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Abstract

Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse

effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying

the cardiovascular side effects of the medication are unclear. Here, we made use of the

chromosomal variation in the genes that are known to be affected by glatiramer treatment.

Focusing on genes and gene products reported by drug-gene interaction database to in-

teract with glatiramer acetate we explored a large meta-analysis on CAD genome-wide

association studies aiming firstly, to investigate whether variants in these genes also affect

cardiovascular risk and secondly, to identify new CAD risk genes. We traced association

signals in a 200-kb region around genomic positions of genes interacting with glatiramer in

up to 60 801 CAD cases and 123 504 controls. We validated the identified association in

additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles

within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead

SNP rs12459996 was genome-wide significantly associated with CAD in the extended
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meta-analysis (odds ratio 1.09, p = 1.58×10−12). The other two SNPs at the locus were not

in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of

4.05 × 10−10 and 2.21 × 10−6. Thus, studying genes reported to interact with glatiramer ace-

tate we identified genetic variants that concordantly with the drug increase the risk of CAD.

Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated

with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide sig-

nificant association with CAD in large human samples.

Introduction

Glatiramer acetate (GA), also known under the trade name Copaxone1, is an immunomodu-

lator used in the treatment of relapsing-remitting multiple sclerosis (MS). It is a synthetic pep-

tide consisting of four amino acids[1, 2]. GA is assumed to bind major histocompatibility

complex (MHC) molecules and compete with various myelin antigens[2]. This competitive

binding affects the presentation of myelin antigens to T-cells. In addition, GA potentially pro-

motes suppressor T-cells[1, 3]. A further mechanism of action is that GA-induced T helper

cells secrete high amounts of cytokines such as IL-4/10 and TGF-β[2]. In mice, GA is reported

to induce transforming growth factor β 1 (TGFB1) in several cell types such as monocytes[4],

Th2/3 cells[5] and brain[6]. In addition, it is known that polymorphisms in the TGFB1 gene

alter the GA treatment response[7].

According to the FDA,drugs.com and the copaxone own webpage (copaxone.com), GA is

reported to induce hypertension and increase the risk of coronary artery disease (CAD) and

myocardial infarction. The exact mechanisms that explain the increased risk of CAD or hyper-

tension under GA treatment are, however, not fully understood.

Understanding the genetic mechanisms underlying a disease can facilitate the identification

of new drug targets. Indeed, several drugs have been developed based on genetic findings [8–

10]. Moreover, if we know which genes or pathways are targeted by a drug, we may also predict

adverse effects based on variants in these genes modulating risk[11, 12]. Here, we reversed this

approach to identify new disease risk genes. We screened genes that are reported to interact

with a drug that increases the risk of CAD to identify new CAD risk alleles. In a previous

study, we identified new CAD risk genes by studying the pleiotropic effects of cyclooxygenase

2 inhibitors[13].

In this work, we first identified genes and gene products reported to interact with GA.

These genes were then screened for association in the largest meta-analysis on CAD genome-

wide association studies (GWAS), CARDIoGRAMplusC4D 1000G[14]. The underlying idea is

that single nucleotide polymorphisms (SNPs) in cis with these genes may affect expression or

structure of these genes in a similar way as the drug. Hence, we expect that some of these SNPs

also may increase the risk of CAD, even though the effect size might vary between drug and

variant.

Methods

The first step of the analysis was to identify genes or gene products reported to interact with

GA. For this, we used the Drug Gene Interaction Database (DGIdb)[15]. Second, in a large

CAD GWAS dataset, we identified all SNPs within 200kb surrounding the four genes identi-

fied in the first step of this analysis. The 200kb window was selected to also include regulatory

SNPs affecting gene expression.

Genomic correlates of GA adverse effects lead to a novel CAD locus

PLOS ONE | https://doi.org/10.1371/journal.pone.0182999 August 22, 2017 2 / 19

01ZX1306A), and the European Union Seventh

Framework Programme FP7/2007-2013 under

grant agreement no HEALTH-F2-2013-601456

(CVgenes-at-target). Further grants were

received from the DFG as part of the

Sonderforschungsbereich CRC 1123 (B2).

T.K. was supported by a DZHK Rotation

Grant. I.B. was supported by the Deutsche

Forschungsgemeinschaft (DFG) cluster of

excellence ‘Inflammation at Interfaces’. F.W.A.

is supported by a Dekker scholarship-Junior

Staff Member 2014T001 – Netherlands Heart

Foundation and UCL Hospitals NIHR Biomedical

Research Centre. This work was supported by the

German Research Foundation (DFG) and the

Technical University of Munich within the funding

programme Open Access Publishing.

Competing interests: P.W.F. reports grants from

Sanofi Aventis, grants from Lilly, grants from Novo

nordisk, personal fees from Sanofi Aventis,

personal fees from Lilly. L.W. reports institutional

research grants, consultancy fees, lecture fees, and

travel support from AstraZeneca, institutional

research grants, consultancy fees, lecture fees, and

travel support from Boehringer Ingelheim,

institutional research grants, consultancy fees,

lecture fees, and travel support from Bristol-Myers

Squibb/Pfizer, grants from Merck & Co, grants

from Roche, consultancy fees from Abbott and

holds two patents involving GDF-15. This does not

alter our adherence to PLOS ONE policies on

sharing data and materials.

http://drugs.com
http://copaxone.com
https://doi.org/10.1371/journal.pone.0182999


GWAS dataset

The CARDIoGRAMplusC4D 1000Genomes meta-analysis data set consists of 47 GWAS stud-

ies including 60 801 CAD cases and 123 504 controls. Ethical approval was obtained from the

appropriate ethics committees and informed consent was obtained from all participants. Spe-

cifically, the studies involving genome-wide SNP analysis for CAD were approved by the ethics

commissions of the University of Regensburg (02/042), the University of Lübeck (04/041) und

the Technical University of Munich (406/15s). The GWAS are imputed with the December

2012 1000Genomes phase I integrated haplotypes (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20110521/) (for Methods see Nikpay et al.[14]).

We validated and later combined the CARDIoGRAMplusC4D 1000Genomes meta-analysis

data set[14] with GWAS data from CHARGE, deCODE CAD, DILGOM, EPIC, FRISC II

GLACIER, METISM, MORGAM FIN, MORGAM FRA, MORGAM GER, MORGAM ITA,

MORGAM UNK, PMB, PopGen, SCARF SHEEP, and STR that have been previously reported

in references Schunkert et al. [16] and/or Deloukas et at. [17]. Moreover, we included data

from GWAS not reported before, i.e. German MI Family Studies V. See detailed information

in S1 Table. In total, this combined dataset consists of 82 735 cases and 199 591 controls. Com-

pared to the CARDIoGRAMplusC4D study, we increase the sample size by 21.934 cases and

76.087 controls.

Meta-analysis

Logistic regression, assuming an additive model, was performed on all single study data. All

analyses were adjusted for sex and age. Age was defined as the recruitment age for controls

and the event age for cases. We used the fixed-effect inverse variance-weighted meta-analysis

to combine single analyses data. Quality control was performed at individual sites and centrally

to assure standardized data formats previously agreed criteria including check of consistency

of the given alleles across all studies, quality of the imputation, deviation from Hardy-Wein-

berg equilibrium and call rate. If individuals or single studies did not pass quality control, they

were excluded. SNPs were also excluded from the meta-analysis if present in less than 17

GWAS.

For the meta-analysis, we calculated an ’inverse variance weighting’- fixed-effects and a ran-

dom effects model[18], depending on the heterogeneity between the studies. For heterogeneity

calculation, Cochran’s Q was used. The threshold for heterogeneity was phet<0.01. For the

combination of the stages (stage1: results of 1000G meta-analysis; stage 2: replication in CAR-

DIoGRAM, CARDIoGRAMplusC4D, GerMIFS V) an ’inverse variance weighting’- the fixed-

effects model was calculated and the combined effects and p-values were reported. In total, we

evaluated the genomic data from 82 735 cases and 199 591 controls.

Statistical methods

The number of SNPs tested in the initial screen (for the four genes) is 20,027. We corrected

the p-value threshold based on the number of SNPs tested using the Bonferroni correction.

Hence, all SNPs with p-values below 2.5x10-6 were considered significant.

Identification of TGFB1 sub-loci

We used Haploreg version 4.1[19] with the European 1000G Phase 1 database for LD calcula-

tion. We identified LD blocks based on LD> 0.4 to the lead SNPs. In detail, we repeated the

following three steps until no sub-loci with a p-value below 1×10−6 were found.

1. Identification of current lead SNP (SNP with the lowest p-value).

Genomic correlates of GA adverse effects lead to a novel CAD locus
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2. Identify all SNPs in LD (r2>0.4) with the current lead SNP.

3. Remove lead and LD SNPs from dataset

To test for independence between the identified sub-loci, we performed conditional analy-

sis using summary statistic data with the GCTA tool[20]. As reference data used the GerMIFs

II study. For conditional analysis, we used the SNPs identified in the above-described sub-loci

analysis. We first performed a joint analysis using the–cojo-joint option and then performed

the conditional analysis (—cojo-cond) based on the independent SNPs identified in the joint

analysis step.

Functional annotation of SNPs and TGFB1

To evaluate the functional implication of the SNPs, we identified all SNPs in high LD (r2>0.8)

with the locus lead SNP using the HaploReg version 4.1 database[19]. To estimate the effect of

a SNP on gene expression, we identified expression quantitative trait loci (eQTLs) using the

publicly available data from Westra et al.[21], GTeX[22] as well as over 100 studies included in

the Genome-Wide Repository of Associations between SNPs and Phenotypes (GRASP) data-

base[23]. In addition, we used HaploReg and RegulomeDB[24] to functionally annotate SNPs

and performed a literature search for gene functions using Pubmed.

Results

The principle idea of this approach is illustrated in Fig 1. Using DGIdb[15], we identified four

genes reported to interact with GA; CCR5, HLA-DRB1, IFNAR1, and TGFB1. Of these, only

the TGFB1 region displayed signals suggesting an association with CAD risk (Fig 2). We

Fig 1. Schematic approach. 1) Identification of reported adverse effect of GA 2) Identify genes reported to interact with GA. 3) Establish a link between the

genes identified in 2. and the adverse effect identified in 1).

https://doi.org/10.1371/journal.pone.0182999.g001
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validated the GA-TGFB1 interaction performing a literature search[2, 4–6]. Moreover, from a

mechanistic point of view, TGFB1 is the only gene with evidence of a functional association

with CAD (see S1 Fig). Hence, we did not examine the other genes further.

In our first GWAS look-up, the lead SNP, rs15052, close to TGFB1 yielded a p-value of

2.21 × 10−7. In a replication study with independent samples, rs15052 showed a p-value of

9.97 × 10−4, hence validating the initial finding. We next combined the data sets and reran the

analysis. In this combined meta-analysis, rs15052 yielded a genome-wide significant p-value of

9.11 × 10−10. The new lead SNP in the joint meta-analysis, rs12459996 had a p-value of

1.58 × 10−12 and an OR of 1.09 (see Fig 3).

The TGFB1 locus presumably harbors several independent sub-loci (see Table 1). Using the

GCTA conditional analysis on summary statistic data, we identified three such independent

signals. In addition to the genome-wide significant lead SNP, two sub-loci show significant

p-values (rs1056854: 3.30 × 10−7 and rs75041078: 3.87 × 10−7). We conditioned the two new

SNPs on rs12459996 in a stepwise approach. rs1056854 showed the lowest p-value after con-

ditioning with rs12459996 with a p-value of 4.07x10-10 and an OR of 1.07. Conditioning

rs75041078 on the lead SNPs rs12459996 and rs1056854, we get a p-value for the third SNP of

2.21x10-6 with an OR of 1.05.

Fig 2. GA interacts with CCR, TGFB1, IFNAR1 and HLA-DRB1 (solid line). Moreover, it is known that GA affects CAD (Coronary Artery Disease)

risk (dashed line). In this work, we searched for SNPs associated with CAD in the gene regions representing the GA off target effects (dotted lines).

We found a genome-wide significant association for the TGFB1 locus with a p-value of 1.58 × 10−12 (red dotted line). n.s.: non-significant; TGFB1:

Transforming Growth Factor, Beta 1; CCR5: Chemokine (C-C Motif) Receptor 5 (Gene/Pseudogene); IFNAR1: Interferon (Alpha, Beta And Omega)

Receptor 1; HLA-DRB1: Major Histocompatibility Complex, Class II, DR Beta 1.

https://doi.org/10.1371/journal.pone.0182999.g002
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Fig 3. Association sub-loci signal for the TGFB1 locus. The three lead SNPs are shown with the corresponding high-LD blocks (SNPs within

r2>0.2.) depicted in orange, red and green. Independent sub-loci were identified with the GCTA conditional analysis tool (see methods). The LD

between the lead SNPs indicated and under r2<0.1. The three individual LocusZoom plots are found in the S2 Fig.

https://doi.org/10.1371/journal.pone.0182999.g003

Table 1. TGFB1 locus.

Sub-

locus

Lead SNP CAD

risk

allele

Frequency

risk allele

OR (CI)

risk

allele

P-value

combined

analysis

P-value joint

analysis

GCTA

OR risk allele

joint analysis

GCTA

SNP effect

on TGFB1

Regulatory

function

Haploreg

Regulatory

function

Regulome

score

I rs12459996 T 0.10 1.09

(1.06–

1.12)

1.58x10-12 2.73x10-9 1.09 Increased

expression

enhancer 6

II rs75041078 A 0.25 1.06

(1.04–

1.09)

3.87x10-7 4.05x10-10 1.07 n/a enhancer n/a

III rs1056854 A 0.86 1.06

(1.04–

1.08)

3.30x10-7 2.21x10-6 1.05 increased

expression

enhancer 5

https://doi.org/10.1371/journal.pone.0182999.t001
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To evaluate the functional implication of the three potentially independent associations, we

performed an in-silico evaluation of the lead SNPs and the SNPs in high LD with these (r2 >

0.8) (see S2 Table for detailed results).

The genome-wide significant lead SNP rs12459996 (p = 1.58 × 10−12; OR = 1.09), is found

in a regulatory region and is marked as a strong promoter and enhancer in several cell types

including smooth muscle and T-helper cells. As the promoter marks are downstream TGFB1,

it is more likely that the regulatory effect on TGFB1 is acting through the enhancer. The lead

SNP and SNPs in high LD (r2>0.8) are reported to have an eQTL effect on TGFB1 in the thy-

roid gland (p = 3.0 × 10−8, OR = 1.58) and the skeletal muscle (p = 5.6 × 10−6, 1.36) (GTEX).

The CAD risk allele T is associated with increased TGFB1 expression in both cell types.

The second sub-locus has the lead SNP rs75041078 (conditional p = 4.07x10-10, conditional

OR = 1.07). This SNP is not in high LD with any other SNP (r2>0.8). It is located in the intron

of TMEM91 and lies in an enhancer histone mark in neutrophils. We did not find any eQTL

effect in the databases searched.

The third sub-locus, with the lead SNP rs1056854 (conditional p = 2.21x10-6, conditional

OR = 1.05), is also located in a regulatory region, which includes a promoter histone mark in

various cell types, including H1-hESC cells. The locus is, however, downstream or rather at

the 30 end of the TGFB1 gene and hence the promoter unlikely to affect the TGFB1 gene. SNPs

in high LD are also found in enhancer histone marks in multiple cell types, including T cells,

T-helper cells and monocytes. Hence, the locus might have a regulatory effect on TGFB1.

Supporting this hypothesis, we identified an eQTL effect on TGFB1 in the adrenal gland, sug-

gesting a link between the SNP and the gene also in other tissues. The CAD risk allele A is asso-

ciated with increased expression of TGFB1 (p = 1.5�10−6, OR = 2.2).

Discussion

Exploring drug-gene interactions, we identified four genes or gene products to be affected by

glatiramer acetate, a drug known to increase the risk of severe coronary events. Analyzing the

genomic loci harboring these genes, we identified TGFB1 as a new genome-wide significant

locus displaying association for CAD. The results of this analysis give rise to the hypothesis

that the known interaction of GA with TGFB1 may be responsible for modulating the risk of

CAD. Indeed, the results point towards a novel mechanism for the increased risk of CAD

under GA treatment.

The pharmacologic mechanisms of GA in the treatment of multiple sclerosis are not fully

understood. The general assumption is that the immune-modulatory activity of GA is related

to the change of the T-cell antigen reactivity. Through its presumed binding to the MHC class

II, GA is thought to alter the presentation of myelin antigens to auto-reactive T-cells and

thereby affects the activity of the antigen presenting cells[25]. It is also known that GA induces

the secretion of cytokines such as IL-4/10 and TGF-β in T-helper cells[2], which according to

the present data may affect the risk of CAD under GA treatment.

TGFB1 (transforming growth factor, beta1) is a multifunctional peptide controlling multi-

ple cellular functions such as proliferation and differentiation in several cell types. It plays an

important role in the pathophysiology of the endothelial and vascular smooth muscle cell.

TGFB1 is a very likely CAD candidate gene and has been linked to a range of cardiovascular

traits such atherosclerosis, hypertension, inflammation and aneurysm [26–29]. TGFB1 serum

levels are also reported to be higher in CAD patients[30]. In addition, several variants within

other genes in the TGFB–SMAD signaling pathway have been associated with CAD[26, 29,

31–34]. It is, hence, also possible, that GAs interaction with TGFB1 influences other reported

adverse effects such as the increased risk of hypertension. We cannot exclude that the GA

Genomic correlates of GA adverse effects lead to a novel CAD locus
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related risk of CAD is secondary to GA induced hypertension, but at the same time we can

also not exclude other pathways. TGFB1 is involved in multiple cellular functions suggesting

increased CAD risk through multiple pathways.

Here, we identified three independent CAD associated signals within the TGFB1 locus. The

TGFB1 locus has not been genome-wide significantly associated with CAD before, most likely

due to small effect sizes and hence insufficient power of previous studies. The three variants

are not associated with CAD related traits based on a GRASP database search (p<1x10-4).

However, the overlap of the locus with immune cell histone marks suggest a link to inflamma-

tion. The lead SNP (rs12459996) of the TGFB1 locus is reported to increase the expression of

the gene, which matches with the direction of effect reported for GA. In addition, the risk allele

of the sub-locus rs1056854 is also associated with increased expression of the gene. The identi-

fied TGFB1 locus is also associated with expression of other genes (CCDC97, HNRNPUL1,

AXL, BCKDHA) (see S2 Table). Because our study focused on genes that interact with GA, we

did not discuss these genes at this locus. It is however possible, that these genes influence the

risk of CAD as well. Indeed, several studies have demonstrated that a regulatory SNPs have

effects on more than one gene. In a previous study, we found multiple genes per locus where

either all SNPs, a subset or only one SNP increase the risk of CAD[35].

The molecular effects of TGFB have been extensively studied in vitro and in vivo models

linking the gene to CAD risk. For example, TGFB1 has been associated with several CAD

related phenotypes such as thrombosis, inflammation, hypertension and neointima growth

[36–44]. However, the net effect of TGFB may vary. Indeed, TGFB1 may either increase or

decrease inflammation, activate or deactivate macrophages, depending on the local cytokine

environment[29]. This is mainly due to the fact that it acts through several signaling pathways

affecting several CAD related phenotypes with partially opposing effect on risk [29, 33]. In

early stages of the disease, TGFB1 may be atheroprotective and higher levels of TGFB1 have

been reported to decrease the risk of atherosclerosis[29]. In fact, TGFB1 displayed dosage

effects where lower levels of TGFB1 increased proliferation whereas higher levels inhibited

proliferation in endothelial cells[36]. Vice versa, in the presence of disease increased TGFB1

signaling has been associated with increased restenosis by increasing neointima growth[37,

38]. Moreover, TGFB1 has been linked to accelerated thrombus formation by inducing platelet

aggregation [39, 40] and the expression is increased in rats with traumatic deep vein thrombo-

sis versus control rats [41]. TGFB1 was also found to inhibit nitric oxide in vascular endothelial

cells linking higher levels of TGFB1 to increased blood pressure[42, 43]. In addition, TGFB1

expression was also reported to be increased in patients with hypertension[44].

Our study design has several limitations. Our findings are based on associations rather than

on functional testing. We thus cannot infer the precise pathway that is affected by the genetic

variants at the TGFB1 locus. However, functional effects of the risk allele on expression levels

have been previously reported and go in the same direction of TGFB1 expression as the effects

reported in the literature for GA. Moreover, the association between the TGFB1 locus and

CAD risk reaches genome-wide significance, which can be regarded as a conclusive and scien-

tifically important observation independently of the overlap with GA side effects including

enhanced TGFB1 expression. Indeed, the links reported here, first between GA and CAD risk

(drugs.com), second between GA and TGFB1[2] and third the genome-wide significant associ-

ation of TGFB1 SNPs with CAD are each highly conclusive. Together they allow hypothesizing

that TGFB1 is involved in the increased risk of CAD under GA treatment.

Taken together, our results imply mechanistic similarities between pharmacologic

responses to GA treatment and genetic variants affecting CAD risk. While GA treatment is

known to enhance TGFB1 expression and CAD risk, we here associate SNPs within the

TGFB1 locus linked with CAD risk and enhanced TGFB1 expression. Thus, both the newly
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identified CAD risk alleles and GA appear to induce the expression of TGFB1, suggesting that

the CAD risk alleles and the drug have similar effects on the gene product and subsequently on

CAD risk. With an additive effect, the CAD risk alleles might also explain variable CAD risk

under GA treatment. Finally, in this study, we identified TGFB1 as a new genome-wide signifi-

cant locus affecting CAD risk.
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