more than those housed in groups of 4; also, small litter

size (calorie excess during lactation) is used as amodel for meta-

bolic reprogramming toward obesity.

Rather than simple amplification of random (Gaussian-distrib-

uted) variation, we found that highly backcrossed and inbred

(F10+N20+ FVB/NJ) Trim28+/D9 individuals clustered into

two discrete sub-populations, one heavy (obese-Trim28+/D9) and

one normal (lean-Trim28+/D9) (Figure 1A). The resulting body-

weight frequency distribution was bi-modal (Figure 1B). Interest-

ingly, this on/off phenotype was observed not only when merging

data from multiple litters but also within individual litters,

i.e., when parental and developmental environment aremaximally

controlled. In addition to increased body mass, the obese-

Trim28+/D9 sub-population was slightly longer (�1%–2% in-

crease in nose-to-tail length; Figure 1C) relative to both their

lean-Trim28+/D9 and wild-type siblings. Trim28 was equally ex-

pressed in the lean versus obese sub-groups (Figure S1A).

Obese-Trim28+/D9 animals exhibited increased adipose tissue

mass in all measured depots including epididymal, inguinal, and

brown fat pads (Figures1Dand1E) andshowednoobservabledif-

ference inbrain, kidney, spleen,muscle,or liverweights, indicating

that bi-stability was at least partially restricted to adiposity. Docu-

menting many individuals and litters, we observed that the

Trim28+/D9-sensitized obesity emerged during a relatively short

window in early adulthood (8–12 weeks of age; Figure 1F) and

then remained stable. Of potential interest, non-significant trends

toward increased body mass and length were also observed in

lean-Trim28+/D9 relative to wild-type siblings (Figures 1A–1F).

Notably, inheritance of obesity was non-Mendelian. To

date, the bi-stability phenotype has survived >7 years through

breeding schemes including maternal and paternal transmission

of the Trim28+/D9 allele, as well as extensive backcrossing (>

N10), inbreeding (> F20), three different mouse houses (QIMR,

Australia; IMBA, Austria; and MPI-IE, Germany; Figure 1G), and

embryo transfer. Comparison of interquartile ranges, coefficient

of variation, and standard deviation against large, independently

obtained non-early-life-controlled cohorts confirmed the height-

ened variation specifically of the Trim28+/D9 heterozygotes (Fig-

ure S1B). We have observed average facility-specific obesity-

‘‘on’’ rates ranging from as low as �5%–20% (MPI-IE, Freiburg)

to nearly�50% (QIMR, Australia) of the heterozygote Trim28+/D9

population, suggesting that external factors can reproducibly in-

fluence the on/off decision. Though periods of apparent sex bias

have been observed, the phenotype has been observed in both

male and female animals and, as mentioned above, passes

through both the male and female germlines. Importantly, the

non-Mendelian bi-stability has survived dedicated attempts to

segregate it; obese-Trim28+/D9 fathers show no evidence of pro-

ducing more obese offspring relative to their lean-Trim28+/D9

siblings.

Importantly, conditional homozygous deletion of Trim28 in

muscle (Mck-Cre), adipose (Adipoq-Cre), liver (Alb-Cre), and
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Figure 1. Trim28 Haploinsufficiency Induces Stochastic, Bi-stable Obesity in the Mouse

(A and B) Body mass of wild-type littermates and Trim28+/D9 mice at 14–18 weeks of age (A) and frequency distribution of body weight normalized to wild-type

littermates (B).

(C) Obese-Trim28+/D9 mice are heavier and longer relative to wild-type and lean-Trim28+/D9 mice.

(D and E) Increased mass in obese-Trim28+/D9 results from expansion of fat depots (eWAT, scWAT, and BAT) and not organomegaly.

(F) Trim28+/D9 mice are lighter at weaning relative to wild-type littermates; body-weight differences between lean- and obese-Trim28+/D9 mice emerge near

adulthood.

(G) The Trim28+/D9 colony body-mass distributions at three different sites (MPI-IE, Germany; IMBA, Austria; QIMR, Australia) with a variable frequency ranging

from 10%–50%.

(H and I) H&E staining of epididymal adipose (scale bar: 200 mm) shows no sign of adipocyte hypertrophy in Trim28+/D9 mice.

(J) Tissue-specific knockout of Trim28 in liver (Alb-Cre), muscle (McK-Cre), adipose (Adipoq-Cre), POMC (POMC-Cre), or AgRP (AgRP-Cre) neurons does not

impact body mass.

Data are mean ± SEM (*p < 0.05). See also Figure S1.
the satiety regulating POMC- (POMC-Cre), and AgRP-neurons

(AgRP-Cre) have revealed no obvious effect on adiposity (Fig-

ure 1J). These data indicate that TRIM28 is largely dispensable

in fully differentiated adult tissues and support a role, consistent

with much literature, in transcriptional programming in develop-

ment. Thus, Trim28+/D9 mice exhibit non-Mendelian bi-stable

obesity.

Obese-Trim28+/D9 Animals Are Metabolically ‘‘Healthy’’
To better understand the adiposity phenotype, we metabolically

phenotyped cohorts of Trim28+/D9 animals. Examining oral

glucose tolerance (Figure S1C), serum-free fatty acids, triglycer-

ides (Figures S1D and S1E), as well as fasting glucose and insulin

levels (Figures S1F and S1G), we found no evidence of major

anomalies in the obese-Trim28+/D9 animals nor in all Trim28+/D9

animals grouped as a whole. Key determinants of metabolic
health in obesity include efficient adipocyte turnover and func-

tion, as well as resistance to chronic metabolic inflammation

(Gregor et al., 2013; Teperino et al., 2012; Jais et al., 2014).

Consistent with the relatively protected metabolic phenotype,

obese-Trim28+/D9 animals showed no significant changes in

adipocyte size (Figures 1H and 1I). Given themeasuredwhite ad-

ipose tissue mass differences (Figure 1D), the data are consis-

tent with an approximate doubling of adipocyte number in the

obese-Trim28+/D9 animals. Plasma levels of the pro-inflamma-

tory adipokines TNF-a and resistin, of C-reactive protein (Ouchi

et al., 2011), and of the plasma-soluble receptor RAGE (Alexiou

et al., 2010) were unremarkable (Figure S1H). Further, no evi-

dence was found of secondary metabolic complications such

as hepatosteatosis (Figure S1I), though our own previous work

examining older cohorts has shown this as a potential endpoint

(Whitelaw et al., 2010). mRNA expression profiling of epidydimal
Cell 164, 353–364, January 28, 2016 ª2016 The Authors 355



Figure 2. Non-classical Imprinted Gene Dysregulation Specifies the Obesity ‘‘On’’ State

(A–C) Poor correlation between measures of Trim28+/D9-sensitized obesity and diet-induced obesity (high-fat diet and low-fat diet; HFD/LFD; GSE38337). Anti-

correlated genesets from the transcriptome comparison (A) underwent MsigDb pathway enrichment analysis to reveal downregulated (B) or upregulated (C)

pathway enrichment specific to obese-Trim28+/D9 adipose.

(D) GSEA analysis reveals marked PEGs downregulation specifically in obese-Trim28+/D9 mice.

(E) Heatmap visualization of the sameRNA-seq data reveals that a subset of expressed PEGs (FPKM> 0.3) is downregulated in obese-Trim28+/D9. Genesmarked

with an asterisk belong to IGN1. Columns represent sequenced biological replicates.

(F) GSEA enrichment of imprinted gene networks (IGN1-3; Al Adhami et al., 2015).

(G–I) Imprinted genes are dysregulated non-classically. (G) No changes in DNA methylation at germline DMRs measured by quantitative bisulfite and (H) no

changes at the gene body or (I) promoters of imprinted genes as measured by RRBS in mature adipocytes. Imprinted genes are shown in red. RRBS data

represent the mean of two independent replicates per group.

Data are mean ± SEM (*p < 0.05). See also Figure S2 and Tables S1, S2, S3, and S4.
adipose by RNA sequencing revealed moderate expression

changes associated with both positive (elevated Fgf21, Fndc5;

decreased Retn; Figure S1J) and negative metabolic outcomes

(increased Lep, Tnfa, IL1b, and Hmox1; Figure S1K), indicating

that although largely normal, the animals are likely not immune

to metabolic complication.

Characterizing energy homeostasis has been difficult. Specif-

ically, anxious and stress-sensitive behavior of the Trim28+/D9

line has restricted successful analysis to a select few individuals

despite use of stress-limiting home-cage indirect calorimetry.

The data indicate no changes in food intake, expected alter-

ations in VO2 and VCO2, as well as a tendency toward reduced ac-

tivity (Figures S1L–S1O). Statistical detection of differences in

energy expenditure will require a high sampling number, which,
356 Cell 164, 353–364, January 28, 2016 ª2016 The Authors
given the stochasticity and stress sensitivity of the model, is an

ongoing challenge.

Non-classical Imprinted Gene Dysregulation Specifies
the Obesity ‘‘On’’ State
To find causal underpinnings for the obesity induction, we inter-

sected RNA-sequencing datasets comparing epididymal adi-

pose tissue gene expression in our obese- and lean-Trim28+/D9

animals with comparable data contrasting high-fat diet (HFD)-

induced obese animals with chow-fed controls (GSE38337).

Global analysis of the two differential obesity datasets revealed

low overall correlation (Pearson R = 0.16; Spearman R = 0.11;

Figure 2A), indicating that the Trim28+/D9-induced obese state

is distinct from that induced by over-feeding.



Because Trim28+/D9 was originally identified as a silencing

‘‘E(var)’’ mutation (Whitelaw et al., 2010), we focused on genes

downregulated in obese-Trim28+/D9 animals but unaltered or

increased in HFD-induced obesity. Querying the top 250 such

genes against the MSigDB collection of curated gene pathway

annotations, we observed enrichment in genesets associated

with proliferation/cell cycle/cancer, with adipogenesis/stem

cell differentiation, and interestingly with Polycomb and HDAC-

associated chromatin regulation (Figures 2B and 2C and Tables

S1, S2, and S3).

One of the most enriched signals, top among chromatin-

related pathways, was the geneset ‘‘Brideau_Imprinted_Genes’’

(Brideau et al., 2010) (Figures 2B and S2C). Imprinted genes

comprise �150 genomic loci whose expression follows a DNA

methylation-associated parental-origin pattern, such that only

one of the two alleles, either thematernally or paternally inherited

one, is expressed. We built custom pathway annotations

comprising all known paternally and maternally expressed im-

printed genes (PEGs and MEGs, respectively) and probed for

enrichment in our RNA-seq data using gene set enrichment anal-

ysis (GSEA). Whereas MEGs as a group exhibited less remark-

able regulation, PEGs showed marked pathway downregulation

specifically in obese-Trim28+/D9 samples (Figures 2D, 2E, and

S2D). Heatmap and GSEA enrichment score profiles suggested

that the pathway contained two roughly equally sized gene sub-

sets: one, prominently downregulated (‘‘leading edge’’; Figures

2D and 2E and Table S4), and a second, apparently non-regu-

lated, subset with random distribution. Al Adhami et al. recently

used an unbiased in silico approach to show that imprinted

genes cluster into at least three co-regulated groups, suggesting

functional compartmentalization beyond paternal and maternal

expression (Al Adhami et al., 2015). Querying our data against

these non-classical ‘‘imprinted gene network’’ (IGN) annotations

at the pathway level, we found almost exclusive regulation of

IGN1, a predominantly paternally expressed cluster previously

implicated in body size/weight control (Varrault et al., 2006; Ga-

bory et al., 2009; Al Adhami et al., 2015) (Figure 2F). The core

enrichment signal of this analysis was driven by downregulation

of Plagl1, Dlk1, Cdkn1c, Nnat, Igf2, Peg3, Ppp1r9a, Ndn, and

Grb10 in obese-Trim28+/D9 animals (Figure 2F and Table S4).

The downregulation of Nnat, Plagl1, and Peg3 was confirmed

by qPCR and at the protein level for Nnat (Figures S3E and

S3F). Comparable regulation was not observed in data from

HFD-induced obese adipose tissue (Figure S2G). Thus, an

IGN1-centric gene signature characterizes Trim28+/D9-induced

obesity.

Mechanistically, imprinting results from discordant maternal

versus paternal DNA methylation patterning at germline-defined

imprinting control regions (ICRs). We next examined DNA

methylation levels at IGN1 ICRs. Included were ICRs of three

of our most differentially regulated IGN1 genes, including two

moderately (Plagl1, Peg3) and one highly expressed (Nnat)

gene as well as ICRs of unaffected imprinted loci within (H19

andDlk1-Meg3) and outside (Snrpn) the IGN1 network. Changes

in H19 and Snrpn have previously been linked to Trim28 dysre-

gulation in vivo (Messerschmidt et al., 2012). Importantly, we

found no evidence of altered DNA methylation at any of these

loci (Figure 2G). These findings indicated intact imprinting con-
trol and were true for assessments of both purified white epidid-

ymal adipocytes (Figure 2G) and stromal vascular preparations

including adipocyte progenitor cells and pre-adipocytes (Fig-

ure S2H). Extension ‘‘genome-wide’’ using reduced representa-

tion bisulfite sequencing (RRBS) provided no evidence of signif-

icant changes in DNAmethylation also beyond ICRs, including at

promoters or gene bodies (Figures 2H and 2I). These findings

were consistent with a lack of DMR-associated reciprocal

gene-expression patterns that would be expected from classical

loss of imprinting. Thus, a non-classical imprinted gene signa-

ture specifies Trim28+/D9-dependent bi-stable obesity.

IGN1 Perturbation Induces Bi-stable Obesity
To test whether IGN1 dysregulation could cause obesity, we

examined the phenotypic outcomes of targeted deletion of rele-

vant IGN1 genes. We used Gateway-based ‘‘knockout-first’’

conditional targeting of exons 2 and 3 in JM8.F6 C57Bl6/N

embryonic stem cells (ESCs) according to standard EUCOMM

protocols to generate a knockout allele of our most strongly dys-

regulated IGN1 gene, Nnat (Figure 3A). ESCs were injected into

blastocysts and implanted into pseudo-pregnant females, and

chimeric offspring were screened for germline transmission.

Deletion was confirmed on the RNA and protein levels (Figures

3B and 3C), and the newly derived Nnat knockout line was back-

crossed more than ten generations to C57Bl6/J.

Nnat mutant offspring of both maternal and paternal transmis-

sion were born at Mendelian ratios. In support of a causal role for

Nnat downregulation in Trim28+/D9-induced obesity and bi-sta-

bility, paternal deletion mutants (Nnat+/�p) exhibited a hyper-var-

iable adiposity phenotype, again clearly emerging in adulthood

(Figure 3D). Obese individuals were observed in both male and

female offspring, and consistent with Nnat being paternally ex-

pressed, obesity was only observed upon paternal inheritance

of the deleted allele. No evidence of obesity was detected in

either wild-type littermates or cohorts receiving the imprinted

deletion allele from their mothers (Nnat+/�m; i.e., normal paternal

Nnat expression) (Figure 3D). Fitting the body-weight distribution

to the sum of two Gaussians (R2 = 0.98) indicated an obesity-on

rate of �26% of the mutant population, with a 40% increase in

body weight between the obese- and lean-Nnat+/-p animals (Fig-

ure 3E). Similar to the Trim28+/D9 line, the bi-stable phenotype

has been confirmed in more than one facility (MRC Cambridge

and MPI-IE Freiburg; Figure 3F) and has survived embryo trans-

fer and backcrossing onto pure C57Bl6/J as well as mixed

C57Bl6/J:FVBN/J F1 backgrounds. Obesity in Nnat+/�p animals

was characterized by increased adipose tissue mass in epidid-

ymal adipose pads and on the whole animal level by dual-emis-

sion X-ray absorption analysis (Figures 3G and S3A). These

findings implicate Nnat in buffering non-Mendelian bi-stable

adiposity.

We also found evidence of potential bi-stability in an additional

IGN1-targeted mouse model, a conventional knockout of the

paternally expressed Peg3 allele (Peg3+/�p). Curley et al. re-

ported increased body-fat accumulation in bothmale and female

Peg3+/�p mutants (Curley et al., 2005). Re-analysis of those

data revealed a population-level fat-mass distribution consistent

with two adiposity-discordant sub-populations with an esti-

mated obesity-on rate of �20% and a near-doubling in body
Cell 164, 353–364, January 28, 2016 ª2016 The Authors 357
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Figure 3. Nnat and Peg3 Knockout Mice

Exhibit Bi-stable Obesity

(A) Targeting approach for a ‘‘knockout first’’ Nnat

deletion allele.

(B) mRNA and (C) protein-level expression in E17.5

embryo heads of paternal Nnat null (Nnat+/�p)

mutants and their wild-type littermate controls

(+/+).

(D) Hypervariable body mass at 14–18 weeks of

age observed upon deletion of the paternal and not

maternal (Nnat+/�m) allele.

(E) Body-mass distribution is bi-modal (gray). The

single-Gaussian sub-distributions of the double-

Gaussian fit (gray) are shown in green. Inset high-

lights that body-mass distribution upon maternal

transmission (Nnat+/�m) of the Nnat null allele fol-

lows a single-Gaussian distribution.

(F)Hypervariable body-massdistributionsobserved

at two different sites (MPI-IE, Germany; MRC,

UK). Shown are male progeny of�10 litters at each

site.

(G) Epididymal adipose tissuemass from lean- and

obese-Nnat+/�p mice and their littermate controls.

(H) Body-fat distribution of Peg3+/�p mice is bi-

modal (gray). The single-Gaussian sub-distribu-

tions of the double-Gaussian fit (gray) are shown in

blue (re-graphed from Curley et al., 2005).

(I) Individual replicates for total fat mass and body

weight for Peg3+/�p mice (re-graphed from Curley

et al., 2005).

(J and K) Obese-Trim28+/D9 and obese-Nnat+/�p

animals exhibit decreased mRNA expression of

most of the recruitment factors (Zfp57, Hp1a, and

Hp1g) concomitant with increased expression of

silencing factors SetDb1, Dnmt’s 1, 3a, and 3L

relative to their lean siblings.

Data are median with interquartile range (boxplots)

or mean ± SEM (*p < 0.05). See also Figure S3.
fat between lean and obese mutants (N = 80) (Figure 3H). Inter-

estingly, Peg3+/�p mice were reported to be uniformly smaller,

with concomitant reductions in body size, weight, and skeletal

muscle mass, indicating that gene dosage among IGN1 mem-

bers might be important for phenotypes beyond adiposity (Fig-

ure 3I). To the best of our knowledge the Peg3 deletion strain

was not maintained by the community. We are now in the pro-

cess of backcrossing a re-derived line from the original targeting

construct.

During development, TRIM28 controls endogenous retrovi-

ruses and germline ICRs in the context of TRIM28-ZFP

complexes. Hoping for additional mechanistic insight into the

obesity decision, we also mapped our RNA-seq reads to a com-

pendium of genomic repeat sequences as TRIM28 has previ-
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ously been implicated in control of repeat

expression (Rowe et al., 2010). Examining

ERV families and classes and uniquely

mapping reads and chimeric reads be-

tween genes and transposable element

regions, we found few significant

changes. Indeed, the number and degree

of repeat expression alterations were
lower than in comparable mutants of cellular metabolism (data

not shown). Interestingly though, when examining RNA expres-

sion of the imprint-regulating TRIM28-ZFP57 complex, and

related genes, in adipose of the Trim28 and Nnat mutant lines,

we observed consistent dysregulation. Obese-Trim28+/D9 ani-

mals exhibited decreased expression of the guide/recruitment

factors Zfp57, Hp1a, and Hp1g, concomitant with increased

expression of Dnmt1, 3a, and 3L relative to their lean-Trim28+/

D9 siblings (Figure 3J). The same trend was observed in Nnat+/�p

animals, except that instead of Zfp57, Trim28 was reduced in

obese individuals (Figure 3K). These data are consistent with a

model wherein relative dosage of TRIM28-ZFP57 complex

recruitment and silencing functions underpin the switch between

lean and obese phenotypes.
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Figure 4. Trim28-Low Human Children Are Obesity Susceptible and Exhibit a Distinct Transcriptome Landscape

(A) Taqman qPCR of TRIM28 mRNA expression in sub-cutaneous adipose from human pre-pubescent children.

(B) Stratification by BMI indicates that the obese sub-group is enriched for Trim28-low individuals.

(C) Taqman qPCR shows that obese, Trim28-low individuals specifically exhibit reduced expression of IGN1-imprinted genes.

(D) Correlation of TRIM28 versus IGN1 member gene expression.

(E) PCA of adipose tissue RNA-seq from the same individuals reveals Tim28-low versus -high individuals to be substantially different. Inset highlights the same to

be true when analyzing only IGN1 qPCR data.

(F) Heatmap visualization of hierarchical clustering of the most variable 6,000 genes expressed in adipose from the cohort. Vertical lines are for visualization

purposes only.

(G) TRIM28 and (H) IGN1 pathway expression are selectively decreased in obese co-twins in a cohort of 13 discordant monozygotic twin pairs (Pietiläinen et al.,

2008).

Data are mean ± SEM (*p < 0.05) or min-to-max whiskers. See also Figure S4.
Evidence of TRIM28-Associated Phenotypic
Bi-potential (Polyphenism) in Humans
We reasoned that if present, evidence of bi-stability and Trim28/

IGN1-associated obesity would be most evident in childhood

because this represents a window of tight environmental control

in humans (i.e., essentially all children in the developed world

exhibit largely coincident and enforced circadian, feeding, and

activity patterns imposed through parenting, primary care, and

education). We examined gene expression by Taqman qPCR

in subcutaneous adipose tissue samples from a cohort of pre-

pubertal Caucasian children of European ancestry entering the

clinic for elective surgery (typically orthopedic); the cohort

included 22 lean and 18 obese individuals. The childrenwere dis-

ease and medication free and have been described in detail as

part of the Leipzig Childhood AT cohort (Landgraf et al., 2015).
When measured against three housekeeping genes (ACTB,

HPRT, TBP), we found both a significant reduction in adipose tis-

sue TRIM28 levels in obese children (Figure 4A) and an apparent

cluster of very low TRIM28-expressing individuals in the obese

group. Individuals in the lower 50th percentile of TRIM28 expres-

sion appearedmore likely to be obese than high TRIM28 expres-

sors (Figure 4B). Mimicking analysis of the Trim28+/D9 haploin-

sufficient mouse scenario, we sub-divided all individuals into

obese or lean groups of comparably high or low TRIM28 levels

(Trim28_High and Trim28_Low, respectively) and used qPCR

to measure expression of six of our leading-edge, Trim28+/D9-

obesity-associated IGN1 genes (Figures 4C and 4D). IGN1

genes correlated with TRIM28 expression (Figure 4D). Whereas

Trim28_High individuals showed essentially identical IGN1

expression levels irrespective of adiposity (Figure 4C, upper
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panel), obese Trim28_Low subjects showed clear reductions

in CDKN1C, PLAGL1, NNAT, and PEG3 expression when

compared to equally Trim28_Low lean subjects (Figure 4C, lower

panel). These data recapitulate our observations of enhanced

IGN1 downregulation in Trim28+/D9 haploinsufficient mice and

are consistent with a conserved role for a Trim28-IGN1 axis in

human adiposity regulation.

To test whether the observations reflected differences beyond

IGN1 output, we performed RNA sequencing of the same adi-

pose samples and analyzed transcriptome organization with

principal-component analysis (PCA) of the 6,000 most variable,

expressed genes. The PCA revealed a non-homogeneous

population distribution with two apparent sub-populations (Fig-

ure 4E). Plotting individuals according to TRIM28 expression re-

vealed that the clusters did not discriminate obese from lean or

male from female subjects (Figures S4A and S4B) but rather

Trim28_High from Trim28_Low individuals (Figure 4E). These

findings recapitulate PCA analysis of the IGN1 gene qPCR

data from the same individuals (insets, Figures 4E, S4A, and

S4B) and indicated that on the transcriptome level Trim28_High

and _Low individuals are more different than lean versus obese

or male versus female individuals. These patterns were equally

clear when assessing the data in a Pearson correlation matrix

(Figure 4F) and by hierarchical clustering (Figure S4C). Thus, hu-

mans appear to stratify into sub-populations defined by adipose

TRIM28 expression, with Trim28_Low individuals exhibiting

distinct transcriptional complexity, IGN1 dysregulation, and

increased obesity incidence.

BMI Bi-modality at the Population Level in Humans
Next, we examined publically available datasets for signs of bi-

modal body-weight distributions in the general population. We

first examined adipose tissue microarray data from 13 discor-

dant monozygotic (MZ) twin pairs each comprising one obese

and one normal co-twin (Pietiläinen et al., 2008). Importantly,

we found suggestions of both reduced mean TRIM28 levels (Fig-

ure 4G) and reduced IGN1 pathway expression (GSEA; Fig-

ure 4H) specifically in obese relative to lean isogenic co-twins.

This indicates that Trim28-IGN1 expression correlates with

epigenetically rooted human obesity.

We analyzed BMI distributions of �4,000 Caucasian children,

6–11 years old, surveyed by the National Health andNutrition Ex-

amination Survey (NHANES) between 1999 and 2012 (Center for

Disease Control) (CDC, 2012). As is well described for the gen-

eral population, BMI distributions were positively ‘‘skewed.’’

We observed, however, that this positive bias was not gradual

but rather contained a distinct inflection point suggestive of a

mixed distribution (Figure 5A). We noted during the analysis

that bar-chart visualization, as well as large and/or irregular

bin-sizings often used in BMI analysis, mask this inflection.

Importantly, where a single Gaussian failed to accurately model

the data (and in particular the positive skew), we found that a

mixed model assuming two independent and potentially over-

lapping Gaussian sub-populations fit �99.2% of the data distri-

bution (R2 = 0.99; sum-of-two-Gaussians: R2 = 0.91; single

Gaussians) (Figures 5A and 5B). Inspection on a log-scale re-

vealed that only the most obese children (> �30 BMI; <1% of

the population) fell outside confidence intervals (Figures S5A
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and 5B). Of note, analyses compensating for the complex

NHANES sampling strategy provided equivalent results. Most

importantly, we observed the same pattern and goodness-of-

fit when independently analyzing BMI distributions of males

and females, of Mexican American, Hispanic, Caucasian, and

African American children (Figure 5C), as well as of adult popu-

lations examined inside and outside North America, including a

cohort of �10,000 Han Chinese individuals (Figures 5D and 5E).

Finally, we found evidence of a marked frequency transition

between sub-populations over recent decades. We compared

BMI distributions from NHANES data gathered between 1963

and 1994 (CDC, 1994) with the more recent 1999–2012 (con-

tinuous NHANES) data (CDC, 2012). Both datasets followed a

sum-of-two-Gaussians fit with an R2 > 0.99. In contrast to the

popularized notion that the population as a whole is significantly

gaining weight, we observed that the calculated mean BMI of

the major (lean) population increased only 0.07 BMI units

from 1963–1994 (BMI = 15.81; males 6–11 years of age) to

1999–2012 (BMI = 15.87), i.e., +0.4%. Instead, the profiles indi-

cated an increase in the relative fraction of individuals falling into

the second (heavier) sub-population. The heavy sub-population,

with a mean BMI 4–5 points above ‘‘normal,’’ more than tripled,

from �12% to �38% of all individuals. These findings agree

with other descriptions of childhood obesity (Körner et al.,

2007) and suggest increased incidence of a distinct category

of ‘‘triggered’’ individuals that would be consistent with the

notion of polyphenism. Given that mean normalizations do not

effectively accommodate variable bimodality, these data sug-

gest that normalizations to age- and sex-specific medians,

modes, or Winsorized means maymore accurately align popula-

tion-level BMI variation.

DISCUSSION

Phenotypic variation describes the extent and character of vari-

ability in a given phenotype in the population and is thought to be

a platform for adaptation and evolution. It can be of genetic or

epigenetic origin, or both (Simpson et al., 2011). Polyphenism re-

fers specifically to the case where individuals of the same geno-

type can exhibit multiple discrete phenotypic end-points without

intermediates and has been most heavily studied in insects.

Classical examples include seasonal morphs in butterflies, caste

morphs in eusocial insects (worker, soldier, queen), and the

intriguing intergenerational reproductive morphs of aphids. The

observation of two distinct phenotypic end-points in isogenic

Trim28-, Nnat- and possibly Peg3- mutant mice indicates similar

phenotypic bi-potential in mice and identifies a genetic network

that buffers against emergence of divergent states.

Although unclear whether socially, genetically, or epigeneti-

cally underpinned, the relatively inbred wild mole-rat exhibits

a somewhat parallel dispersal morph that arises in times of

plenty, exhibits increased adipose tissue mass, and shows a

behavioral phenotype that ultimately leads it to leave the colony

(O’Riain et al., 1996). The uncommon phenotype is thought

to provide populations with the cooperative advantages of euso-

cial behavior while avoiding complete inbreeding. Similarly,

increased energy storage induced via the Trim28+/D9-sensitive

axis described here might be expected to protect from predation
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Figure 5. BMI of the General Population Is Consistent with a Bi-modal Distribution

(A) BMI distribution of 6- to 11-year-old non-hispanic white males from the continuous NHANES 1999–2012 survey (CDC, 2012). Data are fit to a single Gaussian

(gray) and a double Gaussian (blue).

(B) Individual Gaussian components of the double Gaussian from (A).

(C) Near-perfect double-Gaussian fit is observed across children of five major ethnicity classes, as well as in adult cohorts from (D) continuous NHANES 1999–

2012 (CDC, 2012) and (E) Han chinese populations.

(D and E) Shown are age-normalized BMI distributions for females aged 25–50.

(F) Comparison of similar fitting of childhood data from continuous NHANES 1999–2012 (CDC, 2012) and prior NHANES/NHES surveys (1963–1994) (CDC, 1994)

shows a marked shift in recent decades where the heavy sub-population triples in size (pie charts).

See also Figure S5.
and starvation. Although the nature of triggers for our observed

obese state is not clear, we have observed extended periods

with reduced obese individuals correlating with housing density

and reduced temperature. At the site of generation of the

Trim28+/D9 line (QIMR, Australia), obese individuals were

observed at higher rates; that facility was warmer but also had

different microflora, rodent diet, and staff and is a non-SPF facil-

ity. Preliminary experiments examining maternal HFD effects in

Trim28+/D9 animals suggest possible increased obesity rates.

Polyphenisms can also be genetically influenced. Our first ef-

forts to map the molecular switch at work reveal coordinate sup-

pression of IGN1 members. The mutant data implicate Trim28,

Nnat, and Peg3 dosage and function in triggering bi-potential.

Human genetic variants near NNAT associate in some popula-

tions with NNAT expression and with obesity, also in children

(Vrang et al., 2010), and paternal transmission of obesity in F1

background crosses has been associated with Peg3 variation

(Morita et al., 2014). Together, these findings indicate multiple

genetic entry points for sensitization of the described epigenetic
obese state. The bi-modal fit of human population-level BMI dis-

tributions would suggest that genome-wide association study

(GWAS) efforts performed to date might already contain sub-

stantial signals for comparable non-Mendelian obesity. Gener-

ating tools to stratify and filter these datasets for epigenetic

versus genetically driven phenotype would markedly enhance

their power. Noteworthy in that regard, we specifically observed

trends toward reduced FTO expression in Trim28_Low obese

children relative to their Trim28_Low lean counterparts (Fig-

ure 4D) and progressive decreases in our lean- and obese-

Trim28+/D9 mice, respectively (Figure S5C). FTO is the highest

scoring GWAS variant for obesity in both adults and children

and, notably, one of only a handful that associates with variation

in phenotype as well as magnitude (Yang et al., 2012).

Non-classical IGN1 dysregulationwas one of the strongest sig-

natures distinguishing Trim28+/D9 obesity from HFD-induced

obesity inmiceandwasapredictor of high-dimensional transcrip-

tome variation in childhood adipose tissue. Preliminary F1 epis-

tasis examination crossing B6.Nnat+/�p and FVB/NJ.Trim28+/D9
Cell 164, 353–364, January 28, 2016 ª2016 The Authors 361



animals has yet to reveal any marked increase in obesity inci-

dence and therefore suggests that Nnat and Trim28 lie in the

same genetic pathway. IGN1 genes have been implicated in

placentation (Sekita et al., 2008), development, growth, and

importantly metabolic control (see Cleaton et al., 2014 for review),

and five of the nine IGN1genes showenergy homeostasis defects

when deleted: Peg3 (Curley et al., 2005), Plagl1 (Kamiya et al.,

2000), Grb10 (Smith et al., 2007), Dlk1 (Moon et al., 2002), and

Nnat (this manuscript). TRIM28 loss has previously been linked

to dysregulation of imprinted genes during development (Mes-

serschmidt et al., 2012), and interestingly, DNMT3A, the methyl-

transferase in part responsible for proper imprint deposition,

has also been tied to buffering phenotypic variability (Whitelaw

et al., 2010). Also noteworthy, combined heterozygous mutation

of the insulin and insulin-like growth factor 1 receptors leads to

reduced expression of a subset of IGN1-overlapping imprinted

genes (Boucher et al., 2014), suggesting insulin and IGF1

signaling as potential regulatory candidates for the phenotypes

observed here.

Currently we cannot rule out largely on/off environmental sig-

nals (e.g., parental smoking) as direct effectors of bi-modality in

the human data presented, nor can we rule out somatic muta-

tions or Trim28-stabilized mutational hotspots and transposon

activity as genetic underpinnings for the observations presented

here. If substantiated, however, the impact of phenotypic bi-sta-

bility for humans is substantial. They include academic, ethical,

and therapeutic aspects, and understanding the number, nature,

and disease associations of possible states will be paramount.

Trim28 mutant mice show increased cancer susceptibility (Her-

quel et al., 2011) as well as anxiety and behavioral phenotypes

(Whitelaw et al., 2010; Jakobsson et al., 2008). Critical next steps

for us will include testing whether comparable behavioral, can-

cer-prone, or alternate epigenetic trajectories exist in the sensi-

tized contexts presented here and ultimately also in humans.

EXPERIMENTAL PROCEDURES

Generation of Trim28 and Nnat Mutant Mice

The generation of Trim28+/D9 has been described elsewhere (Blewitt et al.,

2005). For information on the generation of Trim28 tissue-specific knockout

mice and of Nnat null mice, see the Supplemental Experimental Procedures.

All mouse models are described in the Supplemental Experimental Proce-

dures. Animals were kept on a 12 hr light/dark cycle with free access to food

and water and housed in accordance with international guidelines.

Human Study Population

Subcutaneous adipose tissue samples were obtained from 18 obese and 22

lean subjects of the Leipzig Childhood AT cohort (NCT02208141) (Landgraf

et al., 2015). Children were 2–15 years old and included if they were in pre-pu-

berty. For further information, see the Supplemental Experimental Procedures.

Glucose Tolerance Test

Oral glucose (1 g/kg) tolerance test was performed on 25-week-old animals as

described in the Supplemental Experimental Procedures.

Indirect Calorimetry

To measure basal metabolic rate, 10- to 14-week-old animals were singly

housed in a home-cage indirect calorimetry system (TSE Systems). Animals

were monitored over a 6 day period and fed an ad libitum chow diet. Data

from the first day were discarded to reduce variation introduced by acclimati-

zation. Data from consecutive days were treated as technical replicates, and
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data were binned in 2 hr intervals. Food consumption was measured directly

as accumulated data.

Mouse Laboratory Parameters and Cytokines

Fasted (6 hr fast) blood plasma were obtained, and a panel of hormones, fatty

acids, and adipokines were measured as described in the Supplemental

Experimental Procedures.

Histology, Immunofluorescence, Adipocyte Size, and Number

We used semi-automated morphometry with H&E-stained paraffin sections of

perigonadal WAT pads to perform adipocyte number and size analyses. Im-

ages were analyzed using ImageJ. Immunofluorescence was performed as

described in the Supplemental Experimental Procedures.

Isolation of Mouse Primary White Pre-adipocytes and Mature

Adipocytes

Primary preadipocytes and mature adipocytes were obtained by collagenase

digestion from perigonadal white adipose tissue in mice as described (Pospi-

silik et al., 2010).

qRT-PCR

For qRT-PCR of mouse and human samples, analysis of total RNA was per-

formed on a 7900HT Fast Real-Time PCR System (Applied Biosystems).

Mouse primers were designed using qPrimerDepot, and human ‘‘Best-

Coverage’’ Taqman probes were purchased from Life Technologies.

Threshold cycles (Ct-values) of all replicate analyses were normalized to

TBP (mouse) or to TBP, ACTB, HPRT (human) housekeeping genes. To

compare the effect of various conditions with controls, 2-DDCt values were

calculated to obtain fold expression levels. For further information, see the

Supplemental Experimental Procedures.

RNA Sequencing

Trizol-purified RNA was poly(A)-enriched, and libraries were prepared with a

TruSeq Sample Prep v2 kit (Illumina) and sequenced on a HiSeq 2500 (Illumina).

Greater than 15million reads permouse sample and 10million reads per human

sample were mapped using TopHat v2.0.8b with -G option against Mus

musculus genome (mm9, iGenome UCSC) and Homo sapiens genome (hg19,

iGenome UCSC), respectively. Gene expression values and significantly differ-

entially expressed genes were calculated using Cuffnorm and Cuffdiff v2.2.1

with geometric normalization and multi-read correction (-u option).

Reduced Representative Bisulfite Sequencing

Total genomic DNA was digested over night with MspI (NEB), and sequencing

libraries were prepared with NEBNext DNA Library kit (NEB). Samples were

sequenced on a HiSeq 2500 (Illumina). For further information, see the Supple-

mental Experimental Procedures.

Bioinformatic Analyses

Gene set enrichment analysis used GSEA 2.0 with default parameters (permu-

tation type: gene_set. Collapse dataset to gene symbols: false).

Statistical Analysis

Data are expressed as mean ± SEM unless otherwise specified. Statistical an-

alyses were performed as described in the Supplemental Experimental Proce-

dures. All animal experiments included at least four biological replicates, and

all reported p values are two-tailed unless stated otherwise. p < 0.05 was used

as a cutoff for statistical significance.

Other Methods

See Supplemental Experimental Procedures.
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RawRNA-seq data fromTrim28+/D9 adipose tissue are available via the ENA, un-

der project ‘‘PRJEB11740’’ (http://www.ebi.ac.uk/ena/data/view/PRJEB11740).

Processed data are available in Tables S2 and S3.
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Öst, A., Lempradl, A., Casas, E., Weigert, M., Tiko, T., Deniz, M., Pantano, L.,

Boenisch, U., Itskov, P.M., Stoeckius, M., et al. (2014). Paternal diet defines

offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364.

Ouchi, N., Parker, J.L., Lugus, J.J., andWalsh, K. (2011). Adipokines in inflam-

mation and metabolic disease. Nat. Rev. Immunol. 11, 85–97.

Patti, M.-E. (2013). Intergenerational programming of metabolic disease: evi-

dence from human populations and experimental animal models. Cell. Mol.

Life Sci. 70, 1597–1608.
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