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Cilia and flagella often exhibit synchronized behavior; this includes
phase-locking, as seen in Chlamydomonas, and metachronal wave
formation in the respiratory cilia of higher organisms. Since the ob-
servations by Gray and Rothschild of phase synchrony of nearby swim-
ming spermatozoa, it has been a working hypothesis that synchrony
arises from hydrodynamic interactions between beating filaments.
Recent work on the dynamics of physically separated pairs of flagella
isolated from the multicellular alga Volvox has shown that hydrody-
namic coupling alone is sufficient to produce synchrony. However,
the situation is more complex in unicellular organisms bearing few
flagella. We show that flagella of Chlamydomonas mutants deficient
in filamentary connections between basal bodies display markedly dif-
ferent synchronization from the wildtype. We perform micromanip-
ulation on configurations of flagella and conclude that a mechanism,
internal to the cell, must provide an additional flagellar coupling.
In naturally-occurring species with 4, 8 or even 16 flagella, we find
diverse symmetries of basal-body positioning and of the flagellar ap-
paratus that are coincident with specific gaits of flagellar actuation,
suggesting that it is a competition between intracellular coupling
and hydrodynamic interactions that ultimately determines the pre-
cise form of flagellar coordination in unicellular algae.

Chlorophyte | Prasinophyte | eukaryotic algae | internal cou-
pling | flagellar synchronization | basal fibers

Significance Statement
In areas as diverse as developmental biology, physiology and
biomimetics there is great interest in understanding the mechanisms
by which active hair-like cellular appendages known as flagella or
cilia are brought into coordinated motion. The prevailing theoret-
ical hypothesis over many years is that fluid flows driven by beat-
ing flagella provide the coupling that leads to synchronization, but
this is surprisingly inconsistent with certain experimentally observed
phenomena. Here we demonstrate the insufficiency of hydrodynamic
coupling in an evolutionarily significant range of unicellular algal
species bearing multiple flagella, and suggest the key additional in-
gredient for precise coordination of flagellar beating is provided by
contractile fibers of the basal apparatus.

Introduction

Possession of multiple cilia and flagella bestows significant evo-
lutionary advantage upon living organisms only if these or-

ganelles can achieve coordination. This may be for purposes of swim-
ming (1, 2), feeding (3), or fluid transport (4, 5). Multiciliation may
have evolved first in single-celled microorganisms due to the propen-
sity for hydrodynamic interactions to couple their motions, but was
retained in higher organisms, occurring in such places as the murine
brain (6) or human airway epithelia (7). Since Sir James Gray first
noted that “automatic units” of flagella beat in “an orderly sequence”
when placed side by side (8), others have observed the tendency for
nearby sperm cells to undulate in unison or aggregate (9, 10), and
subsequently the possible hydrodynamic origins of this phenomenon
have been the subject of extensive theoretical analyses (2, 5, 11). De-
spite this, the exclusiveness and universality of hydrodynamic effects
in the coordination of neighboring cilia and flagella remains unclear.

We begin by considering one context in which hydrodynamic in-
teractions are sufficient for synchrony (12). The alga Volvox carteri

(VC) is perhaps the smallest colonial organism to exhibit cellular divi-
sion of labor (13). Adult spheroids possess two cell types: large germ
cells interior of an extracellular matrix grow to form new colonies,
while smaller somatic cells form a dense surface covering of flag-
ella protruding into the medium, enabling swimming. These flag-
ella generate waves of propulsion which despite lack of centralized
or neuronal control (“coxless”) are coherent over the span of the or-
ganism (14). In addition, somatic cells isolated from their embedding
colonies (Fig. 1A) beat their flagella in synchrony when held suf-
ficiently close to each other (12). Pairwise configurations of these
flagella tend to synchronize in-phase (IP) when oriented with power
strokes in the same direction, but antiphase (AP) when oriented in
opposite directions, as predicted (15) if their mutual interaction were
hydrodynamic. Yet, not all flagellar coordination observed in unicel-
lular organisms can be explained thus. The lineage to which Volvox
belongs includes the common ancestor of the alga Chlamydomonas
reinhardtii (CR) (Fig. 1B), which swims with a familiar in-phase
breaststroke with twin flagella that are developmentally positioned
to beat in opposite directions (Fig. 1C,D). Yet, a Chlamydomonas
mutant with dysfunctional phototaxis switches stochastically the ac-
tuation of its flagella between IP and AP modes (15, 16). These ob-
servations led us to conjecture (15) that a mechanism, internal to the
cell, must function to overcome hydrodynamic effects.

Pairs of interacting flagella evoke no image more potent than Huy-
gens’ clocks (17): two oscillating pendula may tend towards syn-
chrony (or anti-synchrony) if attached to a common support, whose
flexibility providing the necessary coupling. Here we present a di-
verse body of evidence for existence of a biophysical equivalent to
this mechanical coupling, which in CR and related algae we propose
is provided ultrastructurally by prominent fibers connecting pairs of
basal bodies (BB) (18) that are known to have contractile proper-
ties. Such filamentary connections are absent in configurations of two
pipette-held uniflagellate cells and defective in a class of CR mutants
known as vfl (Fig. 1B). We show in both cases that the synchroniza-
tion states are markedly different from the wildtype breaststroke.

Seeking evidence for the generality of putative internal control of
flagellar coupling in algal unicells, we use light microscopy, high-
speed imaging and image-processing to elucidate the remarkable co-
ordination strategies adopted by quadri-, octo-, and hexadecaflagel-
lates, which possess networks of basal, interflagellar linkages that
increase in complexity with flagella number. The flagellar appara-
tus, comprising BBs, connecting fibers, microtubular rootlets and the
transition regions of axonemes, is among the most biochemically and
morphologically complex structures occurring in eukaryotic flagel-
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Fig. 1: Flagellar synchronization in multi- vs uni- cellular algae. A) Pairs
of isolated, somatic flagella of V. carteri (VC) tend to synchronize either in
in-phase (IP) or anti-phase (AP) depending on their relative orientation. B) C.
reinhardtii (CR) flagella maintain position 2 yet swims a robust IP breaststroke
that is lost i) by mutation of the distal fiber (DF), and ii) in pairs of nearby uni-
flagellate cells. C+D) Ultrastructure comprising basal bodies (BBs), rootlets,
and eyespot in VC and CR. [PF - proximal fiber(s); NBBC - nuclear-basal-
body connectors; t1− 9: numbered microtubule triplets.]

lates (19). The significance of basal coupling relative to hydrody-
namics is highlighted, especially in maintaining relative synchrony in
diametrically-opposed pairs of flagella. Our study reconciles species-
specific swimming gaits across distinct genera of green algae with
the geometry of flagellar placement and symmetries of their differing
basal architecture – so often a key phylogenetic character (20).

While many features of eukaryotic flagellar axonemes are con-
served from algae to mammals (e.g. composition by microtubules,
motive force generation by dyneins, signal transduction by radial-
spokes/central pair (16)), far greater diversity exists in the coordi-
nation of multiple flagella. Such strategies are vital not only in mi-
croswimmers bearing few flagella, but also in ciliary arrays. In mice
defects in structures known as basal feet can cause ciliopathies (21),
while the striated (kinetodesmal) fibers in Tetrahymena help maintain
BB orientation and resist hydrodynamic stresses (22). Insights from
primitive flagellates may thus have significant broader implications.

Results
Synchronization of Chlamydomonas flagella. The basic configu-
ration of two flagella appears in multiple lineages by convergent evo-
lution, e.g. in the naked green alga Spermatozopsis (23), in gametes of
the seaweed Ulva (24), and in swarm cells of Myxomycetes (25). CR
exemplifies the isokont condition. Cells ovoid, ∼ 5µm radius, have
flagella ∼ 1.5× body-length and distinguishable by BB age. Dur-
ing cell division each daughter retains one BB from the mother (26)
which becomes associated with the trans-flagellum, while a second
is assembled localizing near the eyespot and associates with the cis-
flagellum (Fig. 1B,D). When both flagella prescribe identical beats a
nearly-planar breaststroke results, which is highly recurrent and sta-
ble to perturbations (27). Yet despite extensive research (28–32) ex-
actly how this IP breatstroke is achieved has remained elusive; cou-
pling of the flagella pair may be by i) hydrodynamics, ii) drag-based
feedback due to cell-body rocking, or iii) intracellular means.

CR cells turn by modulation of bilateral symmetry. During pho-
totaxis (33) photons incident on the eyespot activate voltage-gated
calcium channels which alter levels of intracellular calcium, lead-

ing to differential flagellar responses. Ionic fluctuations (e.g. Ca2+)
alter not only the flagellar beat, but also the synchrony of a pair.
Gait changes involving transient loss of synchrony (called ’slips’),
occur stochastically at rates sensitive to such environmental factors
(15, 27, 34) as temperature, light, chemicals, hydrodynamics, and
age of cell culture. In free-swimming cells, slips can alter the balance
of hydrodynamic drag on the cell body, producing a rocking motion
that promotes subsequent resynchrony of flagella (31), but this does
not explain the robust IP synchrony in cells held immobilized on mi-
cropipettes (16, 29), nor the motility of isolated and reactivated flag-
ellar apparatuses (35). The altered beat during slips is analogous to
the freestyle gait (AP in Fig. 1) characterized in the phototaxis mu-
tant ptx1, which stochastically transitions between IP and AP gaits
(15, 16). The dependence of CR flagellar synchronization state on
physiology through temperature or ionic content of the medium (27)
leads us now to the possibility for intracellular coupling of flagella.

Early work (18) identified thick fibers connecting the two Chlamy-
domonas BBs, including a 300×250×75 nm3 bilaterally symmetric
distal fiber (DF), bearing complex striation patterns with a periodic-
ity of ∼ 80 nm (Fig. 1B). Striation periodicity varies across species,
and is changeable by chemical stimuli – indicating active contractility
(36). The DF contains centrin, also found in NBBCs (Fig. 1B) which
are involved in localization of BBs during cell division (37). The two
BBs have an identical structure of 9 triplet microtubules which form
a cartwheel arrangement (38). Importantly, the DF lies in the plane
of flagellar beating, and furthermore attaches to each BB at the same
site relative to the beating direction of the corresponding flagellum
(Fig. 1B). This inherent rotational symmetry makes the DF uniquely
suited to coordinating the in-phase Chlamydomonas breaststroke.

Hypothesizing a key role for the DF in CR flagellar synchrony we
assess the motility of the mutant vfl3 (CC1686, Chlamydomonas Cen-
ter), with DFs missing, misaligned or incomplete in a large fraction
of cells (36). Swimming is impaired – many cells rotate in place at
the chamber bottom. In vfl3 the number of flagella (0 − 5), their
orientation and localization on the cell body, as well as cell size are
abnormal. BBs still occur in pairs, but not every BB will nucleate a
flagellum (39), thus allowing flagella number to be odd. However no
structural or behavioral defects were observed in the flagella (36).

A number of representative configurations of flagella occur in vfl3,
for cells bearing 2 or 3 flagella (Fig. 2A-F). Fig. 2G presents the wild-
type case. We consider pairwise interactions between flagella. For
each flagellum, we extract a phase φ(t) from the high-speed imaging
data by interpolating peaks in the standard deviation of pixel inten-
sities measured across pre-defined regions of interest. vfl3 flagellar
beating frequencies are found to be more variable than the wildtype,
so we elect to determine phase synchrony between pairs of flagella
via a stroboscopic approach. Given phases φ1, φ2 we wish to charac-
terize the distribution PC(χ) of χ = φ2 mod 2π|t:φ1mod 2π=C . Thus,
the phase of flagellum 2 is measured conditional on the phase of flag-
ellum 1 attaining the value C. From long timeseries we determine
χ by binning [0, 2π] into 25 equi-phase intervals centered around
{Ck, k = 1, · · · , 25} to obtain the Nk corresponding time points for
which φ1mod 2π falls into the kth interval. The distribution of this
conditional phase χk := {φ2(ti), i = 1, · · · , Nk}, which is peaked
when oscillators phase-lock and uniform when unsynchronized, can
then be displayed on a circular plot by conversion to a colormap. In
Fig. 2, we take k = 1. Phase vectors can be summed and averaged to
define a synchronization index

S =
1

25

25∑
k

∣∣∣∣ 1

Nk

Nk∑
j

exp(iχkj )

∣∣∣∣ , [1]

where Sk = 1 (perfect synchrony) and Sk = 0 (no synchronization).
In vfl3, steric interactions between nearby flagella (e.g. Fig. 2A)

can lead to intermittent beating and reduction in beat frequency. Even
when measured beat frequencies differ for flagella on the same cell,
periods of phase-locking are observed, which we attribute to hydro-
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Fig. 2: The CR mutant vfl3 has defective DF, abnormal flagella number and orientation. Scale bar: 5 µm. Shown are groups of 2 or 3 flagella in orientations
of interest. (A,B) are toward or away-facing and flagella-like i.e. anti-parallel; (C) is cilia-like i.e. parallel; (D,E) exhibits clear hydrodynamic phase-locking of
closely-separated parallel or anti-parallel pairs of flagella. Only (F) has a non-planar aspect: flagellum f2 points out of the page. Power stroke directions are
indicated by the arrows. Phase distributions P0(χ) of flagellum f1,(2) conditional on the phase of flagellum f0 are shown on circular plots (in D-F: f1 for the
inner ring and f2 for the outer). For A-C, S1,0 = 0.20, 0.04, 0.04, and for D-F, (S1,0, S2,0) = (0.30, 0.49), (0.53, 0.40), (0.02, 0.01). In contrast for the
wildtype, S1,0 = 0.96 (panel G). Discretized phases are plotted as ”footprints” with length proportional to beat-cycle duration, with pdfs of beat frequencies.

dynamic interactions (12, 15, 40) (see also SI Video 1). In the tri-
flagellates of Figs. 2D&E, beating of a given flagella pair becomes
strongly coupled, with IP or respectively AP synchrony being pre-
ferred when flagella are oriented with power strokes parallel or re-
spectively anti-parallel (compare f0,f2 in D with f0,f2 in E). Even
biflagellate vfl3 cells with a native CR-like configuration cannot per-
form IP breaststrokes (e.g. Fig 2B). In contrast wildtype CR flagella
operating over a large frequency range are able achieve robust syn-
chrony, despite intrinsic cis/trans frequency differences of up to 30%
during slips, or conditions of physiological stress such as deflagel-
lation (16). Thus possession of functional or complete DFs appears
necessary for CR flagellar synchrony.

Micromanipulation of flagellate algae. Next we ask whether the
CR breaststroke can instead be produced by hydrodynamic interac-
tions. Use of flagella belonging to different cells offers a tractable
alternative to removal by mutation of such physical connectors as the
DF. We construct, by micromanipulation, configurations of two flag-
ella that cannot be coupled other than through the immersing fluid.

In Fig. 3A, one flagellum was removed from each of two wildtype
CR cells by careful mechanical shearing (Materials and Methods), so
that a CR-like arrangement comprising one cis and one trans flag-
ellum is assembled. Despite similarity with the wildtype configura-
tion, no sustained IP breaststrokes were obtained. Closely separated
(<5 µm) pairs exhibit periods of phase locking. Beat frequencies of
these flagella are found to be more noisy than their counterparts in
intact CR cells, and consequently measured phase-locking is not ro-

bust (S = 0.08). The conditional (stroboscopic) phase χ (Fig. 3A) is
peaked weakly about π indicating a tendency for AP synchronization,
but the IP state is also possible. This bistability is not species-specific;
we rendered uniflagellate [see also (12)] pairs of pipette-held VC so-
matic cells (normally biflagellate) and placed them in a similar con-
figuration (Fig. 3B). Analysis of the resulting pairwise flagellar inter-
actions indicates a strong preference for AP synchronization, though
the IP is again observed (see SI Videos 2 & 3). Accordingly, the phase
stroboscope is now strongly peaked near χ = π (with S = 0.67).

The existence, stability, and frequency of IP and AP states are
wholly consistent with a basic theory (40) which models a pair of
hydrodynamically coupled flagella as beads rotating on springs with
compliant radii R separated by distance ` (see SI Text). Assuming
R � `, either IP or AP states of synchrony are predicted to be sta-
ble depending on whether the beads are co- or respectively counter-
rotating (15, 40). Thus, CR-like configurations should tend to AP
synchrony. However in our experiments, flagella often come into
such close proximity during certain phases of their beat cycles that
the far-field assumptions of the original model breakdown. Non-local
hydrodynamic interactions between different portions of flagella must
now be considered for the true flagellar geometry (rather than in a
phase-reduced bead model). In particular undulating filaments can be
driven by fluid-structure interactions into either IP or AP oscillating
modes depending on initial relative phase (41). The inherent stochas-
ticity of flagellar beating (27) thus leads to transitions between IP
and AP states (Fig. 3). Hydrodynamic effects are notably stronger
in the case of VC than CR, due to reduced screening by a smaller

Footline Author PNAS Issue Date Volume Issue Number 3
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Fig. 3: Coupling A) two CR flagella (one cis, one trans) and B) two uni-
flagellated VC somatic cells, both in anti-parallel configuration. In both cases
IP and AP states are observed, the AP being preferred. In B), hydrodynamic
coupling is notably stronger. The pairwise curvature difference ∆κ (µm−1)
plotted on the same time axis as phase ”footprints”, shows propagating high-
curvature bends which are coincident during IP, or alternating during AP.

cell body and a distinctive upward tilt of the flagellar beat envelope.
During evolution to multicellularity, this latter adjustment of BB ori-
entation (Figs. 1C&D) facilitates beating of flagella confined within
a spherical colony. The CR mutant ptx1 also displays noisy transi-
tions between IP and AP gaits (15) due to an unknown mutation, the
implications of this we shall return to later (see Discussion).

The similarity of two flagellar waveforms in any given state (IP
or AP) can be compared. For ease of visualization, waveforms dis-
cretized at equidistant points are ordered from base to tip: fL

i , fR
i for

i = 1, · · ·Np, and rescaled to uniform total length. These are ro-
tated by T (α) through angle α between the horizontal and line of
offset between the BBs. We denote by fL → f ′

L
= T (fL − m)

and fR → f ′
R

= T (fR −m), with m = (fL
1 + fR

1 )/2, and com-
pare the resulting shape symmetries during IP and AP states (Figs.
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Fig. 4: A) Stalling the flagellum beat in Tetraselmis suecica. B) Beat cor-
relations for each flagellum relative to a reference flagellum (red) computed
before and after manipulation, shows period shift but no change in the order of
flagella actuation. C) Timeseries or ”footprints” delineate positions of flagella
(labelled as in A) before (above) and after (below) manipulation.

3A&B, stacked). The synchronization index of Eq. 1, while suit-
able for identifying presence or absence of phase synchrony, does
not discriminate between AP or IP states. Instead, we compute the
pairwise curvature difference ∆κ(t, s) = κL − κR as a function of
time (t) and normalized arclength (s), where κL, κR are signed cur-
vatures for the left and right flagellum according to their respective
power stroke directions. During IP and AP synchrony, ∆κ exhibits
a wave pattern at the common or phase-locked frequency. Princi-
pal or high-curvature bends propagate from flagellum base to tip in
accordance with the mechanism of flagellar beating in these species
(0.897± 0.213 mm/s for CR, and 0.914± 0.207 mm/s for VC). In
summary, we have established in two species that robust IP synchrony
akin to the CR-breaststroke does not arise from hydrodynamic cou-
pling between two co-planarly beating flagella arranged in a CR-like
configuration, even when beat frequencies are comparable.

Moreover the propensity for algal flagella to be deformable by hy-
drodynamic loading (12) – e.g. flows generated by nearby flagella,
suggests an internal coupling must be present to compensate in such
cases where fluid interactions are contrary to the desired mode of
propulsion by flagella in the organism. Given this delicate interplay,
will a dramatic perturbation to the state of hydrodynamic interactions
between flagella affect their native mode of coordination? For this we
require an organism with more than two flagella. Tetraselmis is a th-
ecate quadriflagellate, and amenable to micromanipulation. Fig. 5A
depicts a pipette-immobilized Tetraselmis cell with flagella free to
beat in a pattern qualitatively similar to free-swimming cells observed
under identical conditions (see SI Video 4), in which flagella maintain
a transverse gallop (next section, and Fig. 4D). One flagellum was
then trapped inside a second pipette with suction so as to completely
stall its beating, with minimal disruption to the cell. Flagellar dynam-
ics were monitored and interflagellar correlation functions computed
(Fig. 4B), showing that the prior beat patterns continue (Fig. 4C). The
small increase in beat frequency in the remaining flagella (∼ 5%) is
consistent with calcium-induced frequency elevation by mechanosen-
sation. This remarkable ability for the cell to sustain its coordination
pattern strongly implicates internal beat modulation.

Symmetries of the algal flagellar apparatus. Such a hypothesis
brings us now to further detailed study of a large number of lesser-
known species that have differing or more complex basal architec-
tures and which in turn, we find to display varied and novel flagellar
coordination strategies. While it is believed that Volvocine green al-
gae (including VC) derived from Chlamydomomonas-like ancestors,
the general classification of Viridiplanta (green plants) has under-
gone repeated revisions due to the enormous variability that exists
in the form and structure exhibited by its member species. Features,
both developmental (mitosis, cytokinesis) and morphological (num-
ber, structure, arrangement of flagella, nature of body coverings such
as scales and theca), have served as key diagnostics for mapping the
likely phylogenetic relationships existing between species (42, 43).

We selected unicellular species of evolutionary interest to exem-
plify configurations of 2, 4, 8 or even 16 flagella (SI Videos 6, 7&8).
These include (Fig. 5) distinct genera of bi- and quadri- flagellates
– both occurring abundantly in nature, the rare octoflagellate marine
Prasinophyte known as Pyramimonas octopus, and its relative Pyra-
mimonas cyrtoptera – the only species known with 16 flagella (44).
Indeed only three Pyramimonas species have 8 flagella during all or
parts of its cell cycle (45–47). Several species belong to the Prasino-
phytes – a polyphyletic class united through lack of similarity with ei-
ther of the main clades (Chlorophyta and Streptophyta), whose > 16
genera and > 160 species (48) display a remarkable variability in
flagella number and arrangement that is ideal for the present study.

Distinct quadriflagellate gaits were identified, involving particular
phase relations between flagella. An analogy may be drawn with
quadruped locomotion (Fig. 5&6). For measured flagellar phases ψj
(flagellum index j) we compute the matrix ∆ij = ψi − ψj (i, j =
1, . . . , 4), where ∆ij = ∆ji, ∆ii = 0, and ∆ik = ∆ij + ∆jk.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Fig. 5: Algal species are compared in terms of phylogeny, number and orientation of flagella, arrangement of BBs/basal architecture (see also SI Text), and
patterns of coordination defined by the relative phases between flagella. Vertical lines approximate the relative phylogenetic distance from a putative flagellate
ancestor (SI Text) (only partial branchings are shown). Free-swimming quadriflagellate gaits are readily identified with quadruped locomotion, revealing the
symmetries of an underlying oscillator network. [* Quadriflagellate dikaryons of CR gametes perform a double breaststroke gait with the same symmetries as
the ‘pronk’ (SI Video 5), but this gives way to a ‘bound’ gait when both sets of flagella undergo phase slips simultaneously. ** See SI Videos 7&8.]

Fig. 6: In free-living quadriflagellates, flagella can be arranged in one of two possible configurations (types I,II) – type II is unusual. Gaits of coordination are
diverse and species-specific, including the trot (A), pronk (B), rotary (C) and transverse (D) gallops. Representative species imaged from top and side, show
locations of eyespots and chloroplast structures. Timeseries of phases are measured for pipette-held cells in A,D, and free-swimming cells in B,C.

Each gait is then associated with a 3-tuple of phase differences:
[∆12 ∆13 ∆14]. For instance, P. parkeae swims with two pairs of
precisely alternating breaststrokes akin to the ‘trot’ of a horse (Fig.
6A, SI Video 6), its 4 isokont flagella insert anteriorly into an apical
pit, emerging in a cruciate arrangement typical of quadriflagellates
(Fig. 6, type I). The phase relation [∆12 ∆13 ∆14] = [π 0π] is seen in
both free-swimming and micropipette-held cells. A Chlorophyte alga
Polytomella sp. parva (Fig. 5), was also found to display this gait.

Two further gaits (SI Video 6) occur in the type Pyramimonas species
P. tetrarhynchus (49), a freshwater alga. The first we term the ‘pronk’,
where all flagella synchronize with zero phase difference (Fig. 6B).
In the second, flagella beat in a sequence typical of the transverse
gallop in quadrupeds (Fig. 5). P. tetrarhynchus swims preferentially
with the latter gait, while pronking can occur when the cell navigates
near walls/obstacles, or when changing direction. The rotary gallop,
with flagella beating CCW in orderly sequence (Fig. 6C, SI Video
6) occurs in the Volvocale Carteria crucifera. Finally in Tetraselmis
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(recall Fig. 4) the flagella separate distally into pairs (Fig. 6, type II).
Cells display the transverse gallop when free-swimming or pipette-
held despite strong hydrodynamic interactions within each pair. An
alternate synchronous gait of four flagella has been reported in this
species (50), but was not observed under our experimental conditions.

Ordinarily, motive gaits whereby the limbs of a quadruped or
arthropod are actuated in precise patterns are produced by networks
of coupled oscillators controlled by a central pattern generator (CPG)
or equivalent (51, 52). Analogously, can we relate symmetries of the
flagellar apparatus to gait symmetries, with contractile filaments pro-
viding the putative coupling? We focus on quadriflagellates, where
an abundance of species makes possible comparative study (Fig. 6).
Spatial symmetries of flagella Xj (indexed by j = 1, 2, 3, 4) are rep-
resented as permutations σ of {1, 2, 3, 4}, so that Xk(t) = Xσ(k)(t)
for all times t. Periodic gaits also possess temporal symmetries: if
T is the gait period, then for the kth oscillator Xk(t) = Xk(t + T )
for all t. We normalize T to 2π and consider invariance of flagella
under phase shifts φ taken modulo T/2π; the pair [σ, φ] denotes a
spatial-temporal symmetry of the {Xj}, where

Xk(t) = Xσ(k)(t− φ). [2]

and k = 1, · · · , 4. The set of spatiotemporal symmetries may admit
a (symmetry) group under composition:

[σ1;φ1] ◦ [σ2;φ2] = [σ1σ2;φ1 + φ2], [3]

to be matched with known quadruped/quadriflagellate gaits. For a
basal morphology of a rectangularly symmetric network (51) with
distinct lengthwise and crosswise couplings – in Fig. 5 (phase co-
ordination) represented by lines of differing lengths, spatial symme-
tries include ι (the identity, fix everything), σ = (12)(34) (reflect
in y-axis), ρ = (13)(24) (reflect in x-axis), and σρ = (14)(23)
(interchange of diagonals). In Fig. 5, we attach named gaits and as-
sociated symmetry groups to the species in which they are observed.
Additionally some quadriflagellates display a ‘stand’ gait (a transient
rest phase where no flagellum beats); this has the largest number of
symmetries: [ι;φ], [σ;φ], [ρ;φ], [σρ;φ], for arbitrary φ.

Can such a network resemble coupling of algal flagella? Despite
significant variation across species, linkages or roots connecting BBs
are key systematic characters. These can be microtubular or fibril-
lar. Microtubular roots, which were probably asymmetric in very
early flagellates (20), position BBs and attached flagella during de-
velopment (two per BB: termed left, right). The right root is gen-
erally 2-stranded, and together with the left-root (X-stranded) form
an X-2-X-2 cruciate system characteristic of advanced green algae
[X = 4 in CR (18)]. Only one absolute configuration of BBs exists
for each species and its mirror-symmetric form is not possible (53).
For instance in CR two BBs emerge at 70 − 90◦ with a clockwise
(CW) offset characteristic of advanced biflagellate algae (Fig. 1D),
in contrast many evolutionarily more primitive flagellates have BBs
oriented with a counter-clockwise (CCW) offset (20). Fibrillar roots,
classified as system I or II (43) become more numerous with flagella
number. These are generally contractile, likely contributing to inter-
flagellar coupling. Each BB is unique up to the imbrication of its
member tubules – a constant positional relationship pertains between
its two roots and a principal connecting fiber linking the two ontoge-
netically oldest BBs, labelled 1,2 in keeping with convention (53, 54).
It is this fiber that is mutated in vfl3 mutants (recall Fig. 2).

Take a quadriflagellate species for which the basal architecture is
known, and consider its associated swimming mode. In P. parkeae
(Fig. 6A), a prominent (striated) distal fiber called the synistosome
links BBs 1, 2 only (55), so that the coupling is different between dif-
ferent pairs. In the advanced heterotroph Polytomella parva which
swims with a comparable gait, flagella form opposing V-shaped pairs
with different coupling between pairs (56). In Tetraselmis, the flag-
ella separate distally into two nearly collinear pairs with BBs forming
a single zig-zag array (Fig. 5), in a state thought to have arisen from
rotation of two of the flagellar roots in an ancestral quadriflagellate.

Transfibers which are functionally related to the Chlamydomonad PF
and DF, connect alternate BBs, while BBs within the same pair are
linked by Z-shaped struts (57), emphasizing a diagonal connectivity
which may explain its transverse gallop (Fig. 6D). In contrast the ro-
tary gallop, prominent in C. crucifera (Fig. 6C) is more consistent
with a square symmetric network involving near identical connectiv-
ity between neighboring flagella, than a rectangular one. Indeed the
flagellar apparatus in this species has been shown to exhibit unusual
rotational symmetry: BBs insert into an anterior papilla at the corners
of a square in a cruciate pattern (class II sensu Lembi (58)) and are
tilted unidirectionally in contrast to the conventional V-shapes found
in Chlamydomonas and Polytomella. (Here DFs rather than link di-
rectly to BBs, attach to rigid electron-dense rods extending between
them (58).) Finally, a different network of couplings appears when
two biflagellate CR gametes fuse during sexual reproduction (59) to
form a transiently quadriflagellate dikaryon (similar to configuration
II, Fig. 6). Here, original DFs between cis and trans remain but new
fibers do not form between pairs of flagella of unlike mating type.
Strong hydrodynamic coupling due to their physical proximity results
in a striking double bilateral breaststroke (SI Video 5). A ‘bound’-like
gait can appear if both sets of CR flagella slip together (Fig. 5).

Thus, algal motility appears to be constrained by the form of un-
derlying coupling provided by a species-specific configuration of BBs
and connecting fibers. The case of octo- and hexadeca- flagellates
swimming is more complex (SI Video 7,8), limited by the number of
species available for study, and presence of a large number of fibrous
structures whose identities remain unknown. A consistent numbering
system for BBs has greatly facilitated the study of flagellar transfor-
mation in algae with many flagella, which we adopt (53, 54). As
in other Pyramimonas BBs 1, 2 remain connected by a large synis-
tosome (Fig. 5). In P. octopus up to 60 individual fibers establish
specific connections with specific BB triplets, in addition to 6-8 rhi-
zoplasts linking the basal apparatus to the nucleus. Numerous rhizo-
plasts and connecting fibers also exists in P. cyrtoptera but were never
resolved fully because of the untimely death of T. Hori (60). In P. oc-
topus (Fig. 7) BBs arrange in a diamond (partially open to allow nu-
clear migration during mitosis). BB duplication is semi-conservative
(61): 8 new BBs form peripheral to the existing ones during cell divi-

t = 0 ms 4 6 8 10

12 14 16 18

A B

C

D

Fig. 7: P. octopus cell A) swims using multiple pairs of breaststrokes: high-
lighted are waveforms of one synchronous pair. In B), cell is at rest in a ‘stand’
gait in which no flagellum is active. C-D) Gradient images (left) identify the
active subset of flagella (all, or 4 of 8), optical flow fields (right) show decay
of beating-induced flow disturbance. Scale bars: 10 µm.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Fig. 8: In the rare Arctic species P. cyrtoptera flagella can remain at rest for seconds in a ‘stand’ gait (A-B). Cells appear yellow-green and lobed (C). (D)
Pronking involving all 16 flagella (SI Video 8) is a common swimming gait. The cell body is tracked along a typical trajectory and colored by normalized phase
φ16 (colorbar), computed from the areaA(t) bounding the flagella which expands and contracts according to the periodicity of flagellar beating (shown here at
4 representative phases). Inset: time series ofA over 6 successive cycles. Scale bars: 20 µm.

sion (54). The innermost BBs (1, 2) assume the new position 1 in the
two daughters (i.e. full maturation) after round 1 of cell division, but
BBs 3, 4 and 5-8 only reach maturation respectively after rounds 2, 3
(47, 54). All 2n BBs in a given cell reaches and thereafter remains at
position 1 by the nth generation (cf P. cyrtoptera (44)).

In electron micrographs of P. octopus, flagellar beating is oriented
in CCW sequence (47, 54) consistent with observed CW body rota-
tion (viewed from above). Cells ≈ 20 µm in length, with yet longer
flagella whose distal portions fold and recurve by the cell, swim at
200 ∼ 300 µm/s along helical paths. Diametrically opposite groups
(usually but not exclusively pairs) of flagella beat synchronously with
ordered phase shifts between groups (Fig. 7A, SI Video 7). In-phase
coupling appears more robust in distinguished pairs (SI Video 7) re-
flecting prominent symmetries of the basal architecture: e.g. a large
synistosome links BBs 1, 2 whose flagella beat in opposite directions
(Fig. 5). Compatible with its benthic nature, P. octopus display the
‘stand’ gait introduced previously (Fig. 7B) . Swimming motion re-
sumes spontaneously when all 8 flagella reactivate (pronking), and
the normal gait is reestablished within only 2 or 3 beats. A transient
state in which beating occurs in 4 of 8 flagella (staggered) is observed
Fig. 7D: in which actively beating flagella are identified by summing
successive gradient images (in contrast ih Fig. 7C all 8 flagella are
in motion). We visualise the flow disturbance imparted by flagellar
beating using optical flow to monitor the migration of image pixels
between frames, and estimate flow directions and magnitudes (62)
(also Computer Vision toolbox, MATLAB, The MathWorks Inc.).
Components of the 2D flow field were determined by minimizing
an objective function subject to certain global (smoothness) or local
(fidelity) constraints, and pixels delineating the same object are likely
to have constant intensity. Unlike conventional PIV methods, this re-
moves the need to seed the medium with foreign particles or tracers,
and fluid flow due to motion can be obtained directly from optical
data. Flow strengths decay rapidly away from boundaries of flag-
ella as well as the cell body which is also in motion (Figs. 7C&D,
right). More generally, gait transitions in these primitive algae can be
dramatic and involve unusual flagellar coordination in response to ex-
ternal stimuli, and shall be explored further in a separate manuscript.
Here, we reserve special attention to the P. cyrtoptera pronking gait,
which displays striking hydrodynamic interactions.

Hydrodynamic synchronization in a hexadecaflagellate. P. cyr-
toptera is the only hexadecaflagellate known (63). It is an Arctic
species thought to have evolved when P. octopus failed to divide after
duplication of chloroplasts and flagella. Measuring up to 40 µm, this
is the largest Pyramimonas ever recorded. Its 16 flagella (32 when
dividing), which are longer than the cell and emerge radially from
a deep anterior flagellar pit (Figs. 8A&B), are used by the organ-
ism to attach to icy surfaces. The name P. cyrtoptera is derived from
the Greek for cyrtos meaning “curved” and pteron meaning “wing”,

in reference to cell morphology. Light microscopy reveals a lobed
structure with two pairs of split eyespots and the presence of two
chloroplasts (Fig. 8C). P. cyrtoptera cells are stenothermal and eu-
ryhaline: growth becomes limited above 7-8◦C. Once removed from
their natural habitat where temperature variations are typically<2◦C,
cell cultures often prove fragile and difficult to maintain in the lab.

Hexadecaflagellate swimming presents an intriguing circumstance
in which the distance of separation between flagella is so small that
hydrodynamic coupling is inevitable. When fully splayed (Fig. 8B)
the 16 flagella are separated on average by 360/16 = 22.5◦ or 7.85
µm measured at a radial distance of 20 µm from the cell, compared
to 360/8 = 45◦ and twice this distance in P. octopus. In P. cyr-
toptera the interflagellar distance is thus far below the critical length
to achieve synchronization by hydrodynamics (12). Strong hydrody-
namic interactions are evident between some or even all flagella (SI
Video 8), none more so than during the pronk. Instead of tracking
individual flagella (which beat in synchrony), we use the area A(t)
bounding the flagella as proxy for phase of beat cycle (normalized):

φ16(t) =

(
t− tn

tn+1 − tn

)
[tn ≤ t ≤ tn+1], [4]

where tn are discrete marker events corresponding to local maxima of
A(t). Pronking occurs at a ∼ 25 Hz (Fig. 8D). Significant hydrody-
namic effects are also evidenced in cells swimming against surfaces,
where flagella exhibit symplectic metachronal waves (SI Text).

Discussion
Insufficiency of hydrodynamics. The phenomenon of cooperative
or synchronous beating of cilia and flagella has received growing at-
tention, with hydrodynamic interactions historically assumed to be
the major source of coupling. It is only recently (15, 31, 32) that
researchers have begun to question this long-standing belief. Our ap-
proach was motivated in part by the freestyle gait (AP) in the CR pho-
totaxis mutant ptx1, realizing that the wildtype IP breaststroke cannot
be reconciled with hydrodynamic theory (15, 16). An additional in-
gredient, internal to the cell, must be maintaining IP synchrony in
CR. The finding that entrainment of CR flagella by periodic external
flows only occurs at frequencies close to the natural beat frequency
and strengths greatly in excess of physiological values led Quaranta
et al to a similar conclusion (32). The DF likely couples CR flagella,
providing a degree of freedom that can reorient a flagellum at the BB
through its contraction. In isolated and reactivated flagella appara-
tuses for example, the DF constricts in response to elevated extracel-
lular calcium to reduce the opening angle between the two BBs (35).
Since BBs nucleate/anchor flagella and function as centrioles during
cell division, the DF can also be affected by mutations in BB duplica-
tion and segregation (36). This brings us back to the unusual flagellar
coordination in ptx1, which is thought to possess two trans-like flag-
ella (64). If BB signalling or connectivity is disrupted or weakened
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in ptx1, stochastic IP/AP transitions can result when hydrodynamic
interactions compete with a reduced intracellular coupling (15). In-
deed, for all their DF defects, flagella of vfl3 do not synchronize or
only hydrodynamically when very close together (Fig. 2). Future
work should seek to examine flagellar apparatuses of ptx1 under elec-
tron microscopy. The failure of hydrodynamics to synchronize two
flagella in a CR-like configuration, let alone two functionally distinct
flagella such as a cis and a trans (16, 65), was shown by micromanip-
ulation of two pipette-held cells (Fig. 2).

The diversity of coordination gaits in flagellate species (Fig. 5) im-
plicates internal coupling as a generic remedy for this insufficiency
of hydrodynamics. Indeed, non-uniqueness of stable quadriflagellate
gaits for even identical configurations of 4 flagella is incompatible
with existence of a single hydrodynamic mode. In some species a
number of gait bifurcations can occur during free-swimming, involv-
ing modification or even cessation of beating in one or more flagella
suggesting coordination is an active process. The significant perturba-
tion to the hydrodynamic landscape resulting from immobilizing one
flagellum in T. suecica was found to have little effect on the native
coordination of the remainder (Fig. 4). Thus symmetries of flagellar
gaits are much more species- than drag- dependent.

Intracellular coupling of flagella by contractile fibers.Gaits
are defined by the relative phase between oscillators, which in the
analogy of multi-legged locomotion, may be produced by CPG or
pacemaker signals which in algae we conjecture to be mediated by
the basal architecture. Flagellar apparatuses imaged by electron mi-
croscopy reveal species-specific networks of connections which in-
crease in complexity with flagella number (19). Symmetries of an
underlying network of structural couplings (51) likely translate down-
stream into symmetries of observed multiflagellate gaits (Fig. 5). The
BB from which the flagellum nucleates is a center for conduction of
morphogenetic and sensory information between flagella and other
intracellular organelles. Although BBs are not essential for flagellar
function (isolated axonemes continue to beat when reactivated in ATP
(66, 67)), the contractility of inter-BB connections may contribute to
coordination (68). In CR robust NBBCs descending near the DF link
BBs to the nucleus (Fig. 1B) remain intact even after detergent lysis
treatment (37), and can be induced by calcium to undergo significant
contraction (69). Similarly rhizoplasts of scaly algae including Pyra-
mimonas and Tetraselmis can contract and relax cyclically (43, 50).
These species display frequent directional changes (mechanoshock)
that may be mediated by the extraordinary contractility of rhizo-
plasts (50), with normal coordination after abrupt gait changes rapidly
reestablished. Fibrillar structures under tension experience much
distortion during active beating, as observed from misalignment of
fiber striation patterns (70). Contraction during live beating is ATP-
dependent in Polytomella (71), occurs in real-time in paralyzed flag-
ella and temperature sensitive mutants of Chlamydomonas (72), and
to an extraordinary degree in Microthamnion zoospores (73). ATPase
activity has also been identified in the rod cells of the human eye
where a large striated root attaches to the BB of a short (non-motile)
cilium (74). Attachment sites of contractile fibers also exhibit great
specificity, in most species to specific microtubule triplets and disc
complexes. In P. octopus contractile fibers attach to the ”weaker”
side of BBs (triplets 6-9), and may function to pull the flagellum back
from each power stroke during its unique multi-breaststroke gait.

Evolution of multiflagellation among Viridiplantae. As an ap-
pendage, cilia, flagella and its 9 + 2 axoneme prevails across eukary-
otes and especially the green algae; yet beyond the universality of
this basic machinery much variability (Fig. 5) persists in the place-
ment of organelles, form of flagellar insertion, and diversity of flag-
ellar coordination. The basal apparatus is that rare structure which
is both universally distributed and stable enough to infer homology
across large phylogenetic distances, and yet variable enough to dis-
tinguish between different lineages. Representative species consid-

ered here express 2n flagella, with much conservatism in the bi- or
quadri- flagellate condition. Since an early flagellate phagocytosed
a prokaryote (the future chloroplast) >1 billion years ago, green al-
gae have evolved photosynthesis and autotrophism (75). Their ra-
diation and division into the Streptophyta and Chlorophyta (27) has
been corroborated by modern high-throughput chloroplast genome
sequencing (77). Occupying a basal phylogenetic position are mor-
phologically diverse species of freshwater and marine Prasinophytes,
including the Pyramimonas species (20) studied here. These have
conspicuous body and flagella scales which are precursors of theca
and Volvocalean cell walls (53). In particular P. tetrarhynchus, P.
octopus, and P. cyrtoptera are assigned according to morphologi-
cal characters (78) to the same subgenus, in which accelerated rates
of evolution were confirmed by cladistic analysis of rbcL gene se-
quences (Fig. 5). Changes in basal ultrastructure were major events
(20) with the quadriflagellate condition arising multiple times, in fact
it is the quadriflagellates (e.g. Carteria) and not Chlamydomonad-
type biflagellates that are considered basal to advanced Volvocales
(77, 79). The advanced heterotrophic alga Polytomella, thought to
have evolved by cell doubling along a direct line of descent from
CR (80), displays the same trot gait as the ancestral P. parkeae. In
these cases, convergent ultrastructural modifications coincident with
multiplicity and doubling of BBs may have evolved to enable strong
coupling between opposite flagella pairs.

The sparsity of species bearing > 4 localized flagella (P. octopus,
P. cyrtoptera) may stem from the difficulty and activity costs of a
flagellar apparatus capable of maintaining coordination from within
despite external effects such as hydrodynamics. P. cyrtoptera exem-
plifies an intermediate between few to many flagella (16 is the highest
number ever reported in a phytoflagellate (44)), and able to exploit hy-
drodynamics for swimming in a novel manner (Fig. 5). The energetic
gains of such cooperativity may have inspired derivation of multiflag-
ellated colonial volvocales from unicellular ancestors. Opportunities
for fluid-mediated flagellar coordination and metachronism imposes
new constraints on the configuration of flagella and BBs. In VC so-
matic cells for example, BBs reorient during early stages of develop-
ment to become parallel (Fig. 1C), while biflagellate VC sperm cells
(required to swim independently) retain the primitive V-formation.

Implications for active control of flagellar coordination. From
the comparative studies carried out in this work we conclude that the
physical principle for coordinating collective ciliary beating in Volvox
or Paramecium differs from that responsible for defining precise pat-
terns of beating in unicellular microswimmers bearing only few flag-
ella. In the former case hydrodynamic coupling between flagella is
sufficient (12), but in the latter (especially for obligate autotrophs)
there is far greater incentive for efficient swimming to be robust in
spite of hydrodynamic perturbations. Even in arrays of mammalian
cilia, ciliary roots and basal feet structures continue to provide addi-
tional resistance to fluid stresses (22, 81).

Rapid changes in cellular structure that are of fundamental evolu-
tionary interest may have arisen in the first instance in green flagel-
lates than higher organisms. At the base of flagella in these algae are
found diverse networks of interconnecting filaments that are not only
responsible for anchorage and placement of flagella but which must
now also be implicated in defining the symmetries of flagellar coor-
dination. In CR for instance, most basal body connections do not ap-
pear until after the BBs have already formed. Fiber contractility can
produce elastic coupling between BBs to force nearby flagella into
modes of synchrony (IP or AP) that oppose hydrodynamic influences
(15, 82). This elasticity may be actively modulated, highlighting a
direct correlation between cellular physiology and flagellar beating
that has already been identified (27, 83). Further insights into such
processes will certainly require additional modelling and experimen-
tation. The rapidity with which patterns of synchrony can change is
suggestive of transduction by electrical signals or ionic currents (84),
which may be effected from cell interior to flagella by changes in the
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state of contraction or relaxation of connecting fibers. Striations of
algal rhizoplasts are even biochemically mutable in a manner remi-
niscent of mammalian muscle. We are therefore led to suggest that a
parallel evolution of neuromuscular control of appendages may have
occurred much earlier than previously thought (50, 85).

Materials and Methods
Culturing and growth of algae. Below are brief descriptions of the
protocols for species whose flagellar dynamics are studied here.

Volvox. V. carteri was prepared as described elsewhere (12). The
remaining species, unless otherwise specified, were maintained under
controlled illumination on 14 : 10 day/night cycles, and at a constant
temperature of 22◦C (incubation chamber, Binder).

Pyramimonas. Marine species obtained from the Scandanavian
Culture Collection of Algae and Protozoa, K-0006 P. parkeae R.E.
Norris et B.R. Pearson 1975 (subgenus Trichocystis), K-0001 P. oc-
topus Moestrup et Aa. Kristiansen 1987 (subgenus Pyramimonas),
and K-0382 P. cyrtoptera Daugbjerg 1992 (subgenus Pyramimonas),
were cultured in TL30 medium (86). Of these, P. cyrtoptera is an
Arctic species and was cultured at 4◦C. A fourth Pyramimonas, K-
0002 P. tetrarhynchus Schmarda 1850 (type species) is a freshwater
species, and was grown in an enriched soil medium NF2 (86).

Tetraselmis. Marine species T. suecica (gift from University of
Cambridge Department of Plant Sciences) and T. subcordiformis
(CCAP 116/1A), were cultured in the f/2 medium (87).

Polytoma. P. uvella Ehrenberg 1832 (CCAP 62/2A) was grown
in polytoma medium (comprising 2% sodium acetate trihydrate, 1%
yeast extract and 1% bacterial tryptone (87)).

Polytomella. Two species (CCAP 63/1 and CCAP 63/3) were
maintained on a biphasic soil/water medium (87).

Carteria. C. crucifera Korschikov ex Pascher (1927) from CCAP
(8/7C) was grown in a modified Bold basal medium (87).

Chlamydomonas. C. reinhardtii strains were obtained from the
Chlamydomonas Collection, wildtype CC125, and variable flagella
mutant vfl3 (CC1686), and grown photoautotrophically in liquid cul-
ture (Tris-Acetate Phosphate).

Production of quadriflagellate dikaryons. High-mating efficiency
strains of C. reinhardtii CC620 (mt+), CC621 (mt−) were obtained
from the Chlamydomonas Collection, and grown photoautotrophi-
cally in nitrogen-free TAP to induce formation of motile gametic cells
of both mating types. Fusing of gametes occurred under constant
white light illumination.

Manipulation of viscosity. To facilitate identification of flagella in
certain species, the viscosity of the medium was increased by addition
of Methyl cellulose (M7027, Sigma Aldrich, 15 cP) to slow down cell
rotation and translation rates.

Microscopy and micromanipulation. The capture of single cells
are as described elsewhere (12, 14, 16, 27). For Fig. 3A caught CR
cells were examined under the light microscope to identify the eye-
spot and thus cis and trans flagella; the correct flagellum was then
carefully removed using a second pipette with smaller inner diameter.
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SUPPLEMENTARY MATERIAL
We discuss here in more detail aspects of flagellar synchronization and swim-
ming gaits in the unicellular green algae described in the text and SI Videos.

Pairwise synchrony: tri-flagellated CR mutant. The vfl3 mutant
lacking or defective in distal striated fibers characteristically exhibits a vari-
able number of flagella, each with apparently normal intrinsic motility but
aberrant orientation. As a result, the flagella belonging to the same cell dis-
play greater frequency variance than the wildtype. When frequencies are suf-
ficiently close, nearby configurations of flagella appear to be subject to signif-
icant hydrodynamic interactions. In the cell shown (Fig. S1) this leads to a
competition between IP and AP components.

Fig. S1: Flagellar beating in the vfl3 mutant. See also SI Video 1 and Fig. 2D.
A cell with three flagella: the inner pair is oriented with power strokes in the
same direction and tends towards IP synchrony, while the “outer” flagellum
(leftmost) attempts to synchronize in antiphase with respect to the first pair.

Pairwise synchrony: two VC somatic cells. Here we elaborate on ob-
served pairwise synchronization states between the flagella of two V. carteri
somatic cells held in close proximity and with opposing power strokes, with
particular emphasis on the consistency with theoretical predictions based on
hydrodynamic interactions. As discussed in the main text, two states are ob-
served (IP and AP), with the AP being preferred/more stable than the IP (Figs.
3 and S2). Transitions between IP and AP synchrony appear to be stochastic,
stemming from inherent biochemical noise in the system. Within either state
however, precise phase relationships are maintained. For interpolated flag-
ellar phases φ1,2 (∈ [0, 2π]) measured for each flagellum directly from the
experimental data, we plot cos(φ1,2) in SI Videos 2&3.

It is convenient and insightful to consider a dimension-reduced model
in which each flagellum is modelled as a sphere of radius a constrained
to oscillate along a near-circular trajectory of radius R (5). Let êφi

=
(− sin(φi), cos(φi)) and êri = (cos(φi), sin(φi)) denote unit vectors in
the tangential and radial directions for each flagellum n, and measure phases
φ1,2 CCW from the +ve x-axis. The two spheres are centered at r01,2, sep-
arated by ` = |r02 − r01| which is assumed large so that a� ` and R� `
(i.e. hydrodynamic far field), but simulations and experimental studies on col-
loidal systems have shown that qualitative predictions of the theory are still
applicable even in situations where these values are not so small.

The velocities are given by ui = Ṙiêri + Rnφ̇iêφi
. The orbital radius

is assumed to be flexible, characterized by a spring constant k and natural
length R0. Even for a simple driving force (assumed proportional to angular
velocity), this flexibility allows each sphere to respond to hydrodynamic per-
turbations arising from the motion of its neighbor thereby leading to trajectory
deformations of the correct sign to achieve synchronization. More generally,
we can incorporate an additional variable driving force so that, for example,

Fi = −k(Ri −R0)êRi
+ F (φi)êφi

, [ 1 ]

where
F (φi) = F0(1−A sin(2φi)) [ 2 ]

acting tangentially along the orbit (2). The functional form of F (φ) has been
chosen following Uchida & Golestanian (3) to provide the simplest modu-
lated force for near-circular trajectories; terms of higher order become neg-
ligible. Depending on orbital rigidity one or the other of the two contribu-
tions will dominate (7). For rapid synchronization of flagella, it has been
shown that orbital compliance dominates over force modulation (12). For

counter-rotating spheres, if we take F (φ1) = F0(1 − A sin(2φ1)) then
F (φ2) = −F0(1 +A sin(2φ2))).

Fig. S2: Synchronization of flagella on Volvox somatic cells. As each flag-
ellum is on a separate pipette-held cell, coupling is solely through the inter-
vening fluid. The beating patterns correspond to configurations of counter-
rotating spheres which tend to (A) AP or (B) IP states; state A is more stable
and has a higher frequency than B, as predicted. See SI Videos 2&3. Scale
bars are 10 µm.

Motion is described (1) by the force balance ui = OijFj , where

Oij = ζ−1

(
δij + (1− δij)

3a

4rij

(
1 +

r̂ij r̂ij

r2ij

))
, (i, j = 1, 2) [ 3 ]

where ζ = 6πηa is the drag coefficient of a sphere and r̂ij = (rj −
ri)/rij ' x̂ + O(R/`). Force balance in the tangential and radial direc-
tions gives:

ζṘi = ε

(
1 + x̂x̂

)
Fi · êRi

− k(Ri −R0) [ 4 ]

ζRiφ̇i = F (φi) + ε

(
1 + x̂x̂

)
Fi · êφi

,

where ε = 3a/4`. If radial variations decay much faster than tangential
ones, so Ṙ ' 0, then k(Ri − R0) ∼ O(ε), and we can further expand
Fi/ζ ≈ Riφ̇iêφi

+O(ε). The dynamics of oscillator 1 is then given by

ζφ̇1 =F1(φ1) +
εFi(φi)

2R0
[3 cos(φ1 − φ2)− cos(φ1 + φ2)]

−
εFi(φi)Fj(φj)

2kR2
0

[3 sin(φ1 − φ2)− sin(φ1 + φ2)], [ 5 ]

and similarly for oscillator 2 under interchange of 1↔ 2.
For counter-rotating spheres the phase sum Ξ = φ1 + φ2 fluctuates about

Ξ0 = 0 or Ξ0 = π in either AP or IP states. In the case of AP synchrony, let
Ξ = Ξ0 + δ, then φ2 = φ, and φ1 = δ − φ, and we have

ζ
δ̇

δ
' −2

F0A

R0
cos(φ)−

εF0A

R0
cos(2φ)(3 cos(2φ)− 1)

−
εF 2

0

kR2
0

(1 +A sin(2φ))2,

and similarly for the IP state - for a change of sign to the last term in the above.
This last term corresponds to elastic deformation of orbits, and is < 0 (lead-
ing to stability) for all phases φ in the case of AP synchronization but > 0
(leading to instability) in the case of IP synchronization, consistent with our
experimental observations. Furthermore the average period TAP, IP of these
metastable states is then given by

∫ 2π
0 φ̇−1 dφ (4):

TAP, IP =
2πζR0

F0

√
1−A2

(
1∓

1

2
ε

)
. [ 6 ]

From the data, we find the experimental configuration to be consistent with
a ' 3 µm for a separation of ` ' 15 µm; in particular, the AP state is indeed
faster than the IP.
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Mechanical perturbation of flagellar beating The marine quadri-
flagellate T. suecica swims with a characteristic transverse gallop (Fig. 4)
when free or pipette-held. The presence of theca renders them amenable to
micromanipulation. SI Video 5 compares a pipette-held cell with flagella that
are free to beat, with the same cell some time later after beating is stalled in
one of its four flagella by careful application of suction (which traps the flag-
ellum inside the pipette). The prior coordination in the remaining flagella is
retained despite the significant change in hydrodynamic loading.

Systematics and ultrastructure of the green algae. The species of
green algae referenced in this study are presented in full in Fig. 5. Here, we
provide some additional details and references for the interested reader.

According to the most current classification, the Viridiplantae comprises
two phyla: the Streptophyta – which contains many freshwater Charophyta al-
gae and most land plants, and the Chlorophyta – which is the relevant category
for most green algae. The precise evolutionary history of the Chlorophyta has
proved rather difficult to elucidate, in the current consensus there are three
core classes (Chlorophyceae: C, Trebouxiophyceae: T, and the Ulvophyceae:
U), and a fourth non-monophyletic class of more primitive algae known col-
lectively as the ”Prasinophyceae”.

Earlly attempts to classify the green algae by morphological form (unicel-
lular, colonial, filamentous) (9) were superseded by schemes based on com-
parisons of basal body (BB) ultrastructure (microtubular roots, orientation of
basal bodies etc) (11, 12, 20). The Prasinophyte algae have counter-clockwise
offset of basal bodies (now considered a primative trait), while in contrast the
Chlorophyte algae are characterized by a clockwise offset (see for instance
Chlamydomonas, Fig. 1D). Later molecular approaches soon became avail-
able, involving the use of genetic markers based on ribosomal (SSU rDNA) or
chloroplast genes such as rbcL, and used to verify or refine existing classifi-
cations. These were particularly important for distinguishing between species
that were otherwise morphologically identical (20). Phylogenetic trees are
then constructed based on these results via statistical methods such as max-
imum likelihood or maximum parsimony. The branching order and relative
edge lengths shown on Fig. 5 were estimated from a composite of available
maximum likelihood trees (14–21).

Most of the Prasinophyte algae considered in this study belong to the order
Pyrmimonadales which reside at the base of the Chlorophyta and are consid-
ered to be the earliest green algae (11). These phytoflagellates have 4 to 16
flagella and are united by their lack of advanced Chlorophycean characters as
well as by the presence of primitive scaly body coverings. The Pyramimonas
genus, first described from a freshwater locality in Cambridge, England, has
been shown to exhibit great morphological variability not just in the numbers
of flagella but also the composition of types of organic scales (crown, square,
box etc). According to rbcL sequencing, Pyramimonas does not constitute
a monophyletic clade. At least four subgenera exists, namely Pyramimonas,
Vestigifera, Punctuate, and Trichocystis, of these all four Pyramimonas species
studied here (P. parkeae, P. tetrarhynchus, P. octopus, and P. cyrtoptera) be-
long to the same subgenus Pyramimonas (23). Chloroplast sequencing has
also revealed accelerated rates of evolution in this monophyletic subgenus.
The branching order among these four species is presented in Fig. 5, follow-
ing Daugbjerg et al (16), and Harðardéttir et al (24). Only P. tetrarhynchus
(the type species) is a freshwater species, the other three being marine. The
prototypical Pyramimonas has four homodynamic and isokont flagella which
emerge from an anterior pit, where the two oldest BBs are connected by a
large synistosome which is striated in cross-section and thought to be con-
tractile. Flagella beat away from each other in a roughly cruciate pattern, with
some differences across species in the precise geometry of the four BBs, which
form a diamond shape in most cases.

The final Prasinophycean alga in our list is Tetraselmis (12) (synonymous
with Platymonas). It is considered very basal to the UTC clade, has a coun-
terclockwise orientation of BBs, and is associated with early evolution of the
plant phycoplast which is essential for the later emergence of multicellularity
within the Chlorophyta. Along with Scherffelia, Tetraselmis is classified under
the order Chlorodendrales (25, 26), which comprises thecate scaly flagellates,
and were among the first green flagellates to evolve a rigid wall (theca). The
presence of this bounding wall is thought to have prevented cell division in
the flagellate state, contrary to Pyramimonas, which divides while remaining
fully motile. In electron micrographs, the nucleus appears to be positioned
centrally between the flagellar apparatus and pyrenoid.

The Chlamydomonadalean algae form the largest Chlorophyceae group and
is taxonomically complex and diverse (14, 15); of the species studied here the
genus Carteria is the most basal according to molecular phylogenetics, sup-
porting the notion that the common ancestor of the core Chlorophyte algae
may have been a Carteria-like quadriflagellate (21, 27). The biflagellate condi-

tion of Chlamydomonas may have resulted from a subsequent reduction from
four flagella to two. Biflagellate Chlamydomonadales possess a CW rota-
tion of the flagellar apparatus, and comprises mainly freshwater and terrestrial
species. The favoured species Chlamydomonas reinhardtii and its multicellu-
lar relative Volvox carteri have been extensively studied as model organisms
exemplifying the evolution to multcellularity (see also (27) and the many ref-
erences therein). While many of these species are photoautotrophic, harness-
ing sunlight for energy through photosynthesis, a number have evolved into
obligate heterotrophs. These include the colourless and wall-less algae Poly-
toma and Polytomella (13), which through the loss of chloroplasts have rather
unusual mitochondrial or plastid genomes (22).

In Fig. 5, the illustrations of the basal apparatus represent simplified planar
views only, please refer to the following external references for the detailed ul-
trastructure of each species featured in this work. In particular unlike the BBs
of Pyramimonas which emerge almost parallel from a grove inside the cell,
the BBs of Chlorophycean algae are often tilted with respect to each other,
for instance the two BBs of C. reinhardtii are oriented at 70− 100◦ (39) and
those of P. uvella at 140◦ (42). BBs have also been numbered throughout ac-
cording to the convention of Moestrup (35) by order of ontogenetic age wher-
ever such information was available. i) Pyramimonas parkeae (29, 30), ii)
Pyramimonas tetrarhynchus (31, 32), iii) Pyramimonas octopus (33–35), iv)
Pyramimonas cyrtoptera (36), v) Tetraselmis suecica and T. subcordiformis
(37, 38) vi) Carteria crucifera (28) ( the basal apparatus of Carteria Group
2 is most peculiar, in which sigmoid shaped electron dense rods extend be-
tween opposite BB pairs) vii) Chlamydomonas reinhardtii (39), dikaryon (46)
viii) Volvox carteri (40) ix) Polytoma uvella (43) (and for Polytoma papillatum
(42)) x) Polytomella parva (synonymous with P. agilis) (41) .

Swimming with four flagella. Select species of quadriflagellates exem-
plify the possible gait symmetries. The motion is highly species-specific,
where the patterns or sequence of actuation of the flagella appear to be in-
dependent of whether or not the cell body has been fixed in place.

Flagellar synchronization in a dikaryon of Chlamydomonas. Al-
though CR is most likely to occur in its vegetative state, gametic cells capable
of sexual reproduction can form under nitrogen deprivation in the presence
of light. When two biflagellate CR gametes of opposite mating types (+ and
−) come together, flagellar agglutination (44) occurs whereby the flagella of
opposite mating types adhere strongly to each other (Figure. S3A1). This is
followed by autolysin secretion which digests away the cell walls, after which
a fertilization tubule extends from the + gamete to its partner (Figure. S3A2).
If fusion is successful, a single temporary dikaryon is formed, which is quadri-
flagellate (Figure. S3A3).

Fig. S3: Generation of a dikaryon of Chlamydomonas. For brevity, eyespot
locations are not shown. (A) 1-4: Life cycle of sexual reproduction in CR. (B)
A pair mating (stage 1). (C) A quadriflagellate dikaryon is formed. See SI
Video 5.

These dikaryons exhibit a striking double bilateral breaststroke (in contrast
to the double cruciate breaststroke observed in P. parkeae), in which pairs of
flagella on the same side become strongly phase-synchronized. It is known
that the flagella separate distally into cis-cis and trans-trans pairs, allowing
cells to remain strongly phototactic during this period, which is another indi-
cation of good flagellar coordination. No new synthesis of basal body fibers
occur, and indeed all traces of basal bodies and associated rootlets and fibers

12 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Fig. S4: Distinctive quadriflagellate gaits. See Fig. 6 of text and SI Video 6. (A) trot (Pyramimonas parkeae) held stationary by a micropipette, (B)
pronk (Pyramimonas tetrarhynchus), (C) rotary gallop of Carteria cruicifera and of Tetraselmis suecica viewed apically when (D) held by micropipette or (E)
freely-swimming. Scale bars are 10 µm.

Fig. S5: Swimming dynamics of the octoflagellate P. octopus. (A) View
from the top, where the cell is observed to rotate CCW about its long
axis over time, and (B) view from the side, where several pairs of in-
phase breaststrokes are observed, principally between diametrically op-
posed flagella. See SI Video 7. Scale bars are 10 µm.

Fig. S6: Distinctive hexadecaflagellate gaits. (A) Pronk: all flagella syn-
chronized (a hydrodynamic mode). (B) bilateral: one group comprising
half of the flagella are synchronized, but are in anti-phase relative to the
complementary group. (C) mixed mode: resembles a P. octopus. See SI
Video 8. Scale bars are 20 µm.

dissolve within 6 hours after mating (45). Therefore there is a strong asymme-
try in internal connectivity immediately upon formation of the quadriflagellate
zygote, prior to the dissolution of the distal fibers between the original BBs
(of like mating type), but lack of physical connections between pairs of BBs
of unlike mating type (recall Fig. 5). Eventually, maturation of the zygotes
leads to resorption of all flagella, and formation of a CR spore. These diploid
zygotes await favorable conditions before release of 4 new haploid progeny,
whereupon BBs are reassembled de novo.

Swimming with eight flagella. The octoflagellate P. octopus displays
stochastic switching between a number of different gaits (Fig. S5 and SI Video
7). Primary among these is a complex breaststroke which appears to involve
a number of phase-shifted pairwise IP breaststrokes. The IP synchrony within

certain of the pairs are more robust than in others (the basal architecture is far
from radially symmetric, with the large synistosome connecting BB1 and 2
(see Fig. 5).

Swimming with sixteen flagella. Flagellar coordination in the hexade-
caflagelalte P. cyrtoptera leads to a number of distinctive gaits which may
be dependent on the current state of contractile of the fiber network: three
of which are shown here (Fig. S6 and SI Video 7. (A) Significant nearest-
neighbour hydrodynamic effects can synchronize all sixteen flagella, which
pronks with a well defined periodicity coinciding with the beat frequency of an
individual flagellum. (B) The underlying basal-body network exhibits signifi-
cant bilateral symmetry (Fig. 5), which could explain the frequent appearance
of a bilateral gait in which flagella are divisible into two groups, which beat
alternately. Flagella within each group appear to be strongly coupled in IP by
hydrodynamic interactions. As a result the cell body sways periodically from
side to side. C) In certain individuals, basal coupling appears strong enough to
permit several phase-shifted breaststroke pairs and swimming is reminiscent
of an octoflagellate with flagella doubled up in pairs - with the flagella in each
pair undulating in perfect unison.

Emergence of metachronism in a hexadecaflagellate In P. cyr-
toptera, neighboring flagella experience strong hydrodynamic interactions due
to their close spatial proximity, giving rise to the striking pronking gait (SI
Video 8) in which all sixteen flagella beat with zero relative phase differ-
ence. In this organism yet another phenomenon can be attributed to hydro-
dynamic synchronization: occasionally, we observe metachronal waves prop-
agating circumferentially around the crown of flagella which become espe-
cially notable in cells swimming close to surfaces. We discuss below how this
is consistent with theory concerning fluid-structure interactions near no-slip
surfaces, and where dynamics are dominated by orbital compliance (Fig. S7).

Firstly, steric interactions near the wall forces the flagella to ‘flatten’ or re-
orient more laterally, contrary to the normal state in which they are recurved
longitudinally along the cell body from the anterior to the posterior. This
new orientation becomes more conducive to hydrodynamic coupling (see ref-
erence (14) of main text) between the flagella (Fig. S7A). Interactions are
maximised when flagella are placed side-by-side and minimized when placed
in the up/downstream directions. Secondly, proximity near the no-slip bound-
ary itself means that the nearest-neighbor contribution to the coupling is in-
creased, again encouraging the emergence of metachronal waves.

For the cell shown, a symplectic metachronal wave propagates CCW among
its flagella, which causes the cell to rotate very slowly in a CW sense. We take
the optical flow field U(r; t) as proxy for the real flow field in the vicinity of
the organism (there is good agreement in direction even if flow magnitudes are
less reliable). The time averaged flow field (Fig. S7) is clearly rotary

〈U(r; t)〉 =
1

t

∫ t

0
U(r; t) dt

We decompose the flow into its radial and tangential components

U(r; t) = Ur(r; t)er + Uθ(r; t)eθ [ 7 ]

and concentrate on the radial component which corresponds the direction per-
pendicular to the wall, since forces perpendicular to a wall decay much faster
than the tangential contribution. The plots reproduce features distinctive of a
metachronal wave.
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Fig. S7: Metachronism in a hexadecaflagellate. (A) The strength of hydrodynamic interactions between pairs of flagella is strongly dependent on their relative
orientation. This leads to the formation of symplectic metachronal waves in a finite ring of flagellar oscillators, representing the hexadecaflagellate. (B,C) The
average (optical) flow field

〈
Ū
〉

around P. crytoptera. (D) Snapshots of the radial components of optical flow field.

Additional References
1. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics: with

special applications to particulate media. Kluwer, New York
2. Uchida G, Golestanian (2012) Hydrodynamic synchronization between

objects with cyclic rigid trajectories. The European Physical Journal E
35: 1-14

3. Uchida N, Golestanian R (2011) Generic Conditions for Hydrodynamic
Synchronization. Phys. Rev. Lett 106 (058104)

4. Box S, Debono L, Philips DB, Simpson SH (2015) Transitional behavior
in hydrodynamically coupled oscillators. Phys. Rev. E 91 (022916)

5. Niedermayer T, Eckhardt B, Lenz P (2008) Synchronization, phase lock-
ing and metachronal wave formation in ciliary chains. Chaos 18 (037128)

6. Bruot N, Kotar J, de Lillo F, Cosentino Lagomarsino M, Cicuta P (2012)
Driving potential and noise level determine the synchronization state of
hydrodynamically coupled oscillators Phys. Rev. Lett 109 (164103)

7. Kotar J, Debono L, Bruot N, Box S, Philips DB, Simpson SH, Hanna
S, Cicuta P (2013) Optimal hydrodynamic synchronization of colloidal
oscillators. Phys. Rev. Lett 111 (228103)

8. Brumley DR, Polin M, Pedley TJ, Goldstein RE (2012) Hydrodynamic
synchronization and metachronal waves on the surface of the colonial
alga Volvox carteri. Phys. Rev. Lett 109 (268102)

9. Blackman F (1900) The primitive algae and the Flagellata. Annals of
Botany 14: p647-688.

10. Irvine D, John D (1984) Systematics of the green algae Academic Press,
Oxford, England

11. O’Kelly CJ, Floyd GL (1984) Flagellar apparatus absolute orientations
and the phylogeny of the green algae. Biosystems16: p227-251

12. Mattox K, Stewart K (1984) Classification of the green algae: a concept
based on comparative cytology. Systematics of the green algae. The Sys-
tematics Association Special Volume 27, Academic Press, London and
Orlando p29-72

13. Rumpf R, Vernon D, Schreiber D, William Birky Jr D (1996) Evolu-
tionary consequences of the loss of photosynthesis in Chlamydomon-
adaceae: phylogenetic analysis of Rrn18 (18S rDNA) in 13 Polytoma
strains (Chlorophyta) J. Phycol 32: 119-126

14. Nakada T, Misawa K, Nozaki H (2008) Molecular systematics of the
Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA

phylogenetic analyses Mol. Phylogenet. Evol 48: 281-291
15. Nozaki H, Misumi O, Kuroiwa T (2003) Phylogeny of the quadriflagellate

Volvocales (Chlorophyceae) based on chloroplast multigene sequences
Mol. Phylogenet. Evol 29: 58-66

16. Daugbjerg N, Moestrup Ø, Arctander P (1994) Phylogeny of the genus
Pyramimonas (Prasinophyceae, Chlorophyta) inferred from the rbcL gene
J. Phycol 30: 991-999

17. Leliaert F, Verbruggen H, Zechman FW (2001) Into the deep: New dis-
coveries at the base of the green plant phylogeny Bioessays 33: p683-692

18. Demchenko E, Mikhailyuk T, Coleman AW, Proschold T (2012) Generic
and species concepts in Microglena (previously the Chlamydomonas
monadina group) revised using an integrative approach Eur. J. Phycol.
47(3): p264-290

19. Cocquyt E (2009) Phylogeny and evolution of green algae (Fylogenie en
moleculaire evolutie van groenwieren) PhD thesis, Universiteit Ghent
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