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iv. Abstract  

The intestinal tissue is charged with a delicate immunological task. The intestinal immune 

system needs to be tolerant towards nutrients and microbiota present in the intestinal lumen, 

while simultaneously detecting and responding to dangers such as pathogens.  A single-cell 

layer of intestinal epithelial cells (IECs) acts as a first line of defence. There is a T cell 

population located between the IECs that have been named intraepithelial lymphocytes (IELs). 

As the main lymphoid population within the intestinal barrier, IELs are thought to have an 

important role in intestinal homeostasis maintenance, as well as a role in intestinal 

inflammatory and autoimmune diseases such as inflammatory bowel disease and celiac disease. 

Despite extensive research on IEL biology, there are still questions remaining in terms of the 

development, maintenance and activation of IELs. Furthermore, IELs survive poorly in vitro, 

which hinders mechanistic insights. In this thesis, a co-culture system between IELs and 

intestinal organoids, “mini-guts”, provides an in vitro model for IELs. With this IEL-organoid 

co-culture system, IELs associated with the organoids survive for at least 4 days. Additional 

findings suggest that IELs are kept in a poised state of activation due to differences in their 

mitochondria compared to other T cells found in spleen, lung and skin. Upon activation or 

intestinal inflammation, the mitochondrial mass in IELs increases. This increase correlates with 

effector functions such as cytokine production and proliferation. In addition, the composition 

of the mitochondria-specific lipid, cardiolipins, alters drastically in IELs after activation. These 

data support a model of mitochondria-dependent activation of IELs. The mitochondria-

dependent activation in IELs appears to have at least two pathways: one T cell receptor-

dependent and one microbiota-dependent. The latter pathway suggests a model in which IELs 

can become activated regardless of the cause of intestinal epithelial barrier damage. 
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Chapter 1:  Introduction  

1. Introduction  

The immune system needs to respond appropriately towards infections caused by bacteria, 

viruses or parasites threatening the homeostasis of the host. The immune system consists of 

both cellular and humoral components that can respond to both non-specific and specific 

antigens. Here, I am going to introduce the immune system, with the focus on the intestinal 

immune system. 

 

1.1. Cellular Immune System  

All immune cells originate from hematopoietic stem/progenitor cells (HSPCs). These cells 

are located in the bone marrow (BM).  HSPCs can further differentiate into common 

lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). CLPs can 

differentiate into T cells, B cells and natural killer (NK) cells, while CMPs generate e.g. 

dendritic cells (DCs) and macrophages (MPs) (Seita and Weissman, 2010). Below, I am 

going describe the different immune cells. Particular focus will be on T cells, intestinal 

epithelial cells (IECs) and intraepithelial lymphocytes (IELs). 

 

1.2. Innate Immunity  

The system of innate immunity consists of a range of different immune cells and the 

complement system. Innate immunity generates rapid immune responses towards non-

specific antigens. They are able to do so by using a limited number of receptors such as 

pattern recognition receptors (PRRs) that recognize common patterns of pathogens. Examples 

of PRRs are toll-like-receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-

like receptors (NLRs) and retinoic acid-inducible gene-(RIG)-like receptors (RLRs).  
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1.2.1. Granulocytes: neutrophils, eosinophils and basophils  

Granulocytes are immune cells classified by the presence of granules in their cytoplasm and 

the morphology of their nucleus. Hence, another name for granulocytes is polymorphonuclear 

(PMN) cells. 

 

Neutrophils are usually the first type of immune cells recruited to inflammatory sites. In 

mice, it has been reported that circulating neutrophils have a half-life of 1.5 hours 

(Kolaczkowska and Kubes, 2013). Like other PMN cells, they phagocytose pathogens. For 

intestinal sites, it has been suggested that interleukin (IL)-18 alters the tight junction (TJ) 

proteins between IECs, to enable neutrophils to transmigrate between IECs (Lapointe and 

Buret, 2012). One of the characteristics of neutrophils is their ability to form neutrophil 

extracellular traps (NETs). NETs consist of intracellular content, such as DNA elements and 

proteins, which can immobilize and subsequently kill pathogens. It has recently been 

discovered that mitochondrial reactive oxygen species (ROS) play a role for NET formation: 

inhibition of mitochondrial ROS production leads to reduced release of NETs (Lood et al., 

2016). In addition to their anti-inflammatory properties, neutrophils appear to have tissue 

healing properties. A role of neutrophil-mediated interactions with IECs, via intracellular 

adhesion molecules (ICAM), have been shown to promote IEC proliferation. Lack of this 

ICAM-mediated interaction led to fewer wounds being healed in vivo (Sumagin et al., 2016). 

 

Another type of PMN cells are eosinophils. Eosinophils have granules containing 

antimicrobial proteins (AMPs), cytokines, chemokines and cationic proteins such as 

eosinophil peroxidase (EPO) and eosinophil-derived neurotoxin (EDN) (Strandmark et al., 

2016; Forman et al., 2016). Eosinophils are characterized by their expression of the cell 

surface protein Siglec-F. Mice lacking the transcription factor Gata1 lack eosinophils. Using 
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Gata1-deficient mice and a Trichuris muris (T. muris) infection model as an inducer of 

eosinophil immunity, it has been shown that there are fewer IgA+ plasma cells in the small 

intestine, while the number of IgA+ plasma cells in the large intestine is unaffected (Forman 

et al., 2016). These observations highlight differences in the small and large intestinal 

compartments. Unlike neutrophils and basophils, it has been shown that eosinophils require 

the transcription factor (TF) X-box binding factor 1 (XBP1) for eosinophil differentiation. 

XBP1 is a key factor for the stress response of the organelle endoplasmic reticulum (ER) 

(Shen and Malter, 2015). Eosinophils also differ from the other PMN cells in their 

recruitment to the intestinal compartment. Using a dextran sulphate sodium (DSS)-induced 

model of colitis combined with antibiotic depletion, it has been shown that Gram-positive 

bacteria are required for the recruitment of macrophages (MPs), monocytes and neutrophils 

to the intestinal compartment. However, the recruitment of eosinophils is unaffected by the 

different antibiotic treatments (Nakanishi et al., 2014). These data suggest a role for 

commensal microbiota in the recruitment process of macrophages, monocytes and 

neutrophils, but other factor(s) to induce eosinophil recruitment during intestinal 

inflammation.  

 

The rarest granulocytes are basophils. They have similarities with mast cells (see section 

1.2.2), sharing the expression of the antibody receptor Fc epsilon receptor. However, while 

mast cells undergo their final differentiation in the homing tissue, basophils are fully 

differentiated already in the blood circulation. It has been suggested that basophils secrete IL-

4 and hence have a role in Th2-mediated immunity (Sullivan and Locksley, 2009).  

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjTscj8xrrYAhVF16QKHQ43AYYQFggpMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTrichuris_muris&usg=AOvVaw301056lk0GT_PQYTIf7RAi
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1.2.2. Mast cells 

In addition to PMN cells, there are monomorphonuclear (MMNs) immune cells such as T 

cells, B cells and mast cells. Like PMN cells, mast cells contain granules. The granules in 

mast cells contain for example proteases, prostaglandins and tumour necrosis factor alpha 

(TNFα) (Lee and Lee, 2016). Anti-TNFα antibodies are currently the main therapy to treat 

inflammatory bowel disease (IBD). However, TNFα therapy is only successful in 

approximately 40% of the treated patients (West et al., 2017). Intestinal mast cells are mainly 

found in the lamina propria (LP) compartment. Mast cells can become activated via IgE-

dependent and IgE-independent mechanisms. In IgE-mediated activation, the allergen binds 

the FC epsilon receptor. The binding of IgE to FC epsilon receptors on mast cells results in 

the release of a range of intracellular mediators, such as the vasoactive substances histamine, 

prostaglandins and vascular endothelial growth factor (VEGF),which contribute to type I 

hypersensitivity responses (Abraham and St. John, 2010; Galli and Tsai, 2013; Lee and Lee, 

2016) Mast cells have also been associated with celiac disease (CD) (Frossi et al., 2016), in 

which another important intestinal immune cell subset are also implicated: IELs. (Cukrowska 

et al., 2017). 

 

1.2.3. Dendritic cells (DCs)  

Dendritic cells (DCs) are a heterogeneous group of antigen presenting cells (APCs) that were 

first discovered by Ralph Steinman and colleagues based on their morphological features. 

DCs were initially described as large stellate cells (Steinman and Cohn, 1973). Studies 

performed after the discovery of DCs demonstrated that DCs stimulated T cell proliferation 

(Steinman and Witmer, 1978). Further studies have revealed the heterogeneity of DCs: they 

can be further categorised based on their developmental pathways, tissue of residence, 

circulatory capacities and a range of surface markers such as CD11b, CD11c, CD103 and 
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major histocompatibility complex (MHC)-II (Steinman and Idoyaga, 2010). For example, 

some DCs are derived from monocytes and are hence named monocyte-derived DCs 

(Guilliams et al., 2014). Intestinal DCs act as sentinels and sensors, monitoring the luminal 

content by sampling bacteria and food antigens, before migrating to the draining mesenteric 

lymph nodes (MLNs), where they activate adaptive immune responses (Persson et al., 2010). 

As such, DCs are important players for intestinal immunity and homeostasis. Further 

investigations of the DC sampling processing have suggested a role of the commensal 

microbiota: antibiotic treatment reduces the number of DC extrusions through the IEC 

barrier. Furthermore, using toll-like receptor (TLR) ligands for TLR2, TLR4 and TLR9, an 

increase in the number of DC extrusions through the IEC barrier was observed, while TLR3 

and TLR5 ligands had no significant effect on the number of DC extrusions. Bone marrow 

chimeras deficient in Myd88, TLR2 or TLR4 had fewer DC extrusions through the IEC 

barrier (Chieppa et al., 2006). These data suggest that interactions between commensal 

microbiota, IECs and other immune cells may be able to affect the number of DC extrusions 

used for sampling the intestinal lumen, and thus may be able to alter the downstream immune 

responses.  

 

It has been demonstrated that mice, that have depletion of the TF interferon regulatory factor 

4 (IRF4) by CD11c promoter-driven Cre-expression, have fewer intestinal CD103+ CD11b+ 

DCs. The fewer CD103+ CD11b+ DCs in CD11c-Cre-IRF4fl/fl mice had a reduced DC-

mediated Th17 response, while the Th1 and Treg responses were unaffected (Persson et al., 

2013). Another TF, interferon regulatory factor 8 (IRF8), was later shown to be important for 

CD103+ CD11b- DCs. Depleting CD103+ CD11b- DCs led to a reduction in the number of all 

IEL subsets (see section 1.6.3). Furthermore, the reduction of CD103+ CD11b- DCs led to a 
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reduced intestinal Th1 response (Luda et al., 2016). These data indicate that different subsets 

of DCs have different roles and capacities to induce T cell responses. 

 

1.2.4. Monocytes  

Monocytes, formed in the bone marrow, are precursors to macrophages (MPs). Via the 

activation of the chemokine receptor CCR2, monocytes egress from the bone marrow to the 

blood circulation (Boring et al., 1997). Once the monocytes are in the blood circulation, they 

migrate to peripheral tissues, where they differentiate into DCs and MPs. In vitro and ex vivo 

data suggest a model in which monocytes differentiate into anti-inflammatory MPs when 

recruited to a steady state intestinal compartment. In contrast during intestinal inflammation, 

monocytes generate pro-inflammatory DCs (Rivollier et al., 2012; Tamoutounour et al., 

2012; Bain et al., 2013). These data suggest that local factors determine monocyte 

differentiation. In contrast, one report suggested that monocytes could become primed whilst 

still in the bone marrow via IFNγ production sourced from natural killer (NK) cells 

(Askenase et al., 2015). In addition, it has also been suggested that monocytes can interact 

with IECs, specifically the intestinal epithelial stem cells (IESCs), and can induce 

proliferation in those cells (Skoczek et al., 2014). 

 

1.2.5. Macrophages (MPs) 

Macrophages (MPs) are phagocytic and antigen presenting immune cells. They are 

commonly divided into two categories: M1 and M2 MPs. This categorization mirrors that of 

Th1 and Th2 cells (see section 1.3.2.1): M1 MPs are induced by classical Th1 cytokines such 

as IFNγ, while M2 MPs are induced by Th2 cytokines such as IL-4. M1 and M2 MPs also 

differ in their cytokine production: M1 MPs produce high amounts of IL-12 and IL-23 and 

low amounts of IL-10, while the reverse cytokine production applies to M2 MPs (Mantovani 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 1 Introduction 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 36  
Copyright © 2018 Frising UC 

et al., 2005). However, some MPs, such as those found in the intestine, show a mixture of M1 

and M2 phenotypes. Intestinal-resident MPs usually have inflammatory anergic properties, 

but retain high phagocytic and bactericidal activities and are thought to play important roles 

in tissue homeostasis via the clearance of apoptotic cells (Smith et al., 2005), such as of 

stressed and shed IECs (Cummings et al., 2016). It has been shown that TLR2 and TLR4 

stimulation is required for mitochondrial ROS-mediated bactericidal activity in MPs (West et 

al., 2011).  

 

1.2.6. Natural Killer (NK) cells 

Natural killer cells (NK cells) are classified as innate immune cells. However, unlike other 

innate immune cells, NK cells are derived from CLPs that also generate T and B cells 

(Yokoyama et al., 2004). Unlike T and B cells, NK cells do not express any antigen receptor. 

NK cells can be divided into conventional NK and NK-like cells. Conventional NK cells 

express the markers NK1.1 and NKp46 and are able to lyse infected cells by secreting 

granzymes and perforin, which forces the target cells into apoptosis (Vivier et al., 2008). NK 

cells are dependent on signalling via IL-2Rγ (Cao et al., 1995) and IL-15Rα (Kennedy et al., 

2000). In addition, NK cells are a source of IFNγ which affect other immune cells such as 

Th1 cells, monocytes and M1 MPs. NK-like cells on the other hand, are less cytotoxic and 

rather secrete IL-22, which promotes proliferation of IECs, hence NK-like cells are 

sometimes named NK-22 cells (Fuchs and Colonna, 2011). 

 

1.2.7. Innate Lymphoid cells (ILCs): ILC1, ILC2 and ILC3  

Sometimes, NK cells are classified as one of the innate lymphoid cell (ILC) subsets. ILCs 

were discovered in recombination activating gene 2 (Rag2)-/- mice that lack both T and B 

cells (Shinkai et al., 1992). Injecting IL-25 into Rag2-/- mice led surprisingly to secretion of 
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Th2-associated cytokines - despite the lack of T cells (Fallon et al., 2006). Early literature 

about ILCs refer to these cells as natural helper cells (NHCs) and innate helper (IH) cells 

(Walker et al., 2013). ILCs are thought to be innate versions of the T cells, for which NK 

cells mirror cytotoxic CD8α+ T cells (CTLs), while ILC1, ILC2 and ILC3 mirror CD4+ T 

helper (Th) cells Th1, Th2 and Th17 cells, respectively. This mirroring is thought to apply to 

both the master transcription factor and the cytokines secreted: like Th1 cells, ILC1 express 

Tbx21 and secrete IFNγ, ILC2 express Gata3 and secrete IL-4, -5 and IL-13 and ILC3 

express RORγt and secrete IL-22 and IL-17. Lymphoid tissue inducer (LTi) cells are usually 

classified as part of ILC3 subset. Unlike their adaptive counterparts, ILCs do not require to 

undergo clonal selection and expansion but can instead respond immediately with cytokine 

secretion (Eberl et al., 2015). Further characterization of ILCs, using single-cell RNA 

sequencing analysis, has suggested that the grouping of ILC1, ILC2 and ILC3 cells can each 

be split into additional 4-5 subsets (Gury-BenAri et al., 2016).  

 

1.3. Adaptive Immunity  

To complement innate immunity, there is an adaptive immune system that can respond to 

specific antigens. Adaptive immune cells can be classified into B and T cells, which can be 

further divided based on their cell surface protein expression and their tissue location. Both T 

and B lymphocytes are dependent on the Rag enzymes for arrangement of their respective 

antigen receptor, as Rag2-/- mice lack both T and B cells (Shinkai et al., 1992). 

 

1.3.1. B cells: B1, B2 and plasma cells 

B cells are an important part of the adaptive immune system. Two lineages of B cells are 

found in mice: B1 and B2 cells. They differ in the expression of surface markers, such as 

CD5 and CD23 (Bao et al., 1998). B cells are important for the secretion of antibodies such 
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as IgA, IgD, IgE, IgG and IgM originating from heavy chains α, δ, ε, γ and µ, respectively. B 

cells, which each produce one class of Ig at any given time, are called plasma cells (Angelin-

Duclos et al., 2000). The kind of Ig that is produced by the plasma cells depends on the class 

switch that has taken place. Activation-induced cytidine deaminase (AID) is essential for 

class switching and only IgM-producing B cells are present in AID-deficient mice (Fagarasan 

et al., 2002). In the mucosal site, B cells can be found in secondary lymphoid organs (SLOs) 

such as Peyer’s Patches (PPs) and MLNs (Roy et al., 2013). In the intestinal compartment, 

there is a preference for plasma cells secreting IgA. The majority of IgA+ plasma cells 

originate from B2 cells from PPs, although B1 cells also contribute to IgA production (Bao et 

al., 1998). The intestinal compartment has conditions favouring IgA class switching. One 

such factor that promotes IgA class switching is transforming growth factor beta (TGFβ) that 

is present in the intestinal compartment (Brandtzaeg and Johansen, 2005). Combination of 

TGFβ and the vitamin A derivative retinoic acid (RA) have been shown to have additive 

effects in increasing IgA class switching (Watanabe et al., 2010).  

 

1.3.2. CD4+ T cells 

The other important part of the adaptive immune system is T cells. These cells are named T 

cells as they develop in the thymus. In the thymus, T cells undergo both positive and negative 

selection processes to eliminate any potential T cells that are reactive to host antigens. T cells 

can be classified depending on which co-receptor they express: CD4 or CD8α. CD4+ T cells 

can receive antigens from MHC-II+ APCs, while CD8α+ T cells receive antigens from MHC-

I+ APCs. During the thymus development, there is a trend towards generation of higher 

numbers of CD4+ T cells than CD8α+ T cells (Van Laethem et al., 2012). This is thought to be 

because more CD8α+ T cells die during the selection processes (Sinclair et al., 2013). During 

the thymus selection process, the T cell receptor (TCR) is arranged. This arrangement is 
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strictly dependent on Rag enzymes, as Rag2-/- mice lack T cells (Shinkai et al., 1992). CD4+ 

T cells are found in many organs such as spleen, lymph nodes (LNs), IEC and LP 

compartments.  

 

1.3.2.1. T helper (Th) cells 

In the past, T helper (Th) cells were thought to consist of two different Th subsets based on 

their cytokine secretion profile, namely Th1 and Th2 cells (Mosmann et al., 1986; 

Cherwinski et al., 1987). In 2006, a third Th subset, Th17 cells able to secrete IL-17, was 

discovered (Mangan et al., 2006; Zhou et al., 2007). In addition, there are reports suggesting 

additional Th subsets such as Th9 and Th22 cells. Interestingly, there are reports suggesting 

plasticity between the different Th subsets (Magombedze et al., 2013; Lee et al., 2009), 

suggesting that Th cell differentiation may be adjustable to changes in their 

microenvironment. 

 

1.3.2.2. IFNγ-secreting Th1 cells 

Th1 cells were initially defined by their secretion of IFNγ (Mosmann et al., 1986). It was 

later discovered that the TF T-bet functions as a master transcription factor for Th1 

differentiation. T-bet is also important for IFNγ secretion. If T cells are deficient in T-bet 

expression, then these cells cultured under Th1 differentiation conditions have lower IFNγ 

production (Lazarevic et al., 2011; Yang et al., 2008). In addition, T-bet together with another 

transcription factor named Runx3, is important for Th1 differentiation. T cells cultured under 

Th1 conditions do not secrete the Th2-associated cytokine IL-4, but when T cells lack Runx3, 

there is a small proportion of cells that secrete IL-4 (Djuretic et al., 2007).  
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There are studies that have shown a role of the vitamin A derivative RA for Th1 and Th17 

cytokine production. Mice on diets that lack vitamin A during Toxoplasma gondii (T. gondii) 

infection showed a lower production of both IFNγ and IL-17 in the spleen and LP 

compartment (Hall et al., 2011a). The processing of vitamin A to RA involves the enzymes 

alcohol dehydrogenases (ADH) and retinal dehydrogenase (RALDH). Fewer cells express 

RALDH compared to ADH. RALDH have been found expressed in cells such as intestinal 

DCs and IECs (Hall et al., 2011b). The evidence for the importance of RA for Th1 cells was 

strengthened by using a dominant negative form of the retinoic acid receptor alpha 

(dnRARα). DnRARα CD4+ T cells generated less IFNγ and expressed lower levels of T-bet, 

while production of IL-17 and RORγ expression was increased (Brown et al., 2015), 

suggesting an important role of RA for Th1 cell stability. 

 

Th1 cells and IFNγ has been showed to be important for immune responses against 

intracellular pathogens such as Listeria monocytogenes (L. monocytogenes) (Romagnoli et 

al., 2016), vaccinia virus (Huang et al., 1993), Mycobacterium tuberculosis (Cooper et al., 

1993), Leishmania major (Reiner and Locksley, 1995) and Eimeria vermiformis (Smith and 

Hayday, 2000). 

 

1.3.2.3. IL-4-secreting Th2 cells 

The second Th subset, Th2 cells, was initially characterized by the lack of secretion of IFNγ, 

but secretion of IL-4 and IL-5 (the names MCGF2 and TCGF2 were used in the 1986 paper 

for IL-4 and IL-5, respectively) (Mosmann et al., 1986; Ziegler, 2016). Since the discovery of 

Th2 cells, it has been shown that their master transcription factor is Gata3. Th2 cells are 

important for type 2 responses against helminth infections. In barrier tissues such as the 

intestinal barrier, the Th2-associated cytokines IL-4 and IL-13 can aid IECs to expel 
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helminths (Paul and Zhu, 2010) such as Heligmosomoides polygyrus (Urban et al., 1991) and 

T. muris (Allison Bancroft et al., 1998). Previous reports suggest that basophils and specific 

subsets of DCs are important to prime Th2 cytokine responses (Perrigoue et al., 2009; Mayer 

et al., 2017), while eosinophils have a role in supressing Th2 responses (Strandmark et al., 

2016). 

 

1.3.2.4. IL-9-secreting Th9 cells 

Another proposed Th subset is Th9 cells that secret IL-9. Th9 cells have been reported to be 

induced by IL-4 and TGFβ. TGFβ, in combination with other cytokines, has been reported to 

induce other Th cells: Th17 cells when combined with IL-6 and Treg cells when combined 

with IL-2 (Schmitt and Bopp, 2017). The IL-9 secretion from Th9 cells is reduced in the 

absence of the transcription factor IRF8 (Humblin et al., 2017). Using oxazolone treatment as 

a model to induce colitis, it has been shown that mice deficient in IL-9, or on anti-IL-9 

treatment, showed less weight loss compared to controls (Gerlach et al., 2014), suggesting a 

role of Th9 in colitis pathology.  In contrast,  has been suggested that Th9 cells and IL-9 also 

have anti-tumour properties. IL-9R-/- mice and WT mice receiving anti-IL-9 antibodies 

showed increased tumour volume, while rIL-9 treatment of mice led to decreased tumour 

volume in the B16F10 cancer model (Purwar et al., 2012).  

 

1.3.2.5. IL-17-secreting Th17 cells 

Th17 cells were discovered in 2006, by observing IL-17 production in the presence of TGFβ 

and either the absence of IFNγ, using anti-IFNγ or IFNγ-/- mice (Mangan et al., 2006), or the 

presence of IL-6 (Zhou et al., 2007). Further studies demonstrated that retinoic acid related 

orphan receptor gamma thymus (RORγt) is the master transcription factor for Th17 

differentiation (Muranski and Restifo, 2013). IECs are one source of TGFβ secretion (Artis, 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 1 Introduction 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 42  
Copyright © 2018 Frising UC 

2008; Jiang et al., 2016). It has also been shown that Th17 cells from the small intestinal LP 

compartment lack IL-17 production in germ-free (GF) mice (Atarashi et al., 2015). 

Interestingly, it has been shown that Th17 differentiation is reversible: Th17 differentiation 

can be reversed, and instead converted to Th1 cells, by removing TGFβ and adding IL-12 

(Muranski and Restifo, 2013). Induction of T-bet during Th17 differentiation leads to shift 

from IL-17 to IFNγ production (Lazarevic et al., 2011). In addition to secrete IL-17, Th17 

cells have also been reported to be able to secrete IL-22 (Liang et al., 2006; Zheng et al., 

2007). Other cells that are able to secrete IL-22 are ILCs (Sonnenberg et al., 2011), IELs 

(Ahlfors et al., 2014), NK-like cells (Fuchs and Colonna, 2011) and Th22 cells (Basu et al., 

2012). Th17 cells have been showed to be important to generate protective immunity against 

a range of fungi and bacterial infections such as Candida albica (Huang et al., 2004), 

Staphylococcus aureus (Lin et al., 2009) and Citrobacter rodentium (C. rodentium)  (Reis et 

al., 2015). 

 

1.3.2.6. IL-22-secreting Th22 cells 

In addition to IL-22-secreting Th17 cells, there are several reports about a Th22 subset. 

Unlike Th17 cells, these Th22 cells do not secrete IL-17. Th22 cells can be generated in vitro 

under culture conditions with IL-6, with enhanced differentiation in combination with IL-23, 

but reversed in the presence of TGFβ – an important factor for Th17 differentiation. In 

addition, Th22 cells differ from Th17 by lacking expression of the TF aryl hydrocarbon 

receptor (AhR) and instead have expression of the TF T-bet. The majority of IL-22-/- mice 

succumb to C. rodentium infection. However, transfer of Th22 cells, but not Th17 cells, into 

IL-22-/- mice significantly increases the survival rate of IL-22-/- mice (Basu et al., 2012). 

Another laboratory confirmed the involvement of Th22 cells in C. rodentium infection 

(Backert et al., 2014), supporting the notion of an important role of Th22 cells in bacterial 
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infections. The research on Th22 cells is still limited and not as extensive as the other Th 

cells. 

 

1.3.2.7. T regulatory (Treg) cells 

Treg cells are the immune regulatory subset of CD4+ T cells. They are classified by 

expression of the TF forkhead box P3 (Foxp3) and suppress effector functions. Later studies 

have suggested that the Treg cell population is heterogeneous. Some studies are suggesting 

that there are Treg cells that co-express Foxp3 and one of the Th master transcription factor 

T-bet, Gata3 and RORγt and form Th1-, Th2- and Th17- like Treg cells (Zhu and Paul, 

2010). The principle that Treg cells are important for intestinal health is used in the Powrie 

model of colitis, in which colitis is induced by transferring naïve CD4+ T cells into Rag-

deficient hosts. Transferring CD4+ T cells, including Treg cells, prevents the induction of 

colitis (Powrie et al., 1994a; b). Treg cells are also affected by RA. Unlike Th1 and Th17 

cells, the proportion of Treg cells is increased in the presence of RA. In addition, culturing 

conditions including RA, TGFβ and IL-6, turn Th17 cells into Treg cells (Mucida et al., 

2007). 

 

1.3.3. CD8α+ T cells  

CD8α+ T cells are the cytotoxic arm of T cell immunity. It has been reported that CD8α 

expression is required for T cell cytotoxicity. Using in vitro cytotoxic assays, CD8a-/- 

splenocytes showed low cytotoxic capacity (Fung-Leung et al., 1991). Yet, CD8β-/- mice can 

still generate a response towards lymphocytic choriomeningitis virus (LCMV) (Angelov et 

al., 2009). Activated CD8α+ T cells produce effector proteins such as IFNγ, perforin and 

granzyme B, making them an essential component for coping with intracellular pathogens, 
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viral infections and tumours (Cruz-Guilloty et al., 2009). As mentioned in section 1.3.2, 

CD8α+ T cells can become activated by antigen presentation from MHC-I+ APCs.  

 

1.3.3.1. Effector CD8α+ T (Teff) cells 

Another name for activated CD8α+ T cells is cytotoxic T lymphocytes (CTLs). Studies of 

CTLs’ proteome have shown that CTLs mainly express proteins related to e.g. cell 

metabolism, such as GLUT1, and cytotoxic proteins such as granzyme B. Granzyme B was 

among the top 10 most abundant proteins in CTLs (Hukelmann et al., 2015). Another 

proteomic study has suggested that IL-2 is involved in promoting a range of protein 

interactions in CTLs, such as gene expression and proteins associated to cytoskeleton and 

their regulation (Ross et al., 2016). 

 

Like CD4+ effector cells, it has been shown that CD8α+ Teff cells require glycolysis for 

effector functions. Addition of the glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) led to a 

reduction in proliferation and IFNγ secretion (Cham et al., 2008). In addition to CD8α+ 

CTLs, there are reports suggesting the presence of CD4+ CTLs. These cells have been formed 

by the loss of the expression of the TF Th-Inducing POZ-Kruppel Factor (ThPOK) and 

instead express the TF Runx3 (Cheroutre and Husain, 2013). Runx3 has been showed to be 

important for CD8α+ T cell maintenance, as Runx3-/- mice have a reduced number of CD8α+ 

thymocytes and splenocytes (Woolf et al., 2003).  

 

In addition to the requirement of glycolysis for CD8α+ Teff cell functions, it has been 

reported that an interplay between the T-box factors T-bet and Eomesdermin (Eomes) are 

essential for IFNγ production from CD8α+ Teff cells. Absence of one of these T-box factors 

still led to IFNγ production from activated CD8α+ T cells. However, absence of both T-box 
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factors led to low IFNγ production and instead significant production of IL-17. This shift in 

immune response also led to more weight loss and an increased pathogen load in mice 

infected with LCMV (Intlekofer et al., 2008).  

 

1.3.3.2. Memory T (Tmem) cells  

Memory CD8α+ T (Tmem) cells are antigen experienced T cells defined by a high expression 

in the lymphocyte activation marker CD44 and a low expression in CD62L. The exact 

kinetics of Tmem cell formation is still being debated. One hypothesis suggests that upon 

activation, naïve CD8α+ T cells undergo clonal expansion and form CD8α+ Teff cells. Once 

the inflammatory stimuli are cleared, the majority of these CD8α+ Teff cells die. The 

remaining cells form a Tmem cell population. A second hypothesis is that Tmem cells are 

formed directly from naïve CD8α+ T cells and then generate Teff cells. A third hypothesis 

suggests that both Teff and Tmem cells can be generated from naïve CD8α+ T cells. Indeed, 

single-cell barcoding experiments have shown that naïve CD8α+ T cells can generate both 

Tmem and Teff cells (Gerritsen and Pandit, 2015), supporting the third hypothesis of Tmem 

cell formation.  

 

Tmem cells are characterised by a fast response upon re-encounter with their antigen. One 

example of the speed of the re-call response was demonstrated using L. monocytogenes as a 

model. Using this model, it was demonstrated that Tmem cells could respond within hours of 

re-infection (Bajénoff et al., 2010). However, Tmem cells appear to be a heterogeneous group 

of T cells. There are some hypo-responsive T cells named exhausted T cells. They express 

several inhibitory molecules such as PD-1, CTLA-4 and LAG3 (Programmed death 1, 

cytotoxic T lymphocyte-associated protein 4 and lymphocyte-activation gene 3, respectively) 

(Scott-Browne et al., 2016). Another marker used for Tmem cells is killer cell lectin-like 
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receptor G1 (KLRG1), which is proposed to assist in distinguishing between long-lived 

(KLRG1lo) and short-lived (KLRG1Hi) Tmem cells (Omilusik et al., 2015). 

 

Bacterial infections such as L. monocytogenes and Salmonella lead to increased level of 

acetate in the serum. For Tmem cells, this increase of acetate resulted in increased acetylation 

and thereby activation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and thus 

increased glycolysis and subsequently resulted in an increase in IFNγ-production as part of 

the re-call Tmem cell response (Balmer et al., 2016). To sustain this response, it was also 

shown that both TCR stimulation, demonstrated using αCD3, as well as co-stimulatory CD28 

stimulation were required (Gubser et al., 2013). Further investigations into the metabolic 

requirements for memory and effector CD8α+ T cells have revealed metabolic differences 

between these subsets: CD8α+ Teff cells store more lipids and are dependent on fatty acid 

oxidation (FAO) for full functionality, while Tmem cells do not store lipids and instead use 

glycolysis for their functions (O’Sullivan et al., 2014). In addition, there are some evidence 

that the cytokine IL-15, which is important for maintenance of memory CD8α+ T cells, NK 

cells and IELs (Lodolce et al., 1998), also could be linked to the metabolic properties of 

Tmem cells. Tmem cells have increased mitochondrial spare respiratory capacity (SRC) 

compared to naïve T cells. This increase in SRC is thought to be due to the increased 

mitochondrial biogenesis, which was demonstrated when culturing antigen experienced 

ovalbumin-specific CD8α+ T cells (OT-I cells) with IL-15 (van der Windt et al., 2012). It has 

also been suggested that DCs and MPs can support Tmem cells via IL-15 trans-presentation 

(Mortier et al., 2009). 
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1.3.3.3. Tissue resident T (Trm) cells 

Recent studies have split Tmem cells into those cells that are able to re-circulate and those 

cells that are tissue resident (Trm) cells. Trm cells are characterized by expression of CD69 

and CD103, for which TGFβ has been shown to be important for the CD103 expression of 

skin and intestinal Trm cells. In addition, it has been showed that tissue resident IL-15 is 

required for skin Trm cell maintenance (Mackay et al., 2013). It seems that skin Trm require 

lipid uptake for their maintenance (Pan et al., 2017).  

 

It has been reported that the TFs Hobit and Blimp1 are expressed in Trm cells found in the 

liver and skin. Mice deficient in both TFs Hobit and Blimp1 had reduced CD69 and CD103 

expression (K.Mackay et al., 2016), supporting the involvement of Hobit and Blimp1 for Trm 

cells. There are also evidence that T-bet and Eomes are involved in Trm cell maintenance, as 

forced expression of either of those TFs reduced CD103 expression (Mackay et al., 2015).  

 

It has recently been shown ex vivo that pro-inflammatory cytokines such as IL-12, IL-18 and 

IFNβ, in combination with TGFβ can downregulate the CD103 expression on intestinal Trm 

cells (Bergsbaken et al., 2017). The authors did not present any quantification of the number 

of Trm cells remaining in the different conditions. It would be interesting to know whether 

the downregulation of the Trm marker CD103 correlates with reduction in the number of Trm 

cells due to cell death or due to the Trm cells re-gaining their ability to re-circulate. λ 

 

1.3.4. TCRγδ+ T cells 

Most systemic T cells express TCRs consisting of α and β chains. However, there are T cells 

that express non-classical γ and δ chains. These cells are found in tissues such as spleen, 

liver, kidney and epithelial sites such as intestine, skin, lung and uterus (Muñoz-Ruiz et al., 
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2017). The ratio of TCRγδ+ cells among T cells is small in most tissues, except for the skin 

and the intestinal compartment. Unlike TCRγδ+ IELs from the small intestine, TCRγδ+ cells 

sourced from spleen and LNs can be cultured in vitro (Ribot et al., 2009). Figure 5.6 A-E in 

Chapter 5 illustrates the distribution of TCRγδ+ and TCRαβ+ T cells in lung, spleen, liver and 

intestinal compartments.  

 

Despite the observation that most non-intestinal TCRγδ+ cells do not express CD8α, they 

seem not to require interactions with MHC-II, as MHC-II-/- mice have a similar number of 

TCRγδ+ cells as control mice (Bigby et al., 1993). There seem to be interactions between the 

different T cells, as it has been demonstrated that TCRγδ+ T cells sourced from spleen are 

prevented from proliferation by splenic TCRαβ+ T cells (French et al., 2005).  

 

Both IL-17- and IFNγ-secreting versions of TCRγδ+ T cells have been identified. It has been 

reported that the marker CD27 can distinguish between IL-17- and IFNγ-producing TCRγδ+ 

cells. Most CD27-expressing TCRγδ+ cells produce IFNγ (Ribot et al., 2009). In addition, 

strong TCR signalling and expression of CD45RB also promotes IFNγ-producing TCRγδ+ 

cells (Sumaria et al., 2017).  

 

1.3.5. Natural killer T cells (NK T cells) 

There is a group of T cells that also express the typical NK marker NK1.1 and are hence 

named natural killer (NK) T cells. These are found in tissues such as spleen, liver and thymus 

(Kronenberg and Gapin, 2002). Unlike other T cells that become activated by peptides 

presented from MHC molecules, NK T cells have been reported to become activated by 

glycolipids presented on CD1d+ cells (Tupin and Kronenberg, 2006). CD1d appears to be 

essential for IFNγ production, as NK T cells from CD1d-/- mice produce very little IFNγ 
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compared to controls (Mattner et al., 2005). There are no NK T cells in GF mice, suggesting 

that commensal microbiota is important for maintenance of these cells. In addition, there are 

data suggesting that NK T cell may have subsets analogous to CD4+ T helper cell subsets 

(Lee et al., 2013). 

 

1.3.6. Mucosal-associated invariant T cells (MAITs) 

Mucosal-associated invariant T cells (MAITs) are a rare T cell population in mice. MAITs 

are found in various tissues such as liver, lung and LP compartment (Rahimpour et al., 2015). 

These cells have semi-invariant T cells that recognise antigens from cells expressing MHC 

related protein 1 (MR1). A report suggests that MAIT may be able to recognize microbial- 

and vitamin B2-derived antigens. MAITs are absent in GF mice, suggesting an essential role 

of commensal microbiota for the maintenance of MAITs (Ussher et al., 2014).  

1.4. Humoral immune system 

As previously described, there are numerous types of different specialised immune cells. In 

common, these cells secrete various cytokines and interleukins as a response towards non-

specific and specific antigens. The secreted proteins include TNFα, interferons (IFN), 

chemoattractant cytokines named chemokines and pro- and anti-inflammatory interleukins 

(ILs). Interferons can be classified into type I, II and III, which correspond to IFNα and IFNβ, 

IFNγ and IFNλ, respectively (Pott and Stockinger, 2017). IFNγ is secreted from e.g. Th1 cells 

and has been shown to be important for managing infection by the intestinal parasite Eimeria 

vermiformis (Smith and Hayday, 2000). IFNλ has received attention as being important for 

clearance of enteric viruses such as rotavirus (Pott et al., 2011) and murine norovirus (MNV) 

(Nice et al., 2015). 
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As previously described, plasma cells in the intestinal immune system produce IgA 

molecules. IgA is abundant in the mucus layer, topping the intestinal epithelial barrier. IgA 

both coats and contains the commensal microbiota. Interestingly, these IgA molecules have 

been suggested to be polyreactive towards commensal microbiota (Bunker et al., 2017). The 

importance of IgA has been shown by using AID-/- mice. These mice fail to undergo 

antibody class switching and hence cannot produce IgA. These mice had altered and 

increased microbiota abundance (Wei et al., 2011; Fagarasan et al., 2002). IgA production is 

almost absent in GF mice (Wu et al., 2016). The role of the microbiota for the immune 

system will be discussed further in Chapter 7 and Chapter 8. 

 

Finally, within the humoral immune system there is the complement system. This system can 

become activated by three different pathways: classical, lectin and alternative pathways. In 

common, all three pathways lead to the activation of the enzyme C3 convertase, leading to 

the cleavage of the protein C3 into C3b and C3a. C3a is released and together with C5a 

recruit other immune cells such as phagocytes to eliminate the target, while C3b is 

opsonizing targets which enables phagocytic uptake (Ricklin et al., 2010). In addition, other 

factors form a membrane attack complex (MAC) that can destroy the target cell (Bohlson et 

al., 2007). 

1.5. Mucosal-associated lymphoid tissues (MALTs)  

The composition of different immune cells, as described above, varies depending on which 

tissue is examined. Each tissue has its own challenges and requirements. Therefore, tissue-

resident immunity has gained particular interest, especially at the mucosal sites such as skin, 

lung and the intestinal compartment (Belkaid and Naik, 2013; Rosato et al., 2017). The 

immune system at those sites does not only consist of immune cells, but also secondary and 
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tertiary lymphoid clusters and other arrangements. The collective names for those have been 

named after each sites: bronchus-associated lymphoid tissues (BALT), skin-associated 

lymphoid tissues (SALT) and gut-associated lymphoid tissues (GALT). These sites vary in 

terms of size, immune cell composition, exposure to microbiota and the challenges they face. 

All these lymphoid tissues, particularly GALT, will be described in more details in Chapter 5. 

The rest of this chapter will focus on describing the intestinal immune system, particularly 

intestinal epithelial cells (IECs) and intraepithelial lymphocytes (IELs). 

 

1.6.1. Intestinal epithelial cells (IECs) organisation  

The gastrointestinal (GI) tract is one of the largest mucosal areas exposed to the external 

environment. It is exposed to dietary components, beneficial and pathogenic microorganisms 

(Artis, 2008). The intestinal immune system needs to be tolerant towards nutrients and 

microbiota present in the intestinal lumen, while simultaneously detecting and responding to 

dangers such as pathogens. In addition, even beneficial microorganisms present in the 

intestinal lumen can become opportunistic pathogens. Failure to maintain the delicate balance 

between tolerance and immune responses can lead to a hypo- or hyper-responsive immune 

system. The latter could lead to intestinal inflammatory or autoimmune diseases such as 

inflammatory bowel disease (IBD) and celiac diseases (CD). Therefore, a properly regulated 

intestinal immune system is critical. 

 

The first line of defence in the GI tract consists of a single-cell layer of intestinal epithelial 

cells (IECs) that forms a physical barrier, which separates the intestinal lumenal content from 

the intestinal compartments. A specialized IEC subset, namely goblet cells, secrete mucus. 

This mucus, in addition to secreted IgA from intestinal plasma cells, forms a protective layer 

that spatially separates the IEC barrier from commensal microbiota. 
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The organisation of the IEC barrier varies along the intestinal tract. The small intestine can be 

divided into three segments. Starting from the junction with the stomach is duodenum, 

followed by jejunum and ileum. There are reported differences between the different small 

intestinal segments such as different amount of microbial colonization, the number of PPs 

(Ramanan and Cadwell, 2016), gene expression (Lickwar et al., 2017), alternation in the 

number and subset composition of IELs (Suzuki et al., 2000; Chennupati et al., 2010; 

Hoytema van Konijnenburg et al., 2017) and IEC subsets (Cheng and Leblond, 1974; Haber 

et al., 2017). In the small intestine, IECs are organised into finger-like epithelial projections 

called villi domains and epithelial invaginations called crypt domains (Peterson and Artis, 

2014) (Fig 1.1 A). In contrast, the IEC barrier in the colon and caecum lack villi structures 

and contain crypt domains only (Barker, 2014) (Fig 1.1 B). The IEC barrier is not a mere 

physical barrier. IECs are actively interacting with dietary residues, commensal 

microorganisms and potential pathogens at the apical side. On the basal and basolateral sides, 

IECs are interacting with the immune cells localized beneath and between IECs, as well as 

other supporting cells present closely to the IEC barrier.  

 

There is a symbiotic relationship between IECs and commensal microbiota. The commensal 

microbiota are using the large IEC barrier area as their habitat, while IECs benefit from 

commensal microbiota. For example, in antibiotic treated mice, IECs showed down-

regulation of genes involved in cell proliferation (Reikvam et al., 2011). IECs make use of 

pattern recognition receptors (PRRs), such as Toll-like-receptors (TLRs), to recognize 

various molecular patterns from microorganisms. Most of the TLRs present on IECs are 

found on their basolateral side (Lavelle et al., 2010). It has been suggested that IECs’ 

expression of TLRs may be spatially and functionally different to organize and cope with 

stimuli from commensal microorganisms, pathogens and immune cells. Moreover, it has been 
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shown that mice having deficiency in the TLR signalling molecule MyD88, specifically in 

the IECs, secreted less of the antimicrobial proteins (AMPs) RegIIIγ, and are more 

susceptible to L. monocytogenes infection (Brandl et al., 2007). 

 

Furthermore, it has been suggested that IECs may have the ability to function as antigen 

presenting cells (APCs) to the underlying immune cells: IECs express MHC-II, CD1d and 

other molecules involved in the antigen presentation machinery (Hershberg and Mayer, 

2000). The molecular mechanisms behind the IEC interactions with their environment are 

still poorly understood. In this thesis, the focus will be on the interactions between the IECs 

and cells from the hematopoietic immune system, but first I will describe the different IEC 

subsets that have been identified. 

 

1.6.1.1. Intestinal epithelial stem cells (IESCs) 

Intestinal epithelial stem cells (IESCs) reside in the crypt domains of the small and large 

intestine. In each crypt domain, there are approximately 15 multipotent IESCs. Two distinct 

IESC populations have been identified. One IESC population is long-lived and characterized 

by the expression of leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5). 

Lgr5 has been identified as a gene targeted by Wnt signalling (see section 4.1.3.). With the 

use of Lgr5-lacZ reporter mice, Lrg5 expression in the crypt structures has been confirmed, 

as well as the ability of Lrg5+ cells to renew the whole IEC barrier (Barker et al., 2007). 

Lgr5+ IESCs are responsible for the continuous renewal of IECs. The second identified IESC 

population is located four cells from the crypt base, and these cells are named +4 IESCs. 

They are thought to be quiescent until any kind of epithelial injury or stress occurs (Horita et 

al., 2014; Gracz and Magness, 2014). IESCs divide every 24 hours generating between 16 to 

32 daughter cells per day (Sato and Clevers, 2013). Thus, the whole mouse intestinal 
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epithelial barrier is renewed every 3-5 days (Clevers, 2013). This makes the IEC barrier the 

fastest self- renewing tissue in the body (Snippert et al., 2010).  

 

IESCs generate all epithelial cell subsets via their daughter cells, named transit-amplifying 

cells (TA cells). The main epithelial subsets are enterocytes, Paneth cells, goblet cells and 

enteroendocrine cells, with the three cell subsets latter being called secretory IECs (Sato and 

Clevers, 2013). Recent single-cell RNA sequencing study of the intestinal epithelium 

suggests that additional subsets of e.g. Paneth cells, Tuft cells and enteroendocrine cells are 

present (Haber et al., 2017).  

 

1.6.1.2. Absorptive enterocytes  

The vast majority of IECs are enterocytes, which are responsible for the absorption of fluid 

and nutrients from the intestinal lumen. Therefore, enterocytes are also called the absorptive 

IEC subset. On their apical side, Enterocytes have mini-villi structures called microvilli, to 

maximize the absorption area. In addition to their absorptive capacities, enterocytes express 

AMPs such as the C-type lectin RegIIIγ (Vaishnava et al., 2008).  

 

1.6.1.3. Goblet cells 

The second major IEC subset are goblet cells that secrete mucus, which forms a protective 

layer on top of the intestinal epithelial barrier (Sato and Clevers, 2012). In the small intestine, 

the secreted mucus from goblet cells fills the space from the crypt domains up beyond to the 

villi tips (Ermund et al., 2013). This layer forms spatial segregation between IECs and 

commensal microbiota. The Th2 cytokines IL-4 and IL-13 can both lead to goblet cell 

hyperplasia with mucus release (Gerbe et al., 2016). In addition, goblet cells have been 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 1 Introduction 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 55  
Copyright © 2018 Frising UC 

reported to be capable of transferring low molecular antigens through the epithelial barrier to 

CD103+ intestinal DCs (McDole et al., 2012).  

 

1.6.1.4. Paneth cells 

Paneth cells are characterised by secretion of various AMPs such as cryptdins and RegIIIγ 

(Cash et al., 2006). Cryptidin kills bacteria by disrupting their membrane, while the 

mechanism of actions of the other AMPs remain to be fully characterized (Mukherjee et al., 

2008). Paneth cells can de-granulate rapidly if exposed to pro-inflammatory cytokines such 

as IFNγ (Farin et al., 2014). In addition, Paneth cells secrete epidermal growth factor (EGF) 

and Wnt, two essential factors to support IESCs in the crypt domains (Sato et al., 2011). It 

has been shown that the TF Sox9 is essential for Paneth cell formation, as Villin-Cre-Sox9fl/fl 

mice lack Paneth cells. Interestingly, these mice have normal numbers of the remaining IEC 

subsets (Mori-Akiyama et al., 2007). Paneth cells remain in the crypt domains, supporting 

IESCs, while the other IEC subsets migrate upwards along the crypt-villus axis (Cheng, 

1974). Paneth cells are also the longest lived IEC subset with reports suggesting that Paneth 

cells can be maintained for up to two months (Gerbe et al., 2012). 

 

1.6.1.5. Enteroendocrine cells 

Up to one percent of the epithelial barrier consists of enteroendocrine cells (Cheng and 

Leblond, 1974; Worthington et al., 2017) These cells secrete various hormones necessary for 

intestinal homeostasis such as serotonin, cholecystokinin, vasoactive intestinal peptide and 

enteroglucagon. Studies have demonstrated that there are at least 10 different enteroendocrine 

subsets. These are identified by the hormone the cells secrete (Schonhoff et al., 2004). 

Studies have shown that enteroendrocrine cells express TLRs and can respond to TLR 
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stimulation by releasing the hormone characteristic of that particular subset of 

enteroendocrine cells (Abreu, 2010). 

 

1.6.1.6. Microfold (M) cells 

Microfold (M) cells are located just above the secondary lymphoid organ Payers’ Patches 

(PPs). M cells are able to transfer luminal antigens to underlying secondary lymphoid organs 

such as PPs, and thereby provide the main entry of antigens to PPs (Reboldi and Cyster, 

2016). It has been reported that receptor activator of nuclear factor-kappa B (RANK) and its 

ligand RANKL are essential for M cell formation. M cells are characterized by staining for 

the lectin ulex europaeus agglutinin-1 (UEA-1) and the number of UEA-1+ cells is 

significantly reduced in RANKL-/- mice. In addition to the reduction in the number of M 

cells, the faecal level of IgA is significantly reduced in RANKL-/- mice (Knoop et al., 2009). 

These data suggest that PPs are the main source of IgA, an essential component of the 

intestinal humoral immune system. The source of RANKL is suggested to be from intestinal 

stromal cells located underneath PPs (Mabbott et al., 2013).  

 

1.6.1.7. Tuft and cup cells 

In addition to the above IEC subsets, there are additional epithelial subsets found at low 

frequency, namely tuft cells and cup cells. The exact functions of tuft cells and cup cells 

remain unknown. Particularly cup cells are poorly studied (Mabbott et al., 2013; Gerbe et al., 

2012).  

 

To date, the best identification of tuft cells are based on their morphological structures as well 

as expression of doublecortin-like kinase 1 (DCLK-1) (Gerbe et al., 2012). It has been 

estimated that between 0.4-1.0% of murine IECs are tuft cells. Although their exact functions 
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remain to be determined, it has been shown that the number of tuft cells increases during T. 

muris infection (Howitt et al., 2016). An increase in the number of tuft cells is also observed 

during Nippostrongylus brasiliensis (N. brasiliensis) infection. This study also identified 

POU class 2 homeobox 3 (Pou2f3) as an additional factor specific for tuft cells. Mice 

deficient in this protein showed a higher N. brasiliensis infection burden than control mice 

(Gerbe et al., 2016). 

 

Figure 1.1. The intestinal epithelial barrier organisation in the small and large intestine. 

The distrubution of the different IEC subsets varies between A) small intestine and B) large 

intestine; there are no Paneth cells and more goblet cells in the large intestine compared to the 

small intestine. IELs are found in the beige areas, while lamina propria lymphocytes (LPLs) 

are found in the pink areas in the illustrations. Modified from Barker N, Nat Rev Mol Cell 

Biol, Vol:15(1):19-33.  
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1.6.2. Lamina propria lymphocytes (LPLs) 

In the lamina propria compartment, beneath the IEC barrier, there is a network of connective 

tissue, SLOs such as MLNs and PPs, and immune cells such as intestinal DCs, MPs, and T 

cells. Intestinal DCs and MPs were briefly described in section 1.2.3. and 1.2.5., respectively.  

 

The majority of the T cells found in the LP, named lamina propria lymphocytes (LPLs) are 

CD4+ T cells. In addition, there are barely any CD8αα+ LPLs (Romagnani et al., 2017). The 

number of CD8α+ LPLs are reduced in the absence of the chemokine ligand 25 (CCL25) and 

chemokine receptor 9 (CCR9) (Wurbel et al., 2007). All the different subsets of CD4+ cells, 

Th1, Th2, Th17 and Treg cells are found in the LP compartment (van Wijk and Cheroutre, 

2009; Wurbel et al., 2007). These CD4+ cell subsets were introduced in section 1.3.2.2.-

1.3.2.7. 

 

The number of intestinal Th17 cells are reduced in germ-free (GF) mice, but not in MyD88-/-

TRIF-/- mice. Interestingly, the authors showed that addition of ATP increased the number of 

Th17 cells, and luminal ATP is reduced in GF mice (Atarashi et al., 2008). Another group 

demonstrated that addition of the Gram-positive segmented filamentous bacteria (SFB) to GF 

mice is sufficient to induce intestinal Th17 cells (Ivanov et al., 2009).  

 

In contrast to intestinal Th17 cells, the number of intestinal Treg cells are not reduced in GF 

mice (Min et al., 2007). It has been reported that TGFβ is essential for intestinal Treg cell 

functions. This was shown using a dominant negative form of the TGFβRII (dnTGFβRII) and 

the Powrie colitis model. Addition of WT Treg cells in this model rescue the mice from the 

induced intestinal inflammation, but that was not the case with dnTGFβRII Treg cells. These 

Tregs also failed to suppress IFNγ production from Th1 cells (Fahlén et al., 2005). 
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1.6.3. Intestinal intraepithelial lymphocytes (IELs) – the main immune 

cell population within the intestinal epithelium 

Most immune cells within the intestinal epithelium are IELs (Fig 4.3. A-B). They reside in 

close proximity to IECs, particularly in the small intestine. On average, there is one IEL for 

every 4-10 IECs in the small intestine (Edelblum et al., 2012), while in the colon there is one 

IEL for every 30-50 IECs (Kunisawa et al., 2007). IELs are a unique class of lymphocytes. 

They differ from naïve CD8α+ T cells, found in tissues such as spleen, in that IELs express 

some lymphocyte activation markers such as CD69 and CD44, but lack or express at low 

levels other common CD8α+ T cell activation markers such as CD25, Ly6C and OX40 (Wang 

et al., 2002). Like NK cells, IELs have high expression of cytotoxic proteins such as 

granzyme A, granzyme B and Fas ligands (Fahrer et al., 2001). It is worth noting that, in 

addition to its cytotoxic properties, granzyme B has recently been reported to affect bacterial 

protein synthesis (Dotiwala et al., 2017). 

 

In the small intestine, most IELs do not express the classical TCRαβ (30-40%) but rather the 

non-classical TCRγδ (60-70%). In the colon, the opposite ratio between TCRγδ+ and TCRαβ+ 

IEL has been reported (Kunisawa et al., 2007). TCRs are associated with invariable CD3 

membrane proteins consisting of γ-, δ-, ε- and ζ domains. In mice lacking the ζ domain, TCR+ 

lymphocytes in the spleen are missing. In contrast, TCRαβ+ IELs seem unaffected by the lack 

of the ζ domain and only TCRγδ+ IELs are reduced in number (Liu et al., 1993).  

 

Past studies have identified seven different γ-chain segments (Heiling and Tonegawa, 1986; 

Elliott et al., 1988) and seven different δ-chain segments that can be used for TCR 

recombination (Garman et al., 1986). Interestingly, the expression of a specific Vγ-chain 

correlates strongly with the tissue location. For example, all dendritic epidermal TCRγδ+ T 
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cells (DETCs) express Vγ5 or Vγ3 (according to the Heilig & Tonegawa or Garman 

nomenclature). In contrast, IELs express Vγ7 or Vγ5. The Vγ7 segment that IELs carry can 

be combined with several different Vδ segments, but most IELs express Vδ4 (Allison and 

Havran, 1991). Thus, the potential antigen repertoire is more restricted in IELs compared to 

other T cells. What the TCRs of IELs recognise is still unknown. 

 

The IEL population can be divided with respect to expression of the co-receptors CD8αα, 

CD8αβ and CD4. There are five major IEL subsets: TCRγδ+ CD8αα+, TCRαβ+ CD8αα+, 

TCRαβ+ CD8αβ+ and CD8αα+ CD4+IELs (Guy-Grand et al., 2013), with a fifth TCRγδ+ 

CD8αβ+ IEL population having been identified (Kadivar et al., 2016). In contrast to systemic 

T cells, which all express the co-stimulatory molecule CD28, only CD8αβ+ IELs do so, while 

remaining IEL subsets lack this protein in IELs sourced from BALB/c mice (Ohteki and 

MacDonald, 1993). 

 

There has been some evidence reported that there is a plasticity between peripheral CD4+ T 

cells and IELs. One paper demonstrated that CD4+ T cells can be re-programmed into IELs 

by co-expressing the TFs T-bet and Runx3 (Reis et al., 2014). As TCRγδ+ CD8αα+, TCRαβ+ 

CD8αα+ and TCRαβ+ CD8αβ+ IELs as well as Tmem and Tcm cells from spleen have been 

shown to express T-bet (Klose et al., 2014), induction of Runx3 seems to be the critical factor 

for IEL re-programming. Another group developed a transnuclear mouse colony, with mice 

carrying a monoclonal TCR sourced from a CD4+ Treg cell. Using these mice, the authors 

demonstrated that these cells could become either Treg cells or CD8αα+ CD4+ IELs. This 

plasticity was shown to be dependent on the commensal microbiota, as mice on antibiotic 

treatment had fewer CD8αα+ CD4+ IELs which had less proliferative capacity (Bilate et al., 

2016). 
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The origin of IELs is still under debate, with both thymic and extrathymic pathways having 

been suggested (Rocha et al., 1994; Cheroutre and Lambolez, 2008). Depletion of TCRδ 

genes does not affect the frequency of TCRαβ+ and CD4+ T cells (Itohara et al., 1993). 

TCRγδ+ CD8αα+ and TCRαβ+ CD8αα+ IELs are thought to be able to home to the intestinal 

compartment directly from the thymus and are named natural IELs or type b IELs. TCRαβ+ 

CD8αβ+ and CD8αα+ CD4+IELs are thought to be activated in SLOs such as MLNs and PPs, 

prior to homing to the intestinal compartment, and are called induced IELs or type a IELs 

(Guy-Grand et al., 1991; Cheroutre et al., 2011) (Fig 1.2). Indeed, fate-mapping experiments 

have suggested that all TCRαβ+ IELs first become activated in MLNs and PPs before homing 

to the intestinal compartment (Eberl and Littman, 2004). In contrast, it has been reported that 

CD8+ thymic emigrants can home to the small intestine in lymphotoxin-α-deficient mice – 

mice that lack SLOs (Staton et al., 2006). These data suggest that it is possible for IELs to 

home to the intestinal compartment without previous activation in SLOs. TCRγδ+ IELs have 

been reported to be able to originate from emigrated T cell-committed progenitor cells 

(Lambolez et al., 2006), as well as being present in athymic mice (Emoto et al., 2004). Recent 

data suggest that TCRαβ+ IELs have two types of precursors, one expressing PD-1 and the 

other T-bet, as both identified populations can generate IELs when transferred into Rag2-/- 

mice (Ruscher et al., 2017). 
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Figure 1.2. IEL development and homing to the small intestine. This schematic overview 

illustrates the model of a conventional and an alternative thymic selection process for induced 

and natural IELs, respectively. It also illustrates the suggested priming-dependent and 

priming-independent homing pathways for induced and natural IELs, respectively. Modified 

from Cheroutre et al. Nat Rev Immunol. (7):445-56. 

 

In terms of immunopathology and immunoprotection, different roles have been suggested for 

TCRγδ+ and TCRαβ+ IELs. It has been reported that TCRα-/-, TCRβ-/- and TCRβ-/- TCRδ-/- 

mice develop spontaneous symptoms of intestinal inflammation, which are most severe in 

TCRα-/- mice. TCRβ-/- TCRδ-/- mice have higher frequency of spontaneous development of 

these than TCRβ-/- mice (Mombaerts et al., 1993). In the Toxoplasma gondii (T. gondii) 

infection model, the transfer of TCRαβ+ IELs into Rag2-/- mice caused more tissue damage 

than the transfer of TCRγδ+ IELs (Egan et al., 2011). The parasite load in TCRγδ-/-mice is 

higher than that in WT controls (Edelblum et al., 2015). In another infection model, i.e. that 

involving Eimeria vermiformis (E. vermiformis) (for further information about the Eimeria 

model, see Chapter 7) TCRαβ-/- mice have higher parasite production than control mice, 

while TCRγδ-/- mice have lower parasite production (Roberts et al., 1996). TCRγδ-/- mice 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cheroutre%20H%5BAuthor%5D&cauthor=true&cauthor_uid=21681197
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exhibit worse DSS-induced colitis symptoms, such as more severe weight loss, than control 

mice (Kober et al., 2014) (for further information about the DSS-induced colitis model, see 

Chapter 7). Overall, it seems that TCRγδ+ IELs may have properties biased towards 

promoting intestinal tissue integrity, while TCRαβ+ IELs may be biased towards 

immunoprotective properties. 

 

Previous publications suggest that TCRγδ+ and TCRαβ+ IEL populations require different 

factors for their maintenance in the intestinal epithelium. It has been reported that in vitamin 

D receptor-deficient mice the number of TCRαβ+ IELs is reduced, while the number of 

TCRγδ+ IELs remain unchanged (Bruce and Cantorna, 2011). A similar trend was observed 

in mice deficient in TGFβ (Konkel et al., 2011). On the other hand, in G-protein receptor 

(GPR)18-deficient mice, the number of TCRγδ+ IELs is reduced, while the number of  

TCRαβ+ IELs remain at a similar numbers to control mice (Wang et al., 2014). It has been 

reported that the transcription factor T-bet is important for IEL development, with reduction 

in the numbers of all IEL subsets (Reis et al., 2014). Reduction in the number of TCRγδ+ 

IELs is observed in mice deficient in the extracellular matrix protein osteopontin (Opn) (Ito et 

al., 2017). Using various knock-out mice, it has been reported that TCRγδ+ IELs are reduced 

in the context of deficiency in MyD88 (Yu et al., 2006), TLR2 (particularly CD8αα+ and 

TCRγδ+ IELs, but not CD4+ IELs) (Qiu et al., 2016), the TF aryl hydrocarbon receptor (AhR) 

(Li et al., 2011), CCL25, CCR9 (Wurbel et al., 2007), CD103 (Schön et al., 1999), common γ 

chain (Cao et al., 1995), IL-15Rα (Lodolce et al., 1998) and IL-7R (Maki et al., 1996).  

 

The reduction in the number of IELs in MyD88-/- and TLR2-/- mice suggests that 

commensal organisms may be important for the maintenance of TCRγδ+ IELs, as 

commensals are involved in generating products triggering toll-like-receptor (TLR) 
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signalling. Interestingly, in germ-free (GF) mice, only CD8αβ+ TCRαβ+ IELs have been 

reported to be reduced in numbers, while the other IEL populations remain at a similar 

number to control mice (Kawaguchi et al., 1993; Di Marco Barros et al., 2016; Klose et al., 

2014). These observations suggest a smaller role for commensal microbiota for IEL 

maintenance and raising the possibility that another TLR stimulating factor such as viruses 

may be required for triggering MyD88 signalling.  

 

As AhR is suggested to be an environmental sensor and has reported ligands derived from the 

diet (Gu et al., 2000), the reduction of TCRγδ+ IELs observed in AhR-/- mice would suggests 

that TCRγδ+ IELs require stimuli from the diet for their maintenance. In contrast, mice 

deficient in the AhR receptor nuclear translocator (ARNT) have reduced number of TCRαβ+ 

CD8αα+ IELs, while the number of TCRγδ+ CD8αα+, TCRαβ+ CD8αβ+ and TCRαβ+ CD4+ 

IELs remains at a similar level to controls (Nakajima et al., 2013).  

 

The reduction of total IELs in CCL25-/- and CCR9-/- mice, indicates the importance of this 

chemokine combination for IEL homing, but at the same time suggest that these are not 

strictly required for IELs, as there are still IELs found in both these KO mice. The common γ 

chain is part of the IL-2, -4, -7, -9, -15 and -21 receptors and their signalling (Asao et al., 

2001; Cao et al., 1995) suggesting an important role for one or more of these cytokines for 

IELs. Further studies are required to understand the role of the different IEL subsets in 

intestinal homeostasis.  

 

One of these cytokines has received particular interest for IEL maintenance, namely IL-15. It 

has been reported that IECs can trans-present IL-15 to IELs (Ma et al., 2009). For the IL-15 

trans-presentation, the presenting cells present the cytokine via IL-15Rα to the responding 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 1 Introduction 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 65  
Copyright © 2018 Frising UC 

cells that accept IL-15 via the IL-15Rβ-IL-2Rγ heterodimer. This suggests that IECs may be 

directly important for IEL survival. The reduction in the number of IELs in IL-15Rα-/- mice, 

and in Villin-cre-IL-15Rα mice (Mortier et al., 2009), could be restored in IL-15Rα-/- mice, 

that in addition had a villin-specific knock-in of IL-15Rα, hence making IL-15 trans-

presentation possible in the IEC compartment only (Ma et al., 2009). However, the number of 

IELs in these knock-in mice was above the level found in WT control mice. This shows the 

complexity of the role of IL-15 and IL-15 trans-presentation for IEL-IEC interactions.  

 

The above sections have described murine IELs, which will be the focus in this thesis. 

Murine IELs have some similarities to human IELs. Like murine IELs, the vast majority of 

human IELs are CD8α+ (Leon, 2011) and CD103+ (Cerf‐Bensussan et al., 1987). Furthermore, 

like murine IELs, human IELs exhibit a preference in terms of which TCR segments they 

express. Thus, while murine TCRγδ+ IELs are reported to consist mainly of Vγ5+ Vδ4/6+ cells 

(Allison and Havran, 1991), human TCRαβ+ IELs and TCRγδ+ IELs mainly consist of Vβ6.7+ 

(Van Kerckhove et al., 1992) and Vδ1+ cells (Groh et al., 1998), respectively. These data 

suggest that both murine and human IELs may have a restricted set of antigens to which they 

can respond. In addition, both murine and human IELs are frequent in the intestinal epithelial 

compartment. One report suggests that 5-15 % of the cells isolated from human intestinal 

epithelium are IELs (Camarero et al., 2007). Another report suggests that there is 1 human 

IEL per 4-50 IECs (Hayat et al., 2002), while other reports suggest that there is 1 murine IEL 

per 4-10 IECs (Beagley et al., 1995; Schön et al., 1999; Wurbel et al., 2007; Edelblum et al., 

2012). Both human and murine IELs can exhibit type 1 responses such as IFNγ, TNFα and 

granzyme B production. However after re-stimulation with PMA and ionomycin, murine 

IELs contain more granzyme B relative to IFNγ while the opposite trend applies to human 

IELs (Mayassi and Jabri, 2018). Another difference between murine and human IELs is the 
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IEL subset composition. The largest murine IEL subset is TCRγδ+ CD8αα+ IELs, while the 

largest human IEL subset is TCRαβ+ CD8αβ+ IELs. In addition, murine IELs mainly express 

the co-receptor CD8αα, while human IELs expressing  CD8αα are not detectable (Mayassi 

and Jabri, 2018). These data illustrate that murine and human IELs have different IEL subset 

composition. Changes to human IEL subset composition have been shown in an intestinal 

disorder: increased proportion of human TCRγδ+ IELs is detected early in celiac disease 

patients (Leon, 2011; De Andrés et al., 2015). The similarities and differences between 

murine and human IELs are important to consider for translational research. 

 

Despite extensive research on IEL biology there are still many questions remaining in terms 

of their development, maintenance and activation - with the two latter being particularly 

important for appropriate immune tolerance and protective responses that are essential for 

intestinal homeostasis. Therefore, these are the main areas of focus in my thesis.  
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Chapter 2: Ph.D. Thesis specific aims 

The overall aim of this thesis is to investigate further the requirements for IEL activation and 

maintenance. One major hindrance for further understanding of IEL biology has been the lack 

of in vitro models for IELs. Developing an effective in vitro model for IELs would make it 

possible to gain and address mechanistic insights into IEL biology. Further understanding of 

IEL activation would have significance for deeper understanding and discovery of potential 

treatments of intestinal disorders, in which IELs are thought to play a role. I have investigated 

IEL biology by utilizing both in vitro and in vivo techniques.  

 

In Chapter 4, I investigate further the issue of IEL maintenance through a series of experiments 

combining IELs with intestinal organoids, “mini-guts”. The observation that IELs survive 

poorly in vitro suggests that factor(s) may be missing that are present in the in vivo intestinal 

compartment. Intestinal organoids could supply these missing factors, increasing IEL 

survivability in vitro. 

 

In Chapter 5, I dissect further differences between IELs and other CD8α+ T cells, TCRγδ+ T 

cells and epithelial-resident lymphocytes. The focus of this assessment has been on metabolic 

pathways, particularly those involving mitochondria, in the light of the recent recognition of 

the importance of cell metabolism for immune effector functions. 

 

In Chapter 6, I demonstrate that IELs exhibit mitochondrial plasticity during their activation. 

Additionally, these experiments were performed to study the differences between IEL subsets. 

Among IEL subsets, there are significant differences in terms of kinetics and amplitude of 

activation responses. In addition, the data acquired suggest an IEL activation model, in which 

mitochondrial changes seem to be required for effector functions.  
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Finally, in Chapter 7, I use intestinal infection models to obtain IEL activation data from 

physiologically relevant settings. These data do not only a support mitochondria-dependent 

IEL activation mechanism but also suggest a role for commensal microbiota as one inducer of 

IEL activation. 
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Chapter 3:  Materials and Methods 

 

3.1. Reagents 

Table 3.1 Medium used for cell and tissue isolation and culture procedures 

Medium / Buffer Compound Concentration Company 

IEL buffer Ca2+ and Mg2+-free PBS  Sigma Aldrich 

 Fetal bovine serum (FBS) 10 % (v/v) Sigma Aldrich 

 Sodium pyruvate 1 mM Gibco 

 HEPES 10 mM Gibco 

 EDTA 10 mM Sigma Aldrich 

 Penicillin 100 U/ml Gibco 

 Streptomycin 100 µg/ml Gibco 

 Polymyxin B 10 mg/ml Sigma Aldrich 

Percoll density gradient 

medium MilliQ water Base 

Prepared at the 

Babraham Institute 

 

Percoll 

(15-30 nm colloidal silica 

particles coated with 

polyvinylpyrrolidone in 

23% w/w water)  37.5 % (v/v) Sigma Aldrich 

 10x PBS 1x Sigma Aldrich 

MACS buffer 1x PBS Base 

Prepared at the 

Babraham Institute 

 FBS 1 % (v/v) Sigma Aldrich 

 EDTA 1.25 mM Sigma Aldrich 

ACK buffer MilliQ water Base 

Prepared at the 

Babraham Institute 

 NH4CL 8.024 mg/ml Sigma Aldrich 

 KHCO3 1.001 mg/ml Sigma Aldrich 

 EDTA-Na2-2H20 3.722 mg/ml Sigma Aldrich 

Complete IMDM IMDM Base Sigma Aldrich 

 FBS 5 % (v/v) Sigma Aldrich 

 L-Glutamine 2 mM Gibco 

 Penicillin 100 U/ml Gibco 

 Streptomycin 100 µg/ml Gibco 

 β-mercaptoethanol 2.86 mM Sigma Aldrich 

Basal organoid medium Advanced DMEM/F12 Base Gibco 

 Penicillin 100 U/ml Gibco 

 Streptomycin 100 µg/ml Gibco 

 HEPES 10 mM Gibco 

 GlutaMAX 2 mM Gibco 
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Complete organoid medium Advanced DMEM/F12 Base Gibco 

 Penicillin 100 U/ml Gibco 

 Streptomycin 100 µg/ml Gibco 

 HEPES 10 mM Gibco 

 GlutaMAX 2 mM Gibco 

 N2 supplement 1x Life Technologies 

 B27 supplement 1x Life Technologies 

 EGF 50 ng/mL Life Technologies 

 N-acetylcysteine 1 mM Sigma Aldrich 

 Noggin 100 ng/mL eBioscience / Peprotech 

 R-spondin 10 % (v/v) 

293T-HA-RspoI-Fc 

cells (Provided by 

Calvin Kuo) 

 

 

Table 3.2 Antibodies and probes used for image acquisition and analysis  

Specificity Clone Reactivity Company 

CD45.2 104 Mouse Biolegend 

Click it Plus EdU     Thermo Scientific 

DAPI     Thermo Scientific 

E-Cadherin 36/E-Cadherin Mouse and human BD Biosciences 

EpCAM G8.8 Mouse Biolegend 

Ki-67 

Rabbit polyclonal 

(ab15580) 
E.g. mouse 

Abcam 

Lysozyme 

Rabbit polyclonal 

(ab2408) 
E.g. mouse 

Abcam 

MitoTracker Deep Red 

(MTDR)     Thermo Scientific 

MitoTracker Orange (MTO)     Thermo Scientific 

Mucin-2 

Rabbit polyclonal 

(H-300) E.g. mouse 
Santa Cruz 

Biotechnology 

Phalloidin     Thermo Scientific 

Goat anti-rabbit IgG Goat Polyclonal Rabbit IgG Life Technologies  
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Table 3.3 Antibodies and dyes used for flow cytometric analysis  

Specificity Clone Reactivity Company 
CD4 GK1.5 Mouse Biolegend 

CD4 RM4-5 Mouse Biolegend 

CD8α 53-6.7 Mouse Biolegend 

CD8β YTS156.7.7 Mouse Biolegend 

CD11b M1/70 Mouse and human Biolegend 

CD11c N418 Mouse Biolegend 

CD19 6D5 Mouse Biolegend 

CD24 M1/69 Mouse Biolegend 

CD25 PC61 Mouse Biolegend 

CD44 IM7 Mouse and human Biolegend 

CD45.1 A20 Mouse Biolegend 

CD45.2 104 Mouse Biolegend 

CD62L MEL-14 Mouse Biolegend 

CD69 H1.2F3 Mouse Biolegend 

CD90.2 30-H12 Mouse Biolegend  

CD103 2EF Mouse Biolegend 

F4/80 BM8 Mouse Biolegend 

Gr-1 RB6-8C5 Mouse Biolegend 

GranzymeB 16G6 Mouse and human eBioscience 

I-A/I-E (MHCII) M5/114.15.2 Mouse Biolegend 

IFNγ XMG1.2 Mouse Biolegend 

IL-10 JES5-16E3 Mouse Biolegend 

IL-13 13A Mouse  Biolegend 

Ki-67 B56 Mouse and human BD Biosciences 

MitoSOX     Thermo Scientific 

MitoTracker Deep Red 

(MTDR) 
    Thermo Scientific 

MitoTracker Green (MTG)     Thermo Scientific 

MitoTracker Orange (MTO)     Thermo Scientific 

Acridine Orange 10-nonyl 

bromide (NAO) 
    Sigma Aldrich 

Near IR L/D     Thermo Scientific 

Nile Red     Cayman Chemicals 

NK1.1 PK136 Mouse BD Biosciences 

TCRβ H57-597 Mouse Biolegend 

TCRγδ UC7-13D5 / GL3 Mouse Biolegend 

TNFα MP6-XT22 Mouse Biolegend 

Vγ3 536 Mouse Biolegend 
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Table 3.4 Primers used for qPCR analysis 

Gene Primer AssayName 

Detection 

system 

Supplier 

Hprt1 mm00446968 m1 TaqMan Thermo Scientific 

Muc2 mm0045299 m1 TaqMan Thermo Scientific 

RegIIIγ mm 00441127 m1 TaqMan Thermo Scientific 

RegIIIβ Mm00440616_g1 TaqMan Thermo Scientific 

Hprt Mm_Hprt_1_SG SybrGreen Qiagen 

Defa5 Mm_Defa5_1_SG SybrGreen Qiagen 

IL15rα Mm_Il15ra_1_SG SybrGreen Qiagen 

IL15 Mm_15_1_SG SybrGreen Qiagen 

Lyz Mm_Lyz1_1_SG SybrGreen Qiagen 

TJP1 Mm_Tjp1_1_SG SybrGreen Qiagen 

Ocln Mm_Ocln_1_SG SybrGreen Qiagen 

CCL25 Mm_CCL25_1_SG SybrGreen Qiagen 

 

 

3.2. Mice 

All animal work was performed at the Babraham Institute, or at the Department of Veterinary 

Medicine at University of Cambridge, in accordance with the Animals Scientific Procedures 

Act (ASPA) 1986 under the Project Licences 80/2488 and 70/9073 and with the approval of 

the Babraham Institute Animal Welfare and Ethics Review Body (AWERB). 

 

Female and male C57BL/6J mice (Jackson Laboratories), were maintained at the Babraham 

institute), as well the following transgenic mice: TCRδ-H2B-eGFP (Prinz et al., 2006), AhR-

/- (Schmidt et al., 1996), Cyp1aT-/- (Dalton et al., 2000), Rag1-Cre (McCormack et al., 2003), 

Tbx21fl/fl, Eomesfl/fl (Intlekofer et al., 2008), AhRfl/fl (Lahvis and Bradfield, 1998), AhRRfl/fl 

(generated at the Babrham Institute; from University of California, Davis targeting facility), 

XBP1fl/fl (Kaser et al., 2008), Villin-Cre (Madison et al., 2002), IL-22-/- (Kreymborg et al., 

2007), IL-15Rα-/- (Lodolce et al., 1998), IL-7R-/- (Maki et al., 1996), IL-2Rγ-/- (Disanto et 

al., 1995), Rag2-/- (Hao and Rajewsky, 2001), and Rag2-/- and cytokine KO combinations 

knock-out mice generated by crosses at the Babraham Institute. These mice were used for 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjzoZmTubfWAhUrDsAKHcl7DIIQFggqMAA&url=https%3A%2F%2Fwww.ucdavis.edu%2F&usg=AFQjCNH71-oz70g3J4wFLE61lUMtaQnP9A
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experiments between the age of 5-20 weeks. Standard cages were used, which allowed 

maximum of five mice per cage. Unless otherwise stated, the mice received standard diet and 

autoclaved drinking water ab libitum. Mice were maintained under a twelve hours light/dark 

cycle and under specific pathogen-free (SPF) conditions at the Babraham Institute in 

accordance with the Babraham Institute Animal Welfare, Experimentation & Ethics 

Committee and the UK Home Office. 

 

3.3. In vivo experimental procedures 

All procedures were carried out at room temperature (RT), except when specified.  

 

3.3.1. T and B cell transfer model 

T and B cells were isolated by processing spleens and MLNs through 70 µm mesh filters. The 

cell suspension obtain in this way were underlayered with Lympholyte (Cedarlane), 

centrifuged at 1250 g for 15 min, then stained on ice with anti-CD90.2 and anti-CD19 

antibodies prior to FACS for T cells (CD90.2+ CD19- cells) and B cells (CD19+ CD90.2- cells), 

respectively. 1.0-2.5x106 cells re-suspended in sterile PBS were injected intravenously (i.v.) 

into each Rag2-/- recipient mice without anaesthesia. These mice were between 5-12 weeks of 

age at the time of i.v. transfer.  

 

3.3.2. Isolation of IELs from small and large intestine 

Small intestines were dissected, flushed with PBS, cut open longitudinally and subsequently 

cut transversely into 0.5 cm pieces. These fragments were transferred into IEL buffer and 

incubated in 37 °C at 200 rpm for 10 min in an Infors triple stack incubator shaker, followed 

by incubation in 37 °C at 100 rpm for 20 min. The resulting suspension was passed through a 
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100 µm filter and cells were collected at 500 g for 8 min. The cell pellet was resuspended in 

37.5 % Percoll density gradient medium and centrifuged at 700 g at RT for 10 min. The top 

layer was gently removed followed by the remaining Percoll supernatant. The pellet was 

processed further for flow cytometric analysis or cell sorting.  

 

3.3.3. IEL sort 

The resulting pellet, as described in section 3.3.2., was stained with anti-CD8α-PE or APC 

antibody and incubated on ice for 5 min in MACS buffer, followed by washing (500 g, 8 min). 

Then anti-PE or APC beads (Miltenyi Biotec) were added and the cells were incubated at 4 °C 

in the dark for 15 min. The cells were washed in MACS buffer and the solution was passed 

through a 40 µm mesh filter prior to AutoMACS enrichment (Miltenyi Biotec) using the 

positive selection programme (POSSEL) on the sample and subsequently on the negative 

fraction. The cells were then sorted based on CD8α expression using a BD Influx cell sorter. 

For live/dead discrimination, 4',6-diamidino-2-phenylindole (DAPI) was added prior to the 

sort. The gating of DAPI- CD8α+ IELs confirmed successful MACS-enrichment with over 80 

% of live cells being CD8α+. Afterwards the cells were collected (500 g, 8 min) and re-

suspended in PBS. Live cells were quantified with a Countess Automated Cell Counter (Life 

Technologies) by diluting a small volume of the sorted cells with trypan blue according to the 

manufacturer’s instructions.  

 

3.3.4. IEL transfer model 

1.0x105 IELs were injected i.v. into each recipient mice without anaesthesia. The recipient mice 

had the following genotypes: Rag2-/-, IL-2Rγ-/-Rag2-/- and IL-15Rα-/-Rag2-/-. Both female 

and male recipient mice were used with ages ranging from 5-12 weeks at the time of i.v. 
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injection. The recipient mice were left for 3 weeks before small intestines were harvested, 

processed and stained for flow analysis of the donor IELs. 

 

3.3.5. Bone marrow (BM) transfer model 

The femurs and tibias of donor mice (C57BL/6, Rag2-/-, IL-7R-/-Rag2-/-, IL-15Rα-/-Rag2-/- 

and IL-22-/-Rag2-/-) were used to isolate bone marrow (BM) cells. Tissues surrounding the 

bones were removed and femur and tibia carefully separated. Under sterile conditions, the 

bones were washed briefly in 70 % ethanol followed by sterile PBS. The ends of femur and 

tibia were cut off and the content of the bones flushed with sterile PBS using a 27 g needle. 

The cells were collected by centrifugation at 1200 rpm for 7 min at 4°C followed by red blood 

cell (RBC) lysis with ACK-buffer for 3 min on ice, followed by another centrifugation (at 1200 

rpm for 7 min at 4°C).  Rag2-sufficient bone marrow cell suspensions were stained with 2 µl 

of anti-CD90.2 microbeads per one femur and one tibia combination on ice for 10-15 min 

followed by AutoMACS depletion programme (DEPLETE) from which the negative fraction 

was collected. Resulting cell suspension was quantified using the Countess Automated Cell 

Counter as previously described. 2-5x106 BM cells were injected i.v. into each recipient mice, 

which had undergone sublethal irradiation (450 rads) prior to injection. Recipient mice were 

housed for 3-6 weeks after transfer after which the mice were used in subsequent experiments. 

 

3.3.6. 5-ethynyl-2'-deoxyuridine (EdU) incorporation 

5-ethynyl-2'-deoxyuridine EdU (Invitrogen) was dissolved in sterile PBS and 100 µg EdU per 

mouse was delivered by i.p. injection. Mice were killed 24 hours later and small intestines 

dissected for imaging analysis. 
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3.3.7. Anti-CD3 and anti-CD28 T cell activation model 

Mice were injected with 25 µg anti-CD3 (αCD3) (clone: 145-2C11) and/or 25 µg αCD28 

(clone: 37.51) i.p. Small intestines from treated mice were collected at 4, 24 and 48 hours post 

injection for flow analysis.  

 

3.3.8. Dextran sulphate sodium (DSS) model of intestinal inflammation 

C57BL/6 mice received 2.5 % (w/v) dextran sulphate sodium (DSS Mr 40 000, Sigma Aldrich) 

and 5 % (w/v) D-glucose, in their drinking water ad libitum for 5-7 days. Each day the mice 

were weighed, their general well-being monitored and their faeces were assessed for their 

consistency and the presence of blood. At the end of the treatment period the small intestine, 

caecum, colon and spleen of the mice were harvested and processed for flow analysis. 

 

3.3.9. Antibiotic depletion model 

C57BL/6, IL-22-/- and IL-2Rγ-/-Rag2-/- mice reconstituted with IELs received various 

antibiotic mixes in their drinking water for 10-14 days. All antibiotic mixes contained 5 % 

(w/v) D-glucose. Two versions of broad-spectrum antibiotic mixes were used: (I) 1 g/l 

ampicillin, 1 g/l colistin and 5 g/l streptomycin or (II) 1 g/l ampicillin and 5 g/l streptomycin. 

One g/l colistin or 1 g/l vancomycin were used to deplete Gram-negative or Gram-positive 

bacteria, respectively.  

Table 3.5 Antibiotics used for antibiotic depletion experiments 

Compound Concentration Depletion spectrum Company 

Ampicillin 1g/l  Broad Melford 

Streptomycin 5g/l  Broad Sigma Aldrich 

Colistin 1g/l  Gram-negative Sigma Aldrich 

Vancomycin 1g/l  Gram-positive Sigma Aldrich 
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The antibiotic drinking water were exchanged every five days. At the end of the antibiotic 

treatment period, the small intestines of the mice were harvested and processed for flow 

analysis. 

 

3.3.10. Murine Norovirus (MNV)-O7 and MNV-CW3 infection model 

C57BL/6 mice were infected with 5 x 106 tissue culture infective dose (TCID) of either MNV-

O7 or MNV-CW3 per mouse via oral gavage. The MNV strains were kindly provided by the 

Heeney laboratory at the University of Cambridge. Two, four and seven days post infection, a 

small portion of the ileums were collected to assay viral quantification, while the rest of the 

small intestines were harvested and processed for flow analysis. A combination of broad-

spectrum antibiotic depletion model and MNV-CW3 infection experiments were also 

performed. 

 

Rag2-/- mice and Rag2-/- mice which had received T, B or T and B cells (3-6 weeks post i.v. 

transfer) were infected with MNV-O7 in the same way as described above. The small intestinal 

samples were taken for analysis of the viral quantification. 

 

3.3.11. Eimeria vermiformis (E. vermiformis) infection model 

E. vermiformis oocysts were stored in 2.5 % (w/v) potassium bicarbonate prior to infection. 

The oocysts were washed in deionized water (1800 g, 8 min), which was repeated three times 

before flotation centrifugation (1100 g, 10 min) in which oocysts gets enriched in the top layer. 

The oocyst enriched fraction was sterilized by using sodium hypochloride solution, followed 

by three more deionized water washes prior to oocyst quantification using a Fuchs-Rosenthal 

chamber. The quantification was controlled by screening a 50 µl droplet on a McMaster 
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chamber. C57BL/6 mice, Rag2-/- mice and Rag2-/- mice reconstituted with CD8α+ IELs were 

infected with 1000 oocysts via oral gavage. From day 6 onwards, mice were single-caged with 

sand bedding to enable the collection of faeces for oocyst quantification. Day 5 and 10 post 

infection, duodenum, jejunum and ileum were harvested from the mice, processed for flow 

analysis or for cell sorting to perform cardiolipin (CL) mass spectrometry analysis. 

 

3.3.12. Salmonella infection model 

Male C57BL/6 were infected with Salmonella enterica typhimurium strain SL1344 (4-6.2 x 

108 colony-forming unit (Cfu) in 200 l sterile PBS per mouse via oral gavage). Two, 5, 12 

and 24 hours post infection, the faeces were collected for bacterial quantification and the small 

intestines of the mice were harvested and processed for flow analysis. 

 

3.4. Ex vivo experimental procedures 

All procedures were carried out at RT, except when specified. 

 

3.4.1. Isolation of lamina propria lymphocytes (LPLs)  

The remaining intestinal tissue after the protocol for IEL isolation, as described in section 3.3.2, 

were washed in PBS. This was performed by transferring the intestinal tissues into tubes with 

PBS and manual shaking to remove traces of EDTA. Afterwards, the content was filtered 

through a 100 µm mesh filter. The intestinal tissues were transferred into tubes with plain 37 

°C pre-warmed IMDM (Sigma-Aldrich) supplemented with Collagenase D (1 mg/ml, enzyme 

activity >0.15 Wünsch units /mg, Roche) and DNase I (0.1 mg/ml, enzyme activity >2000 

U/mg, Roche). This was shaken at 70 rpm, at 37 °C for 25 min. After the incubation, the content 
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was filtered through a 40 µm mesh filter and washed three times with plain IMDM prior to 

staining for flow cytometry. 

 

3.4.2. Isolation of splenic lymphocytes 

Spleens were pressed through a 70 µm mesh filter. The filters were washed with PBS prior to 

centrifugation (1350 rpm, 7 min). The supernatant was removed and 3 ml of ACK buffer (Table 

3.1) was added and the cells were then incubated for 3 min on ice. The tube was topped up with 

PBS prior to cell washing by centrifugation (1350 rpm, 7 min). The pellet was re-suspended in 

PBS and either used for flow cytometric analysis or staining for FACS. 

 

3.4.3. Splenic CD8α+ lymphocyte sort 

Splenic cells were stained with anti-CD8α-APC and anti-CD44-PE antibodies and incubated 

on ice for 5 min. The cells were washed (500 g, 8 min) prior to addition of anti-APC beads 

(Miltenyi Biotec) followed by 15 min incubation at 4°C in the dark, followed by another wash 

(500 g, 8 min). The cell suspension was filtered through a 40 µm mesh filter prior to 

AutoMACS enrichment (Miltenyi Biotec) using the positive selection programme (POSSEL) 

on both the sample and the subsequent negative fraction. The cells were then sorted based on 

CD8α and CD44 expression (memory: CD8α+CD44Hi cells and naïve: CD8α+CD44Int cells) 

using either the BD Influx or the Aria III sorter (see supplemental Figure to 4.5). For live/dead 

discrimination, DAPI was added prior to the sort and the sorting purity of the sort was checked. 

The gating of DAPI- CD8α+ cells confirmed successful MACS-enrichment with over 80 % of 

live cells being CD8α+. Afterwards the cells were centrifuged (500 g, 8 min) and the pelleted 

cells re-suspended in cold basal medium or PBS. A small fraction was mixed with Trypan Blue 
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to quantify the number of live cells using Countess Automated Cell counter (Life 

Technologies).  

 

3.4.4. Isolation of liver lymphocytes 

Liver tissue was pressed through a 70 µm mesh filter and the resultant cell suspension was 

washed with PBS and centrifuged (500 g, 8 min). The pellet was resuspended in 37.5 % Percoll 

and centrifuged for 700 g for 10 min. The pellet was then treated with ACK red cell lysing 

buffer for 3 min on ice prior to collection of the remaining cells (500 g, 8 min) which were 

used for flow cytometric analysis.  

 

3.4.5. Isolation of lung lymphocytes  

Lung tissue was cut into small pieces. The pieces were transferred into 15 ml tube containing 

2.5 ml plain IMDM with 0.4 mg/ml Liberase TL (containing Collagenase I and II, enzyme 

activity >5.2 Wünsch units/mg, Roche) and 0.01 mg/ml Collagenase D (enzyme activity >0.15 

Wünsch units/mg, Roche) and incubated at 37 °C, 200 rpm, for 30 min. This was followed by 

filtration through a 50 µm filters. The cells were collected by centrifugation (500 g, 8 min). 

Then 37.5 % Percoll density gradient was performed (700 g, 10 min) followed by ACK buffer 

lysis of red blood cells for 3 min on ice prior to centrifugation (500 g, 8 min). The cell pellet 

was re-suspended and used for flow analysis. 

 

3.4.6. Isolation of skin lymphocytes 

Ears of C57BL/6 mice were cut close to the skull. The ear sheets were peeled apart using 

forceps and were cut into very small pieces. These pieces were transferred into 15 ml tubes 

which were filled with plain IMDM containing 0.4 mg/ml Liberase TL (containing Collagenase 
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I and II, enzyme activity >5.2 Wünsch units/mg, Roche) and 0.02 mg/ml Collagenase D 

(enzyme activity >0.15 Wünsch units/mg, Roche) and incubated at 37 °C, 200 rpm for 90-120 

min. This was followed by filtration through a 50 µm mesh filters. The cells were collected by 

centrifugation (500g, 8 min) and used for flow cytometric analysis. 

 

3.4.7. CD8α+ T cell culture 

Spleens were pressed through a 70 µm mesh filter which were washed with PBS and topped 

up to 7 ml of cell suspension. It was underlayered with 5 ml Lympholyte (Cedarlane) and 

centrifuged at 1250 g for 15 min. The top layer was transferred to another tube and centrifuged 

in 500 g for 8 min. The suspension was stained with anti-CD8α-APC antibody and MACS-

enriched and quantified, as previously described in section 3.4.3. The cells were re-suspended 

in complete IMDM supplemented with 5 ng/ml IL-2 (purity ≥ 98 %, activity ≥ 5x106 units/mg, 

Peprotech) and 250 000 cells per well were plated in pre-coated 24-well plates (made of 

polystyrene from Fisher Nunc). For the coating 1 µg/ml αCD3 and 3µg/ml αCD28 in sterile 

PBS were added to each well and the plate stored in 4 °C overnight. Afterwards, the solution 

was removed from the wells and cells added to the wells. The medium was exchanged every 

other day with 5 ng/ml IL-2 in complete IMDM.  

 

3.4.8. Intestinal organoid set-up 

The organoid set-up method is adapted from Clevers’ protocol (Sato and Clevers, 2012). The 

proximal part of the small intestine was isolated, flushed with PBS, cut open and divided into 

0.5 cm pieces. The intestinal fragments were washed in PBS by pipetting up and down, then 

the fragments were allowed to settle and the PBS was poured off. This was repeated 5-10 times 

until the PBS remained clear. Then the intestinal fragments were incubated in 2 mM EDTA at 

50 rpm in 4 °C for 20 min. Afterwards the fragments were fractionated by adding PBS, shaken 
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forcefully for 15 seconds and the supernatant was poured into a new tube (the procedure 

repeated 7 times). All fractions were checked by inverted microscopy to select the crypt 

enriched fractions. Those were pooled, filtered through 70 µm mesh filters, washed twice (10 

ml, 3 min 300 g, 4 °C) and then re-suspended into 100 % Matrigel (Corning). The resultant 

suspension was kept on ice and was plated in 50 µl hemi-spherical droplets on 37 °C pre-

warmed 24-well plates. The droplets were polymerized for 15 min before addition of 500 µl 

complete organoid medium. 

 

3.4.9. Organoid maintenance 

The culture medium was exchanged every 2-3 days. The organoids were passaged every 6-8 

days. For the passaging, the culture medium was removed and replaced with ice-cold basal 

organoid medium. The Matrigel droplets containing the organoids were gently disrupted using 

an Eppendorf p1000 pipette, then the suspension was passaged through a 25 g needle 5 times 

before washing (in final volume of 10 ml for 3 min at 300 g, 4 °C). The supernatant was 

removed and 1 ml basal organoid medium was added. Then the suspension was passaged 

through p1000 and p200 pipettes 10-15 times each, respectively, before another centrifugation 

(in final volume of 10 ml for 3 min at 300 g, 4 °C). The supernatant was removed and the 

organoids re-suspended into 50-70 % Matrigel and 30-50 % basal organoid medium mixture 

and plated as described above. 

 

3.4.10. IEL-organoid-co-culture system 

Three days old organoids were harvested by gently removing the culture medium and adding 

ice-cold basal medium. The Matrigel droplets were very gently scraped off by using an 

Eppendorf p1000 pipette. These were transferred into a 15 ml falcon tube and centrifuged (for 
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3 min at 300 g, 4 °C). The supernatant was discarded and 1 ml ice-cold basal medium added. 

The suspension was passaged through an Eppendorf p1000 pipette tip 10-15 times. The tube 

was topped up to 10 ml with basal organoid medium and another centrifugation performed (300 

g, 4 min, 4 °C). Afterwards the organoids were re-suspended in basal organoid medium, 

followed by distribution into the different test conditions for each experiment. The IELs or 

splenic T-cells were added prior to resuspension in 50 % Matrigel. The suspension was plated 

in 25 µl hemi-spherical droplets on pre-warmed 8-well ibiTreat µ-slides from the vendor ibidi. 

The Matrigel was polymerized for 15 min before addition of 300 µl complete organoid 

medium.  

 

3.4.11. MNV-organoid-co-culture system 

The numbers of organoids were manually quantified using bright field microscopy. Using my 

estimation of the number of IECs per organoid three days after organoid passage (see Fig 4.7 

for illustration of the method used for IEC quantification of organoids), the total number of 

IECs per well was estimated. Then 0.5-5 TCID of each strain of MNV (MNV-O7, MNV-CW3, 

MNV-3) per counted IEC was added either in the Matrigel or in the culture medium. For the 

latter the medium was mixed by pipetting up and down three times. After indicated time points 

after the MNV introduction to the organoids, they were either fixed and stained as described 

below or lysed with RNA lysis buffer (Sigma Aldrich) supplemented with β-mercaptoethanol 

at the concentration of 1 % (v/v), before the lysis.  

 

In one experiment, 25 ng/ml IFNλ (PeproTech) was added to steady state and MNV-infected 

organoids for 24 hrs prior to image analysis as will be described in section 3.4.16. 
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3.4.12. IEL-MNV-organoid tri-culture system 

To combine IELs, MNV and organoids, the IEL-organoid co-cultures were first set up as 

previously described (3.4.10.). Then the MNV was added in the medium as described above.  

 

3.4.13. Escherichia coli (E. coli)-organoid co-culture system 

The numbers of organoids were manually quantified under bright field microscopy. Using an 

estimation of the number of IECs per organoid at three days after passage, the total number of 

IECs was estimated. E. coli was prepared by taking a small sample from a culture and put into 

Lysogeny broth (LB) medium (prepared at the Babraham Institute) and put this on a shaker at 

37 °C for 3 hours. Afterwards a small fraction was taken, spun and quantified using 

spectrophotometry for optical density (OD) values at wavelength 600. Then, the number of E. 

coli was quantified based on the assumption that OD600 measurement on 0.1 equals 108 

bacteria/ml. Bacteria were added to the organoids either in the culture medium or the Matrigel 

followed by fixation and subsequent stainings. 

3.4.14. Immunofluorescence 

At indicated time points after the co- or tri-culture system set up, the culture medium was 

removed and the organoids washed with PBS. The organoids were fixed by adding 200 µl of 

3.7 % formaldehyde (Sigma Aldrich) in RT for 20 min. The formaldehyde was gently removed, 

followed by another PBS wash. The organoids were permeabilised using 1 % (v/v) Triton X-

100 in RT for 60 min, followed by blocking using 2 % (w/v) bovine serum albumin (BSA) and 

1 % (v/v) Triton X-100 in RT for 60 min.  

 

The organoids were then stained with an anti-CD45.2 antibody conjugated to either FITC, 

AF488, APC or AF647 and phalloidin conjugated to AF568 or AF555 (Life Technologies) in 

https://en.wikipedia.org/wiki/Broth
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RT for 45 min. Next, the organoids were washed and counter stained with DAPI in the 

mounting medium (Vectashield).  

 

For live/dead staining, the culture medium was removed and the co-cultures were stained with 

DAPI for 10 min in RT. Afterwards the co-cultures were washed, fixed, permeabilised, blocked 

and stained as described above. For these samples, mounting medium without DAPI was used 

(Vectashield). 

 

For EdU incorporation assays, Click-it EdU AF555 Plus kit (Life Technologies) was used. Ten 

nM EdU was added in the culture medium 2 hours prior to harvesting. After the fixation, 

permeabilization and blocking as described above, Click-it reaction mixture was freshly 

prepared and 110 µl of the mixture was added per well for 30 min staining in RT in the dark. 

Afterwards the wells were washed twice prior to further stainings. 

 

For the IEC subset stainings, the organoids were permeabilised and blocked as described above. 

They were incubated at 4 °C overnight with primary antibody (see table 3.2) diluted in blocking 

buffer. Afterwards the cultures were allowed to return to room temperature before two washes 

with blocking buffer, followed by further staining, or mounted with Vectashield with DAPI.  

 

3.4.15. Immunofluorescence of intestinal tissue staining 

For staining including EdU, mice were injected with EdU i.p prior to small intestinal harvest. 

For whole tissue staining, the small intestine was flushed with PBS, cut open and rolled up like 

a “swiss roll” (Moolenbeek and Ruitenberg, 1981) which was placed in 4 % (v/v) PFA at 4 °C 

for 24 hours fixation. The tissue rolls were then dehydrated in 30% sucrose for 24 hours. 

Afterwards the tissue was stripped from the wooden stick and placed into plastic molds filled 
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with optimal cutting temperature (OCT) medium and frozen on dry ice before being cut into 

10 µm slices. The cut slices were mounted on VWR Superfrost Plus slides. Under brightfield 

microscope, the quality of the cut section was observed and, if suitable, the tissues was then 

placed on dry ice while further sections from the same tissue sample were cut. 

 

For the staining, the slides were allowed to dry at RT for 10-15 min before fixation with 4 % 

(v/v) PFA to ensure the tissue remained on the slide. Then the slides were permeabilised using 

100 µl 1 % (v/v) Triton/PBS for 20 min with parafilm part on top of it to ensure all tissue is 

covered by the treatment. The slides were washed twice with PBS before being blocked for 

one hour in PBS, 1 % (v/v) Triton-X-100, 2 % (w/v) BSA, 5 % (v/v) FBS. For the EdU staining 

using the Click-it reaction, it was performed after the blocking step, followed staining with 

primary antibody diluted in blocking buffer and incubated overnight at 4 °C. Then, the slides 

were washed three times with PBS before staining with secondary or directly conjugated 

antibodies for 1 hour, followed by washing slides three times with PBS. The slides were 

mounted with Vectashiled with DAPI and allowed to dry before imaging. 

 

3.4.16. Image acquisition and analysis 

The co- and tri-cultures were analysed using either Zeiss LM780 or Nikon A1R confocal 

systems. For the Zeiss system, a 20x0.80 objective was used with the following lasers and 

filters: 405 (410-512), 488 (508-553), 561 (562-624) and 633 (629-751). For the Nikon system, 

a 20x0.75 objective was used with the following lasers and filters: 407.7 (450/50), 487.7 

(525/50), 561.8 (595/50) and 639.7 (700/75).  

 

Twenty-five organoids per well were selected using a channel showing the organoids only: for 

the IEL-organoid co-cultures, phalloidin-AF568/AF555 was used, while for EdU incorporation 
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panels DAPI or EpCAM was used for organoid detection instead. For the acquisition, an optical 

section between 120-155 µm with 2.0 µm steps was used. Most images were acquired using 

bi-directional mode. The images were processed and the number of IELs / EdU+/ Ki-67+ / Muc-

2+ / Lyz+ IEC per organoid were automatically quantified using Imaris (v.8.1.2 Bitplane). 
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3.4.17. qPCR analysis of organoids 

For mRNA analysis of organoids, the wells were lyzed with 250 µl of RLT buffer from Qiagen 

Rneasy Mini Kit. The mixture was vortexed prior to mixing with 350 µl of ethanol, followed 

by transfer into spin columns placed in two ml tubes. The tubes were centrifuged for 30 sec at 

10 000 g. The flow through was discarded and 700 µl of RW1 buffer was added. The tubes 

were centrifuged for 30 sec at 10 000 g. The flow through was discarded and 500 µl of RPE 

buffer was added to each spin column. This procedure was repeated, and at the second time, 

tubes were centrifuged for two min at 10 000 g. The spin columns were placed in 1.5 ml 

eppendorf tubes and 30 µl of RNase-free water was added to each spin column centre. This 

was incubated in RT for three-five min before 13 000 g centrifugation for one min. The isolated 

RNA was quantified using NanoDrop to enable up to one µg of RNA to be converted into 

cDNA using Qiagen Quantitect reverse transcription kit. The RNA was diluted in RNase-free 

water prior elimination of genomic DNA by adding DNA wipeout mix from the kit and the 

samples were incubated at 42 °C for two min. For the transcription mastermix of Quantiscript 

rev Transcriptase, Quantiscript RT 5x buffer and RT Primer Mix was added to the samples. 

The samples were then run through cDNA protocol consisting of incubation at 42 °C for 15 

min, followed by 95 °C incubation for three min. To ensure the same amount of cDNA was 

used for the RT-PCR, the cDNA was measured by Nanodrop to use 100 ng per reaction. 

 

For the qPCR assessment, either SYBR green (Invitrogen’s Platinum SYBR Green qPCR 

SuperMix-UDG) or Taqman system (TaqMan Universal PCR Master Mix, Applied 

Biosystems) were used on Biorad CFX96 qPCR machines. Hypoxanthine 

phosphoribosyltransferase (Hprt) was used as house keeping gene for 2(-ΔΔ CT) method analysis. 

 

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjhr-mA2JLRAhVLbBoKHT0yDg4QFgg3MAI&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4280562%2F&usg=AFQjCNGDz3xyuUFkVlK34B8X8yrmIBSYMg
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3.4.18. Flow cytometric analysis 

Samples for flow cytometric analysis were plated in round–bottom 96-well plates (made of 

polystyrene from Fisher Nunc). Ten µl counting beads (SpheroTech) were added to each well 

followed by surface staining on ice for 20 min. For intracellular staining, the 

Foxp3/transcription factor staining buffer set (eBioscience) was used after the surface staining. 

The samples were incubated in the fixation and permeabilisation buffer for 30 min on ice, 

followed by intracellular staining in the permeabilisation buffer for 45 min on ice. 

 

For MitoTracker Green (MTG), MitoTracker Orange (MTO), MitoTracker Deep Red 

(MTDR), MitoSOX and NAO stainings, the samples were pre-incubated at 37 °C with their 

respective probe prior to surface staining according to the manufacturers’ recommendations, 

followed by surface staining prior to flow analysis. For the dye titration experiments, 

Fluorescent-Minus-One (FMO) controls, for which samples were stained with all 

fluorochromes except for MTG / MTO/ MTDR/ MitoSOX/ NAO, were used to determine 

positive staining for each probe mentioned.  

 

For Nile Red samples, the cells were surface-stained prior to fixation and Nile Red incubation 

according to the manufacturer’s recommendations. Then the cells were washed with PBS and 

centrifuged for 2.5 min at 500 g twice, before being resuspended in 100 µl PBS.  

 

The cells were acquired using either BD LSRFortessa or LSRII (BD) and analysed on FlowJo 

v.10.2 (FlowJo). The tSNE plugin was used with FlowJo to capture the heterogeneity of IEL 

populations.  
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3.4.19.    Cardiolipin (CL) analysis  

For the CL mass spectrometry analysis, liquid chromatography–mass spectrometry (LC-MS) 

graded solvents (Fischer Scientific) were used. The sample pellets were resuspended in 1.5 ml 

methanol. This was thoroughly mixed by vortexing with 1.5 ml water and 3 ml chloroform. To 

each sample, 200 ng of tetramyristoyl (14:0)4-CL (Avanti Polar Lipids) was added as internal 

control for CL quantification. The lower phase from each solution were concentrated with 

Speedvac. The new pellet was dissolved in 100 µl chloroform, from which 17 µl of this 

chloroform solution were used for LC-MS analysis. Normal phase HPLC on MicroSolv Type 

C silica column with Shimadzu Prominence system were used to separate the different classes 

of lipids. CL analysis was performed on selected-ion monitoring chromatogram (SIM) mode 

with fourier-transform ion cyclotron resonance mass spectrometry (FT-MS) with the following 

settings: (mass range 560-880m/z, mass resolution 240k at m/z 400, mass accuracy ~3 ppm).  

 

3.4.20. Mitochondrial capacity assay 

The mitochondrial capacity in IELs, naïve and memory CD8α+ splenocytes were assessed 

using the Seahorse Mito stress assay on a Seahorse Extracellular flux 24e Analyser (Seahorse 

Bioscience). 24-well assay plates (special Seahorse plates made of polystyrene from Seahorse 

Bioscience) were incubated with Seahorse calibration medium and sample plates were coated 

with 50µl 0.01 % poly-lysine (Sigma Aldrich) and incubated overnight in a Seahorse incubator 

at 37 °C. 750 000 cells per well were plated in Seahorse medium and put in the Seahorse 

incubator for 45-60 min prior to assay. The following compounds in this order were injected 

to the plated cells: oligomycin (2.5 µM final), carbonyl cyanide-p-

trifluoromethoxphenylhydrazone (FCCP) (0.5-5 µM final) and mixture of antimycin and 
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rotenone (both 1µM final), to assess the basal mitochondrial oxygen consumption, ATP 

production and spare mitochondrial respiratory capacity (SRC). 

 

3.5. Statistical analysis 

Unless otherwise stated in the figure legends, the data are presented as mean ± standard 

deviation (SD). Normality tests (D’Agostiro-Pearson omnibus, Shapiro-Wilk or Kolmogorov-

Smirrov normality tests) were performed to determine whether to use parametric or non-

parametric statistical tests. For one-way ANOVA analysis performed, the no matching option 

was selected together with the Bonferroni correction. The same selections were used for 

performing the two-way ANOVA analysis. For Mann-Whitney U and Spearman correlation 

analysis, the two-tailed option was selected with a 95 % confidence interval. For principal 

component analysis (PCA), RStudio (version 1.0.153 with R 3.3.1.) was used. Statistical 

significance was denoted as follows: *p < 0.05, **p < 0.01 and ***p < 0.001. Except for PCA 

analysis, the remaining statistical analyses were performed using GraphPad Prism version 7 

for Windows. 
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Chapter 4: Establishing an IEL-Organoid co-culture system to study IEL 

function, maintenance and activation 

 

4.1.  Modelling IECs: From cell lines to organoid cultures 

4.1.1. Two-dimensional cell culture models  

The first in vitro model of IECs was established by the generation of the human colon 

carcinoma cell line (Caco-2) (Artursson, 1990). Having an in vitro model enabled mechanistic 

studies on both the basolateral and luminal sides of the IECs. There are numerous alternative 

cell lines originating from human, mouse and rat and derived from the different sections of the 

intestinal tract: duodenum, jejunum and ileum. However, these cell lines model enterocytes - 

which is the main epithelial subset - but only one of the many epithelial subsets identified in 

vivo (see sections 1.6.1.1-1.6.1.7). All cell lines have been immortalized, which differs from in 

vivo IECs that are one of the most rapidly renewing tissues (Clevers, 2013). In the renewal 

process of the IEC barrier, the shed IECs are undergoing a detachment-induced apoptosis called 

anoikis (Coll et al., 2002), a property not mimicked in cell lines. In addition, there have been 

reports of differences between Caco-2 cells and human duodenum samples in regards to gene 

expression. There are even differences observed during culture between day 4 and day 16 of 

Caco-2 culture (Sun et al., 2002). Long-term culture is also associated with differences in cell 

properties with increased passage of the cells (Hughes et al., 2007). Hence, there is a need to 

obtain a more accurate and stable in vitro model of IECs. 

 

4.1.2. Intestinal stem cell niche 

As previously mentioned (1.6.1), a single-cell layer of IECs that form finger-like villus 

domains and crypt domains lines the small intestine. The intestinal epithelial stem cells (IESCs) 

reside in the crypt domains. In each crypt domain, there are approximately 15 multipotent 
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IESCs. There are two distinct IESCs populations identified: Lgr5+ and +4 IESCs, as described 

in section 1.6.1.1. 

 

Around the intestinal crypt structures are various immune cells and supporting cells such as 

stromal cells. Stromal cells support IESCs by providing non-canonical Wnt. Canonical Wnt 

are provided from Paneth cells (Pinchuk et al., 2010). The different IEC subsets require 

different signalling: enterocyte differentiation requires Notch signalling to be active , while the 

secretory IECs require Notch signalling to be inactive and Wnt signaling to be active instead 

(Yin et al., 2014; VanDussen et al., 2012). Stromal cells also express BMP4 underneath villus 

domains (Gracz and Magness, 2014), supporting the villus-crypt organization. In addition, 

stromal cells can respond to pro-inflammatory cytokines such as TNFα (Armaka et al., 2008) 

and IL-1β and interact with other immune cells in the intestinal tissues (Owens and Simmons, 

2013) providing both renewal and immunological support to IECs. 

 

To summarize, there are multiple different IEC subsets that support each other for intestinal 

homeostasis. In addition, there are supporting stromal cells that provide relevant factors, all of 

which are required to be taken into account for generating in vitro models of IECs. 

 

4.1.3. Requirement for Wnt/EGF/BMP signalling for IESCs 

Wnt signalling is an essential process for the intestinal compartment. There are at least three 

known pathways: canonical, non-canonical and Ca2+-dependent Wnt signalling pathways. 

These three pathways share the binding to the main receptor, Frizzled, but have different co-

receptors bound to them, leading to different downstream signalling cascades. For the 

canonical pathway, Wnt binds to the receptor Frizzled that leads to inactivation of a complex 

consisting of proteins such as glycogen synthase kinase 3 (GSK3). The inactivation of this 
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complex leads to β-catenin stabilization. Stable β-catenin can then form complex with 

transcription factors, such as Tcf4, that leads to transcription of Wnt targeted genes (Niehrs, 

2012; Clevers and Nusse, 2012). Tcf4 deficiency in mice is lethal and experiments on embryos 

show that these lack intestinal stem cell compartments (Korinek et al., 1998). R-spondin is a 

Wnt signalling amplifier that brings about increased proliferation (Kim, 2005) and increased 

numbers of Paneth cells in the crypts (Hayase et al., 2017). However, depleting Wnt 

specifically in the intestinal compartment using Villin-Cre-ERT2;Wnt3fl/fl mice brings about 

no obvious phenotype. When culturing IECs from these mice on their own in the form of 

organoids (see section 4.1.6) there are phenotypes observed such as reduced Lgr5 expression, 

fewer Paneth cells and less bud (crypt structure) formation (Farin et al., 2012). These findings 

highlight the importance of the intestinal niche that is present in the mice, which can 

compensate for the lack of Wnt3a and which organoids cultured without supporting intestinal 

cells cannot. Another approach that supports this finding is the use of the GSK3-inhibitor 

CHIR99021 that increases the number of Paneth cells in a dose-dependent manner (Sato et al., 

2011). It has been reported that Wnt signalling decreases with age and, as a consequence, there 

are fewer IESCs observed in older individuals (Nalapareddy et al., 2017).  

 

Another factor important for IEC renewal is epidermal growth factor (EGF). EGF binds to its 

receptor EGFR and activates extracellular signal-regulated kinase (ERK) signalling leading to 

proliferation (Frey et al., 2004; Sato and Clevers, 2013). EGFR is expressed in IECs located in 

the crypt structures and the lower part of the villous structures (Suzuki et al., 2010; Yang et al., 

2017). EGF is expressed by Paneth cells to support IESCs (Sato et al., 2011). 

 

Another factor that has been shown to promote IEC growth is the cytokine IL-22. Addition of 

IL-22 to organoids increases their surface area in a STAT3-dependent manner. Injection of IL-
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22 into mice increased the transition amplifying (TA)- and crypt height (Lindemans et al., 

2015). 

 

In addition to factors such as Wnt, EGF and R-spondin, that promote IEC proliferation, there 

are factors suggested to be important for in vivo IEC organisation and IEC subset 

differentiation, and these include Notch and bone morphogenetic protein (BMP) signalling.  

 

Notch signalling is taking place between two cells closely located to each other: one cell 

expressing the Notch receptor and the other cells expressing transmembrane Notch ligands 

such as delta-like ligands (Dll) and Jagged. Upon receptor-ligand binding, an enzyme called γ-

secretase is cleaving the Notch ligand. The intracellular domain of the Notch ligand, called 

Notch intracellular domain (NICD), is then translocating to the nucleus, binding to 

transcription factors to induce  transcription (Kopan and Ilagan, 2009). Paneth cells express the 

Notch ligand delta like ligand 4 (Dll4), to support IESCs (Sato et al., 2011). Notch signalling 

has been showed to be important for differentiation towards the enterocyte lineage. Using 

Notch inhibitors in vivo, the frequency of cells in the secretory epithelial lineages increases 

drastically (VanDussen et al., 2012; van Es et al., 2005). Similar observations were made using 

knock-out mice for the Notch ligands specifically in the intestinal compartment (Pellegrinet et 

al., 2011).  

 

BMP signalling is part of the TGFβ signalling family. Upon ligand binding, there are two 

known pathways. One pathway includes phosphorylation of either Smad1, Smad5 or Smad8, 

which then forms a heterodimer with Smad4 and the heterodimer translocates to the nucleus. 

The other pathway is mediated via TGFβ-activated kinase 1 (TAK1) instead (Zhang and Li, 

2005). BMP signalling restricts IESCs (Qi et al., 2017). Addition of Noggin inhibits BMP 
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pathway and as a consequence prevents formation of proper villus domains (Haramis et al., 

2004). 

 

4.1.4. The role of extracellular matrix (ECM) for IEC cultures 

In the 1970s, a tumour that produced an abundant amount of extracellular matrix (ECM) 

proteins was discovered. The tumour was named the Engelbreth-Holm-Swarm (EHS) mouse 

sarcoma (Kleinman and Martin, 2005). Among the ECM proteins identified from this tumour 

were laminin, collagen and heparan sulfate proteoglycan (Kleinman et al., 1982). From this 

tumour, an ECM mixture was generated and named Matrigel. Growing both cell lines and 

primary cells in Matrigel was shown to have effect on cells’ differentiation and/or three-

dimensional (3D) formation (Orkin et al., 1977). Using Matrigel enabled the first intestinal 

organoid cultures: “mini-guts” in culture well plates (see section 4.1.6). However, the exact 

composition of the extracellular proteins in Matrigel is rather poorly defined. To overcome this 

hurdle but still grow 3D organoid cultures scientists have tried to develop alternatives to 

Matrigel. 

 

A collagen I gel mixture has been showed to be able to support intestinal epithelial organoid 

growth. The gene expression of some typical markers for the different IEC subsets were not 

altered between collagen-I-grown and Matrigel-grown organoids. However, the growth rate of 

collagen I-grown organoids was lower compared to their Matrigel-grown equivalents (Jabaji 

et al., 2013). In addition to collagen I mixture, crosslinked polyethylene glycol (PEG) 

hydrogels have been tested for organoid cultures. On their own, the support for organoid 

formation is non-existent but addition of either fibronectin, laminin or collagen IV into the PEG 

hydrogel improved the organoid formation significantly (Gjorevski et al., 2016).  
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All organoid experiments presented in this thesis have been performed using Matrigel, but the 

potential effect alternative 3D matrices would have on the co-culture system will be discussed 

in the discussion section. 

 

4.1.5. Intestinal spheroids 

The first long-lived primary intestinal epithelial cell culture system was established in 2009. 

The system - intestinal spheroids - consisted of murine neonatal intestinal tissue placed on a 

collagen gel layer and grown in an air-liquid interface system. By immunohistochemistry the 

presence of all main IEC subsets was confirmed. The intestinal spheroid cultures survived for 

at least 30 days. These properties were already better than cell line models such as Caco-2. 

However, the intestinal spheroids failed to recapitulate the characteristic villus and crypt 

morphology observed in vivo (Ootani et al., 2009). 

 

4.1.6. Intestinal organoids 

The recapitulation of in vivo IEC organization was established with the organoid model: small 

intestinal crypts, containing both IESCs and Paneth cells, cultured in semi-spherical droplets 

of Matrigel. The 3D matrix formed by the Matrigel enabled crypts to grow and organize into 

3D structures recapitulating the villus-crypt morphology observed in vivo (Fig 4.1 A and D) 

(Sato et al., 2009). Although organoids recapitulate in vivo crypt and villi organization, the 

organoid model are inside-out compared to the in vivo situation. In the organoids, the crypt 

domains form finger-like structures (Fig 4.1 C), while the villi domains form finger-like 

structures in the in vivo situation (Fig 4.1 A). This also means that organoids enclose their 

lumen. The organoids are cultured in the presence of the growth factors noggin, R-spondin and 

EGF. To recapitulate, EGF activates the ERK pathway to promote proliferation, while R-

spondin amplifies the Wnt pathway and noggin inhibits BMP signaling. Both R-spondin and 
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noggin promote and sustain stemness (Fig 4.1 C). Immunofluorescence experiments have 

confirmed the presence of the main IEC subsets enterocytes, Paneth cells, goblet cells and 

enteroendocrine cells (Sato et al., 2009), as well as tuft cells (Howitt et al., 2016) in the 

organoids. After the initial two passages of intestinal organoids, the organoids grow in a 

repeatable pattern after each passage. The passage generates separated crypt domains that 

subsequently form new organoids. Time-imaging investigation, as illustrated in Figure 4.1 E, 

shows that crypt formation is observed after one-two days after passage, indicating the speed 

of IEC proliferation.  

 

 

 

 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 4 Establishing an IEL-Organoid Co-Culture System to study IEL function, maintenance and activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 99  
Copyright © 2018 Frising UC 

Figure 4.1. The intestinal stem cell niche and the organoid model. A) Schematic view of 

the IEC barrier in the small intestine in vivo, including which signaling pathways that are active 

in the crypt and villus domains. B) Zoom-in between Lgr5+ and +4 IESCs and Paneth cells. C) 

The EGF, BMP and Wnt signaling represented between stem cells and Paneth cells. Panel A, 

B and C are modified from Sato and Clevers, Science 340(6137):1190-4. D) Schematic view 

of the organoid model illustrating the presence of crypt and villus domains. Panel D is modified 

from Sato and Clevers Methods Mol Biol 945, 319–328. E) Kinetics of small intestinal 

organoid growth using brightfield time-lapse imaging. Scale bar: 50 µm. 

 

4.1.7. Organoid Expansion: more tissues, tools and applications 

The interest in the organoid technique and its applications have expanded rapidly: with the use 

of Lgr5 as a stem cell marker, organoid culturing protocols have now been established for other 

tissues, such as colon (Yui et al., 2012; Wang et al., 2013), pancreas (Huch et al., 2013a), 

stomach (Barker et al., 2010), liver (Huch et al., 2013b), uterus (Boretto et al., 2017) and 
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mammary tissue (Zhang et al., 2017). Another approach for generation of organoids involves 

stem cell isolation and differentiation from these into organoids. Organoids from lung (Dye et 

al., 2015; Barkauskas et al., 2017; Nikolić and Rawlins, 2017), inner ear (Koehler et al., 2017; 

DeJonge et al., 2016) and brain (Lancaster et al., 2013) have been generated with the induced 

stem cells approach. In addition, it has been shown that both kidney organoids (Takasato et al., 

2015; Taguchi et al., 2014) and intestinal organoids are genetically stable for prolonged period 

of time (Huch et al., 2015). This is advancement compared to cell lines that alter after short 

period of culturing. These advances allow interesting science as methods used for intestinal 

organoids may be applied to organoids sourced from other tissues, just as the use of Lgr5, as 

stem cell marker, has been. It could also facilitate advances in understanding tissue-specific 

development, steady state and diseases, and tissue-resident immunity. In vitro cell culture 

techniques such as transfection (Wang et al., 2014; Koo et al., 2013), bacterial artificial 

chromosome (BAC) transfection (Schwank et al., 2013) and CRISPR/Cas9 gene editing 

(Driehuis and Clevers, 2017) have been optimized for organoid cultures. 

 

The organoid models have great potential in various fields such as stem cell biology, drug 

candidate screening and transplantation medicine: from modelling organ development from 

stem-cell-induced organoids to assessing drug on patient-derived organoids (Astashkina and 

Grainger, 2014). This illustrates the potential organoid models have for the life sciences and 

health care in the longer term. To make the organoid models even more like the corresponding 

in vivo systems, one needs to add back layer by layer, more in vivo complexity. One of the most 

obvious missing factors is the immune system. Here, I will report on experiments in which I 

have added back IELs to intestinal organoids. Although different tissues have different 

requirements and challenges, the methods developed and applied in this chapter may be useful 
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for other tissue organoids to address tissue-specific questions about cell-cell interactions, 

tissue-specific pathogens, disease and remodelling.  

 

4.2.  Modelling intestinal intraepithelial lymphocytes in vitro 

In the past, there have been some trials to model IEL-IEC interactions in vitro. This has been 

done using human cell lines for both IEC (T84) and IELs (032891). Human IELs differ 

significantly from murine IELs in terms of subset composition. For example, only a minor 

fraction of human IELs are TCRγδ+ cells (Jabri and Ebert, 2007; Mayassi and Jabri, 2018) 

unlike murine IELs of which TCRγδ+ cells form the majority of murine IELs. In addition, 

murine IELs survive poorly in vitro. For the human cell line cultures, transwells have been 

inserted into culture wells with IEC cell lines at the bottom of the transwell. Then IELs have 

been added either on top of the IEC cell line or added underneath the transwell into the well 

(Fig 4.2 A+C). The different culture techniques were shown to have different effect on IEC 

surface markers (Shibahara et al., 2005), indicating there are both contact interactions between 

IECs and IELs as well as soluble factor secretion from IELs that affect IECs. Another group 

(Shaw et al., 1998) used a similar approach but grew the IEC cell line either on the underside 

or the upperside of the transwell to mimic apical and basolateral sides of the IEC barrier to 

study IEL interactions (Fig 4.2). They showed that by 4 hours of co-culture, IELs had migrated 

more effectively when IEC were cultured on the underside, indicating that IEL approached 

them from the basolateral side (Shaw et al., 1998). With the discovery of Matrigel, more co-

culture techniques have been explored (Pereira et al., 2015). However, murine studies 

describing IEL-IEC interactions are lacking. When culturing, in vitro antibiotics are commonly 

used in the cell culture medium to avoid contamination. Published data on the number of IELs 

in germ-free mice demonstrate that only specific IEL subsets are reduced in germ-free mice. 

Two papers demonstrated that only TCRαβ+ CD8αβ+ IELs are significantly reduced in numbers 
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compared to specific-pathogen-free (SPF) mice (Kawaguchi et al., 1993; Supplemental 

Information: The Transcription Factor T-bet Is Induced by IL-15 and Thymic Agonist 

Selection and Controls CD8αα+ Intraepithelial Lymphocyte Development, 2014), while 

another paper showed that there was only a reduction in TCRαβ+ CD8αα+ IELs (Hoytema van 

Konijnenburg et al., 2017).This indicates that the absence of the microbiota should not be a 

limiting factor for culturing a representative murine IEL population in vitro.  

 

 

Figure 4.2. Schematic overview of published co-cultures of IEC and IEL cell lines. Human 

IEC and IEL cell lines have been used for co-culture experiments. To assess different aspects 

of their interactions, transwell inserts have been used. A) IEC cell line has been cultured on the 

transwell membrane and inserted on well with IEL cell line cultured underneath. B) IEC cell 

line cultured on the culture well side of the transwell, with IEL cell line added inside the 

transwell. Panel A-B are inspired from methods described by Shibahara et al., J. 

Gastroenterology (2005). C) IEC cell line cultured on the transwell and IELs added inside the 

transwell. Panel B-C are inspired from methods described by Shaw et al., Am. J. Physiol 

(1998). 

 

The current knowledge about IEC-IEL interactions is derived from in vivo models and cell 

lines such as described above. Both approaches have their limitations. The intestinal immune 

system is complex – intestinal epithelium, hematopoietic immune cells, diet, commensals and 

pathogens, all interacting with each other – hence dissecting the molecular mechanisms behind 

IEC-IEL interactions in vivo is a difficult task. In addition, live cell analysis of IEC-IEL 

interactions by intravital imaging is a highly complex approach (Ritsma et al., 2013). Epithelial 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 4 Establishing an IEL-Organoid Co-Culture System to study IEL function, maintenance and activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 103  
Copyright © 2018 Frising UC 

cell lines are much more accessible for live cell imaging. However, due to immortalisation, 

frequent passaging and the lack of the structural organisation observed in vivo, cell lines do not 

represent the in vivo situation very well. A novel approach to overcome these issues and dissect 

the molecular mechanisms behind IEL-IEC interactions is to take advantage of intestinal 

organoids model and to explore if it is possible to co-culture these with IELs. 

 

4.3.  It is possible to incorporate IELs into intestinal organoids  

In contrast to other T cells IELs survive poorly in vitro ((Lai et al., 2013) and own data not 

shown). Not having an in vitro model for IELs limits the available approaches for mechanistic 

investigation of IEL biology. These are particularly needed as the intestinal immune system 

consist of various kinds of immune cells, epithelial cells and microbiota which all can respond 

to administration of particular compounds, making it hard to dissect direct and indirect effects 

on the cells of interest and to define the sequence of events.  

 

The poor in vitro survival of IELs indicates that there are factor(s) lacking from the in vivo 

intestinal compartment in the tested culture conditions. As there have been significant 

advancement with modeling IECs, in the form of intestinal organoids, the question is if 

intestinal organoids resemble the in vivo situation to the extent that the organoids can maintain 

IELs alive for a longer period of time. To test whether IELs and organoids can be co-cultured, 

live IELs were sorted based on their CD8α expression with DAPI staining as discriminator of 

live and dead cells. For the experiment, intestinal organoids were cultured for 3 days post 

passage, in order to use organoids in which the majority have clear villi and crypt structures. 

For the incorporation, IELs were added either in the Matrigel droplet together with the 

organoids or added in the medium after the Matrigel had been polymerized. As previous 

literature and experience indicated that IELs survive poorly in vitro, I analysed the co-cultures 
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as early as 12 hours post set up. The fixation and staining protocol is described in the Materials 

and Methods section. The CD45 staining was used to detect IELs specifically. The DAPI 

staining was used to detect nuclei in both IECs and IELs. Finally, phalloidin a probe that stains 

F-actin, provides a clearer inner and outer structure the organoids compared to what the DAPI 

staining alone provides. The first observation was that IELs were detected both inside and on 

the organoids by CD45 staining in both conditions (Fig 4.3 C). This observation was promising 

as it offered optimization possibilities for the system. However, the number of IELs found on 

the organoids ranged from 1 to 8 (data not shown). From in vivo and tissue sectioning data the 

expected number of IELs per IEC would be 1 IEL per 4-10 IEC (Edelblum et al., 2012; Beagley 

et al., 1995; Wurbel et al., 2007; Schön et al., 1999). Examining images from IEL-organoid co-

cultures clearly indicates that there are fewer IELs per IEC on the organoids, suggesting that 

there are still factors missing from the in vivo situation. 

 

4.4.  Adding IELs in the Matrigel significantly increases the number of IEL-

associated organoids 

Having been able to show that IEL and organoids indeed can be co-cultured (Fig 4.3 C), I next 

need to optimize and validate the co-culture system. To further optimize the co-culture system, 

I tested whether adding IELs into the medium or Matrigel did have an impact of the IEL 

incorporation rate. A possible reason why few IELs are detected on the organoids (1-8 IELs 

per organoids) could be that they die and thus become undetectable with CD45 staining, so I 

tested whether the addition of cytokines suggested to be important for IEL survival, namely 

IL-2, -3, -7 and IL-15, would increase the number of IELs observed per organoid. To address 

this, I added IELs in the Matrigel or organoid culture medium with or without the cytokine 

cocktail (four conditions in total) (Fig 4.3 D-F) and fixed the co-cultures 12 hours post set-up. 

Interestingly, I observed that the number of organoids having IELs associated to them (both on 
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and inside organoids) increased significantly, when the IELs were added into the Matrigel 

compared to adding IELs in the medium (Fig 4.3 E). However, the addition of cytokines at 12 

hours post culture set-up did not make a significant contribution, suggesting that the starting 

point with low number of IELs does not seem be mediated by death because of lack of IL-2-

3,-7 and IL-15. I also quantified the number of IELs observed on each organoid and also there 

I observed a statistically significant increase of the number of IELs observed per organoids in 

the condition where IELs were added in the Matrigel. The additional cytokines did not make a 

significant impact on the number of IELs per organoid (Fig 4.3 F). Following this experiment, 

the subsequent experiments were all performed with IELs co-cultured in the Matrigel. 
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Figure 4.3. Association of IELs with organoids is independent of IL-2, -3, -7 and IL-15. 

38 000 IELs and approximately 100 organoids per well were co-cultured at 37 °C for 12 hours 

either in medium or in Matrigel in the presence or absence of a cocktail of interleukins -2, -3, 

-7 and -15. A) IELs used for the co-culture experiments were sorted based on CD8α expression.  

The proportion of CD8α+ IELs in the small intestinal epithelium compartment was analysed by 

flow cytometry. The plots were gated on live CD45+ cells and the cell staining patterns analysed 

by tSNE. The tSNE plot is overlaid with CD8α, CD19 and CD4 expression. These are 

representative plots from at least ten independent experiments. B) The same experiments as 

shown in panel A except this time the population was pre-gated on live CD45+CD8α+ prior to 

tSNE analysis and the tSNE plots overlaid with stainings for either CD8αα and CD8αβ (left)  
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Figure 4.3. Association of IELs with organoids is independent of IL-2, -3, -7 and IL-15 

(cont.) or TCRγδ and TCRαβ (right). C) After 12 hours of co-culture, IEL-organoid co-cultures 

were fixed and stained for DAPI, phalloidin conjugated to AF568 and CD45. The scale bar 

represents 20 µm. D) Schematic illustration of a well with intestinal organoids cultured in 

Matrigel and the two incorporation techniques used. E) Organoids containing at least one IEL 

were counted for each growth condition. The result is expressed as percentage of 25 organoids 

per well analysed and represented as mean ± SD. The experiment was performed twice. F) The 

number of IELs present in the organoids under the various conditions. Each point represents 

the number of IELs present in a single organoid as mean ± SD. The experiment was performed 

twice. Statistically significant changes were identified by one-way ANOVA for panel E and 

the Kruskal-Wallis test for panel F. ***: p<0.001. 

 

4.5.  The seeding density of IELs is important for a high level of IEL-

incorporation 

After testing different incorporation techniques, I next asked whether the missing factor(s) 

could be derived from IELs or IECs. It may be that intestinal organoids do not fully resemble 

the in vivo IEC surface protein expression, or that IELs may have lower homing capacity, as 

they have already homed to the intestinal compartment once in the donor mice. To address this, 

I carried out titrations using constant numbers of organoids, or converseley of IELs, and then I 

assessed the impact of different numbers of the partner in the co-culture system. When adding 

40 000 IELs to varying numbers of organoids, as indicated on the figure, I observed no 

significant differences in terms of percentage of IELs associated with organoids (Fig 4.4 A). 

However, when I increased the number of IELs added to the same number of organoids, I 

observed an increase in the percentage of IEL associated organoids (Fig 4.4 C) suggesting that 

one or more IEL derived factors is missing from the in vivo situation. An alternative explanation 

could be that only a small percentage of the heterogeneous IEL population (Fig 4.3 A-B) is 

actually able to access and associate with the organoids and the more total IELs that are added 
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the larger this subpopulation will be in the culture well. In terms of number of IELs on the 

organoids, it seems that the number of organoids per well is not a critical factor as all organoid 

concentrations contain similar range of IELs per organoid (Fig 4.4 B). The same applies when 

titrating the number of IELs (Fig 4.4 D).  

 

To understand further what these limiting IEL-derived factor(s) may be, I also compared 

TCRαβ+ and TCRγδ+ IELs co-cultured separately with WT organoids. By 12 hours post set-

up, TCRγδ+ IELs are more numerous per organoid compared to TCRαβ+ IELs co-cultures and 

there is also a higher frequency of organoids carrying TCRγδ+ IELs (Fig 4.4 E and F). This 

data is promising, as indeed there are more TCRγδ+ IELs compared to TCRαβ+ IEL in in vivo 

small intestine. However, over time in the CD8α+ IEL co-cultures, the ratio of TCRγδ+ IELs 

associated with organoid decreases (Fig 4.9 C), suggesting that current culture conditions favor 

TCRαβ+ IEL maintenance. 
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Figure 4.4. Association of IELs with organoids is dependent on the seeding density of 

IELs. IELs and organoids were co-cultured in Matrigel for 12 hours at 37°C with differing 

numbers of organoids (A-B) or IELs (C-D) seeded per well as indicated. A) The number of 

organoids per well was varied with 40 000 IELs per well seeded. Each point is presented as 

percentage of IEL-carrying organoids (at least one associated IEL) per well and represented as 

mean ± SD.  
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Figure 4.4. Association of IELs with organoids is dependent on the seeding density of 

IELs (cont.) 4-6 wells with 25 organoids per well were screened in 2 independent experiments. 

B) Using the same dataset as in panel A, the number of IELs associated with individual 

organoids was quantified. Data are presented as mean ± SD. C) The number of IELs per well 

was varied with estimated 100 organoids per well seeded. The percentage of organoids with 

IELs was determined in the same way as in panel A. D) Using the same dataset as in panel C, 

the number of IELs associated with individual organoids was determined in the same way as 

in panel B. E) Organoids were co-cultured with varying numbers of either TCRαβ+ or TCRγδ+ 

IELs and the percentage of IEL-associated organoids determined in each case, as in panel A. 

F) Using the same data as in panel E, the number of IELs associated with individual organoids 

was determined in the same way as panel in B. The experiments were performed twice with 

final 4-6 wells. Each data point presents the percentage of IEL-carrying-organoids per well or 

the number of IELs per organoid. Statistically significant changes were identified by one-way 

ANOVA for panel A, C and E and the Kruskal-Wallis test for panel B, D and F. *: p<0.05 **: 

p<0.01 ***: p<0.001. 

 

4.6.  Organoids enable IELs specifically to migrate into them 

One important factor for model establishment is to test specificity. There is a need to address 

whether similar numbers of other T cells would be associated to organoids as IELs. To test co-

culture specificity, I set up co-culture with organoids and either naïve (CD8α+ CD44Int) or 

memory (CD8α+ CD44Hi) T splenocytes (Supplemental figure to Fig 4.5) as comparative 

populations for IELs. IELs are usually described as semi-activated, and therefore the best 

comparative populations would be both naïve and memory T cells (non-activated and formerly 

activated T cells). I observed that IELs were superior in intraepithelial localisation compared 

to the splenocytes (Fig 4.5 E-F): the number of splenocytes in intraepithelial location increased 

with increase number (Fig 4.5 E-F) suggesting addition of more cells may be saturating the 

organoid system. It could also be that either IECs only allow IELs to migrate to intraepithelial 

sites, or that only IELs have the capacity to migrate between the IECs and occupy the niche as 

tissue resident cells.  
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Figure 4.5. Selectivity of lymphocyte migration into organoids. Organoids were co-cultured 

separately with varying numbers of lymphocytes of IELs, naïve (CD44int) and memory 

(CD44Hi) CD8α+ T cells for 12 hours prior to analysis. Immunocytochemical analysis was then 

performed to determine the association with or entry into the organoids co-cultured with the 

lymphocytes. A) The percentage of the organoids per well associated with the three types of 

lymphocytes was determined.  
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Figure 4.5 Selectivity of lymphocyte migration into organoids (cont.) Each data point 

presents the percentage of lymphocyte-carrying-organoids per well represented as mean ± SD. 

4 wells with 25 organoids per well were screened and performed in 2 independent experiments. 

B) Using the same dataset as in panel A, the number of IELs associated with individual 

organoids was counted. Each data point presents the number of IELs per organoid and is 

presented as mean ± SD. C) Representative image of IELs within an organoid - scale bar is 30 

µm. D) Three-dimensional representation of the same image as in C). E) The percentage of 

organoids per well containing lymphocytes within them was determined for all three 

lymphocyte types. F) The same dataset as in panel E was used to determine the percentage of 

the total associated lymphocytes that has entered the organoids. The experiment was performed 

twice. Statistically significant changes were identified by one-way ANOVA for panel A and E 

and the Kruskal-Wallis test for panel B and F. **: p<0.01 ***: p<0.001. 

4.7.  IELs survive for at least 4 days in co-culture with organoids 

Another important question to address is whether the IELs associated to organoids remain alive 

for a prolonged period of time. If IEL survive longer in vitro with the organoids than alone that 

would open up new possibilities with mechanistic studies of IEL biology and provide an in 

vitro option for IELs to complement the in vivo observations. To address whether IELs survive 

in the IEL-organoid co-culture system, I adapted a live dead imaging system for the co-culture 

system. I added DAPI to the co-culture before fixation instead of using it as a counter-stain. As 

positive control, I added splenocytes from another experiment in which they had been stored 

in sub-optimal conditions leading to generation of dead cells to ensure sufficient DAPI staining 

to be able to distinguish live and dead IELs, as well as live and dead organoids. By this method, 

I would be able to address whether the IELs observed on the organoids are alive or not and for 

how long they stay alive. The altered staining method worked as anticipated (Fig 4.6 A-B). I 

used this staining method on IEL-organoids co-cultures. In Figure 4.6 C, I show a 

representative of an organoid co-cultured with IELs for which the vast majority of the cells are 

alive 24 hours after set up. Using this method, I observed that the IELs on the organoids were 
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indeed alive for four days in culture, while both splenic naïve and memory CD8α+ T cells died 

over time (Fig 4.9 B).  
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Figure 4.6. Altered DAPI staining protocol discriminates live organoids and lymphocytes 

from dead cells. DAPI was added to organoid cultures and lymphocyte-organoid co-cultures 

prior to fixation. A) As a positive control for this test, a splenic lymphocyte suspension that 

been stored at 4 °C for nine days was added to the organoids for co-culturing for 72 hours prior 

to DAPI staining followed by fixation. B) A representative image of an organoid cultured 

without lymphocytes and stained by this method. C) A representative image of an organoid co-

cultured with IELs co-culturing for 24 hours prior to DAPI staining and fixation with this 

staining method. D) A higher magnification image of the same image as panel C. The scale 

bars on all images represents 30 µm. 
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In addition, as the co-culture system was up and running, it became interesting to address the 

role of IELs on the organoids in terms of proliferation. In the literature, quantification of 

proliferative IECs and IEC subset has been performed by manual counting on selected number 

of tissue sections. This is a very time-consuming method. Therefore, I wanted to test if I could 

speed up the process by using image data analysis software. Having this method would also 

enable me to obtain an estimation of the number of IELs per IEC in the IEL-organoid co-

cultures. 

 

To perform the experiment, I cultured WT organoids and harvested them every 24 hours after 

passage. Two hours prior to each harvest, I added EdU to be able to stain for EdU incorporation 

as a parameter of IEC proliferation. The organoids were stained for Ki-67, DAPI and EpCAM. 

Twenty-five organoids per well were acquired and analyzed using Imaris. Using Imaris, I could 

set parameters to enable the software to detect the different IECs: DAPI+, DAPI+ Ki-67+ and 

DAPI+ EdU+ IECs. The EpCAM staining was useful in this regard to distinguish IECs on the 

organoids from shed IECs. Imaris is intuitive as it informs the user about cells that have been 

quantified by adding spots on top of the detected cells. Figure 4.7 B illustrates detection of 

DAPI+, DAPI+ Ki-67+ and DAPI+ EdU+ IECs. After observing a large number of images, I 

concluded that the parameters are reliably detecting the requested IEC subsets and I started to 

use these parameters for further analyzing (Fig 4.7 C-D). These data demonstrate that organoids 

are most proliferative during the first days in culture and the organoid proliferation tends to 

increase after culture medium change. Similar analyzing strategy was successfully applied to 

organoids stained for different IEC subsets such as Paneth cells and goblet cells, by Lyzosome 

and Muc-2 staining, respectively.  
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I have also tried to design parameters for quantification of IELs (Supplemental Figure to 4.7-

2). In this way, I can detect the total number of IELs associated with the organoids. However, 

some optimization is required to be able to distinguish intraepithelial localized IELs from IELs 

merely associated to an organoid.  

 

The quantification of number of IEC per organoid provides an estimate of the number of IELs 

per IEC: one IEL per 20-200 IECs (data not shown). This data indicate that the size of the 

organoids does not seem to be the determining factor as the same number of IELs can be found 

on both small (few IECs) and on large (many IECs) organoids. 
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Figure 4.7. Automatic quantification of subsets in organoids enables rapid analysis. 

Organoids were cultured, fixed and stained for proliferation markers at the indicated time 

points. A) A representative image of an organoid 3 days after passage. B) The same image as 

panel A, with addition of colour-coded spots that Imaris detects as the different subsets (DAPI+, 

EdU+, Ki-67+ IECs) present on the organoid. The white arrows points at the crypt domain to 

exemplify the colour-coded spots. C-D) Quantification of C) EdU+ and D) Ki-67+ subsets over 

the course of six days in culture with medium change at day three from three independent 

organoid cultures. The data are expressed with boxplots showing whiskers from minimum to 

maximum values. Statistically significant changes were identified by the Kruskal-Wallis test. 

***: p<0.001. 
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4.8.  IECs have their own requirement for IL-15 signalling 

After discovering that IELs indeed can be found alive on the organoids, I next asked what 

factors or conditions might promote their survival. The literature has highlighted IL-15 as an 

important survival factor for IELs. IL-15Rα-/- mice lack IELs, memory CD8 and NK cells 

(Lodolce et al., 1998). However, the reason(s) for this lack of IELs could be several, such as a 

developmental requirements for IL-15 by IELs or that IL-15 is indeed required for the 

maintenance of the mature cells. With the organoid model, I have a cleaner approach to address 

this question. Hence, I next asked if IELs would stay alive on organoids lacking the IL-15R.  

 

To ensure that the results of this experiment were dependent on the lack of IL-15R, I performed 

some characterization of IL-15Rα-/- organoids. Organoids set up from IL-15Rα-/- mice grow 

successfully, enabling the experiment to take place. To confirm that the organoids indeed lack 

IL-15R, I carried out qPCR analysis of the organoids compared to WT organoids. As expected, 

IL-15Rα-/- organoids lack IL-15Rα expression (Fig 4.8 E). Expression of IL-15 is unaffected 

by the lack of IL-15Rα (Fig 4.8 F), suggesting that IL-15 signaling between IECs and other 

cells may still occur in IL-15Rα-/- mice. Interestingly, the qPCR analysis showed statistically 

significant differences in several genes such as the antimicrobial proteins (AMPs) RegIIIγ and 

RegIIIβ (Fig 4.8 H-I), the gene for lysosome Lyz1 (Fig 4.8 L) and the chemokine CCL25 (Fig 

4.8 G). Expression of Muc-2 and Cxcl-10 showed no differences (Fig 4.8 J-K). In further 

characterization, I also discovered that IL-15Rα-/- organoids contain a higher percentage of 

goblet cells than WT organoids (Fig 4.8 B), but similar percentage of Paneth cells (Fig 4.8 A). 

In addition, the organoids originating from IL-15Rα-/- intestine grow slower than WT as 

quantified by EdU incorporation and Ki-67 staining (Fig 4.8 C-D). These data indicate that 

IECs have their own requirement for IL-15 signaling. 
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Figure 4.8. IL-15 signalling is important for IEC proliferation, goblet cell differentiation 

and AMP production. WT and IL-15Rα-/- organoids were harvested 3 days post passage for 

image and mRNA quantification of indicated parameters. A) Quantification of the percentage 

of Paneth cells amongst IECs in indicated organoids. The data are expressed with boxplots 

showing whiskers from minimum to maximum values. B) Quantification of the percentage of 

goblet cells amongst IECs expressed in same way as panel A. C) Quantification of the 

percentage of EdU+ amongst IECs expressed in same way as panel A. D) Quantification of the 

percentage of Ki-67+ amongst IECs expressed in same way as panel A. E-L) mRNA expression 

by WT and IL-15Rα-/- organoids for the following genes: E) IL-15Rα (confirming the IL-

15Rα-/- genotype), F) IL-15, G) CCL25, H) RegIIIγ, I) RegIIIβ, J) CXCL10, K) Muc-2 and L) 

Lyz1. The mRNA expression data are presented as mean ± SD. Data are pooled from two 

independent experiments. Statistically significant changes were identified by Mann-Whitney 

U test. *: p<0.05., **: p<0.01., ***: p<0.001. 

 

4.9. Organoid-mediated IEL survival is independent of IL-15 trans-presentation 

To assess the role of IL-15 trans-presentation for organoid-mediated IEL survival, I sorted WT 

IELs, added them to WT and IL-15Rα-/- organoids and fixed them at 12, 24, 36, 72 and 96 

hours post set-up. I found that both TCRαβ+ and TCRγδ+ IELs survived on both WT and IL-

15Rα-/- organoids. The number of IELs associated to WT and IL-15Rα-/- organoids were 

similar at the assessed time points (Fig 4.9 A). Using the DAPI survival staining, as established 

in Figure 4.6, I observed that the majority of the IELs associated to both WT and IL-15Rα-/- 

organoids were alive at the tested time points (Fig 4.9 B). Interestingly, I observed that both 

naïve and memory splenic CD8α+ T cells co-cultured with organoids had poor survival: the 

majority of naïve and memory splenic CD8α+ T cells associated to organoids are dead after 72 

hours of culture (Fig 4.9 B). In addition, I observed live IELs on WT organoids after organoid 

passage (data not shown), indicating that IELs may survive for even longer period of time in 

culture. These data indicate that organoids supply conditions for IELs to survive, but not all T 

cells. 
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Finally, I observed a decrease of the percentage of TCRγδ+ IELs associated on WT organoids 

over time (Fig 4.9 C), suggesting that TCRαβ+ IELs are favored for “long-term” maintenance. 

Collectively, these data suggest that organoids enable IELs specifically to survive on them. 

Moreover, the data suggests that IL-15 trans-presentation is not strictly required for IEL 

survival for these 4 days tested in vitro and that the role of IL-15 for IEL maintenance may be 

more complex than previously thought. 

  

As validation of the in vitro experiment, I transferred WT IELs into IL-15Rα-/- Rag2-/- mice, 

Rag2-/- mice (as control) and IL-2Rγ-/- Rag2-/- mice and was able find the IELs back in the 

IEC compartment in all three groups of mice (Fig 4.9 D). However, the number of IELs in IL-

15Rα-/- Rag2-/- was lower compared to control Rag2-/- mice. These data suggest that IL-15 

trans-presentation may instead be important for long-term IEL maintenance. In addition, the in 

vivo data highlights the complexity of IL-15 signaling. This also nicely illustrates how the 

newly established IEL-organoid system can be used for probing IEL biology and combined 

with validation in the in vivo situation. 
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Figure 4.9. Organoids mediate IEL-specific survival independently of IL-15 trans-

presentation. WT IELs were sorted and co-cultured with either WT or IL-15Rα-/- organoids 

for indicated time points. Co-cultures of WT memory and naïve CD8α+ T cells with WT 

organoids were used as controls. A) Number of IELs per WT or IL-15Rα-/- organoid at the 

indicated time points. B) The DAPI survival staining, as described in Fig 4.6, was used to 

determine survival of associated IELs or splenocytes for indicated time points. C) The ratio of 

WT TCRγδ+ IELs co-culture with WT organoids over time D). The number of CD8α+ IEL 

quantified three weeks after IEL transfer. Data are presented as mean ± SD from two 

independent experiments. Statistically significant changes were identified by one-way 

ANOVA.  **: p<0.01., ***: p<0.001. 
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4.10. Specific murine norovirus strains replicate in organoids and 

reduce their proliferation – the latter being reversed by adding IELs. 

Now that I had established IEL-organoid co-cultures, I wanted to test what would happen if I 

stressed organoids with enteric microorganisms or pathogens, such as Escherichia coli (E. coli) 

and murine norovirus (MNV), and how this response might potentially be altered by addition 

of IELs. 

 

MNV is a single-stranded RNA virus which is a common cause of gastroenteritis (Newman 

and Leon, 2015). There are many different MNV strains identified. MNV can be divided into 

acute and persistent strains, of which both have been used in this Chapter. The persistent strain 

I used, MNV-O7, was obtained from STAT1-/- mice from the Department of Veterinary 

Medicine at University of Cambridge (Shortland et al., 2014). As an acute MNV strain, I used 

MNV-CW3 that is cleared in WT mice but fails to be cleared in Rag1-/- mice (Tomov et al., 

2013).  

 

For in vitro work with MNV, the infection dose is determined as tissue culture infective dose 

(TCID) per cell (Shortland et al., 2014). I was kindly provided with stocks of MNV-O7 and 

MNV-CW3 from the laboratory of Jonathan Heeney. However, organoid cultures cannot be 

quantified as single cells without disruption of their 3D structure. To overcome this hurdle, I 

utilized a quantification parameter, as shown in Figure 4.7 B. The quantification of DAPI+ 

cells, when using DAPI as a counterstain, determines the number of IEC present in each 

organoid. I have used the DAPI quantification from the experiments presented in Figure 4.7 C 

-D, which generates an average number of IEC per organoid 3 days after organoid passage. To 

estimate the number of IECs present in each well, I quantify the number of organoids present 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 4 Establishing an IEL-Organoid Co-Culture System to study IEL function, maintenance and activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 126  
Copyright © 2018 Frising UC 

in each well by bright field microscopy. Then, I multiply the number of organoids with the 

average number of IEC per organoid 3 days after passage.  

 

To test if intestinal organoids can be infected by MNV, I treated organoids with 0.5 and 5 TCID 

MNV per IEC, added into the culture medium. Samples were harvested for qPCR viral 

quantification and imaging analysis. As controls for the qPCR analysis, I set up wells with 

Matrigel and medium spiked with 5 TCID of each MNV strain, but with no organoids. For the 

viral quantification analysis, the MNV-organoid wells were harvested 1, 12, 18, 24 and 45 

hours post set up. Interestingly, I observed a difference in the basal level of virus strains already 

at one hour post infection (Fig 4.10 A-D). These data may suggest potential differences in the 

ability of each MNV strain to attach to organoids. Even more interestingly, the viral 

quantification of the MNV-O7 strain specifically increases over time. No increase over time 

was observed with MNW-CW3 or the UV-radiated strains (Fig 4.10 A and C). These 

observations with MNV-O7 and MNV-CW3 were reproducible. In addition, an additional 

persistent MNV strain, MNV-3 (Hsu et al., 2007), also had increased viral quantification in 

organoids (Fig 4.10 D). These increases suggest that IECs are potential target cells for MNV-

O7 and MNV-3 infection, as both strains can replicate within them. 

 

To validate that MNV-O7 specifically are located inside the organoids, I have tested various 

antibodies targeting different parts of the MNV virus particles. Being able to stain MNV would 

also be beneficial to determine the rate of organoid infection with MNV. There is the possibility 

that not all organoids are infected, which could potentially explain some of the variation in the 

response to MNV-O7 infection (Fig 4.10 and 4.11). However, none of the tested antibodies has 

given a strong signal (data not shown). A possible explanation for this is that the target epitopes 
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are too few to enable detection with my imaging protocol. Therefore, additional imaging 

optimization concerning signal amplification may be required.  

 

In addition to the viral quantification analysis, I harvested MNV-infected organoids and stained 

them for the proliferation makers EdU and Ki-67, as previously shown (Fig 4.7 B). 

Interestingly, I observed a dose-dependent reduction in EdU and Ki-67 staining in MNV-O7-

treated organoids (Fig 4.10 E-F). In contrast, I did not detect any changes in EdU or Ki-67 

staining with MNV-CW3-treated organoids (Fig 4.10 G-H). These data support the 

interpretation that MNV-O7 specifically infects intestinal organoids, while MNV-CW3 cannot.  
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Figure 4.10. Organoid proliferation is reduced in the presence of MNV-O7 infection. To 

establish an MNV infection model, I added two doses of MNV-O7, MNV-CW3 and UV-

radiated MNV in the culture medium of freshly plated organoids, or Matrigel droplets with no 

organoids as control. The organoids were harvested at indicated time points after treatment. 

The detected viral quantification of A) MNV-CW3 B) MNV-O7 and C) UV-radiated control. 

The experiment was performed once with two organoid wells per condition. D) A repeat 

experiment was performed with 5 TCID dose, including the MNV-3 strain. E-H) 0.5 or 5 TCID 

per IEC of MNV-O7 and MNV-CW3 were added either in the organoid culture medium or the 

Matrigel. After 24 hours, the organoids were harvested and stained for the proliferation markers 

EdU and Ki-67. E- F) MNV-O7-infected organoids stained for E) EdU or F) Ki-67. G-H) MNV-

CW3 infected organoids stained for G) EdU or H) Ki-67. Statistically significant changes were 

identified by one-way ANOVA.  **: p<0.01., ***: p<0.001. 

 

Next, I next wanted to assess if any differences were observed after adding IELs to MNV-O7-

infected organoids. For the experiments, IELs were added in the Matrigel together with the 

organoids. After the Matrigel polymerization, MNV-O7-spiked complete organoid medium 

was added and the cultures harvested after 24, 48 and 72 hours post set up. Adding IELs to 

steady state organoids did not lead to increased proliferation at these three time points (Fig 4.11 

A-C), suggesting that addition of IEL does not increase proliferation in organoids. However, 

in conditions with MNV-O7-spiked medium, addition of IELs prevent the decrease in 

proliferation in the organoids at 24 and 48 hours after infection (Fig 4.11 A-B). At 72 hours 

post infection, the control organoids have lower proliferation, a trend already observed in 

Figure 4.7 C and D. This may be due to organoids exhausting the provided growth factors in 

the culture medium by this time. In these conditions, IELs fail to prevent the decrease in 

proliferation in organoids (Fig 4.11 C). 

 

One factor that has been suggested to be important for MNV clearance in vivo is IFNλ (Nice et 

al., 2015). Therefore, I asked what would happen if I added IFNλ into the medium of MNV-
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organoid co-cultures. For the experiment, 25 ng/ml IFNλ (PeproTech) were added to steady 

state and MNV-infected organoids for 24 hrs. Surprisingly, addition of IFNλ did not rescue the 

proliferation, but reduced it even further (Fig 4.11 D). Determining the viral quantifications 

under the different conditions would give further insights into the mechanisms behind these 

observations and whether maintenance of proliferation is beneficial for the IECs or the MNV-

O7. 
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Figure 4.11. Addition of IELs prevents the MNV-O7-mediated decrease in IEC 

proliferation. A-C) WT organoids were infected with MNV-O7 in the medium, with or without 

IELs, for 24, 48 and 72 hours. The wells were stained for the proliferation marker EdU with 

indicated conditions at A) 24 hours, B) 48 hours and C) 72 hours post MNV infection. Data are 

pooled from two experiments. D) 25 ng/ml IFNλ was added to steady state and MNV-infected 

organoids for 24 hours and assessed for EdU proliferation. Statistically significant changes 

were identified by one-way ANOVA.*: p<0.05., **: p<0.01., ***: p<0.001. 
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4.11. Combining organoids with E. coli led to reduction of proliferation 

After observing that organoids respond to MNV-O7 infection with decrease in proliferation, I 

wanted to test if organoids respond in similar manner to the presence of other microorganisms. 

For the test, I used E. coli, a facultative anaerobe bacteria that is present in the intestine (Da Re 

et al., 2013). The different kinds of E.coli range from harmless to pathogenic, for which I have 

used a harmless strain usually used for feeding of Caenorhabditis elegans: E. coli OP50 (Kwon 

et al., 2017). E. coli was quantified using optical density (OD)-measurements at 600 nm and 

added in ratio to the number of IECs present, which was estimated in same way as for 

determining MNV doses. I added three doses of E. coli OP50 to the culture medium or in 

Matrigel. I observed a dose-dependent decrease in EdU proliferation in the organoids when 

adding E. coli OP50 in the Matrigel, which was not observed when adding E. coli in the 

medium (Fig 4.12 A-B).  

 

These data are opposite of what was observed with the MNV-O7 infected organoids, for which 

reduction in proliferation was observed when adding MNV-O7 in the medium only. 

Collectively, these data suggest two strategies for incorporating microorganisms/pathogens 

into the organoid system: either into the organoid culture medium or in the Matrigel droplets. 
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Figure 4.12. Addition of E .coli reduces the proliferation in organoids. Three concentrations 

of E. coli OP50 were added either in the organoid culture medium or in Matrigel for 24 hours 

before being analysed for the proliferation markers A) EdU and B) Ki-67. Statistically 

significant changes were identified by one-way ANOVA. ***: p<0.001. 
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4.12. Supplemental chapter figures  

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure to 4.5: Naïve and Memory splenic CD8α+ T cell sorting strategy. A 

representative flow cytometry plot illustrating the gating strategy used for sorting naïve (CD8α+ 

CD44int) and memory (CD8α+ CD44Hi) splenic T cells, after pre-gating on DAPI- lymphocytes. 

Other flow cytometry experiments including TCRαβ and TCRγδ antibodies confirmed that the 

gating above indeed sorted T cells. The sorted memory and naïve CD8α+ cells were used for 

co-culture experiments and other experiments involving naïve and memory CD8α+ T cells in 

this thesis. 
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Supplemental Figure to 4.7-1: Organoid proliferation data. Spearman linear correlation 

analyses were performed on the number of EdU+, Ki-67+ and DAPI+ IECs in the organoids at 

the indicated time points in culture. On the left side are the EdU graphs and on the right side 

the Ki-67 graphs for A) day one, B) day two, C) day three, D) day four, E) day five and F) day 

six after organoid passage, for three independent cultures performed in duplicate (one organoid 

culture) or triplicate (two organoid cultures). 
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Supplemental Figure to 4.7-2: Image quantification of IEL-organoid cultures. A-D) IEL-

organoid co-cultures were set up and stained as described previously. An image without 

quantification parameters is shown in Panel A). B-D) Same image as panel A, with addition of 

the quantification parameters: B) identifying all IELs with green spots (white arrows pointing 

at some examples), C) identifying the IELs associated with the organoid with pink spots (white 

arrows pointing at some examples) and D) identifying the IELs associated to the organoid with 

pink spots, while IELs not associated with the organoid are identified with blue spots (white 

arrows pointing at some examples).  
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Supplemental Figure to 4.7-3: Image quantification of intestinal tissue-sections. A-D) 

Small intestinal tissues from WT mice were harvested and stained for DAPI, Ki-67, EdU and 

EpCAM in order to apply a similar quantification method to them. A) Shows an example image 

with all stainings and quantification colour-coded quantification spots, while panel B-D) 

focuses on the B) DAPI, C) EdU, D) Ki-67 staining and their respective quantification spots. 

 

 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 4 Establishing an IEL-Organoid Co-Culture System to study IEL function, maintenance and activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 140  
Copyright © 2018 Frising UC 

4.12. Chapter Discussion  

To summarise the findings described within this chapter, an IEL-organoid co-culture system 

has been established and validated. The observations that IELs associated with organoids 

survive for at least 4 days, and are found after passaging the co-culture system, provide an in 

vitro opportunity to dissect further the molecular mechanisms behind IEL biology, such as 

maintenance and activation of these cells. 

  

The mechanism behind the organoid-mediated IEL survival is still unknown. The mechanisms 

could involve contact interactions between IELs and IECs, secreted factor(s) from IECs or a 

combination of both. If the survival mechanisms rely on IEC secreted factors, then it could be 

possible to culture IELs in the presence of the IEC-secreted factors. Until the mechanisms are 

known, the organoids need to be taken into account for the molecular mechanisms discovery. 

This could be done by adding mediators such as drugs and cytokines to organoid and IEL-

organoid cultures. Such treatments will provide insights into how IECs react on their own, and 

hence which responses may originate from IELs themselves and which may depend on IEL-

IEC interactions. To dissect further the organoid-mediated IEL survival, one could test whether 

soluble factors released from the organoids would be sufficient to maintain IELs alive. This 

could be done by adding complete organoid medium from organoids cultured for 1-3 days. If 

no, or only a small effect on IEL survival is observed, then it may suggest a more important 

role of contact interactions between IELs and organoids for IEL survival.  

 

One of the highlights from this chapter is the automatic image quantification as shown in Figure 

4.7. This provides fast and rapid quantification at the cellular level without destroying the 3D 

organization of the organoids. It allows smooth transition from in vitro techniques that involve 

quantification of the number of cells, for example to determine infection doses. This technique 
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would also be beneficial for IEL quantification. The IEL quantification in this chapter has been 

performed manually. I have tried to establish parameters for automated quantification of IELs 

as shown in Supplemental Figure to 4.7-2, by taking advantage of the fact that they are smaller 

than IECs and by using the TCRδ-eGFP reporter mice to distinguish TCRαβ+ from TCRγδ+ 

IELs. My testing of this approach so far seems promising. However, at present the detection is 

not without flaws. Occasionally false positive or false negative cells were scored for both my 

IEL and IEC parameters, particularly when trying to distinguish intraepithelial localized IELs 

from associated IELs. Depending on which day post passage the organoids are harvested, the 

number of detected IEC (by DAPI quantification) varies from about 50-600 IECs. Hence, one 

falsely quantified IEC will have maximum impact of 2 % on the small organoids. IELs on the 

other hand, are much sparser on the organoids, ranging from one to 15 IELs per organoid. In 

that scenario, a falsely quantified IEL can have a much bigger impact on the data and its 

interpretation. To avoid that, the individual images still require manual inspections.  

 

In addition, I have established similar quantification parameters for intestinal tissue sections 

(Supplemental Figure to 4.7-3). Having this would enable organoids to be the transition model 

between in vitro and in vivo studies, such as confirming organoid findings in vivo. An example 

of findings reported in this chapter that need in vivo confirmation is the difference in the 

properties of IECs between WT and IL-15Rα-/- organoids. As IL-15Rα-/- organoids have 

lower proliferative capacity and increased RegIIIγ and RegIIIβ mRNA production, it is 

tempting to draw parallels with the positive impact of IL-22 on IECs with respect to 

proliferation, and RegIIIγ and RegIIIβ production. To investigate this further, I need to have 

similar methods as used for the organoids to quantify these parameters from the mice. As tissue 

sectioning includes intestinal supporting cells, which are not present in the organoids, I needed 

to make use of EpCAM staining to distinguish IECs from other cells. As shown in 
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(Supplemental Figure to 4.7-3) the quantification seems to identify the right cells. This 

technical advance will work for further organoid studies and may apply for other organoid 

tissues as well.  

 

The observation that IELs survive on a similar high level on IL-15Rα-/- organoids as WT 

organoids, suggests that IL-15 trans-presentation is not strictly required for IEL survival for 

the first 4 days in culture (Fig 4.9 B). My IEL transfer experiment illustrates that IELs can be 

found in the small intestinal compartment in IL-15Rα-/-Rag2-/- mice, suggesting that IL-15 

trans-presentation is not strictly required in vivo either (Fig 4.9 D). There are fewer IELs 

recovered from these mice compared to Rag2-/- recipients, suggesting that IL-15 trans-

presentation may be involved, instead, for the long-term maintenance of IELs. A previously 

proposed mechanism for IL-15-mediated survival has been via modulation of the anti-apoptotic 

factor Bcl-2. Induced expression of Bcl-2 in IL-15-/- mice increases the numbers of IELs, but 

not to the same level as found in WT mice. Similarly induced Bcl-2 expression in WT mice 

did not alter the number of IELs (Nakazato et al., 2007). This example demonstrates the 

complexity of the in vivo intestinal situation for which the organoid-based approaches can assist 

in addressing the mechanisms. 

 

One of the outstanding questions from this chapter is which are the missing factor(s) required 

to increase the number of IELs per IEC to the level that is observed in vivo. Middendorp et al. 

have performed RNA sequencing on mouse crypt and villus structures isolated ex vivo and 

compared the gene expression profiles with organoids. This data-set suggests that organoids 

resemble the crypt structures better than the villus structures (Middendorp et al., 2014). Tissue 

sections of small intestine stained for CD3 as a marker of IELs show that IELs can be found in 

both crypts and villi domains (Kuo et al., 2001). Hence, there is a risk that IELs present in the 
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villi in vivo are not homing to the small intestinal organoids due to the organoids’ closer 

resemblance to crypt structures. An important aspect is whether this reported gene expression 

profile translates into protein expression. This information could pinpoint differences between 

the IECs in vivo and ex vivo and thereby suggest potential targets for improving IEL numbers. 

The IELs used are isolated from the small intestine and transfer experiments show that IELs 

are subsequently found in the small intestine (Fig 4.9 D). Assessment of the spleens showed 

very few IELs (data not shown), suggesting that i.v. injected IELs home specifically to the 

small intestine. This suggests that the processing and sorting strategy employed for the IELs 

does not impair their homing capacity. A potential option why the homing seems to work in 

vivo could be the presence of intestinal supportive cells, which are missing in our co-culture 

system and which may provide factors important for IEL homing and maintenance.  

 

Microbiota is not present in my system, but data from antibiotic-treated and germ-free mice 

suggest that these mice do not have a drastic decrease in the number of IELs compared to 

control mice. This suggests that the microbiota may not be the critical factor for this aspect. 

Undoubtedly, microbiota does have an impact the IEC barrier and the intestinal immune 

system, meaning that incorporation of microbiota into the system would be a beneficial for 

future research. There will be hurdles to incorporating microbiota into the organoid system, as 

there is clearly a risk of overgrowth and contamination. One could try to add heat-killed 

bacteria to the organoid system, bearing in mind that some microbial products will be altered 

by this processing. Another possibility would be to try to gene modify bacteria to reduce their 

proliferative capacity and add this to the organoids in low concentration.  

 

Another important factor is the extracellular matrix: IELs may be affected by the extracellular 

matrix present in the Matrigel and may miss homing signals from the organoids. One could try 
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a similar co-culture method to that used here, but test other options instead of Matrigel, such 

as collagen gel and PEG gels, to see if that would affect the number of IELs per organoid. An 

alternative approach would be to perform a titration of the percentage of Matrigel present in 

the droplets. All reported experiments have been performed with 50 % Matrigel with the 

remaining 50 % containing basal organoid medium. If Matrigel affects the IEL homing, then I 

may be able to see an effect by altering the percentage of Matrigel. If increasing percentage of 

Matrigel decrease the IEL-incorporation rate then Matrigel may be a hindrance for IELs. If 

increasing percentage of Matrigel increase IEL-incorporation rate, then maybe IELs can use 

Matrigel for migration to the organoids.  

 

All of these approaches will pin down which factor(s) are missing from the in vivo system. An 

increase in the numbers of IELs recoverable per organoid would also allow other methods to 

be used such as sequencing and flow cytometry.  

 

There remains much need for method optimization for organoid co- and tri- culture systems, 

but it is apparent that these types of cultures could lead to an explosion of new and interesting 

mechanistic discoveries concerning intestinal immune tolerance and responses to infections.  
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Chapter 5: IELs have a different activation and metabolic status compared 

to other CD8α+ T cells 

 

In the previous chapter, my focus was on the requirements for IEL survival and to address 

whether organoids could provide the required conditions for long-term in vitro IEL survival. I 

demonstrated differences in the interactions between organoids co-cultured with IELs, naïve 

or memory CD8α+ splenic T cells in terms of location of the cells on the organoids (Fig 4.5 

E-F) as well as their survival (Fig 4.9 B). In this and the coming two chapters, I will 

investigate further the differences in terms of activation requirements between IELs and other 

T cells, such as splenic CD8α+ T cells and T cells found in other epithelial barrier sites such 

as skin and lung.   

 

5.1. BALT: bronchus-associated lymphoid tissues 

There is a clear need for an organized immune system in the lungs, to be able to cope with 

exposure to potential pathogens and other danger accompanying oxygen inhalation. Similar 

to the intestinal immune system, the first line of defence in the lungs consists of a single-cell 

epithelial barrier. Like IECs, lung epithelial cells express pattern recognition receptors 

(PRRs) and can respond to stimuli by secreting damage-associated molecular patterns 

(DAMPs), cytokines and antimicrobial peptides (AMPs). There are two types of lung 

epithelia cells: type I and type II. The vast majority of lung epithelial cells are of type I. 

These cells are very thin and are responsible for the gas exchange (Leiva-Juárez et al., 2017). 

There are various immune cells in-between and beneath the lung epithelial cells such as DCs, 

MPs, ILCs, TCRαβ+ and TCRγδ+ T cells (Lloyd and Marsland, 2017). There are reported to 

be approximately similar number of CD4+ and CD8+ T cells in the lung (Zens et al., 2017). In 

a manner analogous to intestinal DCs, lung DCs scan the lung lumen for antigens and then 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 5 IELs have a different activation and metabolic status compared to other CD8α+ T cells 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 146  
Copyright © 2018 Frising UC 

migrate to the mediastinal lymph nodes (MedLN) to induce T cell responses (Deckers et al., 

2017). Beneath a specific set of lung epithelial cells, which have similarities to intestinal M 

cells, there are aggregates of T and B cells. These aggregates are called BALT. BALT-like 

structures can also be induced by inflammation and infection when they are also referred as 

inducible BALT (iBALT) (Foo and Phipps, 2010). 

 

In the past, the lung compartment has been thought to be sterile. However, there is a 

population of microbiota in the lower part of the lung (Lloyd and Marsland, 2017). The lung 

microbiota affects the lung immune composition, as germ-free (GF) mice have altered 

composition compared to conventional mice (Belkaid and Naik, 2013). 

 

5.2. SALT: skin-associated lymphoid tissues 

In the 1980s, it was proposed that there is a specialised immunological organisation of 

immune cells and structures in the skin, based on the fact that there are skin-specific APCs 

and T cells, as well skin epithelial cells, keratinocytes, providing a distinct immunological 

environment (Streilein, 1983). As with iBALTs, it appear to be possible to induce SALT 

structures (Ono and Kabashima, 2015).  

 

The skin is separated into two compartments, named epidermis and dermis, which have 

similarities to the intestinal IEC and LP compartments. In the epidermis, there are immune 

cells such as DCs called Langerhans cells (LCs) and dendritic epidermal T cells (DETCs), 

while in the dermis there are dermal DCs, MPs, ILCs and TCRαβ+ and TCRγδ+ T cells (Tay 

et al., 2014). As mentioned in the Introduction section 1.6.3, DETCs express Vγ5 (Allison 

and Havran, 1991). Live imaging footages illustrate how DETCs interact with skin epithelial 

cells (Zaid et al., 2014), in a similar manner as IELs interact with IECs (Edelblum et al., 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 5 IELs have a different activation and metabolic status compared to other CD8α+ T cells 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 147  
Copyright © 2018 Frising UC 

2012). As with IELs, there is a reduction in the number of DETCs in AhR-/- mice (Kadow et 

al., 2011), as well as unknown ligands for the TCR of DETCs (Tay et al., 2014). In the skin 

and thymus epithelial cells, there is an immunoglobulin-like protein called Skint1. Without 

expression of Skint1, the number of DETCs are reduced (Boyden et al., 2008). Equivalent 

proteins to Skint1 have been discovered in the intestinal compartment, namely butyrophilin-

like (Btnl)1, Btnl4 and Btnl6 (Bas et al., 2011). Btnl1-/- mice have very few TCRγδ+ IELs, 

while Btnl4-/- mice have similar number of IELs as control mice (Di Marco Barros et al., 

2016). 

 

5.3. GALT: gut-associated lymphoid tissues 

As described in the Introduction section 1.6.1, there is a single-cell layer of IEC that acts as a 

first line of defence. The IEC barrier and the LP compartment are classified as intestinal 

effector sites. There are various immune cells in these compartments such as DCs, MPs, ILCs 

and T cells. IELs, consisting of mainly CD8α+ TCRγδ+ cells, reside between cells of the 

intestinal epithelial barrier, while LPLs, consisting of mainly CD4+ TCRαβ+ cells, are found 

in the LP compartment. In addition to the effector site, there are intestinal inductive sites, 

namely mesenteric lymph nodes (MLNs), cryptopatches (CPs), isolated lymphoid follicles 

(ILFs) and Peyer’s patches (PPs). 

 

MLNs are lymph nodes associated with the mesenteric fat in the intestines. They are 

connected to the intestine via lymphatic vessels. In MLNs, T cell can become activated by 

DCs that have migrated from the intestinal sites with antigens. Which MLN intestinal DCs 

are migrating to seems not to be random: a recent study suggest that DCs scan for antigens in 

specific intestinal segments, as well as migrating to specific MLNs (Houston et al., 2015).  
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Beneath follicle-associated epithelium (FAE), there are PPs. FAE consists of M cells, which 

enable transfer of lumenal antigens through the IEC barrier (Mabbott et al., 2013). PPs are an 

important source of IgA production. Lymphoid-tissue inducer (LTi) cells can induce PP 

formation and typically there are between six to 12 PPs per small intestine of a mouse 

(Reboldi and Cyster, 2016; MacDonald, 2003; Prinz et al., 2003). 

 

In addition to MLNs and PPs, there are CPs and ILFs. These are aggregates important for 

activation and differentiation and mainly consist of T, B and LTi cells. CPs are random 

clusters found in the LP compartment (MacDonald, 2003). They are present in Rag2-/-mice, 

in the absence of microbiota, but not in the absence of the RORγt nuclear receptor. This 

dependence may be linked to LTi cells that are also dependent on RORγt expression. A lack 

of CPs does not affect the IEL population (Pabst et al., 2005). CPs can then form ILFs (Pabst 

et al., 2005). Unlike CPs, ILFs are dependent on the microbiota (Pearson et al., 2012). There 

are about 100-200 ILFs per mouse small intestine (Buettner and Lochner, 2016). 

 

Figure 5.1 Schematic illustration of the gut-associated lymphoid tissue (GALT). Like 

other mucosal-associated lymphoid tissues (MALTs) such as BALT and SALT, GALT is 

lined by a barrier of epithelial cells. Underneath the epithelia barrier, there are a variety of 

lymphoid structures indicated by the black arrows: A) mesenteric lymph node (MLN), B) 

cryptopatches (CPs), C) isolated lymphoid follicle (ILF) and D) Peyer’s patches (PPs). 

Modified from Maynard C. et al, Nature (2012). 
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5.4. Overview of mitochondrial structure and function 

The mitochondrion was discovered in the 1890s (Ernster and Schatz, 1981). This organelle is 

the primary source of adenosine triphosphate (ATP) and of the production of reactive oxygen 

species (ROS), as well as important in the maintenance of ion homeostasis, such as Ca2+, in 

the cell (Rourke et al., 2005). The number of mitochondria per cell varies between cell types, 

with mammalian erythrocytes having no mitochondria, while hepatocytes have thousands of 

mitochondria per cell (Cereghetti and Scorrano, 2006). The mitochondrion possesses of two 

membranes, an inner and an outer mitochondrial membrane, iMM and oMM. iMM have 

multiple of invaginations and the invaginated spaces have been named cristae. The space 

between iMM and oMM is called the inter-membrane space, while the space that iMM 

bounds is called the matrix (Fig 5.2 A). Unlike other organelles, mitochondria have their own 

DNA, (mtDNA), which encodes genes for the components of electron transport chain (ETC) 

complexes. Unlike nuclear DNA, mtDNA is not associated with histones. As a result, 

mtDNA is more fragile, and is susceptible to ROS damage (Batandier et al., 2002). 

Mitochondria are dependent on nuclear DNA to encode for proteins for remaining organelle 

functions (Goios et al., 2007). 

 

Mitochondria are dynamic organelles that can undergo fragmentation (fission) or biogenesis, 

formation of networks, (fusion). Proteins that have been suggested to be involved in 

mitochondrial fusion are optic atrophy 1 (Opa1), mitofusin 1 and 2 (Mfn1 and Mfn2, 

respectively), while dynamin-related protein 1 (Drp1) has been linked to mitochondrial 

fission (Fig 5.2 A). These dynamics of mitochondrial fission and fusion are important for 

mitochondrial function (Westermann, 2010). In addition, the shape of the mitochondria has 

recently received attention for being important for immune functions. Using photo-

activatable mitochondria (PhAM)-mice (Pham et al., 2012), it has been shown that Teff and 
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Tmem cells have distinct mitochondrial shapes. Teff cells have punctate mitochondria, while 

Tmem cells have tubular network-like mitochondria (Buck et al., 2016). These observations 

have been confirmed using MitoTracker Green (MTG) staining (van der Windt et al., 2012). 

Additional study has reported on remodeling of the cristae: from loose connected to tightly 

connected and associated these observations with immune functions (Klein Geltink et al., 

2017). Teff and Tmem cells have distinct metabolic profiles, as will be described in section 

5.4.3, linking mitochondrial structure to immunological function.  

 

In the iMM, there are five enzyme complexes denoted complex I, II, III, IV and V 

(Kühlbrandt, 2015). These complexes are involved in the ETC for generation of adenosine 

tri-phosphate (ATP). In addition, a specific family of lipids called cardiolipins (CLs), are 

found in mammalian iMM and Gram-positive and Gram-negative bacteria membranes 

(Paradies et al., 2014; El Khoury et al., 2017).  

 

5.4.1 Cardiolipins (CLs) – almost exclusively found in mitochondria 

A CL consists of four acyl chains, most of which are highly unsaturated and are attached to a 

carbon-backbone structure (Yin and Zhu, 2012). The composition and the number of CL 

species varies with tissue. As an example, mouse heart tissue contain 39 identified CL species 

(Han et al., 2006). CLs are thought to be able to affect most mitochondrial proteins such as 

the complex I, III, IV, V and Opa1 and therefore the CL composition may also affect 

mitochondrial functions such as mitochondrial respiration and membrane potential (Kameoka 

et al., 2017; Chicco and Sparagna, 2007; Paradies et al., 2014; Acehan et al., 2011; Jiang et 

al., 2000). CLs have been analysed using biochemical and mass spectrometric techniques. In 

addition, a dye called 10-N-nonyl-acridine orange (NAO), which is reported to bind to CLs 
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reasonably specifically, has been used to quantify CLs via flow cytometry (Ferlini and 

Scambia, 2007; Rodriguez et al., 2008). 

 

5.4.2. Electron transport chain (ETC) for generation of ATP and ROS 

The ETC, also known as the respiratory chain, consists of the five mentioned complexes I, II, 

III, IV and V. These transport electrons for reactions that lead ultimately to ATP production. 

As by-product from the ETC, about 1-3 % of the oxygen consumption finds its way to 

become ROS (Batandier et al., 2002). ROS is also generated in a process called reverse 

electron transfer (RET). This process has been reported to be controlled by complex II and 

the concentration of succinate (Hosler et al., 2006). Mitochondrial ROS can function as a 

signaling molecule in redox pathways within the mitochondria, in the cytosol and nucleus 

(Murphy, 2009).  

 

Factors that have been reported to be positively affected by mitochondrial ROS are nuclear 

factor of activated T-cells (NFAT) and NF-κB (Weinberg et al., 2015). Complex I (NADH 

dehydrogenase) is the major source of mitochondrial ROS production (Brandt, 2006). In 

addition to its role in the ETC, complex II (succinate dehydrogenase) is also taking part in the 

Krebs’s cycle for generation of additional ATP (Cecchini, 2003). Complexes III and IV are 

responsible for proton uptake by cytochrome reduction and oxidation, respectively (Hosler et 

al., 2006). Complex V (ATP synthase) is responsible for ATP production by adding a 

phosphate to adenosine diphosphate (ADP) (Jonckheere et al., 2012).  
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Figure 5.2 Schematic overview of the structure of mitochondria. A) Illustration of 

mitochondrial structure with inner and outer membrane, as well as some proteins involved in 

mitochondrial fission (left) and fusion (right). B) In the iMM, there are the five respiratory 

complexes with their typical chemical reaction indicated. The lower part of panel B shows 

the changes in ETC that can lead to RET and ROS production. Panel A is modified from 

Trends in Cell Biology DOI: (10.1016/j.tcb.2017.08.011), while panel B is modified from E. 

L. Mills, B. Kelly, L. A. J. O’Neill, Nat. Immunol. 18, 488–498 (2017). 

Trends in Cell Biology DOI: (10.1016/j.tcb.2017.08.011)  
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5.4.3. Metabolic pathways: ATP, metabolite and signalling molecules 

generation 

Glycolysis is ten-step reactions of glucose into pyruvate, which leads to ATP generation as 

well as generation of metabolites that can be used to fuel the tricarboxylic acid (TCA) cycle 

and amino acid synthesis. Glycolysis only generates two ATP per glucose molecule, making 

it a rather inefficient way to generate ATP. However, there are other advantages of glycolysis 

for the immune cells, which will be described later in this section. The TCA cycle, also 

known as Krebs cycle and the citric acid cycle, occur in the mitochondria and generates 

additional ATP, other metabolites that can be used for fatty acid synthesis (FAS) and fuel 

oxidative phosphorylation (OXPHOS). The TCA cycle can also be fuelled by glutamine that 

can be transformed into α-ketoglutarate, one of the metabolites in the TCA cycle (Fig 5.3). 

The TCA cycle and OXPHOS generates more ATP per molecule than glycolysis. OXPHOS 

can generate 36 ATPs per glucose molecule. In addition, OXPHOS generates mitochondrial 

ROS that subsequently affect cellular signalling pathways, but mitochondrial ROS can also 

lead to cell damage. Finally, fatty acid oxidation (FAO) can generate lots of ATP depending 

on the length of the fatty acid, while fatty acid synthesis (FAS) can be used to generate lipid-

derived molecules required by the cells  (Buck et al., 2015; O’Neill et al., 2016).  

 

The metabolic pathways have several intersections with each other; substrates from one 

metabolic pathway can affect other pathways. As an example, FAO include the molecule 

acetyl-Coenzyme A (CoA), which also can enter the TCA cycle (Dimeloe et al., 2016). TCA 

cycle generates reduced electron carrier, which complex I and II make use of for ETC and 

OXPHOS (Dimeloe et al., 2016). Citrate and oxaloacetate, two TCA cycle metabolites, can 

instead be involved in lipid biosynthesis and amino acid biosynthesis, respectively (Dimeloe 

et al., 2016).  The extracellular and intracellular environment has important role to whether 
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the TCA cycle is used to fuel OXPHOS or for lipid and amino acid biosynthesis, which will 

consequently have effects on the cell’s energy supply and function. As examples of the 

extracellular environment effect on the cell’s metabolism, addition of IL-7 increase T cells’ 

glycolysis rate (Rathmell et al., 2001). Stimulation of CD8α+ T cells with αCD3 and αCD28 

lead to increased glycolysis but no significant changes on OXPHOS (van der Windt et al., 

2013; Menk et al., 2018a). On the other hand, stimulation of 41BB, a marker expressed on 

activated CD4+ and CD8α+ T cells, leads to increased mitochondrial mass as well as 

increased OXPHOS rate (Menk et al., 2018b). Addition of exogenous lipids has been 

reported to increase OXPHOS in skin Trm cells (Pan et al., 2017). 

 

Another factor that affect cell metabolism is the supply of oxygen in the tissue. There is a 

shortage of oxygen in the gastrointestinal tract. It has been showed that the level of oxygen in 

the murine intestinal lumen decreases along the longitudinal gut axis (Zheng et al., 2015). 

During hypoxic conditions, cells enhance their glycolysis rate over the OXPHOS rate. This is 

regulated on transcriptional level and two of the key factors in the hypoxia response are 

hypoxia-inducible factor (HIF) alpha and beta. HIFα and HIFβ form heterodimers, but these 

are stabilized during hypoxia and not normal oxygen levels. In fact, it has been reported that 

HIF is essential for cytokine production in Th17 (Shi et al., 2011) and Th1 (Shehade et al., 

2015) cells. Hypoxia responses are also important for CD8 T cells. Cultured cells in  shortage 

of oxygen leads to lower IL-2 and IFNγ production (Caldwell et al., 2001), while enhanced 

HIFα expression leads to increased production of cytokines (Doedens et al., 2013; Phan et al., 

2016). OXPHOS plays a role in the hypoxia response as inhibition of mitochondrial 

respiration lead to de-stabilization of HIFα (Hagen et al., 2003), while mitochondrial ROS 

play a role to stabilize HIFα (Chandel et al., 1998). The importance of hypoxia response is 
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different in different cell types. Absence of hypoxia response lead to preferential 

differentiation to Treg cells over Th17 cells (Shi et al., 2011). 

 

In addition, metabolic pathways also have effects on the cells’ epigenetic signatures and 

mRNA translation. There is evidence that show that lipid-derived acetyl-CoA can induce 

histone acetylation (McDonnell et al., 2016). Another study has showed that the glycolysis-

associated enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) can bind to IFNγ 

mRNA (Chang et al., 2013). Thus, GAPDH is not only involved in the generation of ATP 

and metabolites during glycolysis, but GAPDH also affect the IFNγ translation and 

production in e.g. Th1 cells and CTLs. Finally, a study has suggested that the position of 

mitochondria relative to immunological synapses affect the calcium influx in the cells 

(Schwindling et al., 2010). These data illustrate the impact metabolic pathways have on 

essential cellular functions which subsequently affect the cells’ ability to generate immune 

responses. 
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Figure 5.3 Schematic overview of the main metabolic pathways in cells. The figure 

illustrates the main cellular metabolic pathways such as A) glycolysis which results in ATP 

generation and the metabolite pyruvate that can enter B) tricarboxylic acid (TCA) cycle. The 

TCA cycle generates ATP. In addition, metabolites citrate and oxaloacetate can also be used 

for fatty acid synthesis (FAS) and nucleotide synthesis, respectively. Panel C) shows fatty 

acid oxidation (FAO) and FAS. FAS can generate lipids from acetyl-CoA, while FAO use 

fatty acids to fuel the TCA cycle with acetyl-CoA in the mitochondria. Panel D) shows 

oxidative phosphorylation (OXPHOS) that results in generation of ATP and reactive oxygen 

species (ROS), the later can act as secondary messenger in cell signalling. The figure is 

modified from Michael D. Buck et al. J Exp Med 2015.  
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5.4.4. The currently known role of mitochondria for innate and adaptive 

immunity 

In recent years, the importance of the regulation of cell metabolism for the immune system 

has been recognized. This recognition has launched a field called immunometabolism. Naïve, 

effector and memory T cells have different energy demands. Naïve T cells require energy for 

their survival, while effector T cells additionally require energy for their effector functions. 

Therefore, the energy demand varies with the activation and differentiation state of T cells 

and the cell metabolism needs to adjust thereafter (O’Neill et al., 2016; Weinberg et al., 

2015). To date, there are data supporting a role of mitochondrial functions in T cells and 

macrophages (MPs).  

 

In MPs, it has been shown that M2 MPs have enhanced OXPHOS and FAO, while M1 MPs 

have enhanced glycolysis (O’Neill et al., 2016; Wang et al., 2018). It has also been shown 

that the protein Famin has an important role for MPs. Absence of Famin has been shown to 

lead to reduced mitochondrial ROS production and a shift of the metabolic programme 

towards glycolysis, with a subsequent decrease in production of the cytokines IL-1β and 

TNFα (Cader et al., 2016). 

 

CD4+ effector T cells are downregulating their use of fatty acid oxidation (FAO) in favor of 

fatty acid synthesis (FAS). In contrast, Treg cells use FAO more than fatty acid synthesis 

(O’Neill et al., 2016). Moreover, it has been demonstrated that CD4+ T cells are dependent on 

glycolysis for Th1 and Th17 differentiation (Bantug et al., 2017). The expression of the 

glucose transporter (GLUT) has been reported to increase in TCR-activated CD4+ and CD8α+ 

T cells (Bantug et al., 2017). In addition, in vitro Th1 and CD8α+ cells produce less IFNγ 

under glucose-depleted culture conditions (Cham and Gajewski, 2005). As previously 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 5 IELs have a different activation and metabolic status compared to other CD8α+ T cells 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 158  
Copyright © 2018 Frising UC 

mentioned, GAPDH can affect IFNγ (Chang et al., 2013), providing one mechanistic 

explanation to why activated CD4+ and CD8α+ T cells depends on glycolysis.  It has also 

showed that glutaminase (GLS) is essential for Th17 cell effector function as CD4-Cre-

GLSfl/fl mice produce less IL-17 compared to controls. In contrast, Th1 cells from CD4-Cre-

GLSfl/fl mice produce more IFNγ (Johnson et al., 2018), illustrating the different metabolic 

requirement for Th1 and Th17 cells. 

 

The Erika Pearce laboratory has shown differences in metabolism between splenic naïve, 

effector and memory CD8α+ T cells. One method they have used to assess the metabolic 

status of T cells is the Seahorse assay which can measure the respiratory consumption as an 

assessment of the level of OXPHOS. Splenic memory CD8α+ T cells have higher 

mitochondrial spare respiratory capacity (SRC) than effector T cells (van der Windt et al., 

2012). SRC is defined as the difference in oxygen consumption between basal and maximal 

OCR, as shown in Figure 5.5. SRC is the additional mitochondrial capacity cells can use 

during various stressed situations. In addition, it has been showed that memory CD8α+ T cells 

contain more mtDNA and mitochondrial mass than effector T cells which correlates with 

increased OCR, ECAR, proliferation and IFNγ production  (van der Windt et al., 2012, 

2013). Another laboratory has shown that both CD8α+ and CD4+ T cells require 

mitochondrial ROS for IFNγ production (Sena et al., 2013). 

 

In addition to above role in MPs and T cells, mitochondria are also involved in programmed 

cell death via apoptosis, via release of cytochrome c that subsequently can activate caspases 

to initiate apoptosis (Desagher and Martinou, 2000). 
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Initial immunometabolic studies have been performed on additional immune cells such as 

ILCs (Wilhelm et al., 2016). What applies for IELs remain to be elucidated. As metabolic 

pathways and metabolites have huge impact on many essential cellular functions and as 

mitochondria has a central role in metabolism (Fig 5.3), I will compare mitochondrial 

parameters between IELs and other T cells to understand further how the requirements for 

IEL activation may differ from other T cells.  

 

5.5. IELs accumulate lipid droplets – a sign of their semi-activated status 

As stated in the Introduction Chapter (1.6.3), IELs are a heterogeneous group of T cells, 

located to provide a second line of defence in the intestines. As IELs are at “the front” at the 

intestinal barrier site, it is thought that they are fast-acting effector T cells equipped to 

prevent and limit pathogen infection and tissue damage. Effector functions are metabolically 

costly. Therefore, I wanted to dissect further the differences between IELs and their 

equivalents, CD8α+ T cells, in spleen. One way for cells to source energy is to store lipids in 

the cytoplasm. Using Nile Red staining for lipid droplet detection (Greenspan et al., 1985), I 

found that IELs have greater accumulation of lipids than CD8α+ splenic T cells (Fig 5.4 A). 

As the majority of CD8α+ splenic T cells in steady state mice are naïve and resting, I wanted 

to assess whether the low level of lipid accumulation in splenic CD8α+ T cells remains during 

activation. To address this, I enriched CD8α+ splenic T cells using magnetic cell separation  



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 5 IELs have a different activation and metabolic status compared to other CD8α+ T cells 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 160  
Copyright © 2018 Frising UC 

(MACS) and cultured them in the presence of plate-bound αCD3, αCD28 and soluble IL-2. 

Cells before and after activation were assessed for lipid droplet staining. One day after 

activation, an increase in Nile Red staining could already be observed (Fig 5.4 B). This 

increase in lipid storage remained stable for several days (Fig 5.4 B). A similar accumulation 

of lipids has been reported for skin Trm cells (Pan et al., 2017) as well as splenic Teff cells 

(O’Sullivan et al., 2014). These data, together with published data on the protein expression 

of lymphocyte activation markers on IELs (Wang et al., 2002), as well as gene expression 

data (Fahrer et al., 2001; Shires et al., 2001; Heng et al., 2008), support the model that IELs 

are in semi-activated state.  

 

 

 

 

 

 

 

 

 

Figure 5.4. IELs have more accumulation of lipid droplets than splenic CD8α+ T cells. 

A) Isolated total CD8α+ IELs and splenic CD8α+ T cells were stained for Nile Red and the 

mean fluorescent intensity (MFI) were quantified as mean ± SD from three independent 

experiments with two to four mice per experiment. B) MACS-enriched CD8α+ splenic T cells 

were cultured for 6 days with plate-bound αCD3 (1 µg/ml) and αCD28 (3µg/ml) and medium 

supplemented with 5 ng/ml IL-2. For each day post activation, Nile Red staining and 

quantification was performed from two independent experiments with three mice per 

experiment. Statistically significant changes were identified by A) the Mann-Whitney test 

and B) the Kruskal-Wallis test: **: p<0.01., ***: p<0.001. 
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5.6. IELs lack mitochondrial spare respiratory capacity (SRC) 

Having observed that IELs exhibit an increased accumulation of stored lipids, I wanted to 

dissect further the metabolic differences between IELs and splenic CD8α+ T cells. To do this, 

Spela Konjar tested the mitochondrial function of these cells by Seahorse mitochondrial 

stress assay. This assay measures the mitochondrial oxygen consumption rate (OCR) in cells 

deposited in tissue culture wells. At different time points, the compounds oligomycin, 

carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), antimycin A and rotenone 

were added to the cells. Addition of FCCP depolarizes the mitochondria membranes, which 

forces the cells into a state that generates the maximal possible OCR. The difference between 

basal and maximal OCR is defined as spare respiratory capacity (SRC) that the cells can use 

during challenging situations such as infections (van der Windt et al., 2016). In the present 

circumstances, I wanted to test if IELs had similar basal OCR and SRC to splenic CD8α+ T 

cells. When plating the same number of IELs and splenic CD8α+ T cells, I observed that IELs 

had a similar basal OCR as splenic CD8α+ T cells (Fig 5.5). Surprisingly, it appeared that 

IELs had no SRC (Fig 5.4), suggesting that steady state IELs are not able to maximize their 

mitochondrial respiratory function, which both splenic naïve and memory CD8α+ T cells can. 
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Figure 5.5. IELs have no spare respiratory capacity (SRC) while splenic CD8α+ T cells 

do. 750 000 FACS-sorted total CD8α+ IELs and splenic naïve and memory CD8α+ T cells 

were plated on Seahorse plates and assessed using Seahorse mitochondrial stress assays. The 

data are representative of two independent experiments and are presented as mean ± SEM. 

Statistically significant changes were identified by two-way ANOVA: **: p<0.01., ***: 

p<0.001. 

 

5.7. IELs have lower mitochondrial mass compared to splenic T cells 

The lack of SRC in IELs suggested that their mitochondria may be in a different state in 

comparison to the mitochondria of splenic CD8α+ T cells. To pinpoint further the cause of 

this difference, I used a mitochondrial probe called MitoTracker Green (MTG). MTG is a 

carbocyanine-based dye that binds to mitochondria independently of their membrane 

potential. Therefore, MTG has been used to estimate mitochondrial mass (Agnello et al., 

2008). Performing this staining showed that both naïve and memory splenic CD8α+ T cells 

have bright MTG staining, generating high mean fluorescent intensity (MFI) of MTG (Fig 

5.6 A-B). However, IELs have significantly lower staining compared to splenic CD8α+ T 

cells (Fig 5.6 A-B). The level of MTG staining in IELs is above the level of the MTG 

Fluorescent-Minus-One (FMO) control, suggesting that IELs have low mitochondrial mass 
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(Fig 5.6 A). The FMO control was treated the same way as the other samples but did not 

receive the MTG probe. Therefore, it can be used to aid to determine whether or not there is 

positive MTG staining in the samples. The use of FMO controls is common in flow 

cytometry (Tung et al., 2007).  A similar level of MTG staining was observed in the four 

main IEL subsets (Fig 5.6 C). Interestingly, CD4+ CD8αα+ IELs exhibited significantly 

higher MTG staining than the other IEL subsets, but lower than memory and naïve splenic 

CD8α+ T cells (Fig 5.6 C). These data suggest that all IEL subsets have lower mitochondrial 

mass than splenic CD8α+ T cells. 
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Figure 5.6. IELs have lower mitochondrial mass than splenic CD8α+ T cells. WT IELs 

and splenic CD8α+ T cells were isolated and stained for MTG according to the 

manufacturer’s instructions. A) A representative histogram showing MTG staining of CD8α+ 

IELs and splenic CD8α+ T cells. B-C) Quantification of MTG MFI from B) CD8α+ IELs, 

memory and naïve splenic CD8α+ T cells and C) IEL subsets, as indicated. Data are 

quantified as mean ± SD from B) 10 and C) five independent experiments with two to five 

mice used per experiment. Statistically significant changes were identified by one-way 

ANOVA. ***: p<0.001. 
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5.8. Other epithelial-resident and TCRγδ+ lymphocytes have more mitochondrial 

mass than IELs  

As splenic CD8α+ T cells can be classified as systemic T cells and IELs more closely 

resemble tissue-resident T cells, e.g. with the expression of CD103 and CD69, I next wanted 

to test if this MTG phenotype is shared with other TCRγδ+ cells and epithelial-resident 

lymphocytes. As described in the introduction in this chapter, there are some similarities 

between IELs and epithelial-resident lymphocytes located in skin and lung, particularly 

DETCs. For the experiments, T cells from spleen, small intestine, liver, lung and skin were 

isolated and stained for MitoTracker Green. In addition to isolate IELs from the IEC 

compartment, lamina propria lymphocytes (LPLs) were isolated from the LP compartment. 

The long digestion protocol for LPLs is usually accompanied by a higher level of cell death 

than in the other isolation protocols used (data not shown). Therefore, the LPLs group has the 

fewest replicates presented (Fig 5.7 F-H). As the ratio of CD4+ to CD8α+ T cells varies in the 

different tissues and the majority of non-intestinal TCRγδ+ cells do not express CD8α, the 

MTG MFIs were quantified from the live TCR+ population in all tissues, followed by 

assessing TCRαβ and TCRγδ specifically. DETCs have a bespoke gating strategy, gated by 

Vγ3 staining (according to Garman’s nomenclature; alternative name is Vγ5 from Heilig & 

Tonegawa’s nomenclature) in combination with high TCRγδ staining (Sano and Park, 2014), 

and the results for these cells are therefore only plotted in the TCRγδ plot (Fig 5.6 G). This 

assessment revealed that it is only IELs and TCRγδ+ LPLs that have low mitochondrial mass. 

All other tested populations have significantly higher MTG staining compared to IELs (Fig 

5.7 F-H). Additional gating on CD103+ TCR+ cells, resembling Trm cells, led to similar 

results as Figure 5.6 F. Liver lymphocytes have similar MTG staining to splenic T cells. 

Interestingly, lung lymphocytes have even higher MTG staining than splenic T cells (Fig 5.7 

F-H). TCRγδ+ cells found in lung, liver and spleen have significantly higher MTG staining 
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compared to TCRγδ+ IELs (Fig 5.7 G). These data suggest that the MTG phenotype in IELs is 

not linked to the preference of expressing TCRγδ over TCRαβ, with TCRγδ+ LPLs being the 

only found exception. Collectively, these data suggest additional difference between IELs 

and other TCRγδ+ cells and epithelial-resident lymphocytes, possibly linked to their different 

epithelial barrier requirements and challenges.  
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Figure 5.7. IELs are set apart from other TCRγδ+ cells and epithelial-resident 

lymphocytes by their MTG staining. T cells from spleen, small intestine, lung, skin and 

liver were isolated and assessed for MTG staining by flow cytometry A-C) Example plots for 

TCR staining for A) lung, B) liver, C) spleen, D) IEL and E) LP lymphocytes. All panels were 

pre-gated on live single cells. F-H) MTG MFI quantification from F) total lymphocytes 

(TCR+), G) TCRαβ+ cells and H) TCRγδ+ cells presented as mean ± SD from two to three 

independent experiments with three mice used per experiment. Statistically significant 

changes were identified by one-way ANOVA. *: p<0.05., **: p<0.01., ***: p<0.001. 

 

5.9. Additional differences in IEL mitochondria: higher cardiolipin (CL) content 

and lower mitochondrial potential than splenic CD8α+ T cells  

As IELs seem to have restricted mitochondrial mass and SRC, I wanted to assess the amount 

of CLs in IELs, as it is known that CLs may have an effect on mitochondrial functions. As an 

initial step, I wanted to assess this question using flow cytometry with the CL-binding dye 

NAO. The fluorescence of NAO correlates, in an inverse linear manner, with the amount of 

CLs present (Mileykovskaya et al., 2001; Kaewsuya et al., 2007). Using NAO, I assessed 

total CD8α+ IELs, naïve and memory splenic CD8α+ T cells. Surprisingly, the NAO staining 

suggested that IELs contain more CLs than naïve and memory splenic CD8α+ T cells (Fig 5.8 

A-B). There was also a trend visible in the data suggesting that naïve splenic CD8α+ T cells 

may contain more CLs than memory cells, although this did not reach statistical significance 

with used statistical method (Fig 5.7 B). Assessment of the different IEL subsets showed no 

differences in NAO staining, not even with CD4+ CD8αα+ IELs that had previously shown 

higher MTG and MTO staining (Fig 5.7 C).  
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Figure 5.8. IELs have higher cardiolipin (CL) content than splenic CD8α+ T cells. WT 

CD8α+ IELs and splenic CD8α+ T cells were isolated and stained for NAO according to the 

manufacturer's instructions. A) A representative histogram showing NAO staining of CD8α+ 

IELs and splenic CD8α+ T cells. B-C) Quantification of NAO MFI from B) CD8α+ IELs, 

memory and naïve splenic CD8α+ T cells and C) IEL subsets. Data are presented as mean ± 

SD from six independent experiments with two to three mice per experiment. Statistically 

significant changes were identified by the Kruskal-Wallis test. ***: p<0.001. 

 

After observing that IELs have no SRC and lower MTG staining than other T cells, I next 

wanted to assess if there are more differences in IEL mitochondria, in order eventually to be 

able to discover the mechanism(s) behind the observed differences. An important factor for 

high mitochondrial OCR is mitochondrial membrane potential. There is a rosamine-based dye 

called MitoTracker Orange (MTO), that is in a reduced and non-fluorescent state until it 
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enters actively respiratory mitochondria (Agnello et al., 2008). Therefore, MTO is in use to 

assess mitochondrial membrane potential. Using this probe on IELs and splenic CD8α+ T 

cells, I observed that IELs have lower MTO staining than naïve and memory splenic CD8α+ 

T cells (Fig 5.9 A-B). These findings are in line with the lack of SRC in IELs. When 

assessing the different IEL subsets, I found that CD4+ CD8αα+ IELs have higher potential 

than the remaining IEL subsets (Fig 5.9 C). In addition, TCRγδ+ CD8αβ+ IELs have higher 

membrane potential than TCRαβ+ CD8αα+ and TCRγδ+ CD8αα+ IELs (Fig 5.9 C). Both CD4+ 

CD8αα+ and TCRγδ+ CD8αβ+ IELs have significantly lower membrane potential than splenic 

CD8α+ T cells.  
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Figure 5.9. Mitochondrial membrane potential is lower in IELs than in splenic CD8α+ T 

cells. WT CD8α+ IELs and splenic CD8α+ T cells were isolated and stained for MTO, 

according to the manufacturer’s instructions. A) A representative histogram showing MTO 

staining of CD8α+ IELs and splenic CD8α+ T cells. B-C) Quantification of MTO MFI from 

B) CD8α+ IELs, memory and naïve splenic CD8α+ T cells and C) IEL subsets. Data are 

presented as mean ± SD from B) five and C) four independent experiments with two mice per 

experiment. Statistically significant changes were identified by the Kruskal-Wallis test. *: 

p<0.05, ***: p<0.001. 
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5.10. IELs have similar mitochondrial ROS production to splenic CD8α+ T cells 

Considering the fact that ROS production is a by-product from OXPHOS, then the previous 

data would suggest that IELs would have a lower level of ROS production than splenic 

CD8α+ T cells To test this hypothesis, I used a probe that specifically detects mitochondrial 

ROS, namely MitoSOX (Batandier et al., 2002; Murphy, 2009). When assessing IELs, naïve 

and memory splenic CD8α+ T cells, I surprisingly found similar level of ROS production 

from all three populations (Fig 5.9 B). The IEL histogram showed bimodal expression (Fig 

5.10 A), indicating that the mitochondrial ROS production level may vary between the 

different IEL subsets. Interestingly, it seems that mitochondrial ROS is produced mainly by 

CD8αβ+ IELs, regardless of which TCR that is expressed (Fig 5.10 C). These data may 

highlight functional differences between CD8αβ+ and CD8αα+ IELs. Previously published 

data have focussed mainly on the difference between TCRαβ+ and TCRγδ+ IELs. 

 

Collectively, the mitochondrial probes MTO, MitoSOX and NAO suggest that IELs have 

lower mitochondrial membrane potential, higher content of CLs and similar production of 

mitochondrial ROS production when comparing to splenic CD8α+ T cells. 
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Figure 5.10. IELs have a similar level of mitochondrial ROS production to splenic 

CD8α+ T cells. WT CD8α+ IELs and splenic CD8α+ T cells were isolated and stained for 

MitoSOX according to the manufacturer’s instructions. A) A representative histogram 

showing MitoSOX staining between CD8α+ IELs and splenic CD8α+ T cells. B-C) 

Quantification of MitoSOX MFI from B) CD8α+ IELs, memory and naïve splenic CD8α+ T 

cells and C) IEL subsets. Data are presented as mean ± SD from B) two and C) six 

independent experiments with two to three mice per experiment. Statistically significant 

changes were identified by one-way ANOVA. **: p<0.01., ***: p<0.001. 
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5.11. Low mitochondrial mass may not prevent cytolytic capacity in IELs 

Next, I wanted to address whether the differences in IEL mitochondria reported in this 

chapter, could lead to differences in immune effector functions. To test this, I isolated IELs 

and splenic CD8α+ T cells and re-stimulated them with PMA, ionomycin and brefeldin for 

two hours. Longer re-stimulation times, as regularly used for stimulation of other types of T 

cells, led to very poor IEL survival (data not shown), in line with the observation that IELs 

survive poorly in vitro without the support of intestinal organoids (see Chapter 4). After the 

re-stimulation, IELs and splenic CD8α+ T cells were stained for IFNγ, TNFα, Ki-67 and 

granzyme B. I observed that splenic CD8α+ T cells produced IFNγ and TNFα, while IELs 

produced very low levels of IFNγ and TNFα (Fig 5.10 A-C). Both IELs and CD8α+ T cells 

have low levels of proliferation at steady state, as measured by Ki-67 staining (Fig 5.11 D). 

As expected from the literature, the IELs had high proportion of cells that expressed 

granzyme B compared to splenic CD8α+ T cells (Fig 5.11 A and E). This applies to all five 

IEL subsets, with similar percentage of granzyme B, expect TCRαβ+ CD8αβ+ IELs that have 

significantly lower (Fig 5.11 E). These data are in line with previous publications (Fahrer et 

al., 2001) and suggest that the low mitochondrial mass may not prevent IELs to prepare 

themselves for cytotoxic activity.  
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Figure 5.11. Despite low mitochondrial mass, IELs are equipped with granzyme B. WT 

CD8α+ IELs and splenic CD8α+ T cells were isolated, re-stimulated for two hours prior to 

intracellular staining for IFNγ, TNFα, Ki-67 and Granzyme B. A) Representative gating of 

IFNγ+, TNFα+, Ki-67+ and Granzyme B+ cells from CD8α+ IELs and splenic CD8α+ T cells. 

B-E) Quantification of the percentage of B) IFNγ+, C) TNFα+, D) Ki-67+ and E) granzyme B+ 

from IELs subsets. Data are presented as mean ± SD from six independent experiments with 

two to three mice used per experiment. Statistically significant changes were identified by 

one-way ANOVA. *: p<0.05., **: p<0.01., ***: p<0.001. 
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5.12. Supplemental chapter figures 

 

Supplemental Figure to 5.6: MitoTracker Deep Red (MTDR) staining show a similar 

difference as MTG staining between splenic CD8α+ T cells and IELs. WT CD8α+ IELs 

and splenic CD8α+ T cells were isolated and stained for MTDR. A) A representative 

histogram showing MTDR staining between CD8α+ IELs and splenic CD8α+ T cells. B) 

Quantification of MTDR MFI from CD8α+ IELs, memory and naïve splenic CD8α+ T cells. 

Data are quantified as mean ± SD from four independent experiments with three to four mice 

used per experiment. Statistically significant changes were identified by one-way ANOVA. 

*: p<0.05., **: p<0.01,***: p<0.001. 
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5.13. Chapter Discussion 

Summarising the findings reported in this chapter, I have shown that IELs have a different 

metabolic status compared to other T cells. IELs have more lipid droplets accumulated 

compared to splenic CD8α+ T cells. Moreover, IELs have lower mitochondrial mass and 

membrane potential than splenic CD8α+ T cells. Interestingly, IELs have higher CL content 

and surprisingly similar mitochondrial ROS production compared to splenic CD8α+ T cells. 

Similar low mitochondrial mass is observed in TCRγδ+ LPLs, but in no other TCRγδ+ T cells 

and epithelial-resident T cells found in spleen, liver, skin and lung, setting IELs apart even 

further from non-intestinal T cells. 

 

One outstanding question to address is how IELs are using their stored lipids. It has been 

reported that both skin Trm and splenic Teff cells also have higher accumulation of lipids 

(Pan et al., 2017; O’Sullivan et al., 2014). Interestingly, like IELs, skin Trm cells do not have 

any SRC. Addition of exogenous lipids, in the form of palmitate, increased the SRC in skin 

Trm. The uptake of exogenous lipids turned out to be important for in vivo survival of skin 

Trm cells (Pan et al., 2017), suggesting that IELs may be using their lipids for the same 

reason.  

 

The observation that IELs have no SRC was surprising. The difference in SRC response 

between naïve and memory CD8α+ T cells is expected from previous literature (van der 

Windt et al., 2012). However, a possibility is that IELs require even higher concentration of 

FCCP, than used for the experiment presented in Figure 5.5, to reach threshold to unleash 

maximal OCR. One could test different doses FCCP on the IELs, to be able to confirm or rule 

out this possibility. Recent data suggest that the amount of SRC might be linked to the co-

stimulatory molecules expressed on the cells. This report used CD8α+ chimeric antigen 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 5 IELs have a different activation and metabolic status compared to other CD8α+ T cells 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 179  
Copyright © 2018 Frising UC 

receptor (CAR) T cells and engineered which costimulatory molecules that were expressed 

on them. The authors compared CD28 and 41-BB signalling domains. They discovered that 

after antigen stimulation, 41-BB+ CAR T cells had a higher SRC response compared to 

CD28+ CAR T cells. The CD28+ CAR T cells had instead a higher extracellular acidification 

rate (ECAR) and higher expression of genes linked to glycolysis such as glucose transporter 1 

(GLUT1). On the other hand, 41-BB+ CAR cells had higher gene expression linked to fatty 

acid oxidation (FAO) such as fatty acid binding protein (FAB)5 (Kawalekar et al., 2016). 

These data put co-stimulatory molecules in the spotlight for further investigations. As 

mentioned previously in the Introduction section 1.6.2, most WT steady state IELs express 

CD8αα as co-receptor. CD8αα has been reported to be able to interact with thymus leukemia 

antigen (TL), which is expressed on IEC. It has also been hypothesised that the CD8αα 

homodimer may have repressive functions (Cheroutre and Lambolez, 2008). If CD8αα is 

having a role in the SRC response, then differences between CD8αα+ TCRγδ+/ TCRαβ+ IELs 

and CD8αβ+ TCRγδ+/ TCRαβ+ IELs should be observed. IEL subset data from MitoSOX 

assessment showed that CD8αβ+ IELs have higher mitochondrial ROS production, despite all 

subsets having similar mitochondrial mass.  

 

Next, I described the interesting observation that IELs are different in regard to MTG staining 

compared to other TCRγδ+ and epithelial-resident lymphocytes. The only exception was 

TCRγδ+ LPLs. These data suggest that IELs are unique in regards to mitochondrial mass 

compared to other lymphocytes. There is a report suggesting that IELs may migrate between 

IEC and LP compartments (Edelblum et al., 2012). When assessing the CD8 staining pattern 

of TCRγδ+ LPLs, the majority of them do not express CD8αα or CD8αβ (data not shown), 

suggesting that the small TCRγδ+ LPL population may not be merely migrated IELs.  
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Interestingly, CD4+ CD8αα+ IELs have higher mitochondrial mass than the other IEL subsets. 

This may be linked to the expression of CD4, as splenic CD4+ T cells have even higher MTG 

staining than splenic CD8α+ T cells (data not shown). This observation may be linked to 

different energy demands of CD4+ and CD8α+ T cells. As previously stated, the intestinal 

epithelial site is faced with the challenge to achieve a delicate balance of tolerance and 

protective responses. Hence, it was surprising that IELs seem to have low mitochondrial mass 

and no SRC to use to generate more energy for effector functions. Both skin and lung 

epithelial-resident lymphocytes also need to be immunologically controlled to prevent 

autoimmunity. However, lung and skin epithelial sites are less permeable than the intestinal 

barrier, allowing e.g. oxygen to pass through instead of large dietary compounds.  

 

One outstanding question is when IELs obtain this altered mitochondrial state. Are these 

mitochondrial properties found in IEL precursors, or are they induced when IELs are homing 

to the intestinal epithelial compartment? A recent publication suggests that other TCRγδ+ T 

cells have already established their commitment towards IFNγ or IL-17 production when they 

are in the thymus (Sumaria et al., 2017). Preliminary data from the same laboratory suggest 

that IFNγ- and IL-17-secreting TCRγδ+ T cells have different SRC: IFNγ-committed TCRγδ+ 

T lack SRC, while IL-17-committed TCRγδ+ T cells have SRC. These data support the 

possibility that the mitochondrial state of IELs may be set prior to homing to the intestinal 

compartment. One could perform MTG staining on thymocytes to get insights into this. 

However, one would need to be able to distinguish IEL precursors from other T cells 

precursors. Having an answer to the question whether the IEL mitochondrial phenotype is 

intrinsic or extrinsic would give insights about the mechanisms behind it, and whether it may 

be possible to change the mitochondrial phenotype in IELs.  
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A possible explanation for the lower mitochondrial mass could relate to the balance between 

mitochondrial fission and fusion. The intrinsic environment in IELs may be favouring 

mitochondrial fission. Moreover, a process that can go hand in hand with mitochondrial 

fission is mitophagy – a form of autophagy of mitochondria (Van Der Bliek et al., 2017). 

Therefore, assessing the expression of mitophagy-associated factors may provide insights if 

this is occurring in IELs or not. If IELs have higher mitochondrial mass prior to homing to 

the intestinal compartment, then factor(s) in the intestinal environment may promote 

mitophagy in IELs. Despite low mitochondrial mass, all IEL subsets have accumulation of 

granzyme B. This means IELs should be capable of performing cytotoxic functions, which 

may be sufficient to fulfil their role in the maintenance of intestinal homeostasis. Further 

studies of IEL mitochondria, effector functions and activation, will be necessary to answer 

these questions. 

 

The interesting observation that the CL content seems higher in IELs compared to splenic 

CD8α+ T cells shows that this is a feature to look into further. As described, CLs may be able 

to affect mitochondrial function. Hence, it is tempting to speculate that the higher amount of 

CLs in IELs may spatially hinder some mitochondrial function(s), particularly considering 

the fact that IELs, in addition, have lower mitochondrial mass and therefore likely less 

volume. To the best of my knowledge, it is not possible to image into the details of CL 

distribution, but it is possible to assess the CL composition by mass spectrometry, which will 

be shown in Chapter 6. 

 

Finally, these differences in IEL mitochondria, compared to those of splenic CD8α+ T cells, 

could potentially be linked to the poor survival of IELs in vitro. A connection between 

mitochondria and apoptosis has long been established. It has been reported that mitochondria 
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can release pro-apoptotic factors, such cytochrome c, during mitochondrial structural change 

and mitochondria fragmentation (Cereghetti and Scorrano, 2006). The similar level of 

mitochondrial ROS in IELs compared to splenic CD8α+ T cells (Fig 5.9 B), may also be a 

potential reason why IELs survive so poorly in vitro, when cultured on their own. The 

amount of mitochondrial ROS relative to the small mitochondrial mass may be damaging for 

the IELs e.g. via damage of mtDNA. If the mtDNA in IELs is damaged, then it may lead to 

defects in the genes encoding the ETC complexes, which is important for mitochondrial 

function. It is tempting to speculate that organoid-mediated IEL survival (see Chapter 4, 

Figure 4.9) might be linked to the mitochondria in IELs either by direct or indirect 

mechanisms. Therefore, a potential next step could be to assess mitochondrial staining in 

IEL-organoid co-cultures. Unfortunately, MTG is not a fixable stain so another MitoTracker 

dye would have to be used, such as MitoTracker Deep Red (MTDR) that is fixable and shows 

a similar difference between splenic CD8α+ T cells and IELs. Interestingly, this probe showed 

a statistically significant difference between splenic naïve and memory CD8α+ T cells 

(Supplemental Figure to Fig 5.6). These data suggest that MTDR is not identical to MTG. 

Even if organoids do not affect the mitochondria in IELs directly, they may compensate any 

pro-apoptotic effect the IEL mitochondria generate. Another link could be via the 

accommodation of lipids in IELs. IECs have been reported to have stored lipids (Jennemann 

et al., 2012). Perhaps IELs can obtain their lipid accumulation from the IEC and dietary 

residues and that may be linked to their survival. It has been shown in cell lines that lipids 

can be transported between cells in thin dendrites connecting the cells (Astanina et al., 2015). 

Further experiments need to be performed to address this. For that, the established IEL-

organoids co-culture system will be useful. 
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Collectively, this chapter highlights metabolic differences between IELs and other T cells, 

which may be linked to IEL activation and maintenance.  
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Chapter 6: IELs show mitochondrial plasticity during activation 

 

The data presented in Chapter 5 suggest that the mitochondria in IELs are different to the 

mitochondria in splenic CD8α+ T cells in terms of mitochondrial mass (Fig 5.6 A-B), 

mitochondrial membrane potential (Fig 5.9 A-B) and CL content (Fig 5.8 A-B). At this stage, 

two important questions arise. Firstly, what are the determining conditions that set IELs into 

this altered mitochondrial state in regards of mitochondrial mass, membrane potential and 

cardiolipin content? Secondly, does this altered mitochondrial stage lead to changes in IELs 

effector capacity compared to splenic CD8α+ T cells? To address the second question, I need 

to purposely activate IELs. In physiological settings, IELs become activated during infectious 

and inflammatory conditions. However, there is a risk that IELs do not become activated 

during all infectious and inflammatory conditions. Therefore, I first wanted to use a method 

that for sure would activate IELs. For this purpose, I tested if in vivo injection of anti-CD3 

(αCD3) antibody, mimicking TCR activation, would be sufficient to activate IELs to the 

extend effector functions are observed and test whether the tested mitochondrial properties 

assessed in Chapter 5 remain at a similar level after IEL activation. 

 

6.1.  TCR stimulation is sufficient to activate IELs, resulting in increased 

mitochondrial mass and Ki-67 expression 

Previous publications have used in vivo injections of αCD3 antibody in doses from 0.25-200 

µg per mouse (Neumann et al., 1992; Ellenhorn et al., 1988; Waters et al., 2009; Swamy et 

al., 2015; Ogata et al., 2014). One of these publications showed that the percentage of  CD3+ 

cells in the lymph nodes was drastically reduced after injection with 25 ug αCD3 antibody 

(Neumann et al., 1992), indicating that most T cells in the lymph node have reacted to the 

antibody. The same αCD3 concentration has been showed to result in reduced viral load in 

the murine norovirus (MNV) infection model (Swamy et al., 2015). Therefore, I wanted to 
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test if the dose of 25 ug αCD3 antibody per mouse can activate IELs. To confirm that the 

dose of αCD3 used affected IELs, I assessed the TCR staining in IELs already four hours post 

injection. By that time point, I observed a decrease in the staining intensity of both TCRαβ+ 

and TCRγδ+ IELs (Fig 6.1 A), suggesting that αCD3 has reached and affected both TCRαβ+ 

and TCRγδ+ IELs. However, at this time point, I detected no significant difference in 

MitoTracker Green (MTG) staining compared to non-treated IELs (Fig 6.1 D). Interestingly, 

an increase in the expression of the lymphocyte activation marker CD44 was observed at this 

time point (Fig 6.1 B), suggesting that IELs may have become more activated by the 

treatment. Quantification of CD44High cells showed that there is a statistically significant 

increase in αCD3-treated IELs compared to non-treated IELs (Fig 6.1 C), Therefore, later 

time points were assessed.  

 

At 24 and 48 hours post αCD3 stimulation, I observed an increase of MTG staining in IELs 

to a level similar to that found in splenic CD8α+ T cells (Fig 6.1 D). By 24 hours post αCD3 

stimulation, only TCRγδ+ CD8αβ+ and TCRαβ+ CD8αβ+ IELs had significantly increased 

their mitochondrial mass (Fig 6.1 E). These data suggest that the variation in MTG staining 

observed at 24 hours post αCD3 stimulation is due to TCRαβ+ CD8αβ+ IELs. At 48 hours, 

TCRγδ+ CD8αα+ and TCRαβ+ CD8αα+ IELs had also statistically significantly increased their 

mitochondrial mass. However, TCRαβ+ CD8αβ+ IELs remained the IEL subset with the 

highest increase in MTG staining (Fig 6.1 F). The CD44 staining remained heightened 24 and 

48 hours post αCD3 stimulation (Fig 6.1 B-C). Quantification of CD44High cells at 24 and 48 

hours post αCD3 stimulation showed statistically significant increase compared to non-

treated IELs (Fig 6.1 C).  
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The TCR staining returned to normal levels by 48 hours (Fig 6.1 A). Another lymphocyte 

activation marker, CD69, also showed increased expression in IELs at 24 hours post αCD3 

stimulation. Interestingly, the increased CD69 expression seemed to be transient as the 

expression was returned to a lower level in activated IELs at 48 hours post αCD3 stimulation 

(Fig 6.2). Importantly, all IEL subsets, showed statistically significant increase in their MTG 

staining, as well as increased CD44 expression, suggesting that the vast majority of IELs had 

become activated by TCR stimulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 6 IELs show mitochondrial plasticity during activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 187  
Copyright © 2018 Frising UC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 6 IELs show mitochondrial plasticity during activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 188  
Copyright © 2018 Frising UC 

Figure 6.1. TCR stimulation increases mitochondrial mass and CD44 expression in 

IELs. WT mice were injected with 25 µg αCD3 antibody i.p. IELs and splenic CD8α+ T cells 

were isolated from non-injected and αCD3-injected mice at the indicated time points. A-B) 

Representative FACS plots showing A) TCR and B) CD44 staining of live CD8α+ IELs at 

indicated time points after αCD3 stimulation. C) Quantification of the proportion of CD44High 

and CD44Low cells in IELs from non-treated and αCD3-treated mice at indicated time points. 

D-F) Quantification of MTG MFI from D) memory and naïve splenic CD8α+ T cells, non-

injected IELs and IELs from αCD3-stimulated mice at indicated time points. E-F) MTG MFI 

from IEL subsets at indicated time points post αCD3-activation compared to non-injected 

IELs. Data are presented as mean ± SD from three independent experiments with two to five 

mice used per condition and experiment. Statistically significant changes were identified by 

D) one-way ANOVA or C, E, F) two-way ANOVA. ***: p<0.001. 

 

 

Figure 6.2. TCR stimulation led to transient increase of the activation marker CD69 

Representative FACS plots of CD69 staining in total CD8α+ IELs from non-treated and 

αCD3-treated mice for 24 and 48 hours. These plots are representative of two independent 

experiments. 

 

In the previous chapter, I showed that non-treated IELs have low secretion of IFNγ and 

TNFα, as well as limited proliferation, measured by Ki-67 staining (Fig 5.11 B-D). As the 

mitochondrial mass in IELs increases after αCD3 stimulation, I next wanted to assess 

whether αCD3 stimulation also enables IELs to secrete IFNγ, TNFα and to proliferate. IELs 

and splenic CD8α+ T cells were isolated and re-stimulated with PMA, ionomycin and 
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brefeldin, as previously described in the Material and Methods section. At 24 and 48 hours 

post αCD3 stimulation, I detected no increase in secretion of TNFα (Fig 6.3 B), but a slight 

increase in IFNγ secretion (Fig 6.3 A). However, I observed a significant increase in Ki-67 

staining (Fig 6.3 C). At 24 hours αCD3 activation, CD8αβ+ and CD4+CD8αα+ IELs 

responded the strongest (Fig 6.3 D), while all IEL subsets showed significant increases in Ki-

67 expression at 48 hours post αCD3 stimulation (Fig 6.3 E). 

 

This increase in Ki-67 was more noticeable in TCRαβ+ CD8αβ+ IELs, which have 

statistically significant higher Ki-67 expression than all other IEL subsets, expect 

CD4+CD8αα+ IELs (Fig 6.3 E). Next, I wanted to assess if these increases in MTG and Ki-67 

could potentially be linked to each other. To do that, I performed Spearman correlation 

analysis of the proportion of Ki-67+ IELs and MFI of MTG in total CD8α+ IELs at 48 hours 

post αCD3 stimulation. The Ki-67 increase correlates significantly with the increase in MTG 

staining (Fig 6.3 F). Interestingly, this increase in the proliferation marker has yet to show 

any effect on the numbers of IELs, as fewer IELs are found at 24 and 48 hours post αCD3-

injection (Fig 6.3 G). This observation is in line with data obtained from BALB/c mice after 

αCD3 injection (Ogata et al., 2014). These observations link proliferation to increased 

mitochondrial mass in IELs. It is interesting to hypothesize that mitochondria may play a role 

in IEL activation. Whether mitochondrial mass increase is strictly required for IEL 

proliferation requires further investigations.  
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Figure 6.3. TCR stimulation led to increased IEL proliferation, but no cytokine 

production. WT mice were injected with 25 µg αCD3 antibody i.p. IELs were isolated from 

non-injected and αCD3-injected mice at the indicated time points. A-C) Quantification of the 

percentage of A) IFNγ+, B) TNFα+ and C) Ki-67+ from CD8α+ IELs at indicated time points 

D-E) Quantification of Ki-67+ cells in IEL subsets at D) 24 and E) 48 hours post αCD3 

injection. F) Spearman correlation for total CD8α+ IEL in regards to MTG staining and Ki-67 

staining. Data from panel F are presented from ten independent experiments with two to five 

mice used per condition and experiment. G) Quantification of total number of live CD8α+ 

IELs at the indicated time points after αCD3 injection. Data are presented as mean ± SD from 

three independent experiments with two to five mice used per condition and experiment. 

Statistically significant changes were identified by one-way (Panel A-C and G) or two-way 

(Panel D-E) ANOVA. *: p<0.05., **: p<0.01., ***: p<0.001. 

 

6.2.  TCR-activated CD8αβ+ IELs have higher production of mitochondrial ROS 

The observed increase in MTG staining in IELs after αCD3-mediated activation invites one 

to hypothesise about mitochondrial plasticity during IEL activation. As shown in the previous 

chapter, non-treated IELs have lower mitochondrial membrane potential but higher CL 

content and similar mitochondrial ROS production to splenic naïve and memory CD8α+ T 

cells (Fig 5.8-10). Therefore, it would be interesting to assess what potential additional 

effect(s) αCD3 stimulation may have on these mitochondrial properties. WT Mice were 

injected with 25 µg αCD3 antibody at indicated time points, IELs isolated and stained for 

MitoTracker Orange (MTO), MitoSOX and NAO, as previously described in the Materials 

and Methods section and shown in Figures 5.8-10. I observed that αCD3 activation of IELs 

also led to increased mitochondrial ROS production at 48 hours post αCD3 stimulation (Fig 

6.4 A-C). Interestingly, TCRγδ+ CD8αβ+ IELs appeared to be the first IEL subset to respond 

(Fig 6.4 B). Moreover, it was only CD8αβ+ IELs that increased mitochondrial ROS 

production, despite the vast majority of IELs showing an increase in their mitochondrial mass 

(Fig 6.1 D-F). These data highlight the heterogeneity in IEL activation responses. 
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Figure 6.4. TCR-activated IELs have a higher level of mitochondrial ROS production. 

WT mice were injected with 25 µg αCD3 antibody i.p. IELs and splenic CD8α+ T cells were 

isolated from steady state and αCD3-stimulated mice, at indicated time points, and stained 

with MitoSOX. A-C) Quantification of MitoSOX MFI from A) memory and naïve splenic 

CD8α+ T cells, non-treated and αCD3-treated total CD8α+ IELs and B-C) IEL subsets from 

αCD3-stimulated mice at the indicated time points. D) Spearman correlation for total CD8α+ 

IEL in regard of MTG MFI and MitoSOX MFI. Data are presented as mean ± SD from three 

to five independent experiments with two to three mice per condition and experiment. 

Statistically significant changes were identified by A) one-way and B-C) two-way ANOVA. 

***: p<0.001. 
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6.3.  TCR-activated IELs have unchanged CL content and mitochondrial 

membrane potential 

The increase in mitochondrial ROS production after IEL activation suggests that the 

mitochondria in CD8αβ+ IELs may have increased OCR, which subsequently leads to 

increased ROS, or that OXPHOS is less efficient, resulting in increased ROS production. 

Surprisingly, I detected no statistically significant difference in terms of MTO staining, as a 

measure of mitochondrial membrane potential, between non-treated and αCD3-activated total 

CD8α+ IELs (Fig 6.5 B). Interestingly, only TCRαβ+ CD8αβ+ IELs exhibited a statistically 

significant increase 48 hours after αCD3 activation (Fig 6.5 F). These data suggest that, 

although the mitochondrial mass in IELs increases (Fig 6.1 D-F), this does not seem to be 

subsequently lead to changes in mitochondrial membrane potential for the majority of IELs.  

 

Another important feature is the amount of CLs in mitochondria. It has been showed that lack 

of CLs lead to decreased mitochondrial respiration (Acehan et al., 2011). Interestingly, when 

assessing the CL content in activated IELs, I observed that this does not change in αCD3-

activated IELs (Fig 6.5 A, C and E). This trend applies to all IEL subsets. Data from CL mass 

spectrometry also support that IELs contain more CLs than splenic naïve CD8α+ T cells, as 

well as IEL activation does not lead to significant changes in total CL content (Supplemental 

Figure to 6.5). These data indicate that the total content of CL is unchanged during the 

increase of mitochondrial mass, assessed by MTG staining. However, it still needs to be 

determined whether the same CL composition is maintained after αCD3-mediated activation.  
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Figure 6.5. TCR-activated IELs have unchanged membrane potential and CL content. 

WT mice were injected i.p. with 25 µg αCD3 antibody i.p. IELs and splenic CD8α+ T cells 

were isolated from steady state and αCD3 stimulated mice, at indicated time points, and 

stained for MTO and NAO. A, C, E) Quantification of NAO MFI from A) memory and naïve 

splenic CD8α+ T cells and total CD8α+ IELs or C, E) IEL subsets from non-treated and αCD3 

stimulated mice at indicated time points. Data are presented as mean ± SD from two to three 

independent experiments with two to three mice per condition and experiment. B, D, F) 

Quantification of MTO MFI from B) memory and naïve splenic CD8α+ T cells, steady state 

total CD8α+ IELs or D, F) IEL subsets from non-treated and αCD3 stimulated mice at 

indicated time points. Data are presented as mean ± SD from three to six independent 

experiments with two to four mice per condition and experiment. Statistically significant 

changes were identified by A-B) one-way or C-F) two-way ANOVA.  **: p<0.01., ***: 

p<0.001. 

 

6.4.  IELs become activated by αCD3 independently of other T cells 

One important question to address is whether the response of IELs to αCD3 stimulation is 

influenced by other T cells, which will also become activated by this method. A hypothetical 

possibility is that IELs sense cytokines released from other αCD3-activated T cells, such as 

those found in MLNs and the LP compartment, and do not release cytokines themselves. To 

address this, I proposed to use IEL transfer into lymphocyte-deficient mice. In that context, 

IELs will be the only T cells that can respond to αCD3 antibody. 

 

Before the activation assessment, I needed to check how well the different IEL subsets are 

reconstituted in the lymphocyte-deficient mice in order to have a representative IEL 

population to study. In addition to using Rag2-/- mice as hosts, there is a study that has used 

IL-2Rγ-/-Rag2-/- mice as hosts for IEL transfer (Klose et al. 2014). As mentioned in the 

Introduction (1.3), Rag enzymes are required for TCR and BCR arrangement. As a 

consequence, Rag2-/- mice lack T and B cells (Shinkai et al., 1992). IL-2Rγ is an essential 

part of the IL-2, -4, -7, -9, -15 and -21 receptors (Cao et al., 1995a; Asao et al., 2001). IL-
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2Rγ-/-Rag2-/- mice are deficient in additional immune cells compared to Rag2-/- mice. As 

the signalling of previous mentioned cytokines cannot occur, in addition to lack T and B 

cells, IL-2Rγ-/-Rag2-/- mice have no NK cells (Cao et al., 1995b) and ILCs (Klose et al. 

2014). In addition of being deficient in the immune cells, it has been reported that IL-2Rγ-/-

Rag2-/- mice lack cryptopatches (Lambolez et al., 2006). 

 

To test if the IEL reconstitution differs in these two host KO mouse lines, 100 000 FACS-

sorted CD8α+ IELs per animal were injected into Rag2-/- and IL-2Rγ-/-Rag2-/- mice. The 

transferred IELs were in these host mice for three weeks prior to IEL isolation. Interestingly, 

I observed that IL-2Rγ-/-Rag2-/- mice had better IEL reconstitution than Rag2-/- mice in 

terms of IEL subset composition (Fig 6.6 A-F). When quantifying the distribution of the four 

main IEL subsets of the transferred IELs in Rag2-/- and IL-2Rγ-/-Rag2-/- mice and 

comparing them to the IEL subset distribution in WT mice (Fig 6.6 G), I observed that the 

IEL distribution in IL-2Rγ-/-Rag2-/- mice is more similar to WT mice compared to the IEL 

distribution in Rag2-/- mice (Fig 6.6 H). Of note, very few CD4+ CD8αα+ IELs were found in 

either type of recipient mice. Hence, data from this IEL subset are not reported in Figure 6.6 

and 6.7.  

 

As showed previously in Figure 4.9 D, the number of IELs reconstituted in IL-2Rγ-/-Rag2-/- 

mice is higher compared to Rag2-/- mice. In addition, it is only the transferred IELs in the IL-

2Rγ-/-Rag2-/- hosts that showed increased number from the 100 000 IELs that were initially 

transferred (Fig 4.9 D). However, the number of IELs in the transferred Rag2-/- and IL-2Rγ-

/-Rag2-/- mice is lower than the number of IELs found in WT mice. In WT mice, the lowest 

number of IELs that I have reported in this thesis is around 1x106 cells (Fig 6.3 G and Fig 

7.24 G), which is higher than the highest reported number of transferred IELs in IL-2Rγ-/-
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Rag2-/- mice, that is around 0.5x106 cells (Fig 4.9 D). Therefore, I decided to use IL-2Rγ-/-

Rag2-/- mice as hosts for the IEL transfer activation experiment.  
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Figure 6.6. IEL transfer into IL-2Rγ-/-Rag2-/- mice generated a more representative 

IEL population compared to Rag2-/- mice. 100 000 FACS-sorted CD8α+ IELs were 

injected i.v. into Rag2-/- and IL-2Rγ-/-Rag2-/- mice. Three weeks post transfer, IELs were 

isolated from these mice. A-C) Representative FACS plots showing TCRαβ and TCRγδ 

staining. D-F) Representative FACS plots showing CD8β and CD8α staining to identify 

CD8αβ+ and CD8αα+ populations from indicate mouse line. For the WT IELs, pre-gating was 

made on live CD8α+ cells. As hosts were on a CD45.1 background, pre-gating was made on 

live CD45.2+ CD8α+ cells for Panels B, C, E and F. These plots are representative of four 

independent experiments. G-H) Quantification of the four main IEL subsets in G) WT mice 

and H) IELs transferred into Rag2-/- and IL-2Rγ-/-Rag2-/- mice. Data are presented as mean 

± SD from two independent experiments with two to five mice per condition and experiment. 

Statistically significant changes were identified by two-way ANOVA for panel H. ***: 

p<0.001.   

 

IL-2Rγ-/-Rag2-/- mice cannot generate their own T cells, hence comparing IEL transfer with 

or without αCD3 stimulation will provide insights into the effects αCD3 antibody has directly 

on IELs, as well as give an indication of whether any effects seen in WT mice may be 

mediated by other T cells. 100 000 CD8α+ IELs per mouse were injected i.v. into IL-2Rγ-/-

Rag2-/- mice. Three weeks post IEL transfer, one set of mice received αCD3 antibody i.p., 

while the other set of mice did not receive any injection. All mice were culled for analysis 

two days after αCD3 injection. I observed that the αCD3-activated IELs had a significant 

increase in Ki-67 expression (Fig 6.7 A), which applied to the four main IEL subsets as well 

(Fig 6.7 B). Interestingly, similar numbers of IELs were found in αCD3-treated and non-

treated mice (Fig 6.7 C). This would suggest that the reduced number of IELs observed in 

WT mice that received αCD3 antibody is dependent on other T cells and not an intrinsic 

mechanism in IELs during the activation. Moreover, the Ki-67 response was lower compared 

to WT mice injected with the same dose of αCD3 and analysed at the same time point (Fig 

6.3 C-E). WT mice injected with the same dose of αCD3 showed a reduction in the number 

of total CD8α+ IELs compared to non-injected controls (Fig 6.3 G). These data indicate that 
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the response of other T cells to αCD3 activation may influence the response of IELs, such as 

the number of IELs after activation. 

 

Figure 6.7. IELs respond directly to αCD3 activation. 100 000 sorted CD8α+ IELs were 

transferred into IL-2Rγ-/-Rag2-/- mice. Three weeks after the IEL transfer, one set of mice 

were injected i.p. with 25 µg αCD3 antibody. Two days after αCD3 injection, IEL were 

isolated, quantified and stained for Ki-67. A-B) Percentage of Ki-67+ IELs from A) total 

CD8α+ IELs or B) the four main IEL subsets from non-treated and αCD3-treated mice. C) 

Quantification of total CD8α+ IELs from non-treated and αCD3-treated mice. Data are 

presented as mean ± SD from two independent experiments with two to four mice per 

condition and experiment. Statistically significant changes were identified by unpaired t-test 

for Panel A and C and by two-way ANOVA for Panel B. *: p<0.05., **: p<0.01. 

 

6.5.  Co-stimulatory CD28 is not sufficient to trigger cytokine production in 

IELs 

After observing that αCD3 activation led to an increase in MTG staining in IELs (Fig 6.1 D-

F), but no cytokine production (Fig 6.3 A-B), I next asked what additional signal(s) are 

required for cytokine production from IELs. A co-stimulatory molecule for other T cells is 

CD28 engagement, of which can lead to increased cytokine production (Klein Geltink et al., 

2017). CD28 is expressed on CD8αβ+ IELs, but not on TCRγδ+ IELs (Ohteki and 
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MacDonald, 1993). Therefore, I next tested whether αCD28 could be an additional signalling 

receptor for IELs, particularly for CD8αβ+ IELs. 

 

WT mice were injected i.p. with either αCD3 antibody or a combination of αCD3 and αCD28 

antibodies and analysed 48 hours post injection. IELs were isolated and stained for MTG, 

MitoSOX and the cytokines IFNγ and TNFα. In the cytokine assessment, I observed no 

increase in either cytokine in IELs co-injected with αCD3 and αCD28 compared to αCD3 

(Fig 6.8 A-B.) These data suggest that there are other factors missing in order to stimulate 

IELs to secrete cytokines. However, I observed statistically significant changes in terms of 

Ki-67 expression (Fig 6.8 C) for TCRγδ+ CD8αβ+ IELs only (Fig 6.8 D).  
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Figure 6.8. Co-stimulatory CD28 does not lead to cytokine production in IELs. WT mice 

were injected i.p. with 25 µg αCD3 antibody or a combination of 25 µg αCD3 and 25 µg 

αCD28 antibodies. IELs were isolated from non-injected and injected mice at 48 hours post 

injection and stained for intracellular cytokine staining. A-C) Quantification of the percentage 

of A) IFNγ+, B) TNFα+ and C) Ki-67+ cells from total CD8α+ IELs from indicated condition. 

D) Quantification of the percentage of Ki-67+ cells from IEL subsets at 48 hours post 

injection. Data are quantified as mean ± SD from three independent experiments with two to 

three mice used per condition and experiment. Statistically significant changes were 

identified by one-way ANOVA (Panel A-C) and two-way ANOVA (Panel D). *: p<0.05., 

***: p<0.001. 
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When assessing the MTG staining in αCD3 or αCD3 and αCD28 conditions, I observed no 

significant difference for total CD8α+ IELs (Fig 6.9 A) and IEL subsets (Fig 6.9 C) at 48 

hours post injection. The same trend applied to CD44 staining (Fig 6.9 E). 

 

As I have previously observed that CD8αβ+ IELs specifically produce mitochondrial ROS 

and CD8αβ+ IELs are the subsets suggested to express CD28, I assessed MitoSOX levels for 

one of the CD28 experiments. These preliminary data suggest that at 48 hours post 

stimulation, there is a significant difference between αCD3- and αCD3+αCD28-stimulated 

IELs (Fig 6.9 D). Interestingly, these preliminary data suggest that TCRαβ + CD8αβ+ IELs 

have significantly higher mitochondrial ROS production when stimulated with αCD3 and 

αCD28 antibodies (Fig 6.9 D). Collectively, these data indicate no essential role for CD28 for 

TCR-mediated IEL activation, despite data from Figure 6.7 indicating that other T cells may 

influence IEL activation responses.  
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Figure 6.9. Co-stimulatory CD28 does not alter TCR-mediated IEL activation. WT mice 

were injected i.p. with 25 µg αCD3 antibody or a combination of 25 µg αCD3 and 25 µg 

αCD28 antibodies. IELs and splenic CD8α+ T cells were isolated from non-injected and 

injected mice, at the indicated time point, and stained for MTG and MitoSOX. A-B) 

Quantification of A) MTG or B) MitoSOX MFI for memory and naïve splenic CD8α+ T cells, 

steady state IELs. C-D) Quantification of C) MTG or D) MitoSOX MFI for IEL subsets. Data 

are presented as mean ± SD from one (Panel B+D) and three (Panel A+C) independent 

experiments with two to three mice used per condition and experiment. Statistically 

significant changes were identified by one-way (Panel A-B) or two-way ANOVA (Panel C-

E). ***: p<0.001. 

 

6.6.  Mechanistic insights behind the mitochondrial changes in IELs during 

TCR-stimulated activation 

After the observations from this chapter and Chapter 5, two important questions arise. Firstly, 

what are the determining conditions that set IELs into this mitochondrial compromised state 

in regards of mitochondrial mass, membrane potential and cardiolipin content? Secondly, 

which signalling pathways enable mitochondrial remodelling during IEL activation, resulting 

in an increase in mitochondrial mass?  

 

There are numerous factors that have been suggested to be important for IEL maintenance, 

such as T-bet (Klose et al. 2014; Reis et al. 2014), Eomes (Klose et al. 2014) and AhR (Li et 

al., 2011). In the following sections, I will describe a series of experiments, the aim of which 

was to assess the steady state IELs in mice that have deficiency in these factors, as well as 

assessing if they are capable of remodelling their mitochondria after αCD3 stimulation, as 

observed with WT IELs. For the assessments, the time point of 48 hours post injection has 

been used. 
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6.7.  T-bet-deficient IELs may have a higher threshold to enable increase in 

mitochondrial mass during activation 

As mentioned in the introduction to IELs (see section 1.6.2), mice deficient in T-bet have 

altered IEL subset composition, with fewer TCRγδ+ IELs (Klose et al. 2014; Reis et al. 

2014). T-bet is a T-box factor encoded by the gene Tbx21. TCR activation and IL-12R 

stimulation are known to induce T-bet expression. IL-12R is expressed on IELs (Fahrer et al., 

2001; Shires et al., 2001). T-bet is also expressed on a range of immune cells such as ILCs, B 

cells, Th1 cells, effector CD8α+ T cells and TCRγδ+ T cells (Lazarevic et al., 2013). Naïve 

splenic CD4+ and TCRγδ+ T cells lack T-bet expression (Yin et al., 2002), while all the four 

main IEL subsets express it (Klose et al. 2014). As T-bet can be induced by TCR activation, 

the question is whether T-bet may be involved in the activation response of IELs. 

 

For the assessment, I used Rag1-Cre-Tbx21fl/fl-RFP mice, which selectively deplete T-bet in 

Rag-dependent lymphocytes. I observed that control IELs from these mice had similar levels 

of MTG staining to WT IELs (Fig 6.10 A), except in TCRαβ + CD8αβ+ IELs (Fig 6.10 C). 

These data suggest that T-bet-dependent pathways are not crucial to set IEL into a state with 

low mitochondrial mass. Interestingly, αCD3 injection of Rag1-Cre-Tbx21 mice generated 

intriguing results. In one experiment, I observed a decrease in the ability to increase MTG 

staining in IELs from these mice. This affected all IEL subsets (Fig 6.10 A and E, data points 

in red border colour). The same mice showed an increase in Ki-67 response, indicating that 

the mice had received their αCD3 antibody as expected (Fig 6.10 B and F). In addition, these 

data indicate that a Ki-67 increase is possible in the context of a lack of mitochondrial mass 

increase. However, in the repeat experiment I observed an increase in MTG staining in IELs 

from Rag1-Cre-Tbx21fl/fl-RFP mice (Fig 6.10 A and E, data points in blue border colour). 

These data suggest that T-bet may not be strictly required for mitochondrial mass increase 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 6 IELs show mitochondrial plasticity during activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 208  
Copyright © 2018 Frising UC 

during αCD3-medaited activation but may be involved in the threshold to enable this αCD3-

mediated increase of MTG staining. This threshold may not have been reached in the first 

experiment but may have been in the second experiment. 
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Figure 6.10. T-bet-deficient IELs may have a higher threshold to enable increase in 

mitochondrial mass during activation. WT and Rag1-Cre-Tbx21fl/fl-RFP mice were 

injected i.p. with 25 µg αCD3 antibody. IELs were isolated from non-injected and αCD3-

injected mice at 48 hours post injection and stained with MTG and Ki-67 antibody, as 

previously described. A, C, E) Quantification of MTG MFI from A) total CD8α+ IELs from 

non-injected and αCD3-injected mice, C) non-treated IELs subsets and E) IEL subsets at 48 

hours post injection. B, D, F) Ki-67 staining from B) total CD8α+ IELs at steady state or 48 

hours post αCD3 injection, D) non-treated IEL subsets and F) IEL subsets at 48 hours post 

injection. Data are presented as mean ± SD from two to three (Panel C) independent 

experiments with two to five mice per condition and experiment. Statistically significant 

changes were identified by one-way ANOVA (Panel A-B) or two-way ANOVA (Panel C-F). 

*: p<0.05., ***: p<0.001. 

 

6.8.  Eomes is dispensable to enable increase in mitochondrial mass and Ki-

67 expression in IELs during activation 

Another T-box factor is Eomesodermin (Eomes). Eomes is expressed in naïve CD8α+ T cells 

(Yang et al., 2008; Pearce et al., 2003) as well as in IELs (Klose et al. 2014). It has been 

demonstrated that both T-bet and Eomes can induce IFNγ production (Pearce et al., 2003), 

suggesting that Eomes may complement T-bet-induced functions. As the experiments with T-

bet showed conflicting results, I wanted to test if whether could gain any clarity by using 

Rag1-Cre-Eomesfl/fl-RFP mice. 

 

When assessing these mice, I observed that they have similar level of MTG staining as WT 

IELs (Fig 6.11 A), except for TCRαβ + CD8αβ+ IELs (Fig 6.11 C). This is the same IEL 

subset that had a significantly lower MTG staining in Rag1-Cre-Tbx21fl/fl-RFP mice (Fig 

6.10 C). Overall, these data suggest that Eomes is not essential to set IELs into this 

mitochondrial state. When activating IELs in Rag1-Cre-Eomesfl/fl-RFP mice with αCD3 

antibody, I observed no differences compared to WT IELs in terms of MTG staining (Fig 
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6.11 A) except for TCRαβ + CD8αβ+ IELs (Fig 6.11 E). In terms of Ki-67 response, there was 

not statistically significant difference (Fig 6.11 B), except for CD4+ CD8αα+ IELs (Fig 6.11 

F). These data suggest that Eomes is dispensable for mitochondrial mass increase and the Ki-

67 response, induced by αCD3 antibody injection. Together, these data suggest that, whether 

or not T-bet is involved in the increase of IEL mitochondrial mass, it is independent of 

Eomes.  
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Figure 6.11. Eomes is dispensable to enable increase in mitochondrial mass and Ki-67 

expression during activation. WT and Rag1-Cre-Eomesfl/fl-RFP mice were injected i.p. with 

25 µg αCD3 antibody. IELs were isolated from non-injected and αCD3-stimulated mice at 48 

hours post injection and stained for MTG and Ki-67 staining, as previously described. A, C, 

E) Quantification of MTG MFI from A) total CD8α+ IELs at 48 hours post αCD3 injection, 

C) non-treated IEL subsets and E) IEL subsets at 48 hours post αCD3 injection. B, D, F) Ki-

67 staining from B) control total CD8α+ IELs or at 48 hours post αCD3 injection, D) non-

treated IEL subsets and F) IEL subsets at 48 hours post αCD3 injection. Data are presented as 

mean ± SD from two to three (Panel C) independent experiments with two to five mice per 

condition and experiment. Statistically significant changes were identified by one-way 

ANOVA (Panel A-B) or two-way ANOVA (Panel C-F).  **: p<0.01., ***: p<0.001. 

 

6.9.  AhR may be involved in the threshold to enable MTG increase in IELs  

AhR is a transcription factor that has been shown to be important for IEL maintenance, as 

AhR-/- mice have significantly fewer IELs (Li et al., 2011). The current AhR signalling 

model consists of AhR in the cytoplasm in a complex with AhR interacting protein (AIP), 

heat shock protein 90 (Hsp90) and p23. Upon ligand binding, the complex is released from 

AIP and transfers to the nucleus. In the nucleus, the complex associates with AhR nuclear 

translocator (Arnt). This complex binds to dioxin response element (DRE) elements leading 

to transcription of e.g. AhR repressor (AhRR) and Cyp1 enzymes. AhRR prevents complex 

formation with Arnt, while Cyp1 enzymes break down the AhR ligands (Stockinger et al., 

2014). The role of AhR and its downstream targets in IEL activation is still unknown. 

Therefore, in the next sections, I will describe experiments to test the role of AhR, AhRR and 

Cyp1 enzymes in IEL activation. 

 

For this assessment, I first used AhR-/- mice. For steady state IELs, similar levels of MTG 

staining were observed in WT and KO-mice (Fig 6.12 A and C). Interestingly, I obtained 

similar results regarding αCD3-induced activation as for Rag1-Cre-Tbx21-RFP mice (Fig 
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6.10 A and E): in one experiment, AhR-/- IELs failed to increase MTG staining (data point 

with red border line), but in the second experiment, they did (data points with blue border 

line) (Fig 6.12 A and E). The same trend was observed regarding Ki-67 response, which was 

increased in both cases (Fig 6.12 B and F). This again highlights that there appear to be ways 

for IELs to start proliferating extensively, independent of mitochondrial mass increase. An 

alternative is that the Ki-67 increase occurs prior to the increase in mitochondrial mass. 
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Figure 6.12. AhR may be involved in the threshold to enable MTG increase in IELs. WT 

and AhR-/- mice were injected i.p. with 25 µg αCD3 antibody. IELs were isolated from non-

injected and αCD3-stimulated mice at 48 hours post αCD3 injection and stained for MTG and 

Ki-67 staining, as previously described. A, C, E) Quantification of MTG MFI from A) 

control total CD8α+ T cells and total CD8α+ IELs or indicated time point post αCD3 

injection, C) non-treated IEL subsets and E) IEL subsets at 48 hours post αCD3 injection. B, 

D, F) Ki-67 staining from B) total CD8α+ IELs at steady state or indicated time point post 

αCD3 injection, D) non-treated IEL subsets and F) IEL subsets at 48 hours post αCD3 

injection. Data are presented as mean ± SD from two independent experiments with two to 

four mice per condition and experiment. Statistically significant changes were identified by 

one-way ANOVA (Panel A-B) or two-way ANOVA (Panel C-F). *: p<0.05., **: p<0.01., 

***: p<0.001. 

 

6.10. AhRR is dispensable in the TCR-mediated activation response 

in IELs 

As mentioned above, AhRR is an important factor to reduce AhR signalling by preventing 

AhR-Arnt complex formation. Hence, I wanted to see if I could obtain clarifying evidence 

from Rag1-Cre-AhRRfl/fl-RFP mice, to support the data obtained from AhR-/- mice. Control 

IELs from Rag1-Cre-AhRRfl/fl-RFP mice had similar levels of MTG staining as WT IELs 

(Fig 6.13 A and C). Using αCD3 antibody injection to stimulate IELs from Rag1-Cre-

AhRRfl/fl-RFP mice, I observed that MTG increases in a similar manner to WT IELs (Fig 

6.13 A and E). When assessing Ki-67 response, I observed no significant difference in the Ki-

67 response (Fig 6.13 B and F). Collectively, these data indicate no essential role for AhRR 

in TCR-mediated IEL activation. 
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Figure 6.13. AhRR is dispensable for MTG increase and Ki-67 response. WT and Rag1-

Cre-AhRRfl/fl-RFP mice were injected i.p. with 25 µg αCD3 antibody. IELs were isolated 

from non-injected and αCD3-stimulated mice at 48 hours post αCD3 injection and stained for 

MTG and Ki-67 staining, as previously described. A, C, E) Quantification of MTG MFI from 

A) control total CD8α+ T cells and total CD8α+ IELs at 48 hours post αCD3 injection, C) 

non-treated IEL subsets and E) IEL subsets at 48 hours post αCD3 injection. B, D, F) Ki-67 

staining from B) total CD8α+ IELs at steady state or 48 hours post αCD3 injection, D) non-

treated IEL subsets and F) IEL subsets at 48 hours post αCD3 injection. Data are presented as 

mean ± SD from one to three (Panel C) independent experiments with two to four mice per 

condition and experiment. Statistically significant changes were identified by one-way 

ANOVA (Panel A-B) or two-way ANOVA (Panel C-F).  **: p<0.01., ***: p<0.001. 

 

6.11. Cyp1a enzymes are involved in the αCD3-mediated Ki-67 

response 

AhR can affect the expression of Cytochrome P450 enzymes (Cyp) , Cyp1A1, 1A2 and 1B1 

(Ciolino et al., 1999). These have been reported to be located in both mitochondria and the 

endoplasmic reticulum (ER) (Dong et al., 2013). Like AhRR, Cyp enzymes can reduce AhR 

signalling, in their case by breaking down AhR ligands.  

 

For the assessment, I used Cyp1A1, 1A2 and 1B triple-/- mice (Cyp1aT-/-). Control IELs 

from Cyp1aT-/- mice show similar levels of MTG staining to WT IELs (Fig 6.14 A and C). 

Using αCD3 treatment of these mice, I observed that MTG staining increases in a similar 

manner to WT IELs, except in TCRαβ+ CD8αβ+ IELs (Fig 6.14 A and E). However, when 

assessing Ki-67 response, I observed a significant reduction in the Ki-67 response (Fig 6.14 B 

and F). This trend applies for all IEL subsets except TCRαβ+ CD8αβ+ IELs (Fig 6.14 F). As 

this trend was not observed in AhR-/- mice (Fig 6.12 B an F), it may be mediated in an AhR-

independent manner. 
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Figure 6.14. Cyp1a enzymes have a role in the αCD3-mediated Ki-67 response in IELs. 

WT and Cyp1aT-/- mice were injected i.p. with 25 µg αCD3 antibody. IELs were isolated 

from non-injected and αCD3-stimulated mice at 48 hours post αCD3 injection and stained for 

MTG and Ki-67 staining, as previously described. A, C, E) Quantification of MTG MFI from 

A) control total CD8α+ IELs or 48 hours post αCD3 injection, C) non-treated IEL subsets and 

E) IEL subsets at 48 hours post αCD3 injection. B, D, F) Ki-67 staining from B) total CD8α+ 

IELs at steady state or 48 hours post αCD3 injection, D) non-treated IEL subsets and F) IEL 

subsets at 48 hours post αCD3 injection. Data are presented as mean ± SD from one to two 

independent experiments with two to four mice per condition and experiment. Statistically 

significant changes were identified by one-way ANOVA (Panel A-B) or two-way ANOVA 

(Panel C-F). *: p<0.05., **: p<0.01., ***: p<0.001. 

 

6.12. IEL activation leads to drastic CL composition alternations 

Next, I wanted to assess in more detail whether the CL composition is altered in activated 

IELs. For that experiment, I FACS-sorted activated total CD8α+ IELs from the E. vermiformis 

infected mice (see Chapter 7 for details about this model), non-infected total CD8α+ IELs, 

naïve and memory splenic CD8α+ T cells. Splenic CD8α+ effector T cells were obtained by in 

vitro activation of CD8α+ T splenocytes with plate-bound αCD3 and αCD28 antibodies for 

two days before cell quantification and pelleting. The cell pellets were then extracted for 

cardiolipin analysis by mass spectrometry undertaken by the Babraham Institute Lipidomics 

facility. I performed a principal component (PCA) analysis of all detected species of CLs.  

 

PCA analysis is a dimension reduction method to visualize and analyze big set of data into 

principal components (PCs). PC1 can explain most of the variation in the data set, while PC2 

is the second most important component to explain the variation in the data set (Ringnér, 

2008). Part of the analysis is a list of data values, in this case CL species, that contribute the 

most to PC1 (Fig 6.15 B and Supplemental Fig 6.15 B). Supplemental Figure 6.15 illustrate 

the principle of PCA easier as the figure only plots the CL distribution between IELs and 
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activated IELs. In the list, there are three positive values for the three CL species CL 74_10, 

CL 74_9 and CL 72_9 (Supplemental Fig 6.15 B), which are all higher expressed in non-

activated IELs. This is showed in the PCA plot by the horizontal lines (as PC1 is plotted on 

the x-axis) pointing towards non-activated IELs (Supplemental Fig 6.15 A). This can be 

confirmed by plotting the three CL species as done in Supplemental figure 6.15 C-E. Similar 

approach applies for the CL species with negative values that are pointing towards activated 

IELs and confirmed higher expression in Supplemental figure 6.15 F-O. 

 

The analysis of non-activated IELs, activated IELs, naïve, memory and effector splenic 

CD8α+ T cells showed that non-infected IELs are set apart from the other analysed 

lymphocyte populations by a specific lipid species designated CL-74_10 (Fig 6.15 A). From 

the PCA analysis, a list of the CLs that contributed to principal component one (PC1) can be 

obtained (Fig 6.15 B). Quantifications from this dataset showed that non-infected IELs 

contained significantly more CL 74_10 than the other assessed T cell populations. 

Importantly, the proportion of CL-74_10 is significantly reduced in activated IELs (Fig 6.15 

C). When quantifying the CL species in relation to their lengths, I observed a shift in IELs 

from mainly CL-74 species to CL-72 species (Fig 6.15 G-H). CL 74 species are mainly 

expressed in naïve and memory splenic CD8α+, while effector splenic CD8α+ contain more 

CL 72, the same family of species that increases in activated IELs. I also performed PCA on 

steady state and activated IELs only from the same dataset, which highlighted that CL species 

CL 74_10, 74_9 and 72_9 are more abundant in non-activated IELs compared to activated 

IELs (Supplemental Figure to 6.15). These data support a model in which mitochondria 

remodelling is involved in the activation process of IELs. 
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Figure 6.15. Activation of IELs leads to drastic changes in CL composition – Part 1. 

Infected and non-infected IELs and naïve and memory splenic CD8a+ T cells were FACS-

sorted, while effector CD8α+ T cells were obtained from in vitro culture. Lipids were 

extracted from these cell populations for analysis by mass spectrometry. A) PCA of the CL 

composition in the five tested T cell populations. Each coloured dot represents biological 

replicates of each cell population, while the coordinate system indicates how the CL species 

distributes on PC1, PC2 and cell populations. B) List of CL species that contribute the most 

to the principal components. C-I) Quantification of CL species C) 74_10, D) 74_9, E) 70_5, 

F) 68_2, G) 70_4, H) 72_6 and I) 68_3. Data are presented as mean ± SD from one 

experiment with cells sourced from three to five mice per condition. Statistically significant 

changes were identified by the Kruskal-Wallis test. *: p<0.05., **: p<0.01. 
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Figure 6.15. Activation of IELs leads to drastic changes in CL composition - Part 2. 

Same CL mass spectrometry data set as in Fig 6.15. A-H) Quantification of CL species A) 

70_6, B) 72_7, C) 72_5, D) 74_7, E) 70_3 and total F) CL 68, G) CL 70, H) CL 72 and I) CL 

74 species. Data are presented as mean ± SD from one experiment with cells sourced from 

three to five mice per condition. Statistically significant changes were identified by the 

Kruskal-Wallis test. *: p<0.05., **: p<0.01. 
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6.13. Supplemental chapter figures 

 

Supplemental Figure to 6.5. Quantification of the amount of CLs per 107 cells. Data are 

presented as mean ± SD from one experiment with cells sourced from four to five mice per 

group. Statistically significant changes were identified by the Kruskal-Wallis test: **: 

p<0.01. 

 

 

 

 

 

 

 

Supplemental Table to 6.15. Table of CL species measured between non-infected IELs, 

infection-mediated activation of IELs, naïve, effector and effector splenic CD8α+ T cells. 

 

68_1-CL 70_2-CL 72_4-CL 74_10-CL

68_2-CL 70_3-CL 72_5-CL 74_11-CL

68_3-CL 70_4-CL 72_6-CL 74_5-CL

68_4-CL 70_5-CL 72_7-CL 74_6-CL

68_5-CL 70_6-CL 72_8-CL 74_7-CL

68_6-CL 70_7-CL 72_9-CL 74_8-CL

74_9-CL

Cardiolipin (CL)  species
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Supplemental Figure to 6.15. PCA analysis of CL species in activated and non-activated 

IELs. Non-infected and infected IELs, effector, naïve and memory splenic CD8a+ T cells 

were FACS-sorted. Lipids were extracted from these cell populations for analysis by mass 

spectrometry, the same data set as used for 6.13 and 6.14, but this time focusing on IELs only. 

A) PCA analysis of the CL composition in steady state and activated IELs. Each coloured dot 

represents biological replicates of each cell population, while the coordinate system indicates 

how the CL species distributes on PC1, PC2 and cell populations.  B) List of CL species that 

contribute the most to the principal components. C-O) Quantification of CL species C) 

74_10, D) 74_9, E) 72_9, F) 72_6, G) 70_5, H) 72_7, I) 68_2, J) 74_7, K) 70_4, L) 70_6, M) 

72_5, N) 68_3 and O) 74_8. Data are presented as mean ± SD from one experiment with cells 

sourced four to five mice per group. Statistically significant changes were identified by 

Mann-Whitney test. *: p<0.05. 

 

6.14. Chapter Discussion 

Summarising the findings in this Chapter, I showed that the mitochondrial mass in IELs 

increased after TCR activation in vivo. In addition, the mitochondrial ROS production and 

proliferation, measured by Ki-67 staining, also increased, while the mitochondrial membrane 

potential and CL content remained at similar levels to the non-activated IELs. I also showed a 

potential role of T-bet and AhR in the threshold for the TCR-mediated mitochondrial mass 

increase. The Cyp enzymes, that are located in mitochondria and ER, seem to play a role in 

the TCR-mediated proliferative response. Finally, I showed that the mitochondria in IELs are 

distinct from those in splenic naïve, memory and effector CD8α+ T cells in respect of their 

CL composition. IELs have high level of CL 74 species, particularly CL 74_10. Upon 

activation using the E. vermiformis model, the CL composition in IELs alters drastically. 

Collectively, these data support a model of mitochondria-dependent activation mechanism for 

IELs. 
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One of my earliest observations of altered IEL activation was the increase in the level of the 

lymphocyte activation molecule CD44. In control mice, there are IELs that have high, 

intermediate and low expression of CD44 (Fig 6.1 B). CD8αβ+ IELs tend to have a higher 

proportion of cells that are CD44Hi (data not shown). As early as 4 hours after αCD3 antibody 

stimulation in vivo, I observed that all IELs have an increased CD44 expression. CD44 is a 

glycoprotein that, in addition to being used as a marker of activated lymphocytes, is an 

adhesion molecule. It has been reported that CD44 can interact with ECM, particularly the 

compound hyaluronan. It has also been reported that CD44-/- mice have lower Th1 cell 

responses, highlighting a potential link between CD44 and effector functions (Baaten et al., 

2012). In addition to the increase in CD44 expression, I observed a transient increase of 

CD69, another activation marker. Unlike the CD44 expression that remained high for at least 

48 hours post injection, CD69 expression went down by 48 hours post injection. Whether the 

increase in CD44 and CD69 expressions in IELs are linked to the later increased 

mitochondrial mass or if these are two separate events, is yet to be determined. 

 

In recent years, the recognition of the importance of cell metabolism for immune functions 

has emerged. Some of the recent insights have been published by the Pearce laboratory. They 

have shown metabolic differences between splenic CD8α+ naïve, memory and effector T 

cells. In addition to using CD44 as marker to distinguish naïve and memory cells, they have 

used CD62L to distinguish Tmem and Teff cells. They have reported that Tmem cells have 

higher SRC than naïve T cells (van der Windt et al., 2012), a finding that is reproduced in 

Chapter 5. In addition, they found that Tmem cells have more mtDNA than Teff cells (van 

der Windt et al., 2012). This laboratory has also reported that Teff cells store more lipids than 

the other CD8α+ T cell subsets (O’Sullivan et al., 2014). These findings go in line with what I 

have reported in Chapter 5. Of particular relevance to my findings, the Pearce laboratory has 
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reported two cases of an increase in the MTG staining. In the first case, they treated cells with 

M1 (a mitochondrial fusion promoter) and Mdivi-1 (a mitochondrial fission inhibitor) and 

could report an increase in MTG staining for Teff cells. In the second case, cells were 

transfected with Opa1, which resulted in an increase in mitochondrial mass (Buck et al., 

2016). Although the reported increase in mitochondrial mass was not as drastic as the ones I 

demonstrate for αCD3-activated IELs, these reported findings highlight a potential role of 

mitochondrial fusion that could possibly be involved to explain the increase in MTG staining 

I observed in αCD3-activated IELs. The Erika Pearce laboratory have also recently reported 

mitochondrial changes in respect of the cristae. Cristae being spatially close to each other was 

correlated with effector functions such as IFNγ production, which was reduced in Tmem cells 

in which the cristae were spatially more distant to each other. The tightening of cristae may 

be induced by CD28 stimulation (Klein Geltink et al., 2017).  

 

Sequencing data from the Immgen project suggest that TCRγδ+ IELs express Mfn1, Mfn2, 

Opa1 and Drp1 (Heng et al., 2008; Shay and Kang, 2013). Unfortunately, IELs survive 

poorly in vitro, unless cultured with organoids, as shown in Chapter 4. Therefore, addition of 

M1 and Mdivi-1 (promoting mitochondrial fusion) to the IEL-organoid co-culture system 

could be an option to address the mechanism behind the increase in MTG staining in TCR-

activated IELs. If mitochondrial fusion is involved in the explanation behind the increase in 

mitochondrial mass, then further studies of the signalling mechanisms from the TCR 

stimulation to the mitochondria need to be performed. This understanding would uncover 

factors involved in IEL activation and also potential targets for modulating IEL activation 

responses.  
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Another interesting aspect from this work is the different kinetics of the activation markers. 

Data from this chapter suggest that CD44 is the marker that increases first. Staining of CD69 

at 4 hours post αCD3-injection need to be performed to determine whether the increase in 

CD44 and CD69 occur at the same time. Previous data suggest that αCD3 treatment lead to 

rapid TCR clustering and internalization. In vitro experiments have demonstrated that TCR 

are clustered as early as 30 min after αCD3 stimulation (Yokosuka et al., 2005). The earliest 

time point at which it has been demonstrated that αCD3 stimulation leads to internalisation of 

the TCRs on IELs in vivo, is one hour post αCD3 injection in BALB/c mice (Ogata et al., 

2014). Therefore, a proposed sequence of events for TCR-mediated IEL activation would be 

that expression of CD44 and CD69 increases; then, mitochondrial mass as indicated by MTG 

increases; the increase in proliferation as detected by Ki-67 appears to happen with the same 

kinetics as the increase of MTG staining. As a significant increase in mitochondrial ROS 

production is first observed 48 hours after activation (Fig 6.4 A), this would suggest that this 

may be happening after the mitochondrial mass has increased. 

 

An interesting observation from this chapter is that the different IEL subsets respond 

differently to αCD3 stimulation, despite the fact that all IEL subsets have the same low 

mitochondrial mass to start with. Moreover, while TCRγδ+ CD8αα+ IELs are the most 

numerous subset in non-treated mice, it is the third largest IEL subset, TCRαβ+ CD8αβ+ IELs 

(Fig 4.3 A-B), that responds most strongly, while TCRαβ+ CD8αα+ and CD4+ CD8αα+ IELs 

respond the least. Moreover, TCRγδ+ CD8αβ+ IELs respond better than TCRγδ+ CD8αα+ IELs 

which could possibly be linked to the fact that the CD8αα homodimer may have repressive 

functions (Cheroutre and Lambolez, 2008). This serves to illustrate the heterogeneity of the 

IEL response to antigen presentation. Hypothetical explanations for these differences in IEL 

subsets could involve different thresholds to initiate the MTG increase or differences in 
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intracellular downstream signaling proteins in the different IEL subsets. As αCD3 stimulation 

is an artificial way to mimic of antigen presentation, it could also be that the other IEL 

subsets require different additional signals for a stronger response.  

 

Another question remaining to be addressed is what IELs are using as source to enable the 

increase in mitochondrial mass. Assessment of the lipid droplet content in activated IELs 

could provide some insights. However, an alternative dye to Nile Red would need to be used 

to be able to address this question for all IEL subsets. This is because Nile Red has a broad 

emission spectrum (Greenspan et al., 1985), making multi-colour flow cytometry very 

difficult. An alternative dye that has been used to assess lipid content is BODIPY (O’Sullivan 

et al., 2014). 

 

Despite the differences in mitochondrial mass increase, all IEL subsets respond with similar 

increases in Ki-67 expression, with TCRαβ+ CD8αβ+ IELs having a slightly higher Ki-67 

response compared to the other IEL subsets (Fig 6.3 E). It remains to be determined whether 

there is a strict link between the increase in mitochondrial mass and the increase of cell 

proliferation (Ki-67). Correlation analysis does not prove causation. In this chapter, I reported 

two experiments in which an increase of Ki-67 was observed despite the lack of 

mitochondrial mass increase (Fig 6.10 A-B, Fig 6.12 A-B). An alternative explanation could 

be that the increase in Ki-67 expression is initiated before the increase in MTG staining. 

Using the IEL-organoid model could potentially clarify this matter. 

 

In addition to the increase in Ki-67+ cells, I also observed an increase in mitochondrial ROS 

production in activated IELs. Again, CD8αβ+ IELs responded the most strongly, but this time 

no significant increase was observed in any of the CD8αα+ IEL subsets (Fig 6.4 B-C). ROS 
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has been reported to be able to affect intracellular signaling such as acting on phosphates in 

the mitogen-activated protein kinase (MAPK) signaling pathway (Kamata et al., 2005; 

McCubbery et al., 2006). These observations could indicate that CD8αα+ IEL have distinct 

functions compared to CD8αβ+ IELs, as it is possible that different signaling cascades occur 

in the different IEL subsets. One potential reason for IELs to respond differently to αCD3-

mediated activation, could be linked to feedback from the intestinal compartment, to which 

different IEL subsets may respond differentially. It has been shown that IECs start to secrete 

IL-33 after in vivo αCD3 injection (Pascual-Reguant et al., 2017). Additional factors may be 

secreted from IECs, which may have an impact on the outcome of αCD3-mediated activation 

of IELs. 

 

Surprisingly, I observed no significant increase in the mitochondrial membrane potential in 

αCD3-activated IELs, except in the case of TCRαβ+ CD8αβ+ IELs (Fig 6.5 B, D and F). 

Possible explanations could be that mitochondrial membrane potential does not increase 

during TCR-mediated activation, or that such an increase may be transient. It could also be 

that IELs require the input of additional signals for mitochondrial membrane potential 

increase. An alternative option could be that such responses occur at later time points. These 

observations raise the question whether or not mitochondrial functions, such as OXPHOS, 

increased in activated IELs. I have tried to assess the OCR, using the Seahorse mitochondrial 

capacity stress assay as used in Chapter 5, in activated IELs. However, I have so far been 

unsuccessful, as activated IELs seem not to survive for the full period of the stress assay (data 

not shown). This observation may suggest that activated IELs are too fragile for the 

mitochondrial stress assay. A potential way to overcome this hurdle could be to design a 

shorter version of the mitochondrial stress assay, hoping that activated IELs may survive that. 

The mitochondrial membrane potential has been suggested to distinguish two profiles of 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 6 IELs show mitochondrial plasticity during activation 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 236  
Copyright © 2018 Frising UC 

splenic CD8α+ T cells. Splenic CD8α+ T cells with lower mitochondrial membrane potential 

have higher SRC but lower production of IFNγ compared to splenic CD8α+ T cells with 

higher mitochondrial membrane potential (Sukumar et al., 2016). 

 

It was interesting to find that IELs reconstitute better in Rag2-/- IL-2Rγ-/- mice compared to 

Rag2-/- mice. This observation would suggest that the Rag2-/- IL-2Rγ-/- IEC compartment is 

more favourable for IEL maintenance, maybe because IL-2Rγ signalling can be inhibitory for 

IELs. FACS data, both my own and that of other member of laboratory, suggest that there are 

more NK1.1+ cells in the IEC compartment in Rag2-/- mice compared to Rag2-/- IL-2Rγ-/- 

mice (data not shown), suggesting more compartmental space in the latter mouse line. The 

role of IL-2Rγ signalling for IEL activation and maintenance will be discussed further in 

Chapter 7. 

 

An additional question to address is which factors enable IELs to increase their mitochondrial 

mass. In this chapter, I have tested several factors. None of the tested factors led to 

significantly higher mitochondrial mass compared to non-treated WT IELs (Fig 6.10-14). 

These data suggest that none of the tested factors are strictly involved to set IELs into this 

state of low mitochondrial mass. However, some differences were observed in these mice. 

First, Eomes-deficient IELs have lower mitochondrial mass in untreated and αCD3-treated 

TCRαβ+ CD8αβ+ IELs (Fig 6.11 A and E). Second, T-bet-deficient IELs have lower MTG 

staining in TCRαβ+ CD8αβ+ IELs, both at steady state and after αCD3-mediated activation 

(Fig 6.10 A and E). These data indicate that T-bet and Eomes may be involved in determining 

the mitochondrial mass for TCRαβ+ CD8αβ+ IELs. In addition, I observed a reduced Ki-67 

response in Cyp1aT-/- mice (Fig 6.14 B and F). The involvement of Cyp1a enzymes may in 

this case be independent of AhR signaling pathways, as both AhR and AhRR-deficient IELs 
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show no differences in Ki-67 expression compared to WT IELs (Fig 6.12-13 B and F) and the 

data from AhR-/- mice are not consistent in regards of MTG staining after αCD3-mediated 

activation (Fig 6.12 A). However, there may be a combination of factors behind setting and 

releasing IELs from this mitochondrial compromised state. It could potentially be that IELs 

receive downregulating signals from the intestinal compartment. Sequencing analysis 

comparing steady state and TCR-activated IELs may pinpoint candidates to assess further in 

this regard. 

 

Data from this Chapter also put focus on the mitochondrial composition, especially the CL 

content. I reported a shift in activated IELs’ CL composition from mainly CL 74 species to 

CL 72 species (Fig 6.15). The diversity of the CL-species increases in activated IELs, with 

mainly 74_10, 74_9 and 72_9 decreasing during activation, in favor of a higher proportion of 

other CL species such as 72_6 and 72_7 (Supplemental Figure to 6.15). Although the 

presented data would need a repeat experiment to strengthen these findings, they suggest that 

alternation of CLs may play a role for IEL activation. Even small changes in the CL length 

and the number of double bindings may have a big impact on mitochondrial function in IELs. 

CLs have been reported to have an impact on mitochondrial functions such as electron 

transport. Defects in CLs have been associated with some diseases such as diabetes and Barth 

syndrome (heart disease involving an enlarged and weakened heart) (Paradies et al., 2014). 

Therefore, it is likely that CL remodelling, that seems to have taken place in activated IELs, 

is tightly regulated to avoid generating defective or dangerous IELs. It would be interesting to 

obtain an insight into the spatial distribution of the CL in the mitochondria of steady state and 

activated IELs. This would be particularly interesting as recent data from Pearce laboratory 

show that the spatial distribution of mitochondrial cristae seems to be important for T cell 

functions, such as secretion of IFNγ (Klein Geltink et al., 2017). However, I am not aware of 
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a technique that would allow imaging of mitochondria with sufficient resolution to be able to 

distinguish the different CL species. Imaging of total CLs could give insights into whether 

CLs in steady state IELs are distributed differently compared to activated IELs, as well as in 

comparison with naïve, memory and effect splenic CD8α+ T cells. Whether the changes in CL 

composition are required for the increase in mitochondrial mass or are a consequence of 

changes to IEL mitochondria during activation, remains to be determined. 

 

Data obtained from NAO staining suggest that the same CL content in steady state and 

activated IELs (Fig 6.5 A, C and E). These observations suggest the possibility that CLs are 

causing potential spatial hindrance in steady state IELs. In addition, there is evidence 

suggesting interactions between CL and caspases, linking CLs to apoptosis (Schug and 

Gottlieb, 2009). Again, this may provide clues about why IELs survive so poorly in vitro, 

when cultured in the absence of intestinal organoids. It needs to be confirmed whether the 

IEL activation methods used lead to similar changes in CLs, as the activated IELs used for 

the CL mass spectrometry derived from the E. vermiformis infection model (7.3). TCR-

activated IELs may have a different CL content profile. 

 

Finally, the quest for discovering cytokine-promoting signals for IELs needs to continue. 

Addition of anti-CD28 antibody did not induce cytokine production in IELs nor alter the 

increase in MTG staining (Fig 6.8-9). Previous publications suggest differences in CD28 

expression in IELs, which is mainly found in CD8αβ+ IELs (Ohteki and MacDonald, 1993; 

Gelfanov et al., 1995). CD28 has recently received additional attention in relation to as 

metabolic priming of CD8+ T cells (Klein Geltink et al., 2017). CD8α+ T cells stimulated with 

αCD3 and αCD28 generated more SRC, ECAR and IFNγ production compared to αCD3 
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stimulated T cells. In addition, this increase was reduced in the presence of etomoxir (ETO), 

an agent that blocks fatty acid oxidation (FAO) (Klein Geltink et al., 2017).  

 

Collectively, this chapter highlights that IELs can increase their mitochondrial mass and 

mitochondrial ROS production, indicating mitochondria plasticity in IELs during activation. 

This increase also correlates with increased proliferation, but not cytokine production. 
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Chapter 7: Full IEL activation depends on lumenal/bacterial compound(s) 

In Chapter 6, I showed that IELs increase their mitochondrial mass and mitochondrial ROS 

production after TCR-stimulation. These data suggest that IELs undergo mitochondrial 

plasticity during IEL activation. In addition, I observed an increase in the proliferation 

marker Ki-67 which correlated with the increased mitochondrial mass. Collectively, these 

data suggest that mitochondrial markers can be used as activation markers for IELs. 

Therefore, I wanted to assess whether I can obsere similar changes to mitochondrial mass in 

IELs during more physiological relevant settings such as IEC stress and intestinal infections. 

Observing similar observations during intesintal infections would support the notion that 

IELs undergo mitochondrial plasticity during activation. In addition, I want to assess whether 

I can observe cytokine production from IELs. Data from Chapter 6 suggest that TCR 

stimulaton alone seem insufficient to induce cytokine production in IELs. Intestinal infections 

may proivde the required context for cytokine production in IELs. Below, I will introduce the 

intestinal microbiota and the intestinal pathogens that will be assessed in this chapter.  

 

7.  Enteric microbiota and pathogens 

The mammalian host is colonized by a large population of commensal microbiota, 

particularly at the mucosal sites such as the skin and the intestinal tract. In utero, mice receive 

some microbiotal colonization from the mother. The abundance of microbiota increases 

rapidly after birth through the additional entry of opportunistic microbiota present in the 

environment (Gensollen et al., 2016).  

 

In the 1870s, it was shown that specific bacteria can cause specific diseases. It was Robert 

Koch that formed the germ theory of disease. He demonstrated that bacteria isolated from 

sick animals could cause the exact same disease in healthy animals, when these were injected 
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with bacteria isolated from the sick mice. His criteria for demonstrating a link between a 

specific type of bacteria and disease would later be known as Koch’s postulates (Gradmann, 

2014). 

 

In 1989, Charles Janeway formulated the concept of pattern recognition receptors (PRRs) 

(Janeway Jr., 1989), which have been mentioned in previous chapters. These are important 

for the recognition of microbial molecular patterns by the immune system. PRRs signal via 

the signaling domain of myeloid differentiation  gene 88 (MyD88), TNF receptor associated 

factor (TRAF) and TIR domain-containing adapter inducing interferon β (TRIF) (Neish, 

2006). 

 

Further understanding of microbiota has been made possible thanks to technological 

development of animal facilities that can host germ-free (GF)-mice. GF mice have smaller 

MLNs and PPs (Macpherson and Harris, 2004), fewer CD4+ and CD8+ T cells, as well as 

fewer TCRαβ+ CD8αβ+ IELs (Kawaguchi et al., 1993; Klose et al., 2014; Di Marco Barros et 

al., 2016). Despite these deficiencies, it has been reported that GF mice are protected from 

obesity (Bäckhed et al., 2007), suffer less severe EAE symptoms (Lee et al., 2011), less 

intestinal inflammation (Roulis et al., 2015) and intestinal cancer (Bongers et al., 2014). On 

the other hand, it has been shown that mice living under natural (wild) conditions cope with 

viral infections better than mice living under specific pathogen-free (SPF) conditions 

(Rosshart et al., 2017). 

 

7.1.  Enteric viral pathogens: Murine Norovirus (MNV) 

There are many enteric viruses that can infect IECs and cause gastroenteritis such as rotavirus 

and murine norovirus (MNV). Rotavirus is a double-stranded RNA virus that infects villous 
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domains of the small intestine (Hernández et al., 2015). MNVs were introduced briefly in 

Chapter 4, for the MNV-organoid culture experiment, and will be in focus for part of this 

Chapter. 

 

As previously mentioned, MNV is a single-stranded RNA virus that belongs to the virus 

family Caliciviridae. Numerous different MNV strains have been identified that cause either 

acute or persistent viral infection (Hsu et al., 2007; Shortland et al., 2014). MNVs have been 

successfully cultured in the macrophage cell line RAW.264.7 (Newman and Leon, 2015). 

Other cells that MNVs have been reported to be able to infect are DCs, MPs and B cells, and 

recent reports also suggest that some IEC subsets may be targets for MNV infection (Lee et 

al., 2017). Here, I will focus on the in vivo role of IEL activation in MNV infection, for 

which I hoped that MNV-O7 might generate interesting results. The in vitro data obtained in 

Chapter 4 suggested that MNV-O7, but not MNV-CW3, is able to infect IECs. Therefore, it 

would be interesting to see if in vivo MNV-O7 infection will lead to mitochondrial changes 

and cytokine secretion from IELs. 

 

7.2.  Bacterial pathogens: Salmonella 

There are various different enteric pathogenic bacteria. For the work reported in this Chapter, 

I have been provided with small intestines from mice infected with Salmonella by Prof. 

Jonathan Heeney’s laboratory. Salmonella is a Gram-negative bacterium belonging to the 

family Enterobacteriaceae (Miki et al., 2012). There are two species of Salmonella: enterica 

and bongori. In this thesis, Salmonella enterica will be used. Salmonella can cause self-

limiting gastroenteritis in immunocompetent individuals (Crowley et al., 2016). It has been 

reported to be able to infect M-cells and underlying PPs, containing T and B cells (Gonzales 

et al., 2017).  
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7.3.  Eukaryotic Pathogens: Eimeria vermiformis (E. vermiformis) 

There are a range of enteric parasites that can infect the intestinal tract, such as the nematodes 

Trichuris muris and Nippostrongylus brasiliensis (Sorobetea et al., 2018) and intracellular 

parasites such as Toxoplasma gondii (T. gondii) (Weight et al., 2015) and Eimeria species. In 

this section, I will mainly focus on Eimeria species. 

 

Eimeria species are a group of intracellular protozoan parasites that specifically invade IECs. 

Eimeria belong to the phylum of Apicomplexan parasites. Examples of other parasites in this 

phylum are T.gondii, Cryptosporidium species and Plasmodium malariae (Smith and 

Hayday, 2000a; Blake, 2015). There are numerous Eimeria species, but the focus in this 

thesis will be on Eimeria vermiformis (E. vermiformis) that specifically infects IECs in the 

lower parts of the murine small intestine, the jejenum and ileum (Todd and Lepp, 1971; Linh 

et al., 2009). Once E. vermiformis organisms have infected IECs, they undergo numerous 

replications. Both sporulated and non-sporulated E. vermiformis organisms are generated in 

IECs, which are subsequently shed into the faeces. In C57BL/6 WT mice, E. vermiformis 

parasites can be detected in the faeces starting from day six post infection, with a peak of 

parasite shedding taking place around nine to ten days post infection (Inagaki-Ohara et al., 

2006; Rose et al., 1984, 1986; Linh et al., 2009; Roberts et al., 1996). In WT mice, E. 

vermiformis infection is self-limiting. The number of days E. vermiformis is actively 

shedding, termed patency, is usually five to ten days depending on the infection dose 

(Guedes, 2017) and mouse strain (Rose et al., 1986). Using various knock-out (KO)-mice and 

neutralizing antibodies, the role of T cells in E. vermiformis infection has been established. 

Mice lacking TCRαβ+ T cells develop more severe infection in terms of parasite shedding and 

patency (Roberts et al., 1996). TCRβ-/- mice are more susceptible than WT mice during both 

primary and secondary E. vermiformis infection. The involvement of TCRγδ+ T cells seems 
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to depend on age, as young mice (up til four week of age) lacking TCRγδ+ T cells have 

higher oocyst shedding compared to controls (Ramsburg et al., 2003). Using treatment of 

animals with neutralizing antibodies, it was shown that mice given anti-CD8 or anti-CD4 

antibodies have higher oocyst shedding and length of patency, particularly αCD4-treated 

mice (Rose et al., 1992). In addition, a role for IFNγ in E. vermiformis infection has been 

established. IFNγR-/- mice have a very high parasite shedding (Smith and Hayday, 2000a), 

suggesting that IFNγ is essential to control E. vermiformis infection. TCRβ-/- mice treated with 

αIFNγ antibody suffer from a parasite load similar to what is found in TCR(βxδ)-/- mice 

(Smith and Hayday, 2000b). Anti-IFNγ treament led to worse infection in terms of numbers 

of parasites shed – even when anti-IFNγ antibody is injected into mice 6 days after infection 

(Rose et al., 1989).  

 

As previously known, IELs can produce IFNγ. In addtion, it has been suggested that IELs 

have a role in E. vermiformis infection via cytokine production and that they aid IECs to 

preserve the barrier integrity (Inagaki-Ohara et al., 2006). Therefore, the E. vermiformis 

infection model seems to be a potentially good candidate as a physiological model for 

assessing IEL activation. 

 

7.4.  Gut microbiota 

Bacteria have been organised in Bergey’s manual based on their morphology, staining 

reactions and other characterized features (Breed et al., 1944). One of the first distinctions 

between types of bacteria was discovered to be the ability to retain crystal violet stain, better 

known as Gram staining, characteristic of some bacteria but not of others (Bartholomew and 

Mittwer, 1952). These two categories, Gram-negative and Gram-positive bacteria, will be 

described in the next two sections. For the past decade, classification of different families of 
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microbiota has been performed using sequencing of the 16S rRNA. This is present in all self-

replicating cells and the sequence evolves slowly over time (Pace, 1997; Woese and Fox, 

1977). Bacteria can be classified into different phyla, classes, orders, families, genera and 

species (Fig 7.1). There are five different murine intestinal microbiota phyla identified: 

Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Verrucomicrobia, which can 

be divided further into various classes as shown in the figure (Lagkouvardos et al., 2016). 

The focus here will be on the bacteria found at intestinal sites. 

 

7.4.2 Gram-positive bacteria 

As the name suggests, these bacteria stain positive for the famous Gram stain. For both 

Gram-negative and Gram-positive bacteria, their cell wall contains polysaccharides and 

peptidoglycans. Unlike those of Gram-negative bacteria, the cell walls of Gram-positive 

bacteria contain lipoteichoic acid (LTA) (Malanovic and Lohner, 2016). Gram-positive 

bacteria can be divided further on the basis of low and high content of guanine and cytosine 

(G+C) (Muto and Osawa, 1987). Phyla belonging to Gram-positive bacteria are Firmicutes 

and Actinobacteria (Lawley and Walker, 2013) (Fig 7.1). 

 

There are various antibiotics available to treat various bacterial diseases. There are antibiotics 

that specifically target Gram-negative or Gram-positive bacteria. One of the antibiotics that 

targets Gram-positive bacteria specifically is vancomycin. Vancomycin targets Gram-positive 

bacteria by inhibiting peptidoglycan synthesis (Kohanski et al., 2010). 

 

In addition to antibiotics that target Gram-positive bacteria specifically, there are broad-

spectrum antibiotics that target both Gram-positive and Gram-negative bacteria. An example 

of a broad-spectrum antibiotic is ampicillin. Ampicillin is a β-lactam antibiotic that targets 
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the enzyme transpeptidase that is required for bacterial cell wall synthesis (Moore et al., 

1979). Another broad-spectrum antibiotic is streptomycin. Streptomycin kills bacteria by 

preventing protein syntheis by interacting with the ribosomal 16S subunit (Springer et al., 

2001). 

 

7.4.2 Gram-negative bacteria 

Unlike Gram-positive bacteria, Gram-negative bacteria contain two membranes: one outer 

and one cytoplasmic membrane. In the outer membrane, there are lipopolysaccharides (LPS) 

(Costerton et al., 1974). Just like Gram-positive bacteria, Gram-negative bacteria can be 

divided further by low and high content of guanine and cytosine (G+C) (Muto and Osawa, 

1987). Phyla belonging to Gram-negative bacteria are Bacteroidetes, Proteobacteria (Lawley 

and Walker, 2013) and Verrucomicrobia (Schlesner, 2015; Lin et al., 2016) and (Fig 7.1). 

 

One example of an antibiotic that is targeting Gram-negative bacteria is colistin, also known 

as polymyxin E. It has been shown that colistin is specifically targeting bacteria within the 

Gram-negative spectrum. Colistin binds to the LPS on the outer membrane of Gram-negative 

bacteria. This binding leads to changes in cell permeability, ultimately leading to the death of 

the bacteria (Falagas and Kasiakou, 2005). 
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Figure 7.1. Overview of the taxonomic classification of murine microbiota. The 

relationship between different bacteria can be categorized into phylum, class, order, family, 

genus and species. A) Cladogram of identified bacteria from phylum to family level. The 

cladogram is colour-coded according to phylum. The names in yellow are newly identified in 

Lagkouvardos et al, Nat Microbiol (2016). B) Table of the colour-coded phylum. Within each 

box there are boxes representing class, order and family for respective phylum. Adapted from 

Lagkouvardos et al, Nat Microbiol (2016). 

 

7.5.  IEC stress in Villin-Cre- XBP1fl/fl mice is not sufficient to fully activate 

IELs 

After observing that TCR stimulation via αCD3 injection can activate IELs (see Chapter 6), I 

next wanted to assess physiological conditions in which IEL activation could occur. As 

previously mentioned in the Introduction (1.6.1), IECs contain the antigen presenting 

machinery (Shao et al., 2005; Hershberg and Mayer, 2000). This feature makes IECs 

potential candidates for antigen presentation towards IELs. IECs may interact with IELs via 

other cell-cell interactions, particularly during stressful situations for IECs, which may 

subsequently activated IELs. Here, I used Villin-Cre-XBP1fl/fl mice as a model of IEC stress.  

 

As mentioned in the Introduction, XPB1 is a component of the ER stress response to cope 

with unfolded proteins (the unfolded protein response, UPR). XBP1 has been reported to 

induce some UPR genes (Ron and Walter, 2007), as well as expansion of the ER (Shaffer et 

al., 2004). It is possible to deplete XBP1 specifically in the intestinal compartment, using the 

Cre-Loxp system employing the Villin gene promoter for Cre. Villin-Cre-XBP1fl/fl mice lack 

Paneth cells and have a significant reduction in the number of goblet cells. Sixty one percent 

of these mice develop spontaneous small intestinal inflammation. Yet, this inflammation does 

not lead to IEC barrier leakages, as demonstrated using the fluorescein isothiocyanate 

(FITC)-dextran assay. However, these mice are more susceptible to Listeria monocytogenes 
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infection, as well as suffering more severe weight loss than WT mice do during DSS-induced 

colitis (Kaser et al., 2008).  

 

In order to address whether deficiency in XBP1 is involved in IEC-IEL interactions, or if 

XBP1 deficiency in IELs could be sufficient to activate IELs, I compared IELs from Villin-

Cre-XBP1fl/fl and Rag1-Cre-XBP1fl/fl mice with WT controls. A recent report has suggested 

an important role of the contact sites between mitochondria and ER for Tmem re-call 

response (Bantug et al., 2018). It is possible that such interaction could have a role in IEL 

activation. IELs were isolated from the three mouse strains and stained for MitoTracker 

Green (MTG), as previously described. I observed heightened expression of the lymphocyte 

activation marker CD44 in IELs from Rag1-Cre-XBP1fl/fl mice and particularly in IELs from 

Villin-Cre-XBP1fl/fl mice (Fig 7.2 A-B). Heightened expression of CD44 was observed 

earlier in TCR-activated IELs (Fig 6.1 B), suggesting that depletion of XBP1 in IECs may be 

affecting the activation status of IELs.  

 

However, I observed no statistically significant differences in MTG staining in total CD8α+ 

IELs from WT, Rag1-Cre-XBP1fl/fl and Villin-Cre-XBP1fl/fl mice (Fig 7.2 C). When 

assessing the different IEL subsets, I found no significant differences in IEL subsets from 

Villin-Cre-XBP1fl/fl mice (Fig 7.2 D). Interestingly, I found statistically significant reductions 

in MTG staining in TCRαβ+ CD8αβ+ and CD4+CD8αα+ IELs from Rag1-Cre-XBP1 mice 

(Fig 7.2 E). These data suggest that the IEC stress induced in Villin-Cre-XBP1fl/fl mice is not 

sufficient to trigger changes in mitochondrial mass but is altering the level of CD44. As the 

CD44 observation was observed in Villin-Cre-XBP1fl/fl mice, this indicates that IEC-IEL 

interactions have occurred and subsequently altered the activation state of IELs. 
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Figure 7.2 IEC stress in Villin-Cre-XBP1fl/fl mice is not sufficient to fully activate IELs. 

IELs were isolated from WT, Rag1-Cre-XBP1fl/fl and Villin-Cre-XBP1fl/fl mice and stained 

for MTG. A) Representative plots of CD44 staining in IELs from the different mouse lines. 

Pre-gating was made on live CD8α+ IELs. B) Quantification of the proportion of CD44Low 

and CD44High cells, according to gating in Panel A. C-E) Quantification of MTG MFI from C) 

total CD8α+ IELs, memory and naïve splenic CD8α+ T cells and D-E) IEL subsets from the 

indicated mouse lines. Data are quantified as mean ± SD from two independent experiments 

with two to four mice used per group and experiment. Statistically significant changes were 

identified by one-way ANOVA for Panel C and two-way ANOVA for Panel B, D and E. **: 

p<0.01., ***: p<0.001. 

 

7.6.  IELs become fully activated during E. vermiformis infection 

As Villin-Cre-XBP1fl/fl mice failed to fully activate IELs, I wanted to test if IEC stress in the 

context of intestinal infection would be sufficient to activate IELs. I decided to use the E. 

vermiformis infection model. As described in the introduction to this chapter, E. vermiformis 

organisms infect specifically the lower part of the intestinal epithelium. If E. vermiformis 

infection is sufficient to activate IELs, then I would expect to observe the strongest response 

in ileum-sourced IELs. Previous work from this and other laboratories suggests that the first 

sign of parasite shedding occurs around six days post infection and that the peak of E. 

vermiformis infection, in terms of parasite load, occurs around ten days post infection 

(Inagaki-Ohara et al. 2006; Rose et al. 1984; Rose and Hesketh 1986; Linh et al. 2009; 

Roberts et al. 1996). Therefore, day five and ten post E. vermiformis infection seemed 

suitable days to assess IEL activation. My laboratory colleague Joana Guedes had performed 

dose titration experiments of E. vermiformis at the Babraham Institute, which suggested that a 

dose of 1000 oocysts per WT mouse generated an infection with clear parasite shedding, but 

without weight loss or other animal welfare concerns (Guedes, 2017). Therefore, Joana 

Guedes prepared E. vermiformis and infected WT mice with 1000 oocysts of E. vermiformis 

via oral gavage. I killed the infected mice and non-infected control mice at day five and ten 
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post infection. For the first experiments, I divided the small intestine into the three regions 

duodenum, jejunum and ileum and isolated IELs from them. 

 

As an initial step of the analysis, I compared IELs from the three intestinal regions from non-

infected mice to test whether these IELs are similar in terms of MTG and CD44 staining. 

When assessing CD44 staining, I observed that ileum-sourced IELs have higher expression of 

CD44 staining compared to those from the duodenum or the jejunum (Fig 7.3 A). When 

quantifying the percentage of CD44Low and CD44High cells, I observed that ileum-sourced 

IELs have statistically significantly higher proportion of CD44High cells compared to 

duodenum-sourced IELs (Fig 7.3 B). When assessing the MTG staining, I observed that 

ileum-sourced IELs have a statistically significantly higher MTG staining than duodenum- or 

jejunum-sourced IELs (Fig 7.3 C). This increase in MTG staining applied to all ileal IEL 

subsets (Fig 7.3 D). Collectively, these data indicate that ileum-sourced IELs are in a more 

activated state than other small intestinal IELs. 
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Figure 7.3 Ileum-sourced IELs are in a more activated state than other small intestinal 

IELs. WT small intestine was divided into three equal parts to isolate duodenum-sourced 

IELs, jejunum-sourced IELs and ileum-sourced IELs. These IELs were stained for MTG as 

previously described. A) Representative FACS plots showing CD44 staining of IELs from the 

three indicated intestinal sections. Pre-gating was made on live CD8α+ IELs. B) 

Quantification of the proportion of CD44Low and CD44High cells, according to gating as 

showed in Panel A. C-D) Quantification of MTG MFI from C) total CD8α+ splenocytes and 

total CD8α+ IELs from the three intestinal sections and D) IEL subsets from the indicated 

intestinal sections. Data are quantified as mean ± SD from two independent experiments with 

four to five mice used per experiment. Statistically significant changes were identified by 

one-way ANOVA for Panel C and two-way ANOVA for Panel B and D. *: p<0.05., **: 

p<0.01., ***: p<0.001. 

 

When comparing E. vermiformis-infected IELs with non-infected IELs, I observed an 

increase in CD44 expression; both duodenum-and jejunum-sourced IELs showed a lower 

proportion of CD44Low cells at day five and day ten post infection (Fig 7.4 A-B). Ileum-

sourced IELs, that already have a higher expression of CD44 at steady state (Fig 7.3 A-B), 

showed a significantly higher expression at day ten post infection only (Fig 7.4 C). These 

data indicate that all IELs in the small intestine become more activated during the E. 

vermiformis infection. 

 

When assessing MTG staining, I observed that IELs from all three intestinal segments have a 

statistically significant increase in MTG staining at day five post infection (Fig 7.4 D). 

Interestingly, while duodenum-and jejunum-sourced IELs have MTG staining that is not 

significantly different compared to non-infected controls at day ten post infection, ileum-

sourced IELs maintain significantly increased MTG staining compared to non-infected 

controls (Fig 7.4 D). These data fit with the fact that E. vermiformis organisms infect the 

lower part of the small intestine. When assessing the different IEL subsets, I found that ileal 
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CD8αβ+ IELs responded first and most strongly (Fig 7.4 E and F). The same trend was 

observed in αCD3-activated IELs (Fig 6.1 E and F), CD4+ CD8αα+ IELs did no significantly 

alter their MTG staining, while the remaining subsets either trend to do or statistically 

significantly increase their MTG staining (Fig 7.4 F). An alternative statistical method, 

multiple t-test for each IEL subset individually, indicated that all IEL subsets except CD4+ 

CD8αα+ IELs have statistically increased MTG staining. Interestingly, the differences in 

response in the different IEL subsets are not as drastic as for αCD3-mediated IEL activation 

(Fig 6.1 D-F), suggesting that the activation mechanism(s) may be differ between αCD3-

mediated and E. vermiformis-mediated IEL activation. 
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Figure 7.4 IELs increase their mitochondrial mass and CD44 staining during   

E. vermiformis infection. WT mice were infected with 1000 oocysts of E. vermiformis via 

oral gavage. Five and ten days post infection, infected and non-infected control mice were 

culled and small intestine was divided into three equal parts to isolate duodenum-sourced 

IELs, jejunum-sourced IELs and ileum-sourced IELs. These were stained for MTG as 

previously described. A-C) Quantification of the proportion of CD44Low and CD44High cells 

from infected and non-infected IELs sourced from A) duodenum, B) jejunum and C) ileum. 

D) Quantification of MTG MFI from total CD8α+ splenocytes and total CD8α+ IELs sourced 

from the three intestinal segments from infected and non-infected mice. E-F) MTG MFI in 

ileal IEL subsets comparing non-infected cells with E) five and F) ten days post E. 

vermiformis infection. Data are presented as mean ± SD from one (jejunum samples), two or 

four (Panel F) independent experiments with four to five mice per condition and experiment. 

Statistically significant changes were identified by one-way ANOVA for Panel D and two-

way ANOVA for Panel A, B, C, E and F. *: p<0.05., **: p<0.01., ***: p<0.001. 
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The data above suggest that IELs from E. vermiformis-infected mice are activated. Next, I 

assessed whether E vermiformis infection would provide conditions that lead to cytokine 

production from the activated IELs. IELs from infected and non-infected mice were re-

stimulated as previously described. Interestingly, control ileal IELs produced small amounts 

of both IFNγ and TNFα (Fig 7.5 E-F). At day five post infection, no statistically significant 

increase in IFNγ or TNFα production could be observed in any of the activated IELs (Fig 7.5 

A-F). At the peak of infection, day ten, ileal IELs exhibit a statistically significant increase in 

both IFNγ and TNFα production (Fig 7.5 E-F). At this time point, duodenum-sourced IELs 

showed a similarly very low production of IFNγ and TNFα (Fig 7.5 A-B), while jejunum-

sourced IELs showed a statistically significant increase in IFNγ and TNFα production (Fig 

7.5 C-D). However, ileum-sourced IELs have a higher production of IFNγ and TNFα than 

those obtained from the jejunum. These increases in intracellular IFNγ and TNFα in activated 

ileal IELs correlated with the increase in MTG staining (Fig 7.5 G-H), supporting the notion 

that these IELs may become activated in a mitochondria-dependent manner. 

 

In addition to producing cytokines, IELs from infected mice show increased expression of the 

proliferation marker Ki-67 compared to IELs from non-infected mice (Fig 7.6 A-C). Unlike 

the cytokine production in ileal IELs, Ki-67 expression is already significantly increased by 

day five post infection. As with the other assessed activation parameters, ileal IELs respond 

most strongly with regards of Ki-67 expression (Fig 7.6 C). The increase in Ki-67 expression 

in total CD8α+ IELs correlated with the increase in MTG staining (Fig 7.6 D), again 

supporting the notion of mitochondria-dependent IEL activation. 

 

After observing that ileum-sourced IELs have specifically increased production of cytokines 

and Ki-67, I next wanted to find out which ileal IEL subsets are responsible for these 
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increases. Interestingly, TCRαβ+ CD8αβ+ IELs responded most strongly for all three 

intracellular parameters. In addition to TCRαβ+ CD8αβ+ IELs, TCRγδ+ CD8αβ+ and CD4+ 

CD8αα+ IELs also exhibited statistically significant increases in Ki-67 expression and 

production of IFNγ and TNFα (Fig 7.7 A-C).  

 

Collectively, these data suggest that the whole small intestine is affected by E. vermiformis 

infection with regards to IEL activation. As E. vermiformis is specifically infecting IECs, 

crosstalk between IEC and IELs may be causing the increase in MTG staining. For 

subsequent E. vermiformis experiments, ileum-sourced IELs were isolated as these had the 

strongest response towards E. vermiformis infection. 
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Figure 7.5 IELs produce cytokines during E. vermiformis infection. WT mice were 

infected with 1000 oocysts of E. vermiformis via oral gavage. Five and ten days post 

infection, infected and non-infected control mice were culled. The small intestine was divided 

into three equal parts to isolate duodenum-sourced, jejunum-sourced and ileum-sourced IELs. 

These IELs were re-stimulated and stained for IFNγ and TNFα. A-F) IFNγ (left) and TNFα 

(right) staining in total CD8α+ IELs sourced from A-B) duodenum, C-D) jejunum and E-F) 

ileum from non-infected and infected mice at day five and ten post infection. G-H) Spearman 

correlation between total ileal CD8α+ IELs from day 10 post infection between MTG staining 

and G) IFNγ or H) TNFα. Data are presented as mean ± SD from one (jejunum samples), two 

(duodenum samples) or five (ileum samples) independent experiments with two to five mice 

per condition and experiment. Statistically significant changes were identified by one-way 

ANOVA for panel A-F and Spearman correlation for Panel G and H.*: p<0.05., **: p<0.01., 

***: p<0.001. 
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Figure 7.6. IELs increase their expression of Ki-67 during E. vermiformis infection. WT 

mice were infected with 1000 oocysts of E. vermiformis via oral gavage. Five and ten days 

post infection, infected and non-infected control mice were culled. The small intestine was 

divided into three equal parts to isolate duodenum-sourced IELs, jejunum-sourced IELs and 

ileum-sourced IELs. These were stained for Ki-67. A-C) Ki-67 staining in total CD8α+ IELs 

sourced from A) duodenum, B) jejunum and C) ileum from non-infected and infected mice at 

day five and ten post infection. D) Spearman correlation between total ileal CD8α+ IELs from 

day ten post infection between MTG staining and percentage of Ki-67. Data are presented as 

mean ± SD from one (jejunum samples), two (duodenum samples) or five (ileum samples) 

independent experiments with two to five mice per condition and experiment. Statistically 

significant changes were identified by one-way ANOVA for panel A-C and Spearman 

correlation for Panel D.*: p<0.05., ***: p<0.001. 
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Figure 7.7. During E. vermiformis infection, TCRαβ+ CD8αβ+ IELs responded most 

strongly in regards to Ki-67 expression and cytokine production. WT mice were infected 

with 1000 oocysts of E. vermiformis via oral gavage. Ten days post infection, infected and 

non-infected control mice were culled and ileum-sourced IELs isolated and stained for A) Ki-

67, B) IFNγ or C) TNFα. Data are presented as mean ± SD from four independent 

experiments with two to five mice per condition and experiment. Statistically significant 

changes were identified by two-way ANOVA. *: p<0.05., **: p<0.01., ***: p<0.001. 
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7.7.   E. vermiformis-activated IELs have higher mitochondrial ROS 

production, but show no increase in mitochondrial membrane potential 

As ileal IELs produce cytokines during E. vermiformis infection, they seem to be in a more 

activated state compared to αCD3-stimulated IELs. Therefore, I next wanted to address 

whether E. vermiformis-mediated activation of IELs bring about an increase in mitochondrial 

ROS production as well as an increase in mitochondrial membrane potential. The latter would 

enable IELs to generate SRC, which non-treated IELs lack (Fig 5.5). Data from E. 

vermiformis-infected mice showed that ileal CD8α+ IELs had an increased mitochondrial 

ROS production, measured by MitoSOX staining (Fig 7.8 A). This increase in mitochondrial 

ROS production correlates with the increase in MTG staining (Fig 7.8 C). As with αCD3-

stimulated IELs (fig 6.4 C), only CD8αβ+ IELs exhibited statistically significant increase in 

mitochondrial ROS production (Fig 7.8 B). 

 

Interestingly, IELs activated via E. vermiformis infection showed no statistically significant 

increase in MTO staining (Fig 7.9 A). For this quantification only, the MTO MFI of CD8α+ 

TCR+ cells were plotted because in this case the small proportion of CD8α+ TCR- cells had 

very high MTO staining. This led to a very high MTO MFI, which could not be traced to any 

of the IEL subsets. When assessing IEL subsets, only CD4+ CD8αα+ IELs exhibited a 

statistically significant increase in MTO staining (Fig 7.9 B). Therefore, it is likely that IELs 

activated via E. vermiformis infection still lack SRC. In addition, as with αCD3-stimulated 

IELs, these IELs do not have significant changes in their CL content, measured by NAO 

staining (Fig 7.9 C). This applied to all IEL subsets (Fig 7.9 D). As shown in Figure 6.15, the 

composition of CLs alters in activated compared to non-activated IELs, suggesting that there 

are changes to CLs taking place, but not resulting in changed total amount of CLs. 
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These data, together with the data from the previous chapter, support a model in which IELs 

show mitochondrial plasticity during activation and this activation may proceed in a 

mitochondria-dependent manner. 
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Figure 7.8 E. vermiformis-activated IELs have a higher level of mitochondrial ROS 

production. WT mice were infected with 1000 oocysts of E. vermiformis via oral gavage. 

Ten days post infection, infected and non-infected control mice were culled and ileum-

sourced IELs isolated. These IELs were stained for MitoSOX, A-B) Quantification of 

MitoSOX MFI between non-infected and infected A) total CD8α+ IELs or B) IEL subsets. C) 

Spearman correlation between total ileal CD8α+ IELs from day ten post infection between 

MTG staining and MitoSOX staining. Data are presented as mean ± SD from four 

independent experiments with two to four mice per condition and experiment. Statistically 

significant changes were identified by t-test (Panel A) and two-way ANOVA (Panel B). **: 

p<0.01., ***: p<0.001. 
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Figure 7.9 E. vermiformis-activated IELs show no increase in mitochondrial membrane 

potential. WT mice were infected with 1000 oocysts of E. vermiformis via oral gavage. Ten days post 

infection, infected and non-infected control mice were culled and ileum-sourced IELs isolated. These 

IELs were stained for MTO and NAO. A-B) MTO MFI between non-infected and infected A) total 

CD8α+TCR+ IELs, or B) IEL subsets. C-D) NAO MFI between non-infected and infected C) total 

CD8α+ IELs, or D) IEL subsets. Data are presented as mean ± SD from three independent experiments 

with two to four mice per condition and experiment. Statistically significant changes were identified 

by Mann-Whitney test (Panel A and C) or two-way ANOVA (Panel B and D): **: p<0.01. 
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7.8.  MNV-CW3 infection, but not MNV-O7, leads to IEL activation. 

After observing that E. vermiformis infection can activate IELs, I next wanted to assess 

whether other intestinal pathogens are able to activate IELs. With kind support from Jonathan 

Heeney’s laboratory at the Department of Veterinary Medicine at University of Cambridge 

and his Ph.D. student Osama Eisa, I was able to obtain MNV-infected small intestines for 

IEL activation assessment. For this work, two different MNV strains have been used, namely 

MNV-O7 and MNV-CW3. Previous data obtained from combining MNV and αCD3 models 

showed a reduction in the MNV viral load in mice that have been pre-treated with αCD3 8 

hours prior to MNV-O7 infection (Swamy et al., 2015).  

 

Knowing the distinct differences in pathology between these MNV strains, as mentioned in 

the introduction to this chapter, as well as observing that MNV-O7, but not MNV-CW3 seem 

to be able to infect IECs (Fig 4.10), I wanted to test whether IELs become activated during 

MNV-infection, and if so, whether they might play a role in the immune response towards 

MNV. WT mice from the Babraham Institute (the animal unit was known to be free of MNV) 

were transferred to the Pathology Unit at University of Cambridge (animal unit tested 

positive for MNV), to ensure that we are assessing IEL response towards primary MNV 

infection. These mice were oral gavaged with 5 x 106 TCID50 of MNV-O7 or MNV-CW3. 

Both MNV-O7 and MNV-CW3 infection reach their peak viral load already after one day of 

infection (data not shown), so we decided to cull the mice two, four and seven days post 

infection. After these time points, a small section from each ileum was taken for Osama Eisa 

to perform viral quantification assays. The rest of the small intestines were transferred to me 

to isolate IELs and assess their activation.  
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Surprisingly, despite the fact that MNV-O7 seems to infect IECs, and the existence of a paper 

suggesting the IELs may be capable of reducing of MNV viral levels (Swamy et al., 2015), I 

observed no statistically significant increase in MTG staining of IELs from MNV-O7-

infected mice (Fig 7.10 B). In other models, such as Villin-Cre-XBP1fl/fl mice, I have detected 

increased expression of CD44, even though there is no significant difference in MTG staining 

(Fig 7.2 A-B). For IELs isolated from MNV-O7-infected mice, I observed a statistically 

significant increase in the proportion of CD44High cells (Fig 7.10 A), suggesting that IELs 

from MNV-O7-infected mice have become more activated, but not as activated as observed 

in E. vermiformis and αCD3 models.  

 

Even more surprisingly, IELs from MNV-CW3-infected mice had both increased CD44 

staining (Fig 7.10 A), and MTG staining (Fig 7.10 C). This increase in MTG staining applies 

to TCRαβ+ CD8αβ+, TCRγδ+ CD8αβ+, TCRγδ+ CD8αα+ and TCRαβ+ CD8αα+ IELs (Fig 7.10 

F). Interestingly, the activation appears to be of similar amplitude in these subsets compared 

to other activation models such as αCD3 and E. vermiformis infection. Viral quantification 

from MNV-O7- and MNV-CW3-infected mice showed that all mice were infected as 

expected from previous data obtained in the Heeney laboratory (Fig 7.10 D and E). 

Therefore, the lack of full activation of IEL in MNV-O7-infected mice is probably not due to 

poor infection levels. These data suggest that MNV-O7 and MNV-CW3 cause different 

infection in the small intestine, resulting in IEL activation in the case of MNV-CW3 

infection, but not in MNV-O7 infection. 
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Figure 7.10. MNV infection-induced IEL activation is dependent on the MNV-strain. 

WT mice were infected with 5 x 106 TCID MNV-O7 or MNV-CW3 via oral gavage. Two, 

four and seven days post infection, infected and non-infected control mice were culled and 

IELs isolated. A) Quantification of CD44Low and CD44High cells from the non-infected and 

MNV-infected mice at day 7 post infection. B-C) Quantification of MTG MFI from total 

CD8α+ splenocytes and total CD8α+ IELs from non-infected mice and mice infected with B) 

MNV-O7 or C) MNV-CW3 at indicated time points post infection. D-E) Viral quantification 

of ileum from D) MNV-O7- or E) MNV-CW3-infected mice. F) Quantification of MTG MFI 

in IEL subsets from non-infected, MNV-O7- or MNV-CW3 infected at day 7 post infection. 

Data are presented as mean ± SD from one to two independent experiments with three to five 

mice per condition and experiment. Statistically significant changes were identified by one-

way ANOVA for Panel B-E or two-way ANOVA for Panel A and F.*: p<0.05., **: p<0.01., 

***: p<0.001. 

 

7.9.  Salmonella infection does not activate IELs 

After observing that infections caused by an intestinal parasite and an enteric virus led to IEL 

activation, I wanted to test if enteric bacterial pathogen may be able to activate IELs as well. 

If so, then IELs may possess the capability to recognize bacterial, viral and eukaryotic 

pathogens. For this assessment, I obtained intestines from Salmonella-infected mice thanks to 

Jonathan Heeney and Osama Eisa. For the experiment, mice from the Babraham Institute 

were transferred to the Pathology Unit at University of Cambridge. There, the mice were 

infected with Salmonella. As the Salmonella infection level in the intestinal compartment 

lasts for a few hours only (Carter and Collins, 1974), infected mice were taken at two, four, 

twelve and 24 hours post infection. For these experiments, faecal samples were taken to 

quantify and confirm successful Salmonella infection, while the whole small intestine was 

used for MTG assessment. Despite successful infection (Fig 7.11 A), IELs were not 

statistically significantly activated during Salmonella infection as shown by MTG staining 

(Fig 7.11 B) and the proportion of CD44Low and CD44High cells (Fig 7.11 C).  
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These findings are surprising, considering a recent report suggesting that IELs respond to 

Salmonella infection. In addition to demonstrating that TCRγδ+ IEL migrate differently 

between IECs in non-infected mice compared to Salmonella-infected mice, the authors also 

demonstrated that TCRγδ+ IELs have increased SRC (Hoytema van Konijnenburg et al., 

2017). These data indicate that TCRγδ+ IELs have altered metabolically due to the infection. 

However, I could not detect an increase in mitochondrial mass.  

 

Collectively, the data from the tested infection models suggest that not all intestinal pathogen 

infections lead to IEL activation. Therefore, further experiments are required to pinpoint what 

is the common feature of IEL activation in the E. vermiformis and MNV-CW3 infection 

models, which appear to be absent in the MNV-O7 and Salmonella infection models.  
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Figure 7.11. Salmonella infection fails to activate IELs. WT mice from the Babraham 

Institute were transferred to the University of Cambridge for Salmonella infection (4-6.2 x 

108 colony-forming units, cfu) via oral gavage. A) Faecal quantification of Salmonella 

organisms at the tested time points. B) Quantification of MTG MFI of total CD8α+ IELs and 

splenocytes at the indicated time points after infection. C) Quantification of the proportion of 

CD44Low and CD44High IELs, from non-infected and Salmonella-infected mice. Data are 

presented as mean ± SD (Panel B and C) or mean (Panel B) with two to three mice per time 

point. Statistically significant changes were identified by one-way ANOVA. ***: p<0.001. 
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7.10. IELs are activated in IL-22-/- mice in a microbiota-dependent 

manner 

One potential aspect of intestinal pathology is that the IEC barrier becomes compromised or 

damaged. One factor that has been shown to be important for IEC proliferation and mucus 

production is the interleukin IL-22. Addition of IL-22 increased the production of Muc-1, -2 

and -3 (Turner et al., 2013). Therefore, it is possible that IL-22-/- mice have a thinner mucus 

layer at the intestinal site compared to WT mice. Cells that have been reported to produce IL-

22 are IELs (Ahlfors et al., 2014), ILCs (Sonnenberg et al., 2011), NK-like cells (Fuchs and 

Colonna, 2011), Th17 and Th22 cells (Liang et al., 2006; Zheng et al., 2007). It has been 

reported that IL-22-/- mice have different microbiota composition, containing more 

segmented filamentous bacteria (SFB), a Gram-positive commensal bacteria (Davis and 

Savage, 1974; Vaishnava et al., 2011) compared to WT mice (Shih et al., 2014). In addition, 

it has been reported that IL-22-/- mice have reduced production of antimicrobial peptides 

(AMPs) such as RegIIIβ and RegIIIγ (Zenewicz et al., 2013). IL-22-/- mice have been 

reported to be more susceptible to intestinal infections: they suffer from weight loss and 

succumb to the intestinal Citrobacter rodentium infection, while WT mice cope with the 

infection (Zheng et al., 2008). Mice on DSS-induced colitis had statistically significant 

slower weight recovery when receiving anti-IL-22 via i.p injection every other day (Neufert 

et al., 2010). These data suggest an important role for IL-22 in intestinal homeostasis.  

 

Hence, I wanted to assess the activation status of IELs in IL-22-/- mice. I observed that IELs 

from these mice have higher MTG staining compared to WT controls (Fig 7.12 A). This 

applied to all IEL subsets except CD4+ CD8αα+ IELs (Fig 7.12 C). In addition to having 

increased MTG staining, IL-22-/- IELs have increased expression of CD44 (Fig 7.12 B), a 

marker that I have demonstrated to be increased in IELs from αCD3-treated mice (Fig 6.1 A), 
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Villin-Cre-XBP1fl/fl mice (Fig 7.2 A-B), E. vermiformis-infected mice (Fig 7.4 A-C) and 

MNV-CW3-infected mice (Fig 7.10 A).  

 

As IL-22-/- mice are reported to have defects in their IEC barrier, I wanted to test whether the 

activation of IELs observed in IL-22-/- mice might be due to commensal microbiota that may 

be situated closer to the intestinal barrier and may even translocate through the IEC barrier. 

To address this, I used a broad-spectrum antibiotic depletion model on IL-22-/- mice. To 

deplete the majority of commensal microbiota, I used a cocktail of antibiotics (consisting of 

colistin, ampicillin and streptomycin), which has been successfully used by another 

laboratory (Sawa et al., 2011). This antibiotic cocktail was administered into drinking water 

of WT and IL-22-/- mice for 14 days ab libitum, with refill of the antibiotic cocktail every 5 

days. After 14 days of antibiotic depletion, the mice were culled and IELs isolated from the 

small intestine. I observed significant enlargement of the caecum of antibiotic-treated mice 

compared to non-treated mice (data not shown). This phenotype of an enlarged caecum is 

observed in germ-free mice as well (Savage and Dubos, 1968; Reikvam et al., 2011), 

suggesting that the antibiotic cocktail used has depleted a considerable amount of commensal 

microbiota. Interestingly, I observed that IELs from antibiotic-treated IL-22-/- mice have 

significantly reduced MTG staining compared to IELs from non-treated IL-22-/- mice (Fig 

7.12 A). This reduction in MTG staining is at a level that is not statistically significantly 

different compared to non-treated WT IELs (Fig 7.12 A). Antibiotic treatment of WT mice 

did not alter the MTG staining in their IELs (Fig 7.12 A). In addition to the reduction in MTG 

staining, antibiotic treatment also reduced the heightened CD44 staining of IELs in IL-22-/- 

mice (Fig 7.12 B). These observations suggest that IELs in IL-22-/- mice have entered a less 

activated state after the antibiotic treatment. Interestingly, non-treated IL-22-/- mice have 

very low production of IFNγ (Fig 7.12 D), TNFα (Fig 7.12 E) and expression of the 
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proliferation marker Ki-67 (Fig 7.12 F). These data suggest that the activation in IL-22-/- 

may be different compared to αCD3-activated and E. vermiformis-activated IELs, of which 

the former showed an increase in IEL Ki-67 expression (Fig 6.3) while the latter showed an 

increase in both IEL Ki-67 expression and production of TNFα and IFNγ (Fig 7.5). 

Importantly, these data suggest that commensal microbiota are activating IELs in IL-22-/- 

mice.  
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Figure 7.12. IELs in IL-22-/- mice are activated in a microbiota-dependent manner. WT 

and IL-22-/- mice were treated with broad-spectrum antibiotics (1 g/l ampicillin, 1 g/l colistin 

and 5 g/l streptomycin) in their drinking water ad libitum for 14 days. Afterwards, IELs were 

isolated and analysed by flow cytometry. A) Quantification of MFI of MTG staining of total 

CD8α+ IELs and splenocytes from non-treated and antibiotic-treated WT and IL-22-/- IELs. 

B) Quantification of CD44Low and CD44High cells from non-treated and antibiotic-treated WT 

and IL-22-/- IELs. C) Representative MTG MFI quantification from IEL subsets from non-

treated and antibiotic-treated WT and IL-22-/- mice. D-F) Quantification of the percentage of 

D) IFNγ+, E) TNFα+ and F) Ki-67+ cells amongst CD8α+ IELs from non-treated and 

antibiotic-treated WT and IL-22-/- IELs. Data are presented as mean ± SD from one (Panel 

C-F) to two (Panel A and B) independent experiments with three to four mice per condition 

and experiment. Statistically significant changes were identified by one-way ANOVA for 

Panel A, D-F or two-way ANOVA Panel B and C. *: p<0.05., **: p<0.01., ***: p<0.001. 
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7.11. Commensal microbiota are activating IELs in MNV-CW3 

infection 

After observing that the IEL activation in IL-22-/- mice was mediated in a microbiota-

dependent manner, I next wanted to address whether the microbiota may play a role in the 

other IEL activation models. It may be that the IEL activation observed in MNV-CW3 and E. 

vermiformis infection models are mediated by the pathogens, the fact that the pathogens may 

cause damage to the IEC barrier that subsequently lead to increase exposure of the microbiota 

to the intestinal immune system, or combination of the two scenarios. To address this, I 

combined the MNV-CW3 or E. vermiformis infection models with broad-spectrum antibiotic 

treatment. 

  

For the MNV-CW3 experiment, WT mice were treated with broad-spectrum antibiotics for 

10 days prior to infection at the Pathology Unit at University of Cambridge, as described in 

section 7.8. Interestingly, for MNV-CW3-infected mice, Osama’s quantification of the MNV-

CW3 viral load showed a statistically significant reduction in antibiotic-treated mice 

compared to non-treated infected mice at day seven post infection (Fig 7.13 F), suggesting a 

role of commensal microbiota for MNV-CW3 pathology. Even more interestingly, I detected 

a significant decrease in MTG staining between antibiotic-treated and non-treated mice, to a 

level similar to non-treated IELs (Fig 7.13 D). Antibiotic treatment of MNV-CW3-infected 

mice significantly reduced the MTG MFI in all IEL subsets, even in CD4+ CD8αα+ IELs (Fig 

7.13 E). The same trend applies to CD44 staining, which is increased during MNV-CW3 

infection, but this increase is prevented by antibiotic treatment. (Fig 7.13 A-C). Interestingly, 

the IEL activation at day 7 post MNV-CW3 infection, measured by MTG staining, was lower 

compared to the experiment presented in Figure 7.10 E. The viral quantification between the 
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two experiments were similar, indicating that the level of IEL activation is affected by other 

factors than only on MNV viral load. 

 

When assessing intracellular staining of Ki-67, TNFα and IFNγ, I observed that MNV-CW3 

infection leads to IEL activation that is not accompied by increase in Ki-67 expression or 

intracellular TNFα and IFNγ in IELs (Fig 7.14 A-C). 

 

These data suggest that it is not MNV-CW3 per se that activates IELs, as MNV-CW3 is still 

present in the antibiotic-treated mice. In addition, lack of mitochondria-dependent IEL 

activation does not seem to be critical for controlling MNV-infection, as the viral load is 

lower compared to infected controls. 
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Figure 7.13. Commensal microbiota are activating IELs in MNV-CW3 infection. WT 

mice were treated with broad-spectrum antibiotics (1 g/l ampicillin, 1 g/l colistin and 5 g/l 

streptomycin) for ten days prior to infection with 5 x 106 TCID MNV-CW3 via oral gavage. 

Mice remained on antibiotic treatment after the infection and were culled at indicated days 

after MNV infection. A-C) Quantification of CD44Low and CD44 High cells from non-treated 

and antibiotic-treated WT mice on MNV-CW3 infection at A) day two, B) day four and C) 

day seven post infection. D) Quantification of MFI of MTG staining of total CD8α+ IELs and 

splenocytes at indicated time points after MNV-CW3 infection. E) Quantification of MTG 

MFI in IEL subsets in indicated condition. F) Viral quantification of indicated time points and 

conditions. Data are presented as mean ± SD from one experiment with three to five mice per 

condition and experiment. Statistically significant changes were identified by one-way 

ANOVA (Panel D), two-way ANOVA (Panel A, B, C and E) and the Kruskal-Wallis test 

(Panel F). *: p<0.05., **: p<0.01., ***: p<0.001. 
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Figure 7.14. IEL activation by MNV-CW3 infection does not lead to cytokine 

production. WT mice were treated with broad-spectrum antibiotics (1 g/l ampicillin, 1 g/l 

colistin and 5 g/l streptomycin) for ten days prior to infection with 5 x 106 TCID MNV-CW3 

via oral gavage. Mice remained on antibiotic treatment after the infection and were culled at 

indicated days after MNV infection. A-C) Total CD8α+ IELs from indicated conditions 

quantified for A) Ki-67 expression, B) intracellular IFNγ and C) intracellular TNFα. Data are 

presented as mean ± SD from one experiment with three to five mice per condition and 

experiment. Statistically significant changes were identified by one-way ANOVA. *: p<0.05., 

**: p<0.01., ***: p<0.001. 
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7.12. Commensal microbiota are activating IELs in E. vermiformis 

infection 

As IEL activation during MNV-CW3 infection seems to be mediated via commensal 

microbiota, I next wanted to assess whether this may be the case for the E. vermiformis 

infection model as well. WT mice were pre-treated with broad-spectrum antibiotic treatment 

(1 g/l ampicillin and 5 g/l streptomycin) for five days prior to infection with 1000 oocysts E. 

vermiformis via oral gavage. Mice remained on antibiotic treatment and were culled after 10 

days of infection. Ileum-sourced IELs were isolated and analyzed by flow cytometry.  

 

When I analyzed the CD44 staining, I observed that IELs from antibiotic-treated E. 

vermiformis-infected mice had similar proportion of CD44High and CD44Low cells as non-

treated E. vermiformis-infected mice (Fig 7.15 A). These data suggest that E. vermiformis-

infection per se can alter the activation status of IELs despite the depletion of microbiota. 

Interestingly also for this infection model, I observed a statistically significant decrease in 

MTG staining in IELs from E. vermiformis-infected mice on antibiotic treatment compared to 

non-treated infected controls (Fig 7.15 B). This reduction in MTG staining applied to all IEL 

subsets that have previously shown to increase their MTG staining during E. vermiformis 

infection without antibiotic treatment (Fig 7.15 C). These reductions in MTG staining by 

antibiotic treatment is likely not due to changed E. vermiformis infection because both groups 

of mice had similar level of total shed E. vermiformis oocysts (Fig 7.15 D). E. vermiformis-

infected mice on antibiotic treatment had similar weight curve as non-treated infected mice 

(Fig 7.17 B). Excitingly, antibiotic treatment of E. vermiformis infected mice also showed 

reduction in MitoSOX staining for total CD8α+ IELs (Fig 7.15 E), as well CD8αβ+ IELs (Fig 

7.15 F). These data indicate that commensal microbiota is inducing the mitochondrial 

changes in IEL activation during intestinal infections. Therefore, it is interesting to assess 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 7 Full IEL activation depends on luminal/bacterial compound(s) 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 289  
Copyright © 2018 Frising UC 

whether activated IELs still have increased expression of Ki-67 and intracellular TNFα and 

IFNγ even in the presence of antibiotics. I observed that antibiotic treatment of E. 

vermiformis infected mice lead to IELs that have lower intracellular staining of Ki-67 (Fig 

7.16 A-B), IFNγ (Fig 7.16 C-D) and TNFα (Fig 7.16 E-F). These data are suggesting that 

commensal microbiota are activating IELs and not E. vermiformis organisms per se. 
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Figure 7.15. Commensal microbiota are activating IELs in E. vermiformis infection. WT 

mice were treated with broad-spectrum antibiotics (1 g/l ampicillin and 5 g/l streptomycin) 

for five days prior to infection with 1000 oocysts of E. vermiformis. Mice remained on 

antibiotic treatment until ten days post infection. Ileum-sourced IELs were isolated and 

analysed by flow cytometry. A) Quantification of CD44Low and CD44 High cells from 

indicated conditions. B) Quantification of MFI of MTG staining in total ileal CD8α+ IELs and 

splenocytes from indicated condition of infection and antibiotic treatment. C) Quantification 

of MFI of MTG in IEL subsets from the same conditions as Panel B. D) Quantification of 

shed E. vermiformis oocysts between antibiotic-treated and non-treated mice. E) 

Quantification of MitoSOX MFI of total ileal CD8α+ IELs from non-infected and infected 

mice with or without antibiotic treatment. F) Quantification of MFI of MitoSOX of IEL 

subsets from the same conditions as Panel E. Data are presented as mean ± SD from four 

independent experiments with two to five mice per condition and experiment. Statistically 

significant changes were identified by one-way ANOVA (Panel B and E), Mann-Whitney 

test (Panel D) or two-way ANOVA (Panel A, C and E). *: p<0.05., **: p<0.01., ***: 

p<0.001. 
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Figure 7.16. Commensal microbiota are mediating the cytokine production in activated 

IELs. WT mice were treated with broad-spectrum antibiotics (1 g/l ampicillin and 5 g/l 

streptomycin) for five days prior to infection with 1000 oocysts of E. vermiformis. Mice 

remained on antibiotic treatment until 10 days post infection. Ileum-sourced IELs were 

isolated and analysed by flow cytometry. A-B) Quantification of Ki-67+ cells from A) total 

ileal CD8α+ IELs or B) IEL subsets from non-infected and infected mice with or without 

antibiotic treatment. C-D) Quantification of IFNγ from C) total ileal CD8α+ IELs or D) IEL 

subsets from non-infected and infected mice with or without antibiotic treatment. E-F) 

Quantification of TNFα from E) total ileal CD8α+ IELs or F) IEL subsets from non-infected 

and infected mice with or without antibiotic treatment. Data are presented as mean ± SD from 

four independent experiments with two to five mice per condition and experiment. 

Statistically significant changes were identified by one-way ANOVA or two-way ANOVA. 

*: p<0.05., **: p<0.01., ***: p<0.001. 
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Figure 7.17. Broad-spectrum antibiotic treatment does not lead to a more severe E. 

vermiformis infection. WT mice were treated with broad-spectrum antibiotics (1 g/l 

ampicillin and 5 g/l streptomycin) for five days prior to infection with 1000 oocytes of E. 

vermiformis. Mice remained on antibiotic treatment until ten days post infection. A) Oocyst 

kinetics shed from indicated conditions. B) Mice’s weight during the infection. The weight 

data are normalized to the weight on infection date. Data are presented as mean ± SD from 

three independent experiments with three to four mice per condition and experiment. 

Statistically significant changes were identified by two-way ANOVA. ***: p<0.001. 
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7.13. Gram-positive microbiota are activating IELs in E. vermiformis-

infection 

After these observations, I next asked whether the whole spectrum of the commensal 

microbiota are able to activate IELs. To address this, I used antibiotic mixtures that are 

targeting Gram–negative (colistin) or Gram-positive (vancomycin) bacteria for five days. 

Afterwards these and non-treated mice were infected with 1000 oocysts E. vermiformis via 

oral gavage for ten days prior to IEL analysis.  

 

Non-, colistin- and vancomycin-treated E. vermiformis infected mice shed similar level of E. 

vermiformis (Fig 7.18 D). These data suggest that the antibiotic treatments are not affecting 

the infection level until day ten post infection. Of note, in one of the experiments, the level of 

shed oocysts is lower compared to the other experiment. Data from the experiment with 

lower shed oocysts is marked with red borderline in Figure 7.18 and 7.19. Interestingly, I 

observed that MTG staining is reduced specifically in IELs from vancomycin-treated E. 

vermiformis-infected mice, while colistin-treated E. vermiformis-infected mice showed 

similar level of MTG as non-treated infected mice (Fig 7.18 B). This trend applied to the IEL 

subsets (Fig 7.18 C). These data suggest that Gram-positive bacteria susceptible to 

vancomycin-treatment are activating IELs. This notion is supported by the observation that 

TCRγδ+CD8αβ+ and CD4+CD8αα+ IELs from colistin-treated mice have even higher MTG 

MFI compared to non-treated IELs (Fig 7.18 C). When depleting Gram-negative bacteria, 

there will be more space for Gram-positive bacteria to colonize the intestinal compartment. 

 

Interestingly, vancomycin-treated IELs showed a trend of lower MitoSOX staining compared 

to non-treated IELs (Fig 7.18 E-F). However, when assessing the MitoSOX MFI in IEL 
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subsets, TCRαβ+CD8αβ+ IELs from vancomycin-treated mice have significantly higher MFI 

compared to non-treated and non-infected IELs (Fig 7.18 F). 

 

Excitingly when assessing the level of Ki-67, TNFα and IFNγ, I observed that vancomycin-

treatment reduces the intracellular level of these factors in IELs, while colistin-treatment 

leads to similar or tendency to higher levels compared to non-treated E. vermiformis-infected 

mice (Fig 7.19 A, C and E). This trend is clearer when assessing IEL subsets. Both 

intracellular IFNγ (Fig 7.19 C-D) and TNFα (Fig 7.19 E-F) were higher in colistin-treated 

condition. As with MitoSOX staining, vancomycin-treated mice had IELs with higher Ki-67 

expression compared to non-treated E. vermiformis-infected (Fig 7.19 A-B). Collectively, 

these data support the notion that commensal microbiota are activating IELs, specifically the 

Gram-positive spectrum. 
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Figure 7.18. IELs are selectively activated by Gram-positive bacteria during intestinal 

parasite infection. WT mice were treated with 1 g/l colistin or 1 g/l vancomycin for five 

days prior to infection with 1000 oocytes of E. vermiformis. Mice remained on antibiotic 

treatment until ten days post infection. Ileum-sourced IELs were isolated and analysed by 

flow cytometry. A) Quantification of CD44Low and CD44 High cells from indicated conditions. 

B) Quantification of MFI of MTG staining in total ileal CD8α+ IELs and splenocytes from 

indicated condition of infection and antibiotic treatment. C) Quantification of MFI of MTG of 

IEL subsets from same conditions as Panel B. D) Quantification of shed E. vermiformis 

oocysts between antibiotic-treated and non-treated mice. E) Quantification of MitoSOX MFI 

of total ileal CD8α+ IELs from non-infected and infected mice with or without antibiotic 

treatment. F) Quantification of MFI of MitoSOX staining in IEL subsets from same 

conditions as Panel E. Data are presented as mean ± SD from two independent experiments 

with two to five mice per group and experiment. Statistically significant changes were 

identified by one-way ANOVA (Panel B and E), Mann-Whitney test (Panel D) or two-way 

ANOVA (Panel A, C and E).*: p<0.05., **: p<0.01., ***: p<0.001. 
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Figure 7.19. The cytokine production in activated IELs is mediated by Gram-positive 

bacteria. WT mice were treated with 1 g/l colistin or 1 g/l vancomycin for five days prior to 

infection with 1000 oocysts of E. vermiformis via oral gavage. Mice remained on antibiotic 

treatment til ten days post infection. Ileum-sourced IELs were isolated and analysed by flow 

cytometry. A-B) Quantification of Ki-67+ cells from A) total ileal CD8α+ IELs or B) IELs 

subsets from non-infected and infected mice with or without antibiotic treatment. C-D) 

Quantification of IFNγ from C) total ileal CD8α+ IELs or D) IELs subsets from non-infected 

and infected mice with or without antibiotic treatment. E-F) Quantification of TNFα from E) 

total ileal CD8α+ IELs or F) IELs subsets from non-infected and infected mice with or 

without antibiotic treatment. Data are presented as mean ± SD from two independent 

experiments with two to five mice per group and experiment. Statistically significant changes 

were identified by one-way ANOVA or two-way ANOVA.*: p<0.05., **: p<0.01., ***: 

p<0.001. 
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Figure 7.20. Gram-positive and Gram-negative antibiotic treatments do not lead to a 

more severe E. vermiformis infection. WT mice were treated with 1 g/l colistin or 1 g/l 

vancomycin for five days prior to infection with 1000 oocysts of E. vermiformis via oral 

gavage. Mice remained on antibiotic treatment until ten days post infection. A) Oocyst 

kinetics shed from indicated conditions. B) Mice weight during the infection. The weight data 

are normalized to the weight on infection date. Data are presented as mean ± SD from two 

independent experiments with three to four mice per condition and experiment. Statistically 

significant changes were identified by two-way ANOVA. *: p<0.05. 
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7.14. IELs are not essential for coping with the parasite load of E. 

vermiformis  

After showing potential microbiota-dependent mechanism for IEL activation, I next wanted 

to address the physiological role of IEL activation during E. vermiformis infection. Data 

shown in Figure 7.15 D suggest that IEL activation may not be essential for controlling E. 

vermiformis parasite load because similar parasite load is detected in antibiotic-treated and 

non-treated infected mice. However, there is the possibility that other T cells in the LP 

compartment may compensate the lack of effector functions from IELs. Therefore, I wanted 

to assess whether IELs alone can help the host to cope with E. vermiformis infection.  

 

To address this question, the idea would be to sort IELs into lymphocyte-deficient mice. 

Findings from the previous chapter suggest that IL-2Rγ-/-Rag2-/- mice would be the ideal 

IEL transfer hosts (Fig 6.6 A-F). However, these mice are more susceptible to E. vermiformis 

infection. Data from my lab colleague Joana Guedes showed that IL-2Rγ-/-Rag2-/- mice 

receiving 1000 oocysts of E. vermiformis succumb to the infection within 9 days of infection 

(Guedes, 2017). As illustrated in previous section, lower infection rate of E. vermiformis 

seems to lead to less IEL activation (Fig 7.18-19). These observations are in line with my 

hypothesis that it is commensal microbiota that activate IELs during E. vermiformis infection. 

Therefore, using a lower infection dose with IL-2Rγ-/-Rag2-/- mice may not detect IEL 

activation, and hence address my question. As shown in Figure 6.6 B and D, the IELs found 

in Rag2-/- mice after IEL transfer, are mainly TCRαβ+ CD8αβ+ IELs, the IEL subset that 

have been shown to respond the strongest in the tested activation and infection models (Fig 

6.1, 7.4 and 7.13). Therefore, I decided to use Rag2-/- mice as hosts for this set of 

experiments. 
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For the experiment, I had six groups of mice: WT, Rag2-/- and Rag2-/- mice transferred with 

total CD8α+ IELs, with or without broad-spectrum antibiotic treatment consisting of 

ampicillin and streptomycin. The three groups of antibiotic-treated mice received antibiotics 

for five days, before all six groups of mice were infected with 1000 oocysts of E. vermiformis 

via oral gavage. Six days post infection, the mice were single caged with sand bedding to 

enable faeces collection and parasite quantification. At day ten post infection, the mice were 

culled for IEL activation assessment. As expected from previous data, Rag2-/- mice had 

higher oocyst load compared WT mice (Fig 7.21 A-B). Surprisingly, this increase in parasite 

load observed in Rag2-/- mice was reduced by antibiotic treatment, to a level similar to E. 

vermiformis-infected WT mice (Fig 7.21 A-B). These data suggest that the parasite load in 

Rag2-/- mice, compared to WT mice, is induced in a microbiota-dependent manner. Addition 

of IELs to Rag2-/- mice did not significantly alter the parasite load (Fig 7.21 A-B), 

suggesting that IELs are not critical to control E. vermiformis infection. Although the weight 

data from these mice had large variation, there is a clear trend that Rag2-/- mice lose more 

weight compared to WT mice, which is not reduced by adding antibiotic treatment or IELs 

alone, but combination of antibiotic treatment and IELs tends to reduce the weight loss (Fig 

7.21 C). These data could suggest that IELs may have a role in limiting pathology rather than 

directly affect the parasite load. Interestingly, the number of recovered IELs from Rag2-/- 

were fewer than expected from previous IEL transfer data, in which the mice received no 

additional treatment prior to analysis (Fig 7.21 D-E). These data would suggest that most of 

the transferred IELs die during the course of E. vermiformis infection. Interestingly, E. 

vermiformis infection of WT mice lead to increased number of ileal IELs (Fig 7.21 F). 

Further studies are required to determine the physiological role of mitochondria-dependent 

IEL activation. 
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Figure 7.21. The increase of E. vermiformis parasite load in Rag2-/- mice is dependent 

on commensal microbiota. WT, Rag2-/- and Rag2-/- mice transferred with total CD8α+ IELs 

with or without broad-spectrum antibiotics (1 g/l ampicillin and 5 g/l streptomycin) for five 

days prior to infection with 1000 oocysts of E. vermiformis via oral gavage. 
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Figure 7.21. The increase of E. vermiformis parasite load in Rag2-/- mice is dependent 

on commensal microbiota (cont.) A) Kinetics of shed E. vermiformis oocysts from the 

indicated mice and treatment. B) Total number of shed E. vermiformis oocysts until day ten 

post infection. C) Weight curve of indicated mice with weight prior to antibiotic treatment 

used as initial weight. D-E) The number of recovered IELs from Rag2-/- hosts from initial 

100 000 IELs transferred. The dotted line indicates the average number of IELs recovered 

from Rag2-/- transferred with IELs but without additional treatments (see Figure 4.9 D). 

Panel D include all mice, while Panel E excludes the outliners (above dotted line) to illustrate 

the number of recovered IELs in remaining mice. F) Representative graph of the number of 

total ileal CD8α+ IELs from non-infected and infected mice at indicated time points. Data are 

presented as mean ± SD from two independent experiments with three mice per condition and 

experiment. Statistically significant changes were identified by two-way ANOVA (Panel A), 

unpaired t-test (Panel D-E) and one-way ANOVA (Panel B and F). ***: p<0.001. 

 

7.15. Anti-CD3-mediated IEL activation is not reduced by antibiotics 

After observing that commensal microbiota seems to play a role in all tested infection 

models, I next wanted to address whether the same applies for the αCD3 model used in 

Chapter 6. One report is indeed suggesting that αCD3 injection can cause leakiness in the 

IEC barrier (Musch et al., 2002), suggesting that the IEL activation could potentially be of a 

similar character to IL-22-/- mice (Fig 7.12).  

 

To address this, mice were split into two groups: one group receiving broad-spectrum 

antibiotic treatment (ampicillin and streptomycin) and one group not receiving antibiotics. 

After ten days of antibiotic treatment, both groups of mice received αCD3 antibody via i.p. 

injection and were culled for IEL analysis at 48 hours post injection. Interestingly, I observed 

no statistically significant difference between antibiotic-treated and non-treated αCD3-

injected mice in regards to proportion of CD44High and CD44Low cells (Fig 7.22 A). IELs in 

antibiotic treated mice had not significant different CD44 staining compared to IELs in non-
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treated mice, suggesting that antibiotic treatment per se is not affecting the activation status 

of IELs in regards to CD44 staining. Interestingly, the same trend was observed in regards to 

MTG staining (Fig 7.22 B-D) as well as Ki-67 expression (Fig 7.22 D-E). These data suggest 

that commensal microbiota is not essential for the activation response in the αCD3 model. In 

addition, these data suggest that there may be at least two different pathways for IELs to 

become activated: via microbiota leakiness into IEC barrier and via antigen presentation. 

What the potential antigen-presented ligands may be and which cell type(s) that present the 

antigens to IELs, remain to be determined.  
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Figure 7.22. αCD3-mediated IEL activation is not reduced by antibiotic treatment. WT 

mice were treated with broad-spectrum antibiotics (1 g/l ampicillin and 5 g/l streptomycin) 

for ten days prior to injection with 25 µg αCD3 antibody i.p. Two days after injection, mice 

were culled, IELs isolated and analysed. A) Quantification of CD44Low and CD44 High cells 

from indicated conditions. B) Quantification of MFI of MTG staining in total CD8α+ IELs 

and splenocytes from indicated conditions of infection and antibiotic treatment. C-D) 

Quantification of MFI of MTG of IEL subsets from same conditions as Panel B. E-F) 

Quantification of Ki-67+ cells from E) total CD8α+ IELs or F) IEL subsets from indicated 

conditions. Data are presented as mean ± SD from three independent experiments with two to 

three mice per condition and experiment. Statistically significant changes were identified by 

one-way ANOVA or two-way ANOVA.  ***: p<0.001. 

 

7.16. DSS-induced colitis does not fully activate small intestinal IELs 

As vancomycin- and broad-spectrum-antibiotic-treated E. vermiformis-infected mice had 

similar parasite load as non-treated E. vermiformis-infected mice (Fig 7.15 D and Fig 7.18 

D), it suggests that IEL activation is not essential for controlling E. vermiformis parasite load. 

Data from Rag2-/- mice with transferred IELs suggest that IELs may instead play a role to 

limit pathology (Fig 7.21 A-C). Therefore, I next wanted to assess whether the role of IEL 

activation can be linked to IEC barrier healing. A model of IEC destruction and healing is 

DSS-induced colitis.  

 

Previous data using DSS-induced colitis model suggest that mice deficient in IFNγ-/- have 

less severe DSS-induced disease course (Nava et al., 2010). Muc-2-/- mice showed a more 

severe disease outcome (Van der Sluis et al., 2006). Moreover, a link between the commensal 

microbiota and DSS-induced colitis symptoms has been demonstrated using IL-10-/- mice. 

These mice develop spontaneous colitis when housed in SPF conditions, but not when housed 

in GF conditions (Sellon et al., 1998). NOD2-/- mice have fewer IELs and exhibit more 

severe Trinitrobenzenesulfonic acid (TNBS)-induced colitis (Jiang et al., 2013). DSS-induced 
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colitis model has been linked to symptoms in the colon, but as DSS is administered in the 

drinking water, it will pass through the small intestine. Therefore, there is a possibility that 

DSS affect the small intestine as well. TCRγδ-/- mice showed a more severe DSS-induced 

colitis compared to controls (Ismail et al., 2009). TCRγδ+ IELs are more numerous in the 

small intestine compared to the large intestine. Furthermore, a recent paper suggested that 

mice suffer from worse DSS-induced colitis when simultaneously on vancomycin-spiked 

drinking water (Huang et al., 2015). Hence, I wanted to test if the destruction of IEC barrier 

leads to IEL activation, and if so, whether that could explain the worsening of DSS-induced 

colitis in the presence of vancomycin. 

 

To address this question, I need a dose of DSS that is causing colitis as expected but has a 

margin for potential worsening in colitis-symptoms when assessing what happens when IEL 

activation is blocked by vancomycin treatment. Doses of DSS used in previous literature 

varies from 1 % up to 5 % DSS (w/v) (Shon et al., 2015; Wirtz et al., 2007; Chassaing et al., 

2015). I decided to use 2.5 % DSS which were given ad libitum to male WT mice for seven 

days, with drinking water exchange after three to four days. After the start of DSS 

administration, the mice were weighed daily as well as scored for colitis symptoms according 

to the table in Figure 7.23 A. I observed that the DSS-treated mice indeed lost weight (Fig 

7.23 B-C), as well as observations of blood and diarrhea in the mice (Fig 7.23 D- E). 

Occasional mouse received general welfare concern from the animal technicians at day nine 

post DSS-administration (Fig 7.23 F). These data confirm successful DSS-induction of colitis 

as well as indicating that day five, seven and nine seem appropriate days to investigate 

whether IEL activation has occurred. 
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Figure 7.23. DSS-induced colitis model used for IEL activation assessment. Mice 

received 2.5 % DSS in their drinking water ad libitum for seven days. The DSS-treated mice 

were weighed and scored daily according to the table shown in panel A) for which grey areas 

highlight when mice are reaching moderate severity. B) Weight curve, C) weight score D) 

stool consistency, E) appearance of blood, F) general mice wellbeing and G) overall disease 

activity index (DAI) as a sum of scores from Panel C-F, for non-treated and DSS-treated 

mice. Data are presented as mean ± SD from three independent experiments with three to 

nine mice per condition and experiment. Statistically significant changes were identified by 

two-way ANOVA. *: p<0.05., ***: p<0.001. 

 

Mice were taken day five, seven and nine post DSS-treatment and the small and large 

intestine and assessed for IEL activation. I first observed that the proportion of CD44High 

IELs is higher in DSS-treated mice at day seven and nine post DSS administration (Fig 7.24 

A). Surprisingly, I observed no increase in MTG staining in small intestinal IELs, but instead 

I observed increase in MTG staining in large intestinal IELs at day nine post DSS 

administration (Fig 7.24 B-C). As I observed no significant increase in MTG staining, I 

expected to observe no significant increase in Ki-67, IFNγ and TNFα, which was the case for 

small intestinal IELs (Fig 7.24 D-F). Of note, I observed increased cytokine production from 

the large intestinal IELs at day seven and nine post DSS administration (data not shown), 

indicating that these IELs have become activated in a manner that have similarities to ileal-

sourced IELs from E. vermiformis-infected mice.  

 

I observed one difference between non-treated and DSS-treated small intestinal IELs: the 

number of IELs were significantly reduced at day five and seven post DSS administration 

(Fig 7.24 G). These data indicate that DSS affects the small intestine as well as the large 

intestine. Whether the missing IELs represent activated IELs that die, as observed in E. 
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vermiformis model using Rag2-/- mice transferred with IELs (Fig 7.21 E-F), or IELs that 

have migrated to other parts of the intestine, remains to be clarified.  

 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 7 Full IEL activation depends on luminal/bacterial compound(s) 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 318  
Copyright © 2018 Frising UC 

Figure 7.24. DSS-induced colitis model does not fully activate small intestinal IELs. 

Mice received 2.5 % DSS in their drinking water ad libitum for seven days. Mice were scored 

daily and culled at day five, seven and nine post DSS administration for IEL activation 

analysis. A) Quantification of CD44Low and CD44 High cells from DSS-treated and control 

mice at indicated time point. B) Quantification of MTG MFI CD8α+ IELs from DSS-treated 

and control mice at indicated time points. C) Quantification of MTG MFI in CD8α+ IELs 

from DSS-treated and control mice at indicated time point. D-F) Quantification from total 

CD8α+ IELs for the intracellular markers D) Ki-67, E) IFNγ and F) TNFα. G) Number of 

total CD8α+ IELs DSS-treated and control mice at indicated time point. Data are presented as 

mean ± SD from two to three (day five samples) independent experiments with three mice 

per condition and experiment. Statistically significant changes were identified by one-way 

ANOVA (Panel B-G) or two-way ANOVA (Panel A). *: p<0.05., **: p<0.01., ***: p<0.001. 

 

7.17. Common gamma chain signalling is involved in determining 

IEL activation state 

After the exciting findings that commensal microbiota can activate IELs, there is a need to 

understand the mechanisms behind the microbiota-induced IEL activation. Some factors that 

have been reported to be involved in T cell activation and metabolism are the common 

gamma chain cytokines IL-2, -4, -9 -7, -15 and -21. For example, addition of IL-7 to memory 

CD8α+ T cell have been showed to increase their accumulation of lipids (Cui et al., 2015). I 

observed increased lipid accumulation in IELs from steady state mice (Fig 5.4 A). Exploring 

the effect of the other common gamma chain cytokines, it has been reported that addition of 

IL-15 to CD8α+ T cell cultures results in increased mitochondrial biogenesis (van der Windt 

et al., 2012). Addition of IL-15 to human IELs led to increased IFNγ production (Di Sabatino 

et al., 2006). Similar results were obtained from murine splenic T cells. In addition, it has 

been showed that the expression of IL-15 in IECs can increase in the presence of TLR2-

ligand lipoteichoic acid (LTA) (Qiu et al., 2016). This finding is particularly interesting as I 

have demonstrated a role of Gram-positive bacteria in IEL activation during the E. 
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vermiformis infection. Whether Gram-positive microbiota induce IEL activation directly or 

indirectly remains to be determined. In addition, it was found the combination of IL-15 and 

IL-21 lead to even higher IFNγ production, while addition of IL-21 alone failed to induce 

IFNγ production (Zeng et al., 2005). Overall, these data suggest that common gamma chain 

cytokines have effect on mitochondrial biogenesis and cytokine production, two features that 

were observed in E. vermiformis-activated IELs. Therefore, there is a chance that the 

common gamma chain cytokine signaling may be involved in IEL activation. 

 

Therefore, while performing the IEL transfer experiment to address the role of IL-15 trans-

presentation for IEL survival (Fig 4.9 D), I also assessed the mitochondrial status of  the IELs 

transferred into IL-2Rγ-/-Rag2-/- mice. As these mice were set up with IELs sourced from 

TCRδ-eGFP-reporter mice, I used MitoTracker Deep Red (MTDR) because MTG is not 

compatible with GFP staining. MTDR staining of steady state IELs, memory and naïve 

splenic CD8α+ T cells generates similar results as MTG staining (Supplemental Figure to 5.6 

in Chapter 5). However, the MTDR staining suggested a difference between memory and 

naïve splenic CD8α+ T cells, which is not observed when using MTG staining, suggesting 

that MTDR and MTG are staining mitochondria in different manners. 

 

Surprisingly, instead of observing that non-treated IELs transferred into IL-2Rγ-/-Rag2-/- 

mice had similar MTDR staining as WT mice, I observed heightened MTDR staining relative 

to WT IELs and IELs transferred into Rag2-/- mice (Fig 7.25 A). These data indicate that the 

intestinal compartment in IL-2Rγ-/-Rag2-/- mice enables heighten MTDR staining in IELs. 

This suggest that the presence common gamma chain in the intestinal epithelial compartment 

prevent IEL activation. Further analysis of these IELs in IL-2Rγ-/-Rag2-/- mice, I observed 

that there is no cytokine production from these IELs (Fig 7.25 C-D). However, there was a 
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statistically significant trend towards higher expression of the proliferation marker Ki-67 in 

IELs transferred into IL-2Rγ-/-Rag2-/- mice compared to control mice (Fig 7.25 B). These 

data suggest that IEL activation in IL-2Rγ-/-Rag2-/- hosts may be of similar to the activation 

observed in IL-22-/- mice.    

 

As I have observed that commensal microbiota is the activating trigger in several infection 

models presented in this Chapter, I wanted to assess whether the commensal microbiota has a 

role for the increased activation status of IELs transferred into IL-2Rγ-/-Rag2-/- mice. 

Surprisingly, I observed that broad-spectrum antibiotics did not reduce the MTDR staining in 

these IELs (Fig 7.25 A), suggesting that the commensal microbiota is not involved in this IEL 

activation model. As observed with previous IEL activation assessment experiments 

including antibiotic treatment (Fig 7.12F, Fig 7.14 A, Fig 7.16 A and Fig 7.19 A), antibiotic 

treatment of IL-2Rγ-/-Rag2-/- mice that have received IELs showed higher expression of Ki-

67 (Fig 7.25 B). These data suggest that this IEL activation maybe of a similar character to 

αCD3-mediated IEL activation to described in Chapter 6, which were not reduced by 

antibiotic treatment either (Fig 7.22).   
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Figure 7.25. IELs transferred into IL-2Rγ-/-Rag2-/- mice have more mitochondrial mass 

in a microbiota-independent manner. Recipient mice were injected with 100 000 FACS-

sorted CD8α+ IELs. IELs were isolated from the mice 6 weeks post injection. A) 

Quantification of MTDR MFI from total CD8α+ IELs from indicated condition. B) 

Percentage of Ki-67 in total CD8α+ IELs from indicated hosts and conditions. C) Percentage 

of IFNγ in total CD8α+ IELs from indicated hosts and conditions. D) Percentage of TNFα in 

total CD8α+ IELs from indicated hosts and conditions. Data are presented as mean ± SD from 

two to three independent experiments with two to three mice per condition and experiment. 

Statistically significant changes were identified by one-way ANOVA. *: p<0.05., **: 

p<0.01., ***: p<0.001. 
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After these observations, I next asked what could be the cause of this phenotype. IL-2Rγ-/-

Rag2-/- mice lack T and B cells, NK cells and ILCs (Almeida and Belz, 2016). Histology 

analysis has shown that the intestinal epithelium is altered in IL-2Rγ-/-Rag2-/- mice e.g. 

higher crypt heights compared to control mice (Cao et al., 1995). Lacking IL-2Rγ also have 

effects on DCs, mast cells, IECs and monocytes, and granulocytes (Reinecker and Podolsky, 

1995), suggesting that there are potential cell-cell interactions that can affect the 

mitochondrial status in IELs.  

 

As initial step, I wanted to assess whether the influence of IL-2Rγ signaling on IEL activation 

is due to the hematopoietic or non-hematopoietic cells, particularly whether IEC-IEL 

interactions may play a role. To address this, I transferred WT BM into Rag2-/- and IL-2Rγ-/-

Rag2-/- mice.  A study has showed that immune cell reconstitution is observed already two 

weeks after BM transfer (Auletta et al., 2004). Three weeks after the transfer, I analyzed the 

IELs in these BM chimeras. Interestingly, IELs in these mice show similar MTG staining as 

WT IELs (Fig 7.26 A). These data indicate that the IEL activation observed in IELs 

transferred into IL-2Rγ-/-Rag2-/- mice is linked to hematopoietic cells and not IEL-IEC 

interactions. 

 

To pinpoint further which immune cells that could be involved, I set up bone marrow 

chimeras that in addition receive CD8α+ IEL transfer. By that, I could add back immune cell 

compartments that could be potentially involved in this IEL activation. Since transferred IELs 

into Rag2-/- mice do not show this increase in mitochondrial mass, measured by MTDR (Fig 

7.25 A) and MTG (Fig 7.26 A), it suggests that T and B cells are not involved in this process. 

Therefore, it is more likely that either ILCs or NK cells may play a role, as both cells subsets 

are missing in IL-2Rγ-/-Rag2-/- mice. Previous reports have showed an important role for IL-
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7 (Bostick and Zhou, 2015) and IL-15 signalling for ILC and NK cell (Kennedy et al., 2000) 

maintenance, respectively.   

 

For the assessment IL-2Rγ-/-Rag2-/- mice were irradiated and received BM cells via transfer 

i.v from the following donor mice: Rag2-/-, IL-7R-/-Rag2-/-, IL-15R-/-Rag2-/- and IL-22-/-

Rag2-/- mice. three weeks after initial transfer, IELs were FACS-sorted and transferred i.v. 

into these BM mice and plain IL-2Rγ-/-Rag2-/- mice that have also received irradiation 

treatment but no BM cells. Three weeks post the IEL transfer, mice were culled and IELs 

analysed. Supporting the observation from Fig 7.25 A, antibiotic treatment of IL-2Rγ-/-Rag2-

/- mice did not significantly reduce the level of MTG compared to non-treated mice (Fig 7.26 

B). However, the level of MTG staining is lower than usually found in splenic CD8α+ T cells, 

which is not matching with findings in Fig 7.25 A showing similar mitochondrial staining 

compared to splenic CD8α+ T cells. This could either be due to the different dyes used in the 

experiment or that the irradiation had side effects. Interestingly, IL-2Rγ-/-Rag2-/- mice 

receiving IL-22-/-Rag2-/- BM had higher MTG staining compared to controls receiving 

Rag2-/- BM. This increase was reversible by addition of broad-spectrum antibiotic treatment 

(Fig 7.26 B), suggesting that some IL-22-producing cells present in Rag2-/- BM may be 

involved in the activation process. Surprisingly, IL-2Rγ-/-Rag2-/- mice receiving IL-7R-/-

Rag2-/- BM did not show these phenotype (Fig 7.26 B), suggesting that IL-7R-dependent 

ILCs may not be involved. However, IL-2Rγ-/-Rag2-/- mice receiving IL-15Rα-/-Rag2-/- 

BM showed similar results as IL-2Rγ-/-Rag2-/- mice receiving IL-7R-/-Rag2-/- BM (Fig 7.26 

B). This data could suggest that NK cells may play a role. There is also a report suggesting a 

role of IL-15 for ILCs, particularly ILC1 (Gil-Cruz et al., 2016), which others have suggested 

support IL-7R-independent ILCs (Robinette et al., 2017). 
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Undoubtedly, there more research is required to fully understand the role of IL-2Rγ signaling 

in IEL activation, but these data indicate a role for other immune cells for IEL activation 

maintenance, potentially NK cells and/or IL-7-independent subsets of ILCs. 

 

Figure 7.26. IELs transferred into IL-2Rγ-/-Rag2-/- mice are more activated due to IL-

15R-dependent and/or IL-22 producing cells. A) IL-2Rγ-/-Rag2-/- mice and Rag2-/- mice 

were irradiated before receiving 2x106 WT BM via i.v. injection. 3 weeks post transfer, IELs 

were isolated and analysed. Panel A shows quantification of MTG MFI from WT total CD8α+ 

splenocytes and total CD8α+ IELs from the bone marrow chimeras. B) IL-2Rγ-/-Rag2-/- mice 

were irradiated prior to receiving indicated 2x106 Rag2-deficient bone marrow cells via i.v. 

injection. The bone marrow chimeras then received 100 000 total CD8α+ IELs via i.v. 

injection. IELs were isolated from the mice 6 weeks post initial injection. Panel B shows 

quantification of MTG MFI from total CD8α+ IELs from indicated condition. Data are 

presented as mean ± SD from three (Panel A) or two (Panel B) independent experiments with 

two to three mice per condition and experiment. Statistically significant changes were 

identified by one-way ANOVA. *: p<0.05., ***: p<0.001. 
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7.18. Supplemental figures 

 

Supplemental Figure to 7.10. Adaptive immune system is used for MNV-O7 replication. 

T and B cells sourced spleen and MLNs were FACS-sorted based on expression of CD19 and 

CD90.2. 1.0-2.5x106 of T cells, B cells or combination of T and B cells, were injected i.v. 

into Rag2-/- mice. After three weeks, the mice were transferred to the Pathology unit at 

University of Cambridge for MNV-O7 infection by Osama Eisa. The data are presented as 

mean ± SD from one experiment. Statistically significant changes were identified by one-way 

ANOVA. 
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7.19. Chapter Discussion 

Summarising the findings in this chapter, IELs are activated in IL-22-/- mice and become 

activated during E. vermiformis and MNV-CW3 infections. Unlike TCR-mediated IEL 

activation, cytokine production was demonstrated in ileum-sourced IELs from E. vermiformis 

infected mice. Interestingly, the IEL activation observed in IL-22-/- mice, E. vermiformis- 

and MNV-CW3- infected mice were prevented in when depleting commensal microbiota, 

suggesting an essential role for commensal microbiota in IEL activation. Quantifications of 

the pathogen load in the infection model showed successful infection in the presence of 

antibiotics, suggesting that the pathogen themselves  are not directly activating IELs. 

Surprisingly, IELs seem to become  activated specifically by Gram-positive bacteria and/or 

its products. From the presented data, it is possible to hypothesize about a model in which 

IELs can become activated regardless of what is causing damage to the IEC barrier. As IELs’ 

TCR antigen repertoire is more limited compared to other T cells, IELs could potentially 

utilize microbiota recognition as alternative way of becoming activated.  

 

One remaining question to address is whether t microbiota-dependent IEL activation acts s in 

a direct or indirect manner. Preliminary data from the laboratory and Immgen project suggest 

that IELs express mRNA for PRRs that recognize Gram-positive bacteria such as TLR2, 

NOD1 and NOD2 (data not shown and (Shay and Kang, 2013). If these mRNA expressions 

translate into protein expression, then IELs may have the capacity to recognize the Gram-

positive microbiota products. If IELs do not recognize the microbiota themselves, other 

possible pathways could involve antigen presentations from IECs, intestinal DCs or MPs. 

Any immune cell capable of recognizing the microbiota may be able to transfer activating 

signals to IELs that may lead to their activation. If IELs are activated by commensal 

microbiota in an indirect manner, then it may increase the time that IELs require to become 
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fully activated. However, data from the αCD3 activation model suggest that the MTG 

remodeling can be performed within 24 hours (Fig 6.1 D-E), which is rapid compared to 

other adaptive immune responses that takes days. 

 

Another question that needs to be addressed is why IELs seems to become activated 

specifically by Gram-positive bacteria and not by both Gram-positive and Gram-negative 

bacteria. There are reports describing transgenic mice with designed TCRs that specifically 

respond to commensal antigens. One of these models, CBir1 transgenic mice, have TCRs that 

are specific to commensal-derived flagellin. Using these mice during T. gondii infection, 

IFNγ production was observed from splenic T cells (Hand et al., 2012). Flagellin has been 

reported to be able to originate from both Gram-positive and Gram-negative bacteria 

(Hayashi et al., 2001). Preliminary RNA sequencing data indicates that IELs do not express 

TLR5 mRNA (data not shown). Hence, the microbiota dependent activation in IELs is 

unlikely to be the same as described above, but a similar approach with gene-modified mice 

with transgenic TCRs for commensal may be an useful tool to dissect whether IELs’ TCR is 

involved in the microbiota-dependent activation of IELs.  

 

It seems that IELs are not activated by Gram-negative pathogen, as shown by the Salmonella 

experiment (Fig 7.11 B and C). Administration of DSS also  failed to fully activate small 

intestinal IEL (Fig 7.24 A-B). However, increased IEL activation status was observed using 

CD44 staining. Moreover, the total number of CD8α+ IELs in the small intestine was reduced 

after DSS administration (Fig 7.24 G), suggesting that the small intestine is also affected by 

DSS administration. The notion that DSS-induced colitis is driven by commensal microbiota 

has been shown by using GF mice, which do not suffer from weight loss during DSS-induced 

colitis. However when GF mice receive either murine or human microbiota, these mice 
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exhibit colitis symptoms (Surana and Kasper, 2017). Data from Lora Hooper laboratory 

demonstrate that colonic TCRγδ+ IELs have altered gene expression after DSS treatment. 

These changes were not observed when using GF mice (Ismail et al., 2009), suggesting that 

the commensal microbiota affected IELs after DSS treatment. Therefore, a potential 

explanation to why DSS-induced colitis do not fully activate small intestinal IELs could be 

that DSS affect the spectrum of microbiota that are capable of activating IELs. An alternative 

explanation could be that the used dose of DSS may not cause sufficient damage to the small 

intestinal epithelial barrier , hence IELs do not become activated by it..  

 

There is a report suggesting that different antibiotic treatments affect the DSS-induced colitis 

outcome: vancomycin-treated mice showed worse DSS-induced colitis with increased weight 

loss, while streptomycin-treated mice had mitigated DSS response with lower weight loss 

compared to controls (Huang et al., 2015). The same report also showed differences in 

commensal microbiota composition by DSS-treatment. One of the main differences is the 

significant increased proportion of bacteria belonging to Bacteroidaceae family, which 

belongs to the Gram-negative spectrum (Huang et al., 2015). This could potentially be one of 

the explanations  the IEL activation assessment results I obtained (Fig 7.24 B-C). 

Interestingly, colonic IELs increased their MTG staining 9 days post DSS administration (Fig 

7.24 C). As expected, large intestinal IELs have similar low mitochondrial mass as small 

intestinal IELs (Fig 7.24 B-C). Further studies are required to determine whether the notion 

of mitochondria-mediated and microbiota-mediated IEL activation applies to colonic IELs as 

well as reported for small intestinal IELs in chapter 6 and 7.  

 

Overall, this chapter highlights an important  role of the commensal microbiota in IEL 

activation. In WT mice, goblet cells produce a mucus layer that spatially separates the IEC 
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barrier from the commensal microbiota. This spatial separation has been illustrated by 

intestinal tissue imaging using 16S rDNA probe to detect the microbiota. This distance has 

been estimated to be approximately 50 µm. However, mice that are deficient for MyD88 or 

RegIIIγ lack this spatial separation between the IEC barrier and microbiota (Vaishnava et al., 

2011). In addition, RegIIIγ-/- mice had an increased proportion of bacteria belonging to the 

phylum Firmicutes, suggesting a role of RegIIIγ for keeping these bacteria under control. It 

has also been reported that old mice (18 months) have thinner intestinal mucus layer 

compared to young mice (3 months) mice (Elderman et al., 2017), suggesting that age is an 

important factor to monitor for further studies of the role of microbiota in IEL activation. As I 

have observed IEL activation in IL-22-/- mice (Fig 7.12 A-B), I would hypothesize that 

MyD88-/- and RegIIIγ-/- mice may also have IELs that have increased mitochondrial mass 

and/or increased CD44 staining, which may be prevented by antibiotic treatment just as 

showed for IL-22-/- mice (Fig 7.12 A and B). In the E. vermiformis model, it has been 

reported that the number of goblet cells decreases in the jejunum and ileum (Linh et al., 

2009). As goblet cells are main producers of the mucus, it may suggest that the reduced 

number of goblet cells may lead to a decreased mucus layer and subsequently decreased 

spatial separation between the commensal microbiota, the IEC barrier and the IELs located 

between IECs. Another antimicrobial protein that has been suggested to be involved in the 

spatial separation between the IEC barrier and commensal microbiota is resistin-like 

molecule β (RELMβ). It has been shown that RELMβ specifically kills Gram-negative 

bacteria, with minor effects on Gram-positive bacteria. RELMβ is mainly produced by goblet 

cells in the colon for which an increase in the proportion of bacteria belonging to 

Proteobacteria was observed (Propheter et al., 2017).  
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After observing that there may be a preference for IELs to become activated by Gram-

positive bacteria, I explore whether to see if previous literature could provide insights about 

common intestinal microbiota composition in C57BL/6 mice. Of note, there are reports that 

suggest that the intestinal microbiota is different in different mouse strains such as C57BL/6 

and BALB/c mice (Krych et al., 2013), suggesting that there is the possibility that IELs 

sourced from other mouse strains may not respond to activation triggers in the same was as 

have been described in this thesis. Interestingly, it has recently been reported that the 

microbiota composition is undergoing diurnal oscillations (Thaiss et al., 2016). This report 

could also demonstrate that broad-spectrum antibiotic treatment with vancomycin, ampicillin, 

kanamycin and metronidazole could disrupt one set of genes (e.g. involved in DNA 

replication), while another set of genes were unaffected by the antibiotic treatment and a third 

set of genes actually gained diurnal oscillations by the treatment (Thaiss et al., 2016). The last 

two groups are not unexpected as antibiotic-treated mice have significantly reduced amount 

of microbiota, however some microbiota may remain present. Therefore, the time of the day 

samples are taken may play an important role for further studies on the role of the microbiota 

in IEL activation. Of the characterized bacteria phylum showed in Figure 7.1, it has been 

reported that both Actinobacteria and Firmicutes bacteria are Gram-positive, while 

Bacteroidetes and Proteobacteria bacteria are Gram-negative (Lawley and Walker, 2013). 

Therefore, the IEL activating triggers obtained from Gram-positive may belong to  

Actinobacteria and/or Firmicutes bacteria.  

 

Publications including intestinal microbiota sequencing data vary in regards of which part of 

the microbiota taxonomy that is presented (phylum, class, order, family, genus or species, Fig 

7.1 A-B). However, studying published data on intestinal microbiota composition in 

C57BL/6 mice from different animal facilities, there seem to be some common trends. 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 7 Full IEL activation depends on luminal/bacterial compound(s) 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 331  
Copyright © 2018 Frising UC 

Several studies reported that the phylum Bacterioidetes is the most frequent phylum in 

C57BL/6 mice, followed by Firmicutes (Bongers et al., 2014; Pickard et al., 2014; Meisel et 

al., 2017; Langille et al., 2014). This finding is supported by other laboratories that have 

reported the intestinal microbiota composition in terms of class Bacteroidia (that belong to 

Bacteroidetes) (Thaiss et al., 2016; Meisel et al., 2017), as well as order Bacteroidales (that 

belong to Bacteroidetes) (Mu et al., 2017). However in one animal facility, the phylum 

Firmicutes was reported to be the most frequent bacteria(Huang et al., 2015). As these 

differences in intestinal microbiota composition exist in C57BL/6 mice housed at different 

animal facilities, it is important to be aware of which intestinal microbiota composition that is 

present in  one’s animal unit. Therefore, a next crucial experiment to dissect the mechanism 

of microbiota-induced IEL activation would be to characterize the intestinal microbiota 

composition in the C57BL/6 mice housed at the Babraham Institute. It is possible that there 

are several bacteria or bacterial products that may be able to activate the IELs. An initial step 

in the analysis of such studies would be to characterize the common intestinal microbiota 

composition from IL-22-/- mice, E. vermiformis-infected mice, E. vermiformis-infected mice 

on broad-spectrum, Gram-positive and Gram-negative antibiotic treatments would be helpful. 

In addition, if the common microbiota composition are absent or present in statistically 

significantly lower amount in E. vermiformis infected mice on vancomycin treatment and IL-

22-/- mice on antibiotic treatment, then it will pinpoint which bacteria to screen for IEL 

activation assessment.  

 

A next potential step to gain mechanistic insights could be to add TLR ligands to  IEL-

organoid co-cultures. For such experiments, I would need to adapt the co-culture system to be 

able to detect IEL activation by imaging. Of note, there are technical limitation to obtain 

similar amount of information as I have demonstrated with flow cytometric analysis in 
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Chapter 5, 6 and 7. Imaging is limited to 6 fluorescent parameters  (Eissing et al., 2014), 

while flow cytometry that can detect up 18 fluorescent parameters per sample (Bendall et al., 

2012). Therefore, another approach could be to optimize so that the number of IELs per 

organoid increases to the extent that flow cytometric analysis may be practically possible. 

The IEL-organoid-co-culture system would be a clean approach to address whether the 

microbiota-dependent activation of IELs is by a direct or an indirect mechanism since I can 

decide which cells that are present in the system. Sorting intestinal DCs or MPs would also 

be possible to add to IEL-organoid co-cultures and address the impact of other APCs in IEL 

activation. 

 

The notion that Rag2-/- suffer from worse E. vermiformis infection compared to WT mice is 

expected from previous data (Guedes, 2017; Schito et al., 1996). However, it was surprising 

to observe that broad-spectrum antibiotic treatment reduced the oocyst output to a similar 

level to what is found in E. vermiformis-infected WT mice (Fig 7.21 A-B). Although IELs 

seemed not to play a significant role in controlling the  E. vermiformis oocyst production, 

these data once again highlight the importance of commensal microbiota in health and 

disease. There is no statistically significant difference in parasite load between E. 

vermiformis-infected WT mice with or without antibiotic treatment, suggesting that broad-

spectrum antibiotic treatment is not affecting E. vermiformis oocysts directly. . These data 

suggest that the increased parasite load in infected Rag2-/- mice is dependent on the 

microbiota. Intestinal microbiota sequencing in Rag2-/- mice showed that more than 60 % of 

the composition belong to the phylum Firmicutes (by Lachospiracae and Ruminococcaceae 

detection) (Shih et al., 2014). Whether the microbiota composition changes during E. 

vermiformis infection that promotes oocyst production  needs to be determined, but it may 

indicate that the different microbiota composition in Rag2-/- mice may play a role. Another 
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feature likely involved in the observation is the lack of IgA, as there are no B cells present in 

these mice. The lack of B cells is likely to affect the microbiota that is no longer coated by 

IgA. It remains to be clarified whether it is the microbiota that directly affects the E. 

vermiformis-infected IECs in Rag2-/- mice, or if the microbiota affects immune cells that 

then affect the infected IECs and oocyst production. Flow cytometric analysis  comparing 

innate immune cell composition in infected Rag2-/- mice, with or without antibiotic 

treatment, and non-infected controls mice, may provide insights. Additional follow-up 

experiments would include to have the same groups of mice as used for the experiments 

presented in Figure 7.21 but to monitor the mice until they eventually have cleared the 

infection. Although addition of IELs did not decrease the load, they may contribute to faster 

clearance of E. vermiformis. 

 

In line with the observation that antibiotic treatment reduces the  parasite load in E. 

vermiformis infected Rag2-/- mice, I observed a trend of reduced MNV-CW3 viral load in the 

presence of antibiotic treatment (Fig 7.13 F). Published data using MNV-CR6 infection 

showed that antibiotic treatment reduced the viral load to the detection limit as early as day 3 

post infection (Baldridge et al., 2015), suggesting that commensal microbiota is essential for 

MNV-CR6 replication. Interestingly, MNV-O7 infection of Rag2-/- mice led to a lower viral 

load compared to WT mice (Supplemental to Figure to 7.10). These data suggest that T and B 

cells could be taken advantage of by MNV-O7. Transfer  of T and B cells into Rag2-/- mice 

resulted in  a tendency to have higher viral loads compared to Rag2-/- mice (Supplemental to 

Fig 7.10 A-C). A recent report suggested that acute MNV strains can infect T cells, B cells, 

macrophages, IECs as well as GALT structures (Grau et al., 2017). Transfer of IELs into 

Rag2-/- mice resulted in a similar viral load compared to Rag2-/- mice.  Only when mice 

were injected with αCD3 antibody 8 hours post MNV-O7 and MNV-CW3 infection, Rag2-/- 
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mice with transferred IELs had significantly lower viral load compared to control mice (data 

not shown). These data indicate that IELs have the capacity  to reduce MNV viral load-. A 

recent report has suggested that the capacity of CD8α+ T cells to respond to MNV infection is 

an important factor to determine whether MNV infection is going to  result into an  acute or 

chronic infection (Tomov et al., 2017). 

  

Finally, I presented some data from IL-2Rγ-/-Rag2-/- mice receiving IELs that indicate that 

other immune cells may play a role in IEL activation, potentially IL-7R-independent and IL-

15R-dependent ILCs. Although antibiotic treatment did not reduce IEL activation in IL-2Rγ-

/-Rag2-/- mice,, publications have demonstrated differences in the microbiota between IL-

2Rγ-/-Rag2-/- and Rag2-/-  mice; particularly in regards to segmented filamentous bacteria 

(SFB) (Shih et al., 2014). As mention before, age seem to play a role for the microbiota 

(Langille et al., 2014). The transfer mice experiments involved the oldest mice used in my 

thesis. This is due to that mice cannot undergo procedures until they are at least 5 weeks old, 

and cells would need a minimum of 3 weeks post injection to reconstitute. However, the 

same age range applies for the control Rag2-/- mice, suggesting that aging microbiota may 

not be the only factor involved in the explanation of the differences in IL-2Rγ-/-Rag2-/- mice.  

 

As IELs in IL-2Rγ-/-Rag2-/- mice showed no increase the in production of TNFα and IFNγ 

and Ki-67 expression, these data suggest that the activation observed in IELs transferred into 

IL-2Rγ-/-Rag2-/- mice could be of a similar character to IL-22-/- mice. The BM chimeras 

experiments aided to pinpoint further which cells that may be of importance for IEL 

activation. WT BM transferred into IL-2Rγ-/-Rag2-/- and Rag2-/- mice show a small increase 

in MTG staining compared to IELs in WT mice (Fig 7.26 A). These data suggest that the 

cells, that may affect IEL activation, may belong to the hematopoietic immune cells rather 
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than IECs. Similar results were obtained when transferring Rag2-/- bone marrow into IL-

2Rγ-/-Rag2-/- mice that subsequently received IELs (Fig 7.26 B). These data suggest that T 

and B cells are not essential to modulate IEL activation inthis model. Interestingly, when 

transferring IL-22-/-Rag2-/- BM cells into IL-2Rγ-/-Rag2-/- mice that subsequently received 

IELs, I observed an increase in MTG staining. Surprisingly, this increase was reduced in the 

presence of antibiotics. As described previously, IL-22 is produced by lymphocytes, 

suggesting that ILCs may be involved. Surprisingly, I did not observe the same trend when 

using IL-7R-/-Rag2-/- BM cells into IL-2Rγ-/-Rag2-/- mice that subsequently received IELs 

(Fig 7.26 B). These data indicate that cells, that are independent of IL-7 signalling and 

produce IL-22, may be involved in IEL activation. There is a report suggesting that IL-15 

maintain a subset of ILCs that are independent of IL-7 signalling (Robinette et al., 2017). 

These ILCs would be particularly interesting to include in future experiments to pinpoint the 

explanation why IELs in IL-2Rγ-/-Rag2-/- mice have higher mitochondrial mass compared to 

controls. Undoubtedly, more research would be required for full understanding of the role of 

IL-2Rγ signalling, and potentially ILCs, in IEL activation.  

 

Collectively, the data presented in this chapter demonstrate an important role of microbiota in 

activation of IELs. Antibiotic treatment did not only reduce the increase in mitochondrial 

mass, but also reduced effector functions such as proliferation and cytokine production. 

These observations support a model of mitochondria-dependent IEL activation, for which 

commensal microbiota and TCR-stimulation are inducers of IEL activation.  
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Chapter 8: Discussion  
 

The results chapters have investigated further into the requirements for IEL activation and 

maintenance. The findings from these chapters highlight an important role of IEC-IEL 

interactions for IEL survival, as intestinal organoids are sufficient to maintain the majority of 

organoid-associated IELs alive for at least four days (Fig 4.9 B). In addition, other findings 

from this thesis highlight that IELs undergo mitochondrial plasticity during activation. Non-

treated IELs have lower mitochondrial mass and membrane potential than other CD8α+ T 

cells, TCRγδ+ T cells and epithelial-resident lymphocytes (Fig 5.6 F-H). This mitochondrial 

state was altered during activation, such as by αCD3 antibody injection and intestinal 

infections, demonstrating mitochondrial plasticity in IELs that seems linked to their 

activations state and effector functions. 

 

8.1. IEL-organoid co-culture system provides an in vitro option for IELs 

In Chapter 4, I established an IEL-organoid co-culture system (Fig 4.3 C). The usage of the 

co-culture systems was advanced further with the establishment of 3D imaging quantification 

algorithms for both IECs and IELs (Fig 4.7 B and Supplemental Figure to 4.7-2). These 

algorithms may be applicable to organoids sourced from other organs and other immune cells 

added to the organoids. In addition, I managed to initiate the start of adding additional 

complexity to the IEL-organoid system by establishing MNV- and E. coli-organoid cultures. 

 

The exact mechanism behind the IEC-mediated IEL survival is currently unknown. TCRγδ+ 

T cells sourced from other tissues, such as spleen and lymph nodes, are possible to culture in 

vitro, suggesting that the issues to culture IELs on their own is not strictly linked to the 

preference to express TCRγδ. The only known feature of the IEC-mediated IEL survival is 

that it is not strictly dependent on IL-15 trans-presentation (Fig 4.9 A-B). In addition to the 
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reports that IECs express classical antigen presenting machinery proteins, there are reports 

that IECs also express non-classical MHC molecules such as CD1d that may be involved in 

the interactions with IELs that result in IEL survival (Henderson et al., 2011; Luoma et al., 

2014). A hypothesis may be that IECs are mediating the survival of IELs as one way to 

prevent autoimmunity. When an IEC is shed from the IEC barrier, it may take along IELs that 

subsequently die as well. Finally, it is possible to grow human intestinal organoids (In et al., 

2016). This means that translational research based on the methods presented in Chapter 4 is 

a possibility. This could for example provide further insights about the mechanisms behind 

celiac disease, in which autoreactive IELs are thought to be involved in the pathology (Leon, 

2011). 

 

There is a huge interest in organoid co-cultures in the field. In recent years, different versions 

of organoid co-cultures have been reported. One group has co-cultured organoids with 

fibroblasts and shown that organoids co-cultured with fibroblast grow even in the absence of 

R-spondin in the culture medium. In these co-cultures, an increase in the mRNA expression 

of the lysozyme gene Lyz1, a gene associated with Paneth cells, has been reported (Lei et al., 

2014). Innate lymphoid cells 3 (ILC3)-organoid co-cultures have also been reported and 

shown to have a positive impact on organoid growth in combination with the cytokine IL-23 

(Lindemans et al., 2015). However, this study did not determine whether the ILC-mediated 

organoid growth was due to cytokine secretion from ILCs or due to contact interactions 

between ILCs and organoids. There have also been reports about T cell-organoid co-cultures. 

The Daniel Mucida laboratory reported a method of culturing splenic CD8α+ T cells with 

organoids. In addition to reporting this method, they also performed live-imaging of the co-

cultures. The video footages capture some T cells associated with the organoids, but also 

show that there are plenty of splenic CD8α+ T not associated with organoids. (Rogoz et al., 
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2015). Another group added culture medium from Th17 and Th22 T cell differentiation 

cultures to WT organoids and showed an increased in the gene expression of the AMPs 

RegIIIγ and RegIIIβ (Backert et al., 2014). These data highlight the impact of cytokines on 

organoids and hence the cytokine production from T cells need to be considered to be able to 

distinguish effects from cytokines production and contact interactions with T cells. There is 

also a  report of lamina propria lymphocytes (LPLs)-organoid co-cultures (Hou et al., 2018). 

Finally, there has been a paper published describing an IEL-organoid co-culture system. This 

report illustrated IELs incorporated into organoids, quantified the number of IELs after 

culturing and showed that addition of IL-2, and particularly the combination of IL-2, IL-7 and 

IL-15, increased the number of IELs (Nozaki et al., 2016). These observations are in contrast 

to my findings reported in Chapter 4 (Fig 4.3 E-F). Of note, this report did not include a live-

dead cell marker, making it unclear whether the reported IEL expansion represented live or 

dead IELs. In addition, they used GFP-reporter mice as donors for the cultured IELs. IECs 

are a cell type prone to autofluorescence (own data and (Prinz et al., 2006)). 

Autofluorescence can occur if cells contain proteins that have own fluorescence such as co-

enzymes involved in redox reactions (Croce and Bottiroli, 2014). The IEL-organoid report 

did not include a strategy to avoid false-positive IEL quantification.  

 

In addition to adding IELs to the organoids, I have also shown cultures of intestinal organoids 

with MNV-O7 and MNV-CW3 (Fig 4.10) and E. coli (Fig 4.12). The presence of MNV-O7, 

but not MNV-CW3, was confirmed by qPCR viral quantification analysis. I was able to 

observe a reduction in organoid proliferation in presence of either MNV-O7 or E. coli. I 

demonstrated that MNV-O7 reduced organoid proliferation only when added in the organoid 

culture medium. A potential explanation for this may be that MNV are virus particles, which 

do not have their own mobility capacity. Therefore, when adding MNV into the Matrigel, 
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they are likely to be trapped during the polymerization process. In contrast, E. coli seem to 

require to be present in the Matrigel to affect the organoids. Whether E. coli attach to 

organoids or secrete factors that affect organoid proliferation needs to be determined e.g. by 

staining for E. coli. These two examples of incorporation MNV and E. coli into the organoids 

show different strategies to successfully incorporate microorganisms/pathogens into 

organoids. 

 

Overall, these advances in immune cell-organoid co-cultures, together with reports about 

various organoid infection models such as rotavirus (Saxena et al., 2016), norovirus (Ettayebi 

et al., 2016), Salmonella enterica serovar Typhimurium (Zhang et al., 2014) and Listeria 

monocytogenes (Nigro et al., 2016), will lead to very interesting experiments on how 

organoids themselves cope with infectious agents and how the coping mechanism(s) are 

potentially altered in the presence of one or more immune cells populations. For some of the 

infection models, the pathogens have been microinjected into the organoids. This has been 

done for pathogens such as Helicobacter pylori (Bartfeld et al., 2014) and Salmonella 

enterica (Wilson et al., 2014) to mimic better the natural infection route. However, it is a 

time-consuming approach to individually infect organoids. Modelling part of intestinal stress, 

inflammation or infection in organoids can also be mimicked by adding cytokines to the 

organoids. There have been studies exploring the mechanism of actions of the three types of 

interferon by adding them to intestinal organoids. One report demonstrated that IECs in the 

organoids respond to both IFN-λ and IFN-β, particularly in the organoid crypt domains 

(Bhushal et al., 2017). Addition of IFN-γ to organoids led to Paneth cell degranulation, 

increased level of active caspase-3 and ultimately fewer organoids compared to non-treated 

organoids (Farin et al., 2014).  
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Utilizing the organoid model, with tailored complexity of immune cell/pathogen/cytokine 

additions, will be a very valuable complement to the in vivo data for the further understanding 

of intestinal immunity. 

 

8.2. IELs have altered mitochondrial status 

In Chapter 5, I discovered additional differences between IELs and splenic CD8α+ T cells in 

terms of lipid storage and mitochondrial properties. IELs have lower mitochondrial mass (Fig 

5.6 A-B) and mitochondrial membrane potential (Fig 5.9 A-B) than splenic naïve and 

memory CD8α+ T cells. In addition, IELs have higher content of CLs (Fig 5.8 A-B) and a 

similar level of mitochondrial ROS production (Fig 5.10 A-B) to splenic naïve and memory 

CD8α+ T cells. Other TCRγδ and epithelial-resident T cells have significantly higher MTG 

staining (Fig 5.7 F-H), indicating that their mitochondrial mass is higher than IELs. These 

observations are putting IELs apart from other T cells. 

 

Of note, there may be some differences between CD8α+ and CD4+ T cells, as splenic CD4+ T 

cells have almost twice as high MTG MFI to CD8α+ splenic T cells (data not shown). 

Therefore, further characterization of mitochondrial properties in other lymphocytes, such as 

CD4+ T cells and ILCs, may provide further insights into the relationship between metabolic 

parameters and immune functions.  

 

There is a possibility that the intestinal environment is involved in IELs’ restricted 

mitochondria capacity, particularly interactions between IECs and IELs. The vast majority of 

LPLs do not share the low mitochondrial mass phenotype with IELs (Fig 5.7 F-H), despite 

that LPLs could be within reach for secreted factors from IECs. It is tempting to speculate 

that there may be some meaning behind the distinct differences between IELs and LPLs e.g. 
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in terms of TCR and co-receptor expressed, as well as mitochondrial mass. This may be to 

complement each other to maintain intestinal homeostasis. For some reason, it seems more 

important to maintain IELs under mitochondrial control compared to LPLs. It remains to be 

determined how this mitochondrial state is impacting the energy supply such as ATP 

production. It also remains to be determined at which time point during IEL development that 

this restricted mitochondrial state is imposed, and whether intrinsic or extrinsic signalling is 

involved. 

 

8.3. IELs have mitochondrial plasticity induced by TCR-activation 

After discovering that IELs have lower mitochondrial mass compared to other T cells, I 

discovered that there is mitochondrial plasticity in IELs. Activation of IELs, via TCR 

stimulation, led to significant increase in MTG staining (Fig 6.1 D-F). Interestingly, this 

increase was heterogeneous in the different IEL subsets with CD8αβ+ IELs, particularly 

TCRαβ+ CD8αβ+ IELs, responding the strongest. The mechanisms behind the differences in 

response in the different IEL subsets need to be studied further.  

 

In addition to the increase in MTG staining, I demonstrated that IELs gain increased 

mitochondrial ROS production (Fig 6.4 A-C) and Ki-67 expression (Fig 6.3 C-E). However, 

TCR stimulation was not sufficient to induce cytokine production in IELs (Fig 6.3 A-B). 

CD8α+ splenic T cells from the same mice, showed increase cytokine production (data not 

shown). These observations are in line with the hypothesis that IELs are in poised state of 

activation and seem to require additional signaling for cytokine production compared to other 

T cells. 
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It remains to be determined whether the increase in MTG and Ki-67 are linked or separate 

events. As shown in the experiments in Chapter 6, there are cases in which Ki-67 response 

can be obtained without observing increase in mitochondrial mass (Fig 6.10 and Fig 6.12). 

These data suggest that the correlation between mitochondrial mass increase and proliferation 

may not mean they are strictly dependent on each other. An alternative explanation could be 

that increase in Ki-67 expression occurs before the increase in mitochondrial mass. The IEL-

organoid co-culture model could be an option to investigate this further. 

 

It also remains to be characterized the signalling cascade from TCR to mitochondria, and 

potentially from mitochondria to Ki-67 expression. Such characterization could provide 

targets to either boost or inhibit IEL activation responses. It would be interesting to test 

whether this mitochondrial plasticity is translating to human IELs. If so, this could have 

potential clinical implications in intestinal diseases in which a role of IELs have been 

implicated.  

 

As shown in Chapter 6, the number of IELs after αCD3-mediated activation is reduced at24 

and 48 hours post injection (Fig 6.3 G). These data suggest that activated IELs may die or 

migrate to other compartments. Using IEL transfer model combined with E. vermiformis 

infection, I also observe a reduction in the number of IELs (Fig 7.21 D-E), again suggesting 

that activated IELs may die. Interestingly in E. vermiformis-infected WT mice, there are more 

IELs recovered at the peak of infection compared to the controls (Fig 7.21 F), which could go 

against the notion that activated IELs may die. In addition, IELs transferred into IL-2Rγ-

Rag2-/- mice showed similar number of IELs after αCD3-mediated activation (Fig 6.7 C). 

These data suggest that the reduction in the number of IELs, whether due to cell death or due 

to migration, is dependent on other cells. In the case of αCD3-mediated activation, it seems 
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that other activated T cells may be involved. In the case of the E. vermiformis-infection, IECs 

become infected and may produce signals that get interpreted differently depending on 

whether other adaptive immune cells are present. Ki-67 expression indicates that cells are in 

the cell cycle, however not at which stage of the cell cycle. Therefore, this increase in IELs 

could be explained by IELs coming from other part of the small intestine, LPLs or newly 

generated IELs that originate from proliferation. An alternative hypothesis would be that 

alternations in the IEC environment between WT and Rag2-/- mice may prevent proliferation 

from activating IELs.  

 

In Chapter 6, I tested several factors to determine their role in steady state IELs as well as and 

αCD3-activated IELs (Fig 6.10-14). I discovered that there was some role of T-bet for 

specific IEL subsets, but no factor that seem in common with the different IEL subsets. To 

address this part more efficiently, one could sort steady state and TCR-activated IEL subsets 

to screen for differences between steady state and activated IELs, as well as common factors 

between the IEL subsets during steady state and activation. Another interesting aspect would 

be to study the same mice to see if they return to steady state at similar time. Prolonged or 

reduced activation time may have implications in disease models.  

 

Changes in mitochondrial mass have been reported in other cell types. A report compared 

two different human endothelial cell lines: one healthy and one dystrophy cell line. There 

were differences in their basal MTG staining. When adding carbonyl cyanide m-chlorophenyl 

hydrazone (CCCP), an inducer of mitochondrial autophagy, to these cell lines, the healthy 

cell line responded by decreased MTG staining, while the dystrophy cell line did not respond 

(Benischke et al., 2017). Similar trend was observed in fibroblasts (Doménech et al., 2015). 

These data demonstrate mitochondrial remodeling in other cell types. In this case, the 
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mitochondrial remodeling was linked to disease. In addition, these data show a potential 

mechanism for IELs to return to steady state, if surviving the activation process, namely 

mitophagy.  

 

An additional question to address is the biological benefit for IELs having to remodel their 

mitochondria for activation. The mitochondrial remodelling is probably a very costly process, 

particularly as it seems to be able to occur as rapid as 24 hours post activation. One 

hypothesis would be that IELs need to be strictly regulated to avoid autoimmune damages in 

the intestinal compartment. It may be less costly to have IELs forced to remodel their 

mitochondria for activation, than to cope with the damage hyper-active IELs may be able to 

cause.  

 

8.4. Gram-positive commensal microbiota can activate IELs 

In the last results chapter, I demonstrated mitochondria-dependent activation in models of 

intestinal inflammation. Using IEC-stressed mice, I showed that IELs were in a more 

heighten state of activation in terms of CD44 staining. However, these IELs lacked MTG 

increase, suggesting that IELs may require additional signals to increase MTG staining (Fig 

7.2 A-C). In the E. vermiformis infection model, IELs did not only have increased MTG 

staining, mitochondrial ROS production and Ki-67 expression, they also produced IFNγ and 

TNFα (Fig 7.5 A-F). Just like the relationship between MTG and Ki-67 needs to be clarified, 

the potential link between MTG and cytokine secretion need to be determined. In Chapter 7, I 

showed that antibiotic treatment, targeting Gram-positive spectrum, prevented the increase in 

MTG staining (Fig 7.18 B). The same IELs also exhibited reduced cytokine production, 

suggesting that MTG increase may be required for cytokine production in IELs. Every time I 
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have observed cytokine production from activated IELs, the same IELs have also shown 

increase in MTG staining. 

 

As mentioned in Chapter 7, these data support a model in which IEL can become activated 

when the IEC barrier integrity is compromised. However, one disadvantage of such a model 

is that IELs seem to become activated only by Gram-positive bacteria. The reasoning for such 

specificity needs to be determined. Does this mean that IELs are not involved in the response 

against Gram-negative pathogens or do IELs use other mechanisms, such as cytotoxicity, to 

respond against Gram-negative pathogens? The fact that mitochondria seem to have 

developed from Gram-negative bacteria (Morgun et al., 2015), may be involved in the lack of 

response to Gram-negative bacteria. 

 

When continuing these studies, it is essential to control the mechanisms of action for used 

antibiotics, as some antibiotics have been suggested to be able to affect mitochondria 

(Watanabe et al., 2018; Langdon et al., 2016). Combination of ampicillin, vancomycin, 

neomycin and metronidazole decreased the MTG staining in IECs (Morgun et al., 2015). This 

is likely not the case for my experiments, as the three different antibiotics used are suggesting 

the same interpretation. 

 

The diet is affecting the immune system as well as commensal microbiota. Examples of 

effects of the diet on the immune system are the role of RA for Th1 cells and AhR for IELs. 

Western diet, containing more fat than standard diet, negatively affect the IEC proliferation in 

TLR2-/-, TLR4-/- and NOD2-/- mice (Sardi et al., 2016; Chung et al., 2017). The western 

diet has also been shown to alter the microbiota composition in favor of the phylum 

Firmicutes, as well as reduced mucus layer and consequently reduced spatial separation 
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between the IEC barrier and commensal microbiota (Schroeder et al., 2017). In addition, the 

vitamin A derivate RA has shown role of RegIIIγ and RegIIIβ expression as mice feed on diet 

without vitamin A have lower expression of these AMPs (Goverse et al., 2016). As described 

earlier, RegIIIγ has an important role for microbiota segregation and composition, again 

linking diet to microbiota and immune responses. In addition, obesity is affecting the 

microbiota. Interestingly, some of these changes do not return to normal after the mice are no 

longer feed with high-fat diet (HFD). Mogibacterium, Christensenlla and Lactobacillus reutri 

are some reported microbiota that is still altered  in mice that have previously received HFD 

diet (Thaiss et al., 2016).  

 

In addition to the diet, a report used PCA to distinguish between young and old mice based 

on their intestinal microbiota (Langille et al., 2014). It has also been reported that the gender 

of the mice also affect their microbiota (Yurkovetskiy et al., 2013; Markle et al., 2013). 

Hence monitoring intestinal microbiota composition and age may be essential for future 

experiments. This view is shared by others, such as Stappenbeck and Virgin who wrote a 

review on the matter (Stappenbeck and Virgin, 2016). They did not only mention the 

importance of bacteria, but also other commensal organisms such as virus and fungi. 

 

A recent study compared the intestinal microbiota in laboratory-housed mice to mice living in 

the wild. Using 16S rRNA sequencing, they showed a distinct clustering difference between 

mice from the wild and laboratory-housed C57BL/6 mice; regardless of the source of the lab 

mice (Rosshart et al., 2017). In addition, the wild mice coped better with DSS-induced colitis 

and tumor occurrence than lab mice (Rosshart et al., 2017), suggesting that intestinal 

microbiota composition has an important role in the disease outcome. In addition, there is a 

report suggesting that the T cell response towards T. muris infection varies depending on 
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mouse strain (Little et al., 2014). These data are suggesting important strain differences that 

is linked to different microbiota composition.  

 

The differences in the microbiota composition in bought mice also showed different severity 

during Salmonella enterica serovar Typhimurium infection (Thiemann et al., 2017). 

Salmonella infection itself seems to be able to alter the microbiota. The more Salmonella 

organisms the more Proteobacteria (Gram-negative) and Bacilli (Gram-positive) are present, 

while a negative correlation applies for Bacteriodia (Gram-negative) bacteria classes (Borton 

et al., 2017). Another report suggests that the microbiota is required to limit the Salmonella 

infection (Edelblum et al., 2017). Collectively, these data demonstrate the importance of the 

microbiota composition. Therefore, one of the next steps to understand the microbiota-

dependent activation mechanisms in IELs would be to be perform sequence analysis of the 

intestinal microbiota. Bearing in mind the differences between laboratory-bought mice and 

different laboratory results, it may be a good idea to include microbiota sequencing in 

intestinal immunity research as standard. This information may become crucial for proper 

interpretation and reproducibility between different laboratories.  

 

In addition to address the question whether the microbiota-dependent pathway is affecting 

IELs directly or indirectly, it is important to determine the molecular mechanistic effects on 

IELs. Data from Assay for Transposase-Accessible Chromatin (ATAC) and enhancer 

sequencing demonstrate differences between IELs sourced from germ-free (GF) and 

conventional kept mice (Semenkovich et al., 2016). Enhancer sequencing data e.g. show that 

STAT3 enhancer is downregulated in conventional TCRγδ+ and TCRαβ+ IELs. (Semenkovich 

et al., 2016). 
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The microbiota has previously been shown to affect other immune cells. GF mice have no 

basal IL-17 production from Th17 cells sourced from the intestinal lamina propria, which 

SPF mice have (Atarashi et al., 2015). A recent report link changes in the diet, in that case 

higher salt concentration that affect the microbiota, which in turns affect Th17 cells. This 

study concluded that Lactobacillius murinus was affected by the salt concentration in the diet 

and therefore a link between diet, microbiota and Th17 cells (Wilck et al., 2017). In addition, 

Th1 cells seem also to be affected by commensal microbiota. Using RegIIIγ-/- mice, which 

lack the spatial separation of microbiota to the IEC barrier, it was shown that small intestinal 

LPLs have increased IFNγ production, which is reduced by antibiotic treatment (Vaishnava et 

al., 2011). MAIT cells have been shown to be able to become activated by riboflavin sourced 

from Gram-positive bacteria (Soudais et al., 2015). Metabolites from commensal microbiota, 

such as short-chain fatty acids (SCFAs), have been reported to induce generation of Treg 

cells in spleen and LNs (Arpaia et al., 2013). Other specific intestinal microbiota has been 

shown to increase the ratio of Treg cells (Sefik et al., 2015). 

 

Commensal microbiota does not only affect T cells. Using germ-free mice, it was shown that 

intestinal B cell class switch to IgD to less extend compared to control mice (Choi et al., 

2017). In addition, the innate immune system seems to be affected by commensal microbiota. 

One report has shown that macrophages could be activated by products from Helicobacter 

hepaticus via TLR2 and MyD88 signalling pathways (Danne et al., 2017). Another study 

demonstrated that the recruitment of macrophages, monocytes and neutrophils to the 

intestinal compartment after DSS-induced colitis is dependent on Gram-positive bacteria 

(Nakanishi et al., 2014). This observation could potentially be important to address whether 

IELs are activated by microbiota in a direct or indirect manner. If IELs are activated by 

microbiota indirectly by APCs, then less recruitment of APCs could lead to less or no IEL 
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activation. Whether Gram-positive bacteria affect intestinal DC migration would be 

interesting to address. Recently, is has been shown that LN-sourced T cells are actually de-

activated, producing less IFNγ and TNFα, when exposed to bacterial supernatant from 

Streptococcus pneumonia (S. pneumonia) (Blevins et al., 2017). This is opposite response 

towards bacteria compared to what I have observed for IELs. Of note, in my case it is likely 

that commensal microbiota that is activating the IELs, which may differ from pathogenic 

bacteria such as S. pneumonia. Therefore, it will be interesting to study whether Gram-

positive enteric pathogens are also capable of activating IELs in similar manner as Gram-

positive commensal microbiota.  

 

Finally, the role of the microbiota on immune responses goes beyond the intestinal compartment. The 

immune response against influenza is blunter in the absence of commensal microbiota 

(Ichinohe et al., 2011). Several studies have reported of various gut axis with other organs, 

such as gut-brain, gut-liver and gut-heart axis, for which the influencing factors sourced from 

the gut is originating from commensal metabolites. These studies highlight the importance of 

microbiota for overall health (Blacher et al., 2017).  

 

 

 

 

 

 

 

 

 

 



Frising UC Activation and Maintenance of Intestinal Intraepithelial Lymphocytes (IELs)  

Chapter 9 Conclusions 

-------------------------------------------------------------------------------------------------------------------------------------- 

Page | 350  
Copyright © 2018 Frising UC 

Chapter 9. Conclusions  
 

It is essential that the intestinal immune system is regulated properly to generate the 

appropriate response to dangers, such as pathogens, while simultaneously remaining tolerant 

towards commensal microbiota and dietary residues. There is a range of intestinal immune 

cells critical for providing effective, yet balanced immune responses. One particularly 

interesting class of intestinal immune cells are IELs. In defensive terms, they are located at 

“the front” between IECs in the IEC barrier, in an activated yet resting state. Most of the 

current knowledge of IELs is derived from in vivo experiments, because IELs survive poorly 

in vitro.  

 

In Chapter 4, I investigated further the subject of IEL maintenance in vitro. Advancements 

into the cause of poor IEL survival would provide further insights into IELs’ requirements for 

maintenance, as well as an in vitro option to study further aspects of IEL biology such as their 

activation. In this thesis, I have achieved advancements by combining IELs with intestinal 

organoid, “mini-gut”, cultures. By establishing live/dead imaging staining for my co-culture 

system, I discovered that the majority of IELs associated with organoids remain alive for at 

least four days in cultures. I was also able to observe live IELs after organoid passage, 

indicating that IELs may be able to survive for even longer. These data suggest an important 

role of IEL-IEC interactions for IEL survival. In the same chapter, I also established 

quantification parameters to assess the numbers of the different subsets of IELs and IECs in 

my co-culture system (Fig 9.1 B-C). Using these parameters, I performed experiments with 

further complexity in the form of murine norovirus (MNV) addition. MNV-infection of 

organoids resulted in a decrease in the proliferation in organoids. Addition of IELs to MNV-

organoid cultures prevented the MNV-mediated reduction in proliferation in organoids. 
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These experimental strategies may be applicable to other tissues, which can be cultured as 

organoids.  

 

In Chapter 5, I discovered previously undescribed differences between IELs and other CD8α+ 

T cells, epithelial-resident lymphocytes and TCRγδ+ cells. In recent years, the importance of 

cell metabolism for immune functions has gained attention. In this Chapter, I showed that 

IELs store more lipid droplets than splenic CD8α+ T cells. Moreover, IELs have surprisingly 

low mitochondrial mass compared to other CD8α+ T cells. I compared IELs with T cells 

isolated from the lung, liver and spleen, as well as with dendritic epidermal T cells (DETCs) 

and small intestinal lamina propria lymphocytes (LPLs). Only a small proportion of LPLs, 

the TCRγδ+ LPLs, had a similarly low mitochondrial mass as IELs. Surprisingly, lung T cells 

had the highest measured mitochondrial mass. Although out of the scope of this thesis, the 

finding highlights the need for further investigations to understand the different demands of 

different T cells in the tissues. In addition, I discovered that IELs have lower mitochondrial 

membrane potential than splenic CD8α+ T cells. These data are in line with data obtained 

from Seahorse mitochondrial stress assays, demonstrating that IELs lack spare respiratory 

capacity (SRC), unlike naïve and memory splenic CD8α+ T cells. Surprisingly, IELs had 

similar levels of mitochondrial reactive oxygen species (ROS) production to splenic CD8α+ T 

cells. Mitochondria contain a specific lipid called cardiolipin (CL). In Chapter 5, I also made 

measurements of the content of CLs in cells and my results indicated that IELs have more 

CLs compared to splenic CD8α+ T cells. Overall, these data indicated that IELs have an 

altered mitochondrial state, which might contribute to explaining some of the many 

differences between IELs and other CD8α+ T cells. 
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In Chapter 6, I demonstrated that IELs exhibit mitochondrial plasticity: activation in the form 

of TCR stimulation led to increased mitochondrial mass. This applies to all IEL subsets. 

Interestingly, I observed a heterogeneous response among IEL subsets, with TCRαβ+ CD8αβ+ 

IELs manifesting the strongest response. I observed increased expression of the lymphocyte 

activation markers CD44 and CD69, of which the CD69 increase was only transient. In 

addition, I demonstrated that activated CD8αβ+ IELs specifically have higher mitochondrial 

ROS production, while all IEL subsets showed increased Ki-67 expression. However, these 

activated IELs did not secrete effector cytokines such as IFNγ and TNFα. In addition, 

mitochondrial membrane potential did not alter, except in TCRαβ+ CD8αβ+ IELs. Moreover, 

the CL content did not alter in any of the IEL subsets, suggesting that the total amount of CLs 

remained at a similar level to that of non-activated IELs. Interestingly, the composition of 

CLs in IELs alters after IEL activation from mainly consisting of CL 74 species to CL 72 

species. These data support a model in which mitochondria play a role in the IEL activation 

process.  

 

Finally, in Chapter 7, I demonstrated IEL activation, measured by MTG and CD44 staining, 

during physiological circumstances such as intestinal infections using Eimeria vermiformis 

(E. vermiformis) and murine norovirus (MNV)-CW3. Surprisingly, infection with Salmonella 

and MNV-O7 did not lead to IEL activation. These observations suggest that triggers for IEL 

activation are present in some infection models but absent in others. This raised the question 

of what these IEL activation triggers might be. One key experiment in this regard was the 

assessment of IL-22-/- mice that had activated IELs despite a lack of on-going infection(s) or 

inflammation. IL-22 is an important cytokine for the IEC barrier. Administration of broad-

spectrum antibiotics to IL-22-/- mice significantly lowered the level of IEL activation. Using 

an experimental approach combining antibiotic treatment with E. vermiformis and MNV-
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CW3 infection models, I demonstrated that IEL activation is lowered to a level similar to that 

of non-infected animals in both infection models. These data highlight the commensal 

microbiota as one inducer of IEL activation and not the pathogens themselves. Another very 

interesting finding from this chapter is that the activation of IELs seems to be mediated 

specifically by Gram-positive bacteria. Mice, infected with E. vermiformis and on antibiotic 

treatment targeting Gram-positive bacteria, failed to show the same IEL activation as infected 

non-treated mice or infected mice treated with antibiotic targeting Gram-negative bacteria 

specifically. These observations are supported by DSS-induced colitis experiments. Previous 

literature has suggested that DSS-induced colitis alters the commensal microbiota in favor of 

more Gram-negative bacteria. This could explain why DSS-induced colitis did not lead to 

activation of IELs.  

 

Interestingly, combining antibiotic treatment and αCD3-treatment did not show statistically 

significant differences, suggesting that TCR stimulation and microbiota activation of IELs 

may be two separate IEL activation pathways. Data from this chapter identify commensal 

microbiota as one essential component for mitochondria-mediated IEL activation. These data 

also invite the design of a model in which IEL can become activated regardless of the cause 

of leakiness of the IEC barrier.  

 

Overall, the findings from this thesis provide evidence of IEC-mediated IEL survival, as well 

as a role for IELs to aid IEC proliferation during viral infection. In addition, findings from 

this thesis highlight an important role for mitochondria in IEL activation. These data are very 

exciting and should be pursued in further investigations into IEL biology.  
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IELs have been suggested to have roles in intestinal inflammatory diseases such as intestinal 

bowel disease (IBD) and celiac disease (CD). The new findings may aid in discovering and 

developing new targets for therapies for modulating IEL activation in intestinal disorders and 

diseases. 
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Figure 9.1 Summary of IEL maintenance. In this thesis, I have shown data suggesting that 

intestinal organoids can support IEL survival. A) shows an example of IELs and an organoid 

cultured together. I have established quantification parameters (white spots) for the IEL-

organoid co-cultures for B) IECs and C) IELs. Using these parameters, I demonstrated 

differences in the proportion of proliferative IECs as well as goblet cell in IL-15Rα-/- 

organoids compared to WT organoids. I was also able to demonstrate that the proportion of 

proliferating IECs is reduced in the presence of MNV and E. coli. The IEL parameters 

require further optimization for full usage. 
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Figure 9.2 Graphical summary of findings related to IEL activation. In this thesis, I have 

shown that IELs have a different activation state compared to other T cells and that IELs can 

become activated via TCR- and microbiota stimulation Panel A) shows the different T cells 

tested that all have different mitochondrial masses compared to IELs, measured by MTG 

staining as shown in Chapter 5. Panel B) illustrates the observation from Chapter 6 that IELs 

can become activated by TCR-stimulation. The different IEL subsets respond differently to 

TCR stimulation as shown by the table. – indicates no difference, -- indicates reduction, + 

indicates increase, while ++ and +++ show greater increase by the measured parameter. Panel 

C) and D) shows a schematic illustration of the small intestine with the different IEC subsets, 

as well as findings from Chapter 7 suggesting that MNV-CW3 and E. vermiformis infection 

leads to IEL activation measured by MTG staining. Panel F) details the activation of the 

different IEL subsets at day 10 post infection. Interestingly, in antibiotic-treated conditions, 

the activation cause by MNV-CW3 and E. vermiformis did not occur. These observations 

indicate that it is the commensal microbiota that provides actual activation trigger(s) for IELs. 
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